1
|
Huang B, Zhu M, Cui Z, Chen S, Huang G, Tian J, Zhang W. Local Regulation of Mitochondrial Respiratory for Enhancing Photodynamic Therapy and Breaking Chemoresistance in Hypoxia. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2402956. [PMID: 39439186 DOI: 10.1002/smll.202402956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 09/24/2024] [Indexed: 10/25/2024]
Abstract
The hypoxic condition in solid tumors induces therapy resistance, limited therapeutic efficacy, and tumor recurrence, especially for chemotherapy and aerobic photodynamic therapy (PDT). To address this matter, an O2 regulator (SNP@Ato) is designed for breaking chemoresistance and enhancing PDT, which is constructed by loading Atovaquone (Ato) through self-assembly and host-guest interaction between β-cyclodextrin functionalized tetraphenylporphyrin (TPP-CD4) and thioketal-linked camptothecin/azobenzene (Azo-TK-CPT). Specifically, the porphyrin units in SNP@Ato are in "Off state" due to the photoinduced electron transfer (PET) effect between the porphyrin units and azobenzene. After encountering the hypoxic condition in solid tumors, SNP@Ato is dissociated by the cleaved azobenzene on account of over-expressed azo-reductase. Then the mitochondrial respiratory of cancer cells would be suppressed with the participation of Ato, generating a local hypoxia relief for sensitized chemotherapy and enhanced PDT. Accompanied by efficient PDT, the TK linker is broken by ROS, and the CPT is released from the prodrugs. Compared with the SNP group without oxygen-regulator, SNP@Ato exhibits a remarkable improvement of the therapeutic effect against hypoxic tumors in vitro and in vivo. This work proposes a novel paradigm for overcoming hypoxia-induced therapeutic resistance.
Collapse
Affiliation(s)
- Baoxuan Huang
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Mengting Zhu
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Zepeng Cui
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Suwen Chen
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Gang Huang
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Jia Tian
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
2
|
Jiang S, Gurram B, Zhu J, Lei S, Zhang Y, He T, Tagit O, Fang H, Huang P, Lin J. Self-Boosting Programmable Release of Multiple Therapeutic Agents by Activatable Heterodimeric Prodrug-Enzyme Assembly for Antitumor Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409960. [PMID: 39569709 PMCID: PMC11727268 DOI: 10.1002/advs.202409960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/08/2024] [Indexed: 11/22/2024]
Abstract
Endogenous stimuli-responsive prodrugs, due to their disease lesion specificity and reduced systemic toxicity, have been widely explored for antitumor therapy. However, reactive oxygen species (ROS) as classical endogenous stimuli in the tumor microenvironment (TME) are not enough to achieve the expected drug release. Herein, a ROS-activatable heterodimeric prodrug-loaded enzyme assembly is developed for self-boosting programmable release of multiple therapeutic agents. The heterodimeric prodrug NBS-TK-PTX (namely NTP) is composed of 5-(ethylamino)-9-diethylaminobenzo[a]phenothiazinium chloride analog (NBS), paclitaxel (PTX) and ROS-responsive thioketal (TK) linker, which shows a strong binding affinity with glucose oxidase (GOx), thus obtaining NTP@GOx assembly. Notably, the enzymatic activity of GOx in NTP@GOx is inhibited by NTP. The programmable release is achieved by following steps: i) NTP@GOx is partially dissociated in acidic TME, thus releasing a small segment of NTP and GOx. Thereupon, the enzymatic activity of GOx is recovered; ii) GOx-triggered pH reduction further facilitates the dissociation of NTP@GOx, thus accelerating a large amount of NTP and GOx release; iii) The TK linker of prodrug NTP is cleaved by hydrogen peroxide generated by GOx catalysis, thus expediting the release of NBS for Type-I photodynamic therapy and PTX for chemotherapy, respectively. The NTP@GOx shows great potential for multimodal synergistic cancer therapy.
Collapse
Affiliation(s)
- Shanshan Jiang
- Marshall Laboratory of Biomedical EngineeringInternational Cancer Center, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary TheranosticsSchool of Biomedical EngineeringShenzhen University Medical SchoolShenzhen UniversityShenzhen518055China
- Nanophotonics Research CenterShenzhen Key Laboratory of Micro‐Scale Optical Information TechnologyInstitute of Microscale OptoelectronicsShenzhen UniversityShenzhen518060China
| | - Bhaskar Gurram
- Marshall Laboratory of Biomedical EngineeringInternational Cancer Center, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary TheranosticsSchool of Biomedical EngineeringShenzhen University Medical SchoolShenzhen UniversityShenzhen518055China
- Department of BioInterfacesInstitute for Chemistry and BioanalyticsSchool of Life SciencesFHNW University of Applied Sciences and Arts Northwestern SwitzerlandMuttenz4132Switzerland
| | - Junfei Zhu
- Marshall Laboratory of Biomedical EngineeringInternational Cancer Center, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary TheranosticsSchool of Biomedical EngineeringShenzhen University Medical SchoolShenzhen UniversityShenzhen518055China
| | - Shan Lei
- Marshall Laboratory of Biomedical EngineeringInternational Cancer Center, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary TheranosticsSchool of Biomedical EngineeringShenzhen University Medical SchoolShenzhen UniversityShenzhen518055China
| | - Yifan Zhang
- Marshall Laboratory of Biomedical EngineeringInternational Cancer Center, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary TheranosticsSchool of Biomedical EngineeringShenzhen University Medical SchoolShenzhen UniversityShenzhen518055China
| | - Ting He
- Marshall Laboratory of Biomedical EngineeringInternational Cancer Center, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary TheranosticsSchool of Biomedical EngineeringShenzhen University Medical SchoolShenzhen UniversityShenzhen518055China
| | - Oya Tagit
- Department of BioInterfacesInstitute for Chemistry and BioanalyticsSchool of Life SciencesFHNW University of Applied Sciences and Arts Northwestern SwitzerlandMuttenz4132Switzerland
| | - Hui Fang
- Nanophotonics Research CenterShenzhen Key Laboratory of Micro‐Scale Optical Information TechnologyInstitute of Microscale OptoelectronicsShenzhen UniversityShenzhen518060China
| | - Peng Huang
- Marshall Laboratory of Biomedical EngineeringInternational Cancer Center, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary TheranosticsSchool of Biomedical EngineeringShenzhen University Medical SchoolShenzhen UniversityShenzhen518055China
| | - Jing Lin
- Marshall Laboratory of Biomedical EngineeringInternational Cancer Center, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary TheranosticsSchool of Biomedical EngineeringShenzhen University Medical SchoolShenzhen UniversityShenzhen518055China
| |
Collapse
|
3
|
Chen F, Huang H, Zhang F, Wang R, Wang L, Chang Z, Cao L, Zhang W, Li L, Chen M, Shao D, Yang C, Dong WF, Sun W. Biomimetic Chlorosomes: Oxygen-Independent Photocatalytic Nanoreactors for Efficient Combination Photoimmunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2413385. [PMID: 39499050 DOI: 10.1002/adma.202413385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Indexed: 11/07/2024]
Abstract
Photocatalytic therapy for hypoxic tumors often suffers from inefficiencies due to its dependence on oxygen and the risk of uncontrolled activation. Inspired by the oxygen-independent and precisely regulated photocatalytic functions of natural light-harvesting chlorosomes, chlorosome-mimetic nanoreactors, termed Ru-Chlos, are engineered by confining the aggregation of photosensitive ruthenium-polypyridyl-silane monomers. These Ru-Chlos exhibit markedly enhanced photocatalytic performance compared to their monomeric counterparts under acidic conditions, while notably bypassing the consumption of oxygen or hydrogen peroxide. The photocatalytic activity of Ru-Chlos is finely tunable through light-responsive disassembly of the Ru-bridged matrix, with tunability governed by pre-irradiation duration. Utilization of Ru-Chlos loading prodrug [2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)] (ABTS) for phototherapy facilitates the generation of toxic radicals (oxABTS) and the photocatalytic conversion of endogenous NADH to NAD+, inducing oxidative stress in hypoxic cancer cells. Simultaneously, the light-responsive degradation of Ru-Chlos produces Ru-based toxins that further contribute to the therapeutic effect. This dual-action mechanism elicits potent immunogenic cell death effects and significantly enhances antitumor efficacy with the aid of a PD-l blockade. These biomimetic chlorosomes highlight their potential to advance oxygen-independent photocatalytic nanoreactors with controlled activity for novel cancer photoimmunotherapy strategies.
Collapse
Affiliation(s)
- Fangman Chen
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Hanyao Huang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Fan Zhang
- CAS Key Laboratory of Bio Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology Chinese Academy of Sciences, Suzhou, 215163, China
| | - Ran Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Lei Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Zhimin Chang
- CAS Key Laboratory of Bio Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology Chinese Academy of Sciences, Suzhou, 215163, China
| | - Lei Cao
- Department of Orthopedics, Academy of Orthopedics-Guangdong Province, Orthopedic Hospital of Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510665, China
| | - Wensheng Zhang
- Department of Orthopedics, Academy of Orthopedics-Guangdong Province, Orthopedic Hospital of Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510665, China
| | - Li Li
- CAS Key Laboratory of Bio Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology Chinese Academy of Sciences, Suzhou, 215163, China
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Dan Shao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Chao Yang
- Department of Orthopedics, Academy of Orthopedics-Guangdong Province, Orthopedic Hospital of Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510665, China
| | - Wen-Fei Dong
- CAS Key Laboratory of Bio Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology Chinese Academy of Sciences, Suzhou, 215163, China
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
4
|
Liu F, Liu L, Wei P, Yi T. A reactive oxygen species-triggerable theranostic prodrug system. J Control Release 2024; 376:961-971. [PMID: 39476874 DOI: 10.1016/j.jconrel.2024.10.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 10/08/2024] [Accepted: 10/27/2024] [Indexed: 11/09/2024]
Abstract
Abnormally elevated levels of reactive oxygen species (ROS) are considered one of the characteristics of tumors and have been extensively employed in the construction of tumor-activated prodrugs. However, ideal ROS-activated molecular triggers that possess high sensitivity and easy functionalization for tailoring specific prodrugs, remain scarce. In this work, we developed a highly reactive oxygen species (hROS, such as •OH, ONOO- and HOCl)-responsive molecular trigger (namely FDROS-4) through the conjunction of methylene blue (MB) and 2, 6-bis (hydroxymethyl) aniline via urea bond, integrating imaging and therapeutic functions. FDROS-4 could be readily modified as multifunctional prodrugs and efficiently activated by hROS, leading to the release of near-infrared emissive MB and parent drugs. By using chlorambucil as a model drug and incorporating varying numbers of galactose as liver-targeting ligands, we designed and synthesized a series of prodrugs named FDROS-6, FDROS-7, and FDROS-8. The optimal prodrug, FDROS-7, could self-assemble into monocomponent nanoparticles, exhibiting enhanced biocompatibility and therapeutic efficacy compared to the parent drug. This hROS-activated molecular trigger holds promise for the development of stimulus-responsive prodrugs in chemotherapy.
Collapse
Affiliation(s)
- Feiyang Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China; Guangxi Key Laboratory of Special Biomedicine; School of Medicine, Guangxi University, Nanning 530004, China
| | - Lingyan Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| | - Peng Wei
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China.
| | - Tao Yi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
5
|
Liu Y, Zhang J, Zhou X, Wang Y, Lei S, Feng G, Wang D, Huang P, Lin J. Dissecting Exciton Dynamics in pH-Activatable Long-Wavelength Photosensitizers for Traceable Photodynamic Therapy. Angew Chem Int Ed Engl 2024; 63:e202408064. [PMID: 38853147 DOI: 10.1002/anie.202408064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/04/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
Tumor-specific activatable long-wavelength (LW) photosensitizers (PSs) show promise in overcoming the limitations of traditional photodynamic therapy (PDT), such as systemic phototoxicity and shallow tissue penetration. However, their insufficient LW light absorption and low singlet oxygen quantum yield (Φ 1O2) usually require high laser power density to produce thermal energy and synergistically enhance PDT. The strong photothermal radiation causing acute pain significantly reduces patient compliance and hinders the broader clinical application of LW PDT. Through the exciton dynamics dissection strategy, we have developed a series of pH-activatable cyanine-based LW PSs (LET-R, R = H, Cl, Br, I), among which the activated LET-I exhibits strong light absorption at 808 nm and a remarkable 3.2-fold enhancement in Φ 1O2 compared to indocyanine green. Transient spectroscopic analysis and theoretical calculations confirmed its significantly promoted intersystem crossing and simultaneously enhanced LW fluorescence emission characteristics. These features enable the activatable fluorescence and photoacoustic dual-modal imaging-escorted complete photodynamic eradication of tumors by the folic acid (FA)-modified LET-I probe (LET-I-FA), under the ultralow 808 nm laser power density (0.2 W cm-2) for irradiation, without the need for photothermal energy synergy. This research presents a novel strategy of dissecting exciton dynamics to screen activatable LW PSs for traceable PDT.
Collapse
Affiliation(s)
- Yurong Liu
- Department Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Jing Zhang
- Department Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Xuan Zhou
- School of Sino-German Intelligent Manufacturing, Shenzhen Institute of Technology, Shenzhen, 518116, China
| | - Yaru Wang
- Department Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Shan Lei
- Department Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Guangle Feng
- Department Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, China
| | - Peng Huang
- Department Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Jing Lin
- Department Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| |
Collapse
|
6
|
Zhang H, Li L, Li W, Yin H, Wang H, Ke X. Endosomal pH, Redox Dual-Sensitive Prodrug Micelles Based on Hyaluronic Acid for Intracellular Camptothecin Delivery and Active Tumor Targeting in Cancer Therapy. Pharmaceutics 2024; 16:1327. [PMID: 39458656 PMCID: PMC11511143 DOI: 10.3390/pharmaceutics16101327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/16/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Background: CPT is a pentacyclic monoterpene alkaloid with a wide spectrum of antitumor activity. Its clinical application is restricted due to poor water solubility, instability, and high toxicity. We developed a new kind of multifunctional micelles to improve its solubility, reduce the side effecs, and obtain enhanced antitumor effects. Methods: We constructed HA-CPT nano-self-assembly prodrug micelles, which combined the advantages of pH-sensitivity, redox-sensitivity, and active targeting ability to CD44 receptor-overexpressing cancer cells. To synthesize dual sensitive HA-CPT conjugates, CPT was conjugated with HA by pH-sensitive histidine (His) and redox-sensitive 3,3'-dithiodipropionic acid (DTPA). In vitro, we studied the cellular uptake and antitumor effect for tumor cell lines. In vivo, we explored the bio-distribution and antitumor effects of the micelles in HCT 116 tumor bearing nude mice. Results: The dual-sensitive and active targeting HA-His-ss-CPT micelles was proved to be highly efficient in CPT delivery by the in vitro cellular uptake study. The HA-His-ss-CPT micelles escaped from endosomes of tumor cells within 4 h after cellular uptake due to the proton sponge effect of the conjugating His and then quickly released CPT in the cytosol by glutathione (GSH). In mice, HA-His-ss-CPT micelles displayed efficient tumor accumulation and conspicuous inhibition of tumor growth. Conclusions: The novel, dual-sensitive, active targeting nano-prodrug micelles exhibited high efficiency in drug delivery and cancer therapy. This "all in one" drug delivery system can be realized in an ingenious structure and avoid intricate synthesis. This construction strategy can illume the design of nanocarriers responding to endogenous stimuli in tumors.
Collapse
Affiliation(s)
- Huiping Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China;
- School of Pharmacy, Jining Medical College, Rizhao 276826, China; (W.L.); (H.Y.)
| | - Liang Li
- Modern Tranditional Chinese Medicine Research Institute, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang 222000, China;
| | - Wei Li
- School of Pharmacy, Jining Medical College, Rizhao 276826, China; (W.L.); (H.Y.)
| | - Hongxia Yin
- School of Pharmacy, Jining Medical College, Rizhao 276826, China; (W.L.); (H.Y.)
| | - Huiyun Wang
- School of Pharmacy, Jining Medical College, Rizhao 276826, China; (W.L.); (H.Y.)
| | - Xue Ke
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China;
| |
Collapse
|
7
|
Zhang X, Zhang X, Chen S, Liu Y, Cao C, Cheng G, Wang S. Glutathione-depleting polyprodrug nanoparticle for enhanced photodynamic therapy and cascaded locoregional chemotherapy. J Colloid Interface Sci 2024; 670:279-287. [PMID: 38763024 DOI: 10.1016/j.jcis.2024.05.086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/19/2024] [Accepted: 05/14/2024] [Indexed: 05/21/2024]
Abstract
Nanomedicines that combine reactive oxygen species (ROS)-responsive polyprodrug and photodynamic therapy have shown great potential for improving treatment efficacy. However, the consumption of ROS by overexpressed glutathione in tumor cells is a major obstacle for achieving effective ROS amplification and prodrug activation. Herein, we report a polyprodrug-based nanoparticle that can realize ROS amplification and cascaded drug release. The nanoparticle can respond to the high level of hydrogen peroxide in tumor microenvironment, achieving self-destruction and release of quinone methide. The quinone methide depletes intracellular glutathione and thus decreases the antioxidant capacity of cancer cells. Under laser irradiation, a large amount of ROS will be generated to induce cell damage and prodrug activation. Therefore, the glutathione-depleting polyprodrug nanoparticles can efficiently inhibit tumor growth by enhanced photodynamic therapy and cascaded locoregional chemotherapy.
Collapse
Affiliation(s)
- Xinlu Zhang
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Xu Zhang
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Shutong Chen
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Yongxin Liu
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Chen Cao
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Guohui Cheng
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| | - Sheng Wang
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
8
|
Lu S, Hao D, Meng Q, Zhang B, Xiang X, Pei Q, Xie Z. Ferrocene-Conjugated Paclitaxel Prodrug for Combined Chemo-Ferroptosis Therapy of Cancer. ACS APPLIED MATERIALS & INTERFACES 2024; 16:47325-47336. [PMID: 39190919 DOI: 10.1021/acsami.4c11418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Herein, we developed a paclitaxel prodrug (PSFc) through the conjugation of paclitaxel (PTX) and ferrocene via a redox-responsive disulfide bond. PSFc displays acid-enhanced catalytic activity of Fenton reaction and is capable of forming stable nanoparticles (PSFc NPs) through the assembly with distearoyl phosphoethanolamine-PEG2000. After being endocytosed, PSFc NPs could release PTX to promote cell apoptosis in response to overexpressed redox-active species of tumor cells. Meanwhile, the ferrocene-mediated Fenton reaction promotes intracellular accumulation of hydroxyl radicals and depletion of glutathione, thus leading to ferroptosis. Compared with the clinically used Taxol, PSFc NPs exhibited more potent in vivo antitumor outcomes through the combined effect of chemotherapy and ferroptosis. This study may offer insight into a facile design of a prodrug integrating different tumor treatment methods for combating malignant tumors.
Collapse
Affiliation(s)
- Shaojin Lu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Dengyuan Hao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Qian Meng
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, P. R. China
| | - Biyou Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Xiujuan Xiang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Qing Pei
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
| | - Zhigang Xie
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| |
Collapse
|
9
|
Chu B, Deng H, Niu T, Qu Y, Qian Z. Stimulus-Responsive Nano-Prodrug Strategies for Cancer Therapy: A Focus on Camptothecin Delivery. SMALL METHODS 2024; 8:e2301271. [PMID: 38085682 DOI: 10.1002/smtd.202301271] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/15/2023] [Indexed: 08/18/2024]
Abstract
Camptothecin (CPT) is a highly cytotoxic molecule with excellent antitumor activity against various cancers. However, its clinical application is severely limited by poor water solubility, easy inactivation, and severe toxicity. Structural modifications and nanoformulations represent two crucial avenues for camptothecin's development. However, the potential for further structural modifications is limited, and camptothecin nanoparticles fabricated via physical loading have the drawbacks of low drug loading and leakage. Prodrug-based CPT nanoformulations have shown unique advantages, including increased drug loading, reduced burst release, improved bioavailability, and minimal toxic side effects. Stimulus-responsive CPT nano-prodrugs that respond to various endogenous or exogenous stimuli by introducing various activatable linkers to achieve spatiotemporally responsive drug release at the tumor site. This review comprehensively summarizes the latest research advances in stimulus-responsive CPT nano-prodrugs, including preparation strategies, responsive release mechanisms, and their applications in cancer therapy. Special focus is placed on the release mechanisms and characteristics of various stimulus-responsive CPT nano-prodrugs and their application in cancer treatment. Furthermore, clinical applications of CPT prodrugs are discussed. Finally, challenges and future research directions for CPT nano-prodrugs are discussed. This review to be valuable to readers engaged in prodrug research is expected.
Collapse
Affiliation(s)
- Bingyang Chu
- Department of Hematology and Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hanzhi Deng
- Department of Hematology and Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ting Niu
- Department of Hematology and Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ying Qu
- Department of Hematology and Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhiyong Qian
- Department of Hematology and Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
10
|
Rong M, Liu J, Lu L. Self-Assembly of 2D Polyphthalocyanine in Lysosome Enables Multienzyme Activity Enhancement to Induce Tumor Ferroptosis. Adv Healthc Mater 2024; 13:e2400325. [PMID: 38364772 DOI: 10.1002/adhm.202400325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/15/2024] [Indexed: 02/18/2024]
Abstract
Nanozymes show great potential in facilitating tumor ferroptosis by upregulation of reactive oxygen species (ROS) and downregulation of glutathione (GSH). However, mild acidity (pH 6.5-6.9) of tumor microenvironment severely restricts the activity of nanozymes. Although lysosomes as acidic organelles (pH = 3.5-5.5) are hopeful for improving enzyme-like activity, most reported nanozymes are not capable of effectively accumulating in the lysosomes. Herein, an acid-responsive self-assembly strategy based on iron phthalocyanine-rich covalent organic framework nanosheets (COFFePc NSs) is developed, which enables lysosomal targeting aggregation of COFFePc NSs due to the existence of abundant negative hydroxyl groups and rigid structure. Meanwhile, COFFePc NSs display exceptional multienzyme-mimic performance at lower pH to efficiently generate ROS to cause lysosome damage and apoptosis by synergistic photothermal effect. Subsequently, the released COFFePc with GSH oxidase-mimicking activity can consume GSH to promote ferroptosis. This is the first report of a 2D COF using its own properties to achieve lysosomal self-assembly. Overall, the work provides a new paradigm for the development of lysosome-targeted nanosystems.
Collapse
Affiliation(s)
- Mingjie Rong
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Jian Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Lehui Lu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
11
|
Huang L, Luo S, Tong S, Lv Z, Wu J. The development of nanocarriers for natural products. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1967. [PMID: 38757428 DOI: 10.1002/wnan.1967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/01/2024] [Accepted: 04/24/2024] [Indexed: 05/18/2024]
Abstract
Natural bioactive compounds from plants exhibit substantial pharmacological potency and therapeutic value. However, the development of most plant bioactive compounds is hindered by low solubility and instability. Conventional pharmaceutical forms, such as tablets and capsules, only partially overcome these limitations, restricting their efficacy. With the recent development of nanotechnology, nanocarriers can enhance the bioavailability, stability, and precise intracellular transport of plant bioactive compounds. Researchers are increasingly integrating nanocarrier-based drug delivery systems (NDDS) into the development of natural plant compounds with significant success. Moreover, natural products benefit from nanotechnological enhancement and contribute to the innovation and optimization of nanocarriers via self-assembly, grafting modifications, and biomimetic designs. This review aims to elucidate the collaborative and reciprocal advancement achieved by integrating nanocarriers with botanical products, such as bioactive compounds, polysaccharides, proteins, and extracellular vesicles. This review underscores the salient challenges in nanomedicine, encompassing long-term safety evaluations of nanomedicine formulations, precise targeting mechanisms, biodistribution complexities, and hurdles in clinical translation. Further, this study provides new perspectives to leverage nanotechnology in promoting the development and optimization of natural plant products for nanomedical applications and guiding the progression of NDDS toward enhanced efficiency, precision, and safety. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Liying Huang
- The Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Shicui Luo
- The Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Sen Tong
- The Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Zhuo Lv
- The Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Junzi Wu
- The Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Clinical Medical Research Center for Geriatric Diseases, Yunnan First People's Hospital, Kunming, Yunnan, China
| |
Collapse
|
12
|
Zhang X, Chen Y, Tang J, Chen C, Sun Y, Zhang H, Qiao M, Jin G, Liu X. GSH-activable heterotrimeric nano-prodrug for precise synergistic therapy of TNBC. Biomed Pharmacother 2024; 173:116375. [PMID: 38460372 DOI: 10.1016/j.biopha.2024.116375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 02/13/2024] [Accepted: 02/28/2024] [Indexed: 03/11/2024] Open
Abstract
Combination chemotherapy is an effective approach for triple-negative breast cancer (TNBC) therapy, especially when drugs are administered at specific optimal ratios. However, at present, strategies involving precise and controllable ratios based on effective loading and release of drugs are unavailable. Herein, we designed and synthesized a glutathione (GSH)--responsive heterotrimeric prodrug and formulated it with an amphiphilic polymer to obtain nanoparticles (DSSC2 NPs) for precise synergistic chemotherapy of TNBC. The heterotrimeric prodrug was prepared using docetaxel (DTX) and curcumin (CUR) at the optimal synergistic ratio of 1: 2. DTX and CUR were covalently conjugated by disulfide linkers. Compared with control NPs, DSSC2 NPs had quantitative/ratiometric drug loading, high drug co-loading capacity, better colloidal stability, and less premature drug leakage. After systemic administration, DSSC2 NPs selectively accumulated in tumor tissues and released the encapsulated drugs triggered by high levels of GSH in cancer cells. In vitro and in vivo experiments validated that DSSC2 NPs released DTX and CUR at the predefined ratio and had a highly synergistic therapeutic effect on tumor suppression in TNBC, which can be attributed to ratiometric drug delivery and synchronous drug activation. Altogether, the heterotrimeric prodrug delivery system developed in this study represents an effective and novel approach for combination chemotherapy.
Collapse
Affiliation(s)
- Xiaojing Zhang
- Department of Surgical Oncology, The First Affiliated Hospital of Bengbu Medical University, Bengbu 233004, China
| | - Yansong Chen
- Department of Surgical Oncology, The First Affiliated Hospital of Bengbu Medical University, Bengbu 233004, China
| | - Jingwei Tang
- Department of Surgical Oncology, The First Affiliated Hospital of Bengbu Medical University, Bengbu 233004, China
| | - Chen Chen
- Department of Surgical Oncology, The First Affiliated Hospital of Bengbu Medical University, Bengbu 233004, China
| | - Yanfeng Sun
- Department of Surgical Oncology, The First Affiliated Hospital of Bengbu Medical University, Bengbu 233004, China
| | - Hao Zhang
- Department of Surgical Oncology, The First Affiliated Hospital of Bengbu Medical University, Bengbu 233004, China
| | - Mengxiang Qiao
- Department of Surgical Oncology, The First Affiliated Hospital of Bengbu Medical University, Bengbu 233004, China
| | - Gongsheng Jin
- Department of Surgical Oncology, The First Affiliated Hospital of Bengbu Medical University, Bengbu 233004, China.
| | - Xianfu Liu
- Department of Surgical Oncology, The First Affiliated Hospital of Bengbu Medical University, Bengbu 233004, China.
| |
Collapse
|
13
|
Kannaujiya VK, Qiao Y, Sheikh RH, Xue J, Dargaville TR, Liang K, Wich PR. pH-Responsive Micellar Nanoparticles for the Delivery of a Self-Amplifying ROS-Activatable Prodrug. Biomacromolecules 2024; 25:1775-1789. [PMID: 38377594 DOI: 10.1021/acs.biomac.3c01240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
The objective of this study is to enhance the therapeutic efficacy of the anticancer drug, camptothecin (CPT) via a nanoparticle (NP) formulation using a novel amphiphilic biopolymer. We have designed a dimeric prodrug of CPT with the ability to self-amplify and respond to reactive oxygen species (ROS). For this, we incorporated the intracellular ROS generator cinnamaldehyde into a ROS-cleavable thioacetal (TA) linker to obtain the dimeric prodrug of CPT (DCPT(TA)). For its efficient NP delivery, a pH-responsive block copolymer of acetalated dextran and poly(2-ethyl-2-oxazoline) (AcDex-b-PEOz) was synthesized. The amphiphilic feature of the block copolymer enables its self-assembly into micellar NPs and results in high prodrug loading capacity and a rapid release of the prodrug under acidic conditions. Upon cellular uptake by HeLa cells, DCPT(TA)-loaded micellar NPs induce intracellular ROS generation, resulting in accelerated prodrug activation and enhanced cytotoxicity. These results indicate that this system holds significant potential as an effective prodrug delivery strategy in anticancer treatment.
Collapse
Affiliation(s)
- Vinod K Kannaujiya
- School of Chemical Engineering, University of New South Wales, Sydney 2052, New South Wales, Australia
- Australian Centre for Nanomedicine, University of New South Wales, Sydney 2052, New South Wales, Australia
- Centre for Advanced Macromolecular Design, University of New South Wales, Sydney 2052, New South Wales, Australia
| | - Yijie Qiao
- School of Chemical Engineering, University of New South Wales, Sydney 2052, New South Wales, Australia
- Australian Centre for Nanomedicine, University of New South Wales, Sydney 2052, New South Wales, Australia
- Centre for Advanced Macromolecular Design, University of New South Wales, Sydney 2052, New South Wales, Australia
| | - Rakib H Sheikh
- School of Chemical Engineering, University of New South Wales, Sydney 2052, New South Wales, Australia
- Australian Centre for Nanomedicine, University of New South Wales, Sydney 2052, New South Wales, Australia
- Centre for Advanced Macromolecular Design, University of New South Wales, Sydney 2052, New South Wales, Australia
| | - Jueyi Xue
- School of Chemical Engineering, University of New South Wales, Sydney 2052, New South Wales, Australia
- Australian Centre for Nanomedicine, University of New South Wales, Sydney 2052, New South Wales, Australia
| | - Tim R Dargaville
- ARC Centre for Cell & Tissue Engineering Technologies, QUT Centre for Materials Science, School of Chemistry and Physics, Faculty of Science, Queensland University of Technology (QUT), Brisbane 4000, Australia
| | - Kang Liang
- School of Chemical Engineering, University of New South Wales, Sydney 2052, New South Wales, Australia
- Australian Centre for Nanomedicine, University of New South Wales, Sydney 2052, New South Wales, Australia
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney 2052, New South Wales, Australia
| | - Peter R Wich
- School of Chemical Engineering, University of New South Wales, Sydney 2052, New South Wales, Australia
- Australian Centre for Nanomedicine, University of New South Wales, Sydney 2052, New South Wales, Australia
- Centre for Advanced Macromolecular Design, University of New South Wales, Sydney 2052, New South Wales, Australia
| |
Collapse
|
14
|
Ding Y, Yu W, Shen R, Zheng X, Zheng H, Yao Y, Zhang Y, Du C, Yi H. Hypoxia-Responsive Tetrameric Supramolecular Polypeptide Nanoprodrugs for Combination Therapy. Adv Healthc Mater 2024; 13:e2303308. [PMID: 37924332 DOI: 10.1002/adhm.202303308] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/30/2023] [Indexed: 11/06/2023]
Abstract
Despite the intense progress of photodynamic and chemotherapy, however, they cannot prevent solid tumor invasion, metastasis, and relapse, along with inferior efficacy and severe side effects. The hypoxia-responsive nanoprodrugs integrating photodynamic functions are highly sought to address the above-mentioned problems and overcome the tumor hypoxia-reduced efficacy. Herein, a hypoxia-responsive tetrameric supramolecular polypeptide nanoprodrug (SPN-TAPP-PCB4) is constructed from the self-assembly of tetrameric porphyrin-central poly(l-lysine-azobenzene-chlorambucil) (TAPP-(PLL-Azo-CB)4) and an anionic water-soluble [2]biphenyl-extended-pillar[6]arene (AWBpP6) via the synergy of hydrophobic, π-π stacking, and host-guest interactions. Upon laser irradiation, the central TAPP can convert oxygen to generate single oxygen (1 O2 ) to kill tumor cells. Furthermore, under the acidic and PDT-aggravated hypoxia tumor cell microenvironment, SPN-TAPP-PCB4 is rapidly disassembled, and then efficiently releases activated CB through the hypoxic-responsive cleavage of azobenzene linkages. Both in vitro and in vivo biological studies showcase synergistic cancer-killing actions between photodynamic therapy (PDT) and chemotherapy (CT) with negligible toxicity. Consequently, this supramolecular polypeptide nanoprodrug offers an effective strategy to design a hypoxia-responsive nanoprodrug for a potential combo PDT-CT transition.
Collapse
Affiliation(s)
- Yue Ding
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, P. R. China
| | - Wei Yu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, P. R. China
| | - Rongkai Shen
- Department of Orthopedics, The First Affiliated Hospital of Fujian Medical University, 20, Chazhong Rd., Fuzhou, Fujian, 350005, China
| | - Xiangqin Zheng
- Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, National Key Clinical Specialty Construction Program of (Gynecology), Fujian Province Key Clinical Specialty for Gynecology, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, 350001, China
| | - Hui Zheng
- Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, National Key Clinical Specialty Construction Program of (Gynecology), Fujian Province Key Clinical Specialty for Gynecology, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, 350001, China
| | - Yong Yao
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, P. R. China
| | - Yuehua Zhang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, P. R. China
| | - Chang Du
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Huan Yi
- Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, National Key Clinical Specialty Construction Program of (Gynecology), Fujian Province Key Clinical Specialty for Gynecology, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, 350001, China
| |
Collapse
|
15
|
Wang R, Li H, Han L, Han B, Bao Y, Fan H, Sun C, Qian R, Ma L, Zhang J. Combining photodynamic therapy and cascade chemotherapy for enhanced tumor cytotoxicity: the role of CTT 2P@B nanoparticles. Front Bioeng Biotechnol 2024; 12:1361966. [PMID: 38410166 PMCID: PMC10895035 DOI: 10.3389/fbioe.2024.1361966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 01/24/2024] [Indexed: 02/28/2024] Open
Abstract
The mitochondria act as the main producers of reactive oxygen species (ROS) within cells. Elevated levels of ROS can activate the mitochondrial apoptotic pathway, leading to cell apoptosis. In this study, we devised a molecular prodrug named CTT2P, demonstrating notable efficacy in facilitating mitochondrial apoptosis. To develop nanomedicine, we enveloped CTT2P within bovine serum albumin (BSA), resulting in the formulation known as CTT2P@B. The molecular prodrug CTT2P is achieved by covalently conjugating mitochondrial targeting triphenylphosphine (PPh3), photosensitizer TPPOH2, ROS-sensitive thioketal (TK), and chemotherapeutic drug camptothecin (CPT). The prodrug, which is chemically bonded, prevents the escape of drugs while they circulate throughout the body, guaranteeing the coordinated dispersion of both medications inside the organism. Additionally, the concurrent integration of targeted photodynamic therapy and cascade chemotherapy synergistically enhances the therapeutic efficacy of pharmaceutical agents. Experimental results indicated that the covalently attached prodrug significantly mitigated CPT cytotoxicity under dark conditions. In contrast, TPPOH2, CTT2, CTT2P, and CTT2P@B nanoparticles exhibited increasing tumor cell-killing effects and suppressed tumor growth when exposed to light at 660 nm with an intensity of 280 mW cm-2. Consequently, this laser-triggered, mitochondria-targeted, combined photodynamic therapy and chemotherapy nano drug delivery system, adept at efficiently promoting mitochondrial apoptosis, presents a promising and innovative approach to cancer treatment.
Collapse
Affiliation(s)
- Rongyi Wang
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Hongsen Li
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Lu Han
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Boao Han
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Yiting Bao
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Hongwei Fan
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Chaoyue Sun
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Ruijie Qian
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Liying Ma
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Jiajing Zhang
- School of Pharmacy, Binzhou Medical University, Yantai, China
| |
Collapse
|
16
|
Zhang Y, Kang X, Li J, Song J, Li X, Li W, Qi J. Inflammation-Responsive Nanoagents for Activatable Photoacoustic Molecular Imaging and Tandem Therapies in Rheumatoid Arthritis. ACS NANO 2024; 18:2231-2249. [PMID: 38189230 DOI: 10.1021/acsnano.3c09870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Rheumatoid arthritis (RA) severely lowers the life quality by progressively destructing joint functions and eventually causing permanent disability, representing a pressing public health concern. The pathogenesis of RA includes the excessive production of proinflammatory cytokines and harmful oxygen-derived free radicals, such as nitric oxide (NO), which constitute vital targets for precise diagnosis and effective treatment of RA. In this study, we introduce an advanced nanoagent that integrates the RA microenvironment-activatable photoacoustic (PA) imaging with multitarget synergistic treatment for RA. A highly sensitive organic probe with NO-tunable energy transformation and molecular geometry is developed, which enables strong near-infrared absorption with a turn-on PA signal, and the active intramolecular motion could further boost PA conversion. The probe is coassembled with an inflammation-responsive prodrug to construct the theranostic nanoagent, on which a macrophage-derived cell membrane with natural tropism to the inflammatory sites is camouflaged to improve the targeting ability to inflamed joints. The nanoagent could not only sensitively detect RA and differentiate the severity but also efficiently alleviate RA symptoms and improve joint function. The combination of activatable probe-mediated NO scavenging and on-demand activation of anti-inflammatory prodrug significantly inhibits the proinflammatory factors and promotes macrophage repolarization from M1 to M2 phenotype. This meticulously designed nanoagent ingeniously integrates RA-specific PA molecular imaging with synergistic multitarget therapy, rendering tremendous promise for precise intervention of RA-related diseases.
Collapse
Affiliation(s)
- Yuan Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Frontiers Science Center for Cell Responses, and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xiaoying Kang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Frontiers Science Center for Cell Responses, and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jia Li
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Frontiers Science Center for Cell Responses, and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jianwen Song
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Frontiers Science Center for Cell Responses, and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xueping Li
- Tianjin Key Laboratory of Biomedical Materials and Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Wen Li
- Tianjin Key Laboratory of Biomedical Materials and Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Ji Qi
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Frontiers Science Center for Cell Responses, and College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
17
|
Fan L, Jiang Z, Xiong Y, Xu Z, Yang X, Gu D, Ainiwaer M, Li L, Liu J, Chen F. Recent Advances in the HPPH-Based Third-Generation Photodynamic Agents in Biomedical Applications. Int J Mol Sci 2023; 24:17404. [PMID: 38139233 PMCID: PMC10743769 DOI: 10.3390/ijms242417404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/05/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023] Open
Abstract
Photodynamic therapy has emerged as a recognized anti-tumor treatment involving three fundamental elements: photosensitizers, light, and reactive oxygen species. Enhancing the effectiveness of photosensitizers remains the primary avenue for improving the biological therapeutic outcomes of PDT. Through three generations of development, HPPH is a 2-(1-hexyloxyethyl)-2-devinyl derivative of pyropheophorbide-α, representing a second-generation photosensitizer already undergoing clinical trials for various tumors. The evolution toward third-generation photosensitizers based on HPPH involves structural modifications for multimodal applications and the combination of multifunctional compounds, leading to improved imaging localization and superior anti-tumor effects. While research into third-generation HPPH is beneficial for advancing PDT treatment, equal attention should also be directed toward the other two essential elements and personalized diagnosis and treatment methodologies.
Collapse
Affiliation(s)
- Lixiao Fan
- Department of Otolaryngology-Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu 610064, China; (L.F.); (Z.J.); (Y.X.); (X.Y.); (D.G.); (M.A.); (L.L.)
- Head and Neck Surgical Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Zheng Jiang
- Department of Otolaryngology-Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu 610064, China; (L.F.); (Z.J.); (Y.X.); (X.Y.); (D.G.); (M.A.); (L.L.)
- Head and Neck Surgical Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Yu Xiong
- Department of Otolaryngology-Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu 610064, China; (L.F.); (Z.J.); (Y.X.); (X.Y.); (D.G.); (M.A.); (L.L.)
- Head and Neck Surgical Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Zepeng Xu
- West China Clinical Medical College, Sichuan University, Chengdu 610064, China;
| | - Xin Yang
- Department of Otolaryngology-Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu 610064, China; (L.F.); (Z.J.); (Y.X.); (X.Y.); (D.G.); (M.A.); (L.L.)
- Head and Neck Surgical Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Deying Gu
- Department of Otolaryngology-Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu 610064, China; (L.F.); (Z.J.); (Y.X.); (X.Y.); (D.G.); (M.A.); (L.L.)
- Head and Neck Surgical Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Mailudan Ainiwaer
- Department of Otolaryngology-Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu 610064, China; (L.F.); (Z.J.); (Y.X.); (X.Y.); (D.G.); (M.A.); (L.L.)
- Head and Neck Surgical Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Leyu Li
- Department of Otolaryngology-Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu 610064, China; (L.F.); (Z.J.); (Y.X.); (X.Y.); (D.G.); (M.A.); (L.L.)
- Head and Neck Surgical Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Jun Liu
- Department of Otolaryngology-Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu 610064, China; (L.F.); (Z.J.); (Y.X.); (X.Y.); (D.G.); (M.A.); (L.L.)
- Head and Neck Surgical Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Fei Chen
- Department of Otolaryngology-Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu 610064, China; (L.F.); (Z.J.); (Y.X.); (X.Y.); (D.G.); (M.A.); (L.L.)
- Head and Neck Surgical Center, West China Hospital, Sichuan University, Chengdu 610064, China
| |
Collapse
|
18
|
Zhang R, Yu J, Guo Z, Jiang H, Wang C. Camptothecin-based prodrug nanomedicines for cancer therapy. NANOSCALE 2023; 15:17658-17697. [PMID: 37909755 DOI: 10.1039/d3nr04147f] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Camptothecin (CPT) is a cytotoxic alkaloid that attenuates the replication of cancer cells via blocking DNA topoisomerase 1. Despite its encouraging and wide-spectrum antitumour activity, its application is significantly restricted owing to its instability, low solubility, significant toxicity, and acquired tumour cell resistance. This has resulted in the development of many CPT-based therapeutic agents, especially CPT-based nanomedicines, with improved pharmacokinetic and pharmacodynamic profiles. Specifically, smart CPT-based prodrug nanomedicines with stimuli-responsive release capacity have been extensively explored owing to the advantages such as high drug loading, improved stability, and decreased potential toxicity caused by the carrier materials in comparison with normal nanodrugs and traditional delivery systems. In this review, the potential strategies and applications of CPT-based nanoprodrugs for enhanced CPT delivery toward cancer cells are summarized. We appraise in detail the chemical structures and release mechanisms of these nanoprodrugs and guide materials chemists to develop more powerful nanomedicines that have real clinical therapeutic capacities.
Collapse
Affiliation(s)
- Renshuai Zhang
- Cancer Institute of The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266061, China.
| | - Jing Yu
- Qingdao Hospital, University of Health and Rehabilitation Sciences, Qingdao Municipal Hospital, Qingdao, 266071, China
| | - Zhu Guo
- Cancer Institute of The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266061, China.
- The Affiliated Hospital of Qingdao University, Qingdao 266061, China
| | - Hongfei Jiang
- Cancer Institute of The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266061, China.
| | - Chao Wang
- Cancer Institute of The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266061, China.
| |
Collapse
|
19
|
Ding C, Shi Z, Ou M, Li Y, Huang L, Wang W, Huang Q, Li M, Chen C, Zeng X, Chen H, Mei L. Dextran-based micelles for combinational chemo-photodynamic therapy of tumors via in vivo chemiluminescence. Carbohydr Polym 2023; 319:121192. [PMID: 37567697 DOI: 10.1016/j.carbpol.2023.121192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 07/07/2023] [Accepted: 07/09/2023] [Indexed: 08/13/2023]
Abstract
Natural polysaccharides, represented by dextran, chitosan, and hyaluronic acid, are widely approved for use as pharmaceutical excipients and are important carrier materials for the design of advanced drug delivery systems, particularly in the field of anticancer drug delivery. The combination of stimuli-activable prodrug based chemotherapy and photodynamic therapy (PDT) has attracted increasing attention. Recent studies have verified the effectiveness of this strategy in the treatment of multiple aggressive cancers. However, in such combination, the stimuli-responsive chemotherapy and PDT have their own problems that need to be overcome. The uneven distribution of endogenous stimuli within tumor tissues makes it difficult for prodrug to be completely activated. And the inadequate tissue penetration depth of external light results in low efficiency of PDT. Aiming at these two bottlenecks, we designed a biocompatible dextran based - multi-component nanomedicine (PCL-NPs) that integrate a chemiluminescence agent luminol, a photosensitizer chlorine e6 (Ce6), and a reactive oxygen species (ROS)-activable thioketal-based paclitaxel (PTX) prodrug. The presence of overexpressed hydrogen peroxide (H2O2) inside tumor oxidizes the luminol moiety to generate in-situ light for PDT through chemiluminescence resonance energy transfer (CRET). The singlet oxygen (1O2) produced in this process not only directly kills tumor cells but also amplifies oxidative stress to accelerate the activation of PTX prodrug. We propose that the PCL-NPs have great therapeutic potential by simultaneously enhancing chemotherapy and PDT in a combination therapy.
Collapse
Affiliation(s)
- Chendi Ding
- Department of Oncology and Clinical Research Center, Maoming People's Hospital, Maoming 525000, China; Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China; School of Medicine, Jinan University, Guangzhou 510632, China
| | - Zhaoqing Shi
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Meitong Ou
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Yingbang Li
- Department of Oncology and Clinical Research Center, Maoming People's Hospital, Maoming 525000, China
| | - Li Huang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Wenyan Wang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Qili Huang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Meihang Li
- Department of Oncology and Clinical Research Center, Maoming People's Hospital, Maoming 525000, China; School of Medicine, Jinan University, Guangzhou 510632, China
| | - Chunbo Chen
- Department of Oncology and Clinical Research Center, Maoming People's Hospital, Maoming 525000, China.
| | - Xiaowei Zeng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China.
| | - Hongzhong Chen
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China.
| | - Lin Mei
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| |
Collapse
|
20
|
Bargakshatriya R, Pramanik SK. Stimuli-Responsive Prodrug Chemistries for Cancer Therapy. Chembiochem 2023; 24:e202300155. [PMID: 37341379 DOI: 10.1002/cbic.202300155] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 06/22/2023]
Abstract
Prodrugs are pharmacologically inactive, chemically modified derivatives of active drugs, which, following in vivo administration, are converted to the parent drugs through chemical or enzymatic cleavage. The prodrug approach holds tremendous potential to create the enhanced version of an existing pharmacological agent and leverage those improvements to augment the drug molecules' bioavailability, targeting ability, therapeutic efficacy, safety, and marketability. Especially in cancer therapy, prodrug application has received substantial attention. A prodrug can effectively broaden the therapeutic window of its parent drug by enhancing its release at targeted tumor sites while reducing its access to healthy cells. The spatiotemporally controlled release can be achieved by manipulating the chemical, physical, or biological stimuli present at the targeted tumor site. The critical strategy comprises drug-carrier linkages that respond to physiological or biochemical stimuli in the tumor milieu to yield the active drug form. This review will focus on the recent advancements in the development of various fluorophore-drug conjugates that are widely used for real-time monitoring of drug delivery. The use of different stimuli-cleavable linkers and the mechanisms of linker cleavage will be discussed. Finally, the review will conclude with a critical discussion of the prospects and challenges that might impede the future development of such prodrugs.
Collapse
Affiliation(s)
- Rupa Bargakshatriya
- CSIR-Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar, Gujarat, 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sumit Kumar Pramanik
- CSIR-Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar, Gujarat, 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
21
|
Zhang C, Hu X, Jin L, Lin L, Lin H, Yang Z, Huang W. Strategic Design of Conquering Hypoxia in Tumor for Advanced Photodynamic Therapy. Adv Healthc Mater 2023; 12:e2300530. [PMID: 37186515 DOI: 10.1002/adhm.202300530] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/08/2023] [Indexed: 05/17/2023]
Abstract
Photodynamic therapy (PDT), with its advantages of high targeting, minimally invasive, and low toxicity side effects, has been widely used in the clinical therapy of various tumors, especially superficial tumors. However, the tumor microenvironment (TME) presents hypoxia due to the low oxygen (O2 ) supply caused by abnormal vascularization in neoplastic tissues and high O2 consumption induced by the rapid proliferation of tumor cells. The efficacy of oxygen-consumping PDT can be hampered by a hypoxic TME. To address this problem, researchers have been developing advanced nanoplatforms and strategies to enhance the therapeutic effect of PDT in tumor treatment. This review summarizes recent advanced PDT therapeutic strategies to against the hypoxic TME, thus enhancing PDT efficacy, including increasing O2 content in TME through delivering O2 to the tumors and in situ generations of O2 ; decreasing the O2 consumption during PDT by design of type I photosensitizers. Moreover, recent synergistically combined therapy of PDT and other therapeutic methods such as chemotherapy, photothermal therapy, immunotherapy, and gas therapy is accounted for by addressing the challenging problems of mono PDT in hypoxic environments, including tumor resistance, proliferation, and metastasis. Finally, perspectives of the opportunities and challenges of PDT in future clinical research and translations are provided.
Collapse
Affiliation(s)
- Cheng Zhang
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Strait Institute of Flexible Electronics (SIFE Future Technologies), Fujian Normal University, Fuzhou, 350007, P. R. China
| | - Xiaoming Hu
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Strait Institute of Flexible Electronics (SIFE Future Technologies), Fujian Normal University, Fuzhou, 350007, P. R. China
- Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, P. R. China
- Jiangxi Key Laboratory of Nanobiomaterials, School of Materials Science and Engineering, East China Jiaotong University, Nanchang, 330013, P. R. China
| | - Long Jin
- Department of Pathology, Shengli Clinical Medical College, Fujian Medical University, Fuzhou, 350001, P. R. China
| | - Lisheng Lin
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Strait Institute of Flexible Electronics (SIFE Future Technologies), Fujian Normal University, Fuzhou, 350007, P. R. China
| | - Hongxin Lin
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Strait Institute of Flexible Electronics (SIFE Future Technologies), Fujian Normal University, Fuzhou, 350007, P. R. China
| | - Zhen Yang
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Strait Institute of Flexible Electronics (SIFE Future Technologies), Fujian Normal University, Fuzhou, 350007, P. R. China
- Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, P. R. China
| | - Wei Huang
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Strait Institute of Flexible Electronics (SIFE Future Technologies), Fujian Normal University, Fuzhou, 350007, P. R. China
- Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, P. R. China
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE) Northwestern Polytechnical University Xi'an, Xi'an, 710072, P. R. China
| |
Collapse
|
22
|
Zhang DY, Liang Y, Wang M, Younis MR, Yi H, Zhao X, Chang J, Zheng Y, Guo W, Yu X. Self-Assembled Carrier-Free Nanodrugs for Starvation Therapy-Amplified Photodynamic Therapy of Cancer. Adv Healthc Mater 2023; 12:e2203177. [PMID: 36947826 DOI: 10.1002/adhm.202203177] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/05/2023] [Indexed: 03/24/2023]
Abstract
Traditional starvation treatment strategies, which involve glucose oxidase and drug-induced thrombi, often suffer from aggravated tumor hypoxia and have failed to improve antitumor efficacy in combination with oxygen-dependent photodynamic therapy (PDT). Herein, glucose transporter 1 inhibitor genistein (Gen) and photosensitizer chlorin e6 (Ce6) are integrated to construct carrier-free self-assembled nanoparticles defined as GC NPs, for starvation therapy-amplified PDT of tumor. GC NPs with regular morphology and stability are screened out by component adjustment, while the function of each component is preserved. On the one hand, Gen released from GC NPs can cut off tumor glucose uptake by inhibiting the glucose transporter 1 to restrict tumor growth, achieving starvation therapy. On the other hand, they are able to decrease the amount of oxygen consumed by tumor respiration and amplify the therapeutic effect of PDT. In vitro and in vivo experiments verify the excellent synergistic antitumor therapeutic efficacy of GC NPs without any apparent toxicity. Moreover, fluorescence and photoacoustic imaging provide guidance for in vivo PDT, demonstrating the excellent tumor enrichment efficiency of GC NPs. It is believed that this starvation therapy-amplified PDT strategy by carrier-free self-assembled GC NPs holds promising clinical prospects.
Collapse
Affiliation(s)
- Dong-Yang Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the Fifth Affiliated Hospital and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yuqin Liang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the Fifth Affiliated Hospital and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Mingcheng Wang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the Fifth Affiliated Hospital and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Muhammad Rizwan Younis
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Huixi Yi
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the Fifth Affiliated Hospital and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Xiaoya Zhao
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the Fifth Affiliated Hospital and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Jishuo Chang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the Fifth Affiliated Hospital and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yue Zheng
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Weisheng Guo
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the Fifth Affiliated Hospital and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Xiyong Yu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the Fifth Affiliated Hospital and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| |
Collapse
|
23
|
Lu S, Hao D, Xiang X, Pei Q, Xie Z. Carboxylated paclitaxel prodrug nanofibers for enhanced chemotherapy. J Control Release 2023; 355:528-537. [PMID: 36787820 DOI: 10.1016/j.jconrel.2023.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/22/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023]
Abstract
The facile availability of nanoformulations with enhanced antitumor performance remains a big challenge. Herein, we synthesize paclitaxel prodrugs with amphiphilic structures and robust assembling ability. Carboxylated paclitaxel prodrugs (PSCB) containing disulfide bonds prefer to form exquisite nanofibers, while phenylcarbinol end capped paclitaxel prodrugs (PSP) assemble into spherical nanoparticles. The transformation of morphology from nanofibers to nanorods can be realized via tuning the content of paclitaxel. Hydrophilic domains of PSCB nanofibers accelerate the cleavage of disulfide bond for rapid drug release in tumor cells, thus exhibiting the enhanced cytotoxicity and antitumor activity. This study provides a crucial insight into the functional design of hydrophobic drugs to improve chemotherapy.
Collapse
Affiliation(s)
- Shaojin Lu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Dengyuan Hao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Xiujuan Xiang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Qing Pei
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China.
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, PR China.
| |
Collapse
|
24
|
Liang B, Miao Y, Zhao L, Fang L, Deng D. A dandelion-like nanomedicine via hierarchical self-assembly for synergistic chemotherapy and photo-dynamic cancer therapy. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 49:102660. [PMID: 36746273 DOI: 10.1016/j.nano.2023.102660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/09/2023] [Accepted: 01/19/2023] [Indexed: 02/05/2023]
Abstract
The synergistic effect of chemotherapy and photo-dynamic therapy (PDT) is an effective way to improve the efficiency of tumor treatment. However, most synergistic therapeutic drugs have poor water solubility and stability, so it is difficult to achieve high therapeutic effects while avoiding the severe side effects. Herein, a unique dandelion-like nanomedicine (named as cRGDfk-CCPT-mCe6) was successfully synthesized using Ce6-loaded amphiphilic β-cyclodextrins (β-CD) doped lipid-based vesicles as the core (receptacle) and β-CD modified camptothecin (CPT) pro-drug as the flyable dandelion seeds. The β-CD modified CPT pro-drug was introduced into the core vesicles in succession via host-guest interaction between inter-molecular β-CD and CPT, and cRGDfk peptides were further introduced as the outermost layer (stigma) to enhance the internalization into cancer cells. CPT interacted with β-CD through glutathione (GSH)-cleavable disulfide bonds, which led to drug release in glutathione-rich cancer cells, just as spread of dandelion seeds in the wind. GSH consumption further disrupted the intracellular redox homeostasis of cancer cells through combined action of Ce6 with light irradiation and the synergistic anti-tumor effect was thus achieved, resulting in apoptosis of cancer cells. Therefore, the nanomedicine provides a facile and versatile anti-tumor strategy, as well as a persistent anti-cancer effects.
Collapse
Affiliation(s)
- Binbin Liang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, PR China
| | - Yuhang Miao
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, PR China
| | - Liying Zhao
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, PR China
| | - Lan Fang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, PR China
| | - Dawei Deng
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, PR China; Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, PR China.
| |
Collapse
|
25
|
Wang G, Su Y, Chen X, Zhou Y, Huang P, Huang W, Yan D. H 2O 2-responsive polymer prodrug nanoparticles with glutathione scavenger for enhanced chemo-photodynamic synergistic cancer therapy. Bioact Mater 2023; 25:189-200. [PMID: 36817822 PMCID: PMC9932349 DOI: 10.1016/j.bioactmat.2023.01.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
The combination of chemotherapy and photodynamic therapy (PDT) based on nanoparticles (NPs) has been extensively developed to improve the therapeutic effect and decrease the systemic toxicity of current treatments. However, overexpressed glutathione (GSH) in tumor cells efficiently scavenges singlet oxygens (1O2) generated from photosensitizers and results in the unsatisfactory efficacy of PDT. To address this obstacle, here we design H2O2-responsive polymer prodrug NPs with GSH-scavenger (Ce6@P(EG-a-CPBE) NPs) for chemo-photodynamic synergistic cancer therapy. They are constructed by the co-self-assembly of photosensitizer chlorin e6 (Ce6) and amphiphilic polymer prodrug P(EG-a-CPBE), which is synthesized from a hydrophilic alternating copolymer P(EG-a-PD) by conjugating hydrophobic anticancer drug chlorambucil (CB) via an H2O2-cleavable linker 4-(hydroxymethyl)phenylboronic acid (PBA). Ce6@P(EG-a-CPBE) NPs can efficiently prevent premature drug leakage in blood circulation because of the high stability of the PBA linker under the physiological environment and facilitate the delivery of Ce6 and CB to the tumor site after intravenous injection. Upon internalization of Ce6@P(EG-a-CPBE) NPs by tumor cells, PBA is cleaved rapidly triggered by endogenous H2O2 to release CB and Ce6. Ce6 can effectively generate abundant 1O2 under 660 nm light irradiation to synergistically kill cancer cells with CB. Concurrently, PBA can be transformed into a GSH-scavenger (quinine methide, QM) under intracellular H2O2 and prevent the depletion of 1O2, which induces the cooperatively strong oxidative stress and enhanced cancer cell apoptosis. Collectively, such H2O2-responsive polymer prodrug NPs loaded with photosensitizer provide a feasible approach to enhance chemo-photodynamic synergistic cancer treatment.
Collapse
Affiliation(s)
- Guanchun Wang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yue Su
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xinliang Chen
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yongfeng Zhou
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ping Huang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China,Corresponding author.
| | - Wei Huang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China,Corresponding author.
| | - Deyue Yan
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
26
|
Wang S, Yu K, Yu Z, Zhang B, Chen C, Lin L, Li Z, Li Z, Zheng Y, Yu Z. Targeting self-enhanced ROS-responsive artesunatum prodrug nanoassembly potentiates gemcitabine activity by down-regulating CDA expression in cervical cancer. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
27
|
Zhang X, Guo H, Zhang X, Shi X, Yu P, Jia S, Cao C, Wang S, Chang J. Dual-prodrug cascade activation for chemo/chemodynamic mutually beneficial combination cancer therapy. Biomater Sci 2023; 11:1066-1074. [PMID: 36562486 DOI: 10.1039/d2bm01627c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The combination of chemodynamic therapy (CDT) and chemotherapy has shown promise for achieving improved cancer treatment outcomes. However, due to the lack of synergy rationale, a simple one-plus-one combination therapy remains suboptimal in overcoming the obstacles of each treatment approach. Herein, we report a nanoplatform consisting of a pH-sensitive ferrocene- and cinnamaldehyde-based polyprodrug and a hydrogen peroxide-responsive doxorubicin (DOX) prodrug. Under an acidic tumor environment, the cinnamaldehyde polyprodrug will be activated to release free cinnamaldehyde, which can increase the intracellular hydrogen peroxide level and enhance the Fenton reaction. Subsequently, due to the collapse of nanoparticle structures, the DOX prodrug will be released and activated under a hydrogen peroxide stimulus. Meanwhile, the quinone methide produced during DOX prodrug activation can consume glutathione, an important antioxidant, and thus in turn enhance the efficacy of CDT. This design of a nanoplatform with dual-prodrug cascade activation provides a promising mutually beneficial cooperation mode between chemotherapy and CDT for enhancing antitumor efficacy.
Collapse
Affiliation(s)
- Xu Zhang
- School of Life Sciences, Tianjin University, Tianjin 300072, China.
| | - Haizhen Guo
- School of Life Sciences, Tianjin University, Tianjin 300072, China.
| | - Xinlu Zhang
- School of Life Sciences, Tianjin University, Tianjin 300072, China.
| | - Xiaoen Shi
- School of Life Sciences, Tianjin University, Tianjin 300072, China.
| | - Peng Yu
- School of Life Sciences, Tianjin University, Tianjin 300072, China.
| | - Shitian Jia
- School of Life Sciences, Tianjin University, Tianjin 300072, China.
| | - Chen Cao
- School of Life Sciences, Tianjin University, Tianjin 300072, China.
| | - Sheng Wang
- School of Life Sciences, Tianjin University, Tianjin 300072, China.
| | - Jin Chang
- School of Life Sciences, Tianjin University, Tianjin 300072, China. .,Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin 300072, China
| |
Collapse
|
28
|
Ma Y, Lin H, Wang P, Yang H, Yu J, Tian H, Li T, Ge S, Wang Y, Jia R, Leong KW, Ruan J. A miRNA-based gene therapy nanodrug synergistically enhances pro-inflammatory antitumor immunity against melanoma. Acta Biomater 2023; 155:538-553. [PMID: 36400349 DOI: 10.1016/j.actbio.2022.11.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 11/05/2022] [Accepted: 11/09/2022] [Indexed: 11/17/2022]
Abstract
MicroRNA (miRNA)-based gene therapy is a robust approach to treating human cancers. However, the low target specificity and safety issues associated with viral vectors have limited the clinical use of miRNA therapeutics. In the present study, we aimed to develop a biocompatible nanocarrier to deliver the tumor suppressor miR-30a-5p for gene therapy of ocular melanoma. The quasi-mesoporous magnetic nanospheres (MMNs) were prepared by polyelectrolytes-mediated self-assembling Fe3O4 nanocrystals; the cationic polymer capped quasi-mesoporous inner tunnels of the MMNs facilitate high miRNA loading and protect from nuclease degradation. Then, the outer layer of the MMNs was modified with a disulfide bond bridged very low molecular weight polyethyleneimine (PEI) network to form redox-responsive nanospheres (rMMNs) that enhance the miRNA payload and enable miRNA release under glutathione-dominant tumor microenvironment. The miR-30a-5p loaded rMMNs nanodrug (miR-30a-5p@rMMNs) upregulated miR-30a-5p level and inhibited malignant phenotypes of ocular melanoma by targeting the transcription factor E2F7 both in vitro and in vivo. Additionally, rMMNs act as an enhancer to increase cancer cell apoptosis by modulating M1-like macrophage polarization and activating Fenton reaction. Thus, the rMMNs is a promising miRNA carrier for gene therapy and could enhance pro-inflammatory immunity in melanoma and other cancers. STATEMENT OF SIGNIFICANCE: • miR-30a-5p@rMMNs inhibited malignant phenotypes of ocular melanoma both in vitro and in vivo. • The rMMNs promoted M1 macrophage polarization thus synergistically enhancing pro-inflammatory anti-tumor immunity against melanoma. • The rMMNs showed no obvious toxicity under the injection dose.
Collapse
Affiliation(s)
- Yawen Ma
- Department of Ophthalmology, Ninth People's Hospital of Shanghai, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Huimin Lin
- Department of Ophthalmology, Ninth People's Hospital of Shanghai, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Peng Wang
- The Institute for translational nanomedicine, Shanghai East Hospital, the Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Haocheng Yang
- The Institute for translational nanomedicine, Shanghai East Hospital, the Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Jie Yu
- Department of Ophthalmology, Ninth People's Hospital of Shanghai, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Hao Tian
- Department of Ophthalmology, Ninth People's Hospital of Shanghai, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Tianyu Li
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People's Hospital of Shanghai, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Yilong Wang
- The Institute for translational nanomedicine, Shanghai East Hospital, the Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200092, China.
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital of Shanghai, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Jing Ruan
- Department of Ophthalmology, Ninth People's Hospital of Shanghai, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China; Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA.
| |
Collapse
|
29
|
Chen X, Lei S, Lin J, Huang P. Stimuli-responsive image-guided nanocarriers as smart drug delivery platforms. Expert Opin Drug Deliv 2022; 19:1487-1504. [PMID: 36214740 DOI: 10.1080/17425247.2022.2134853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION In recent years, to improve the precision of drug delivery and reduce toxicity associated from the uncontrolled drug release at off-target locations, extensive efforts have been paid to develop stimuli-responsive nanocarriers, which enable precise control over on-demand drug release due to internal stimuli like pH, redox, enzyme and external stimuli like light, magnetic field, and ultrasound. Moreover, some stimuli-responsive nanocarriers have been strategically incorporated with imaging probes for simultaneous monitoring of the drug delivery process and region of interest for treatment optimization. AREAS COVERED In this review, the state-of-art progress in developing stimuli-responsive image-guided nanocarriers are summarized, including their designed strategies, synergistic mechanism, and biomedical applications in cancer therapy, and the current challenges and new perspectives are discussed. EXPERT OPINION The stimuli-responsive nanocarriers provide assurance for precise release of drugs and imaging probes, and the molecular imaging techniques can monitor the pharmacokinetics, biodistribution and bioavailability of drugs in vivo, and feedback the drug delivery profile. Therefore, stimuli-responsive image-guided nanocarriers can integrate diagnosis and therapy in one nanoplatform and facilitate optimal therapeutic efficacy.
Collapse
Affiliation(s)
- Xin Chen
- Shenzhen University, Shenzhen, China, 518071
| | - Shan Lei
- Shenzhen University, Shenzhen, China, 518060
| | - Jing Lin
- Shenzhen University, Shenzhen, China, 518060
| | | |
Collapse
|
30
|
Wang Y, Zhang Y, Zhang X, Zhang Z, She J, Wu D, Gao W. High Drug-Loading Nanomedicines for Tumor Chemo-Photo Combination Therapy: Advances and Perspectives. Pharmaceutics 2022; 14:pharmaceutics14081735. [PMID: 36015361 PMCID: PMC9415722 DOI: 10.3390/pharmaceutics14081735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 11/28/2022] Open
Abstract
The combination of phototherapy and chemotherapy (chemo−photo combination therapy) is an excellent attempt for tumor treatment. The key requirement of this technology is the high drug-loading nanomedicines, which can load either chemotherapy drugs or phototherapy agents at the same nanomedicines and simultaneously deliver them to tumors, and play a multimode therapeutic role for tumor treatment. These nanomedicines have high drug-loading efficiency (>30%) and good tumor combination therapeutic effect with important clinical application potential. Although there are many reports of high drug-loading nanomedicines for tumor therapy at present, systematic analyses on those nanomedicines remain lacking and a comprehensive review is urgently needed. In this review, we systematically analyze the current status of developed high drug-loading nanomedicines for tumor chemo−photo combination therapy and summarize their types, methods, drug-loading properties, in vitro and in vivo applications. The shortcomings of the existing high drug-loading nanomedicines for tumor chemo−photo combination therapy and the possible prospective development direction are also discussed. We hope to attract more attention for researchers in different academic fields, provide new insights into the research of tumor therapy and drug delivery system and develop these nanomedicines as the useful tool for tumor chemo−photo combination therapy in the future.
Collapse
Affiliation(s)
- Ya Wang
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi’an Jiaotong University, 277 West Yanta Road, Xi’an 710061, China
| | - Yujie Zhang
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, 277 West Yanta Road, Xi’an 710061, China
| | - Xiaojiang Zhang
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, 277 West Yanta Road, Xi’an 710061, China
| | - Zhe Zhang
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, 277 West Yanta Road, Xi’an 710061, China
| | - Junjun She
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi’an Jiaotong University, 277 West Yanta Road, Xi’an 710061, China
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, 277 West Yanta Road, Xi’an 710061, China
- Correspondence: (J.S.); (D.W.); (W.G.)
| | - Daocheng Wu
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
- Correspondence: (J.S.); (D.W.); (W.G.)
| | - Wei Gao
- Department of Anesthesiology & Center for Brain Science & Center for Translational Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
- Correspondence: (J.S.); (D.W.); (W.G.)
| |
Collapse
|
31
|
A prodrug hydrogel with tumor microenvironment and near-infrared light dual-responsive action for synergistic cancer immunotherapy. Acta Biomater 2022; 149:334-346. [PMID: 35779775 DOI: 10.1016/j.actbio.2022.06.041] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/30/2022] [Accepted: 06/23/2022] [Indexed: 12/20/2022]
Abstract
Immunotherapy has been used for cancer treatment, while it faces the common dilemmas of low therapeutic efficacy and serious immunotoxicity. In this study, we report the construction of a tumor microenvironment and near-infrared (NIR) light dual-responsive prodrug hydrogel for cancer synergistic immunotherapy in a more effective and safe manner. Such prodrug hydrogels were in-situ formed via calcium-induced gelation of alginate solution containing protoporphyrin IX (PpIX)-modified iron oxide (Fe3O4) nanoparticles and programmed death ligand 1 antibody (aPD-L1) prodrug nanoparticles crosslinked by reactive oxygen species (ROS)-responsive linkers. PpIX served as a photosensitizer to produce singlet oxygen (1O2) under NIR laser irradiation for photodynamic therapy (PDT), and Fe3O4 nanoparticles mediated chemodynamic therapy (CDT) to generate hydroxyl radical (·OH) via Fenton reaction in the tumor microenvironment. In view of the cumulative actions of PDT and CDT, amplified ROS was generated to not only induce immunogenic cell death (ICD), but also destroy ROS-responsive linkers to achieve on-demand release of aPD-L1 from prodrug nanoparticles. Boosted antitumor immunity was elicited in tumor-bearing mice due to the aPD-L1-mediated immune checkpoint blocking. As a result, the prodrug hydrogel-based synergistic immunotherapy could almost treat bilateral tumors and prevent lung and liver metastasis using 4T1 tumor mouse models. This study thus offers a dual-responsive prodrug hydrogel platform for precision cancer immunotherapy. STATEMENT OF SIGNIFICANCE: Via calcium-induced gelation of alginate, we constructed a prodrug hydrogel with tumor microenvironment and near-infrared light dual-responsive action for synergistic cancer immunotherapy. Such hydrogels can achieve on-demand release of aPD-L1 upon photoactivation in the tumor microenvironment. Through mediating photodynamic and chemodynamic therapy, the prodrug hydrogels can induce enhanced immunogenic cell death and synergistically improve the efficacy of aPD-L1-mediated immune checkpoint blocking. The prodrug hydrogel-based synergistic therapy almost deracinates the primary and distant tumors, and prevents lung and liver metastasis in tumor mouse models.
Collapse
|
32
|
Yan D, Zhang H, Xu X, Ren C, Han C, Li Z. Theranostic nanosystem with supramolecular self-assembly for enhanced reactive oxygen species-mediated apoptosis guided by dual-modality tumor imaging. Pharmacol Res 2022; 180:106241. [DOI: 10.1016/j.phrs.2022.106241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/19/2022] [Accepted: 04/28/2022] [Indexed: 10/18/2022]
|
33
|
Wang Y, Sun X, Han Y, Wang K, Cheng L, Sun Y, Besenbacher F, Yu M. Au@MnSe 2 Core-Shell Nanoagent Enabling Immediate Generation of Hydroxyl Radicals and Simultaneous Glutathione Deletion Free of Pre-Reaction for Chemodynamic-Photothermo-Photocatalytic Therapy with Significant Immune Response. Adv Healthc Mater 2022; 11:e2200041. [PMID: 35481899 DOI: 10.1002/adhm.202200041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/29/2022] [Indexed: 11/08/2022]
Abstract
As a typical tumor microenvironment-responsive therapy, chemodynamic therapy (CDT), producing hydroxyl radicals (• OH) to eliminate tumor cells, has demonstrated great promise. Nevertheless, there are still major challenges: • OH generated from endogenous H2 O2 is usually insufficient; the CDT effect is strongly dependent on the pre-reaction with glutathione. Addressing the challenges, Au@MnSe2 core-shell nanoagent for synergetic chemodynamic-photothermo-photocatalytic therapy combined with tetramodal imaging, including magnetic resonance imaging, computed tomography, photoacoustic, and infrared thermal imaging is reported. Distinct from the reported glutathione-depleting agents, Mn2+ in MnSe2 allows immediate generation of • OH, independent of pre-reaction. Meanwhile, Mn3+ consumes glutathione by its conversion to Mn2+ . The Au-MnSe2 combination promotes photothermal conversion and photocatalytic reaction, resulting in largely enhanced • OH generation from endogenous H2 O2 and significant hyperthermia. Meanwhile, immune response is effectively activated: the intratumoral expression of programmed cell death-1 and proinflammatory cytokines increase to 4-7 folds; the cytotoxic and helper T lymphocytes cells in the tumor area increase to more than 2.5-folds; an evident, temporary systemic immunostimulatory effect is demonstrated. High tumor inhibition rate (≈97.3%) and greatly prolonged survival are obtained. This highly-integrated design coordinating three different therapies with four different imaging modals provide new possibilities for high-performance theranostic nanoagents.
Collapse
Affiliation(s)
- Yuanlin Wang
- State Key Laboratory of Urban Water Resource and Environment School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 P. R. China
- iNANO and Department of Physics and Astronomy Aarhus University Aarhus 8000 Denmark
| | - Xiang Sun
- State Key Laboratory of Urban Water Resource and Environment School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 P. R. China
| | - Yaqian Han
- Condensed Matter Science and Technology Institute School of Instrumentation Science and Engineering Harbin Institute of Technology Harbin 150001 P. R. China
| | - Kai Wang
- Department of Medical Imaging The Fourth Affiliated Hospital of the Harbin Medical University Harbin 150001 P. R. China
| | - Lixin Cheng
- Department of Medical Imaging The Fourth Affiliated Hospital of the Harbin Medical University Harbin 150001 P. R. China
| | - Ye Sun
- Condensed Matter Science and Technology Institute School of Instrumentation Science and Engineering Harbin Institute of Technology Harbin 150001 P. R. China
| | - Flemming Besenbacher
- iNANO and Department of Physics and Astronomy Aarhus University Aarhus 8000 Denmark
| | - Miao Yu
- State Key Laboratory of Urban Water Resource and Environment School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 P. R. China
| |
Collapse
|
34
|
Dong X, Brahma RK, Fang C, Yao SQ. Stimulus-responsive self-assembled prodrugs in cancer therapy. Chem Sci 2022; 13:4239-4269. [PMID: 35509461 PMCID: PMC9006903 DOI: 10.1039/d2sc01003h] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/17/2022] [Indexed: 12/14/2022] Open
Abstract
Small-molecule prodrugs have become the main toolbox to improve the unfavorable physicochemical properties of potential therapeutic compounds in contemporary anti-cancer drug development. Many approved small-molecule prodrugs, however, still face key challenges in their pharmacokinetic (PK) and pharmacodynamic (PD) properties, thus severely restricting their further clinical applications. Self-assembled prodrugs thus emerged as they could take advantage of key benefits in both prodrug design and nanomedicine, so as to maximize drug loading, reduce premature leakage, and improve PK/PD parameters and targeting ability. Notably, temporally and spatially controlled release of drugs at cancerous sites could be achieved by encoding various activable linkers that are sensitive to chemical or biological stimuli in the tumor microenvironment (TME). In this review, we have comprehensively summarized the recent progress made in the development of single/multiple-stimulus-responsive self-assembled prodrugs for mono- and combinatorial therapy. A special focus was placed on various prodrug conjugation strategies (polymer-drug conjugates, drug-drug conjugates, etc.) that facilitated the engineering of self-assembled prodrugs, and various linker chemistries that enabled selective controlled release of active drugs at tumor sites. Furthermore, some polymeric nano-prodrugs that entered clinical trials have also been elaborated here. Finally, we have discussed the bottlenecks in the field of prodrug nanoassembly and offered potential solutions to overcome them. We believe that this review will provide a comprehensive reference for the rational design of effective prodrug nanoassemblies that have clinic translation potential.
Collapse
Affiliation(s)
- Xiao Dong
- Department of Pharmacy, School of Medicine, Shanghai University Shanghai 200444 China
| | - Rajeev K Brahma
- Department of Chemistry, National University of Singapore Singapore 117543 Singapore
| | - Chao Fang
- State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine Shanghai 200025 China
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore Singapore 117543 Singapore
| |
Collapse
|
35
|
Ye M, Gao Y, Liang M, Qiu W, Ma X, Xu J, Hu J, Xue P, Kang Y, Xu Z. Microenvironment-responsive chemotherapeutic nanogels for enhancing tumor therapy via DNA damage and glutathione consumption. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.01.086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
36
|
Shan B, Liu H, Li L, Lu Y, Li M. Near-Infrared II Plasmonic Phototheranostics with Glutathione Depletion for Multimodal Imaging-Guided Hypoxia-Tolerant Chemodynamic-Photocatalytic-Photothermal Cancer Therapy Triggered by a Single Laser. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105638. [PMID: 34821041 DOI: 10.1002/smll.202105638] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/07/2021] [Indexed: 06/13/2023]
Abstract
Tumor microenvironment (TME)-activatable phototheranostics is highly desirable in cancer management but still remains challenging for clinical applications owing to the lack of multifunctional theranostic agents and the limited tissue penetration depth. Reported here is an "all-in-one" phototheranostic platform based on near-infrared II (NIR-II) dual-plasmonic Au@Cu2-x Se core-shell nanocrystals (dpGCS NCs) for combined photoacoustic (PA)/photothermal (PT) imaging-guided chemodynamic therapy (CDT)/photocatalytic therapy (PCT)/photothermal therapy (PTT) all triggered by a single NIR-II laser. The dpGCS NCs feature excellent NIR-II plasmonic and PT properties, which guarantee their capabilities of NIR-II PA and PT imaging for real-time visual observation of tumor size and location during cancer treatment. Additionally, the TME-activated in situ •OH production via dpGCS NC-catalyzed Fenton-like reaction is further enhanced by the NIR-II irradiation, while photoexcited plasmonic hole-induced formation of extra •OH is also evidenced for PCT. Both in vitro and in vivo experiments confirm remarkable therapeutic efficacy of the present phototheranostic platform under NIR-II laser through the CDT/PCT/PTT trimodal combination therapy, achieving complete inhibition of tumor growth in tumor-bearing mice after administration of dpGCS NCs plus a single NIR-II laser irradiation. This work provides a distinctive paradigm for the development of NIR-II phototheranostic platforms for imaging-guided cancer therapy using a single laser.
Collapse
Affiliation(s)
- Beibei Shan
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Huyun Liu
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Linhu Li
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Yaxuan Lu
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Ming Li
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, China
| |
Collapse
|
37
|
Zhao K, Gao Z, Song D, Zhang P, Cui J. Assembly of catechol-modified polymer brushes for drug delivery. Polym Chem 2022. [DOI: 10.1039/d1py00947h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The anticancer drug of Bortezomib conjugated onto catechol-modified bottlebrush block copolymers can be intracellularly released owing to the pH-responsive behavior, resulting in considerable cell death and tumor growth inhibition.
Collapse
Affiliation(s)
- Kaijie Zhao
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Zhiliang Gao
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Dongpo Song
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Peiyu Zhang
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Jiwei Cui
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| |
Collapse
|
38
|
He M, He G, Wang P, Jiang S, Jiao Z, Xi D, Miao P, Leng X, Wei Z, Li Y, Yang Y, Wang R, Du J, Fan J, Sun W, Peng X. A Sequential Dual-Model Strategy Based on Photoactivatable Metallopolymer for On-Demand Release of Photosensitizers and Anticancer Drugs. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2103334. [PMID: 34664422 PMCID: PMC8655221 DOI: 10.1002/advs.202103334] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/04/2021] [Indexed: 05/13/2023]
Abstract
The synergistic combination of chemotherapy and photodynamic therapy has attracted considerable attention for its enhanced antitumoral effects; however, it remains challenging to successfully delivery photosensitizers and anticancer drugs while minimizing drug leakage at off-target sites. A red-light-activatable metallopolymer, Poly(Ru/PTX), is synthesized for combined chemo-photodynamic therapy. The polymer has a biodegradable backbone that contains a photosensitizer Ru complex and the anticancer drug paclitaxel (PTX) via a singlet oxygen (1 O2 ) cleavable linker. The polymer self-assembles into nanoparticles, which can efficiently accumulate at the tumor sites during blood circulation. The distribution of the therapeutic agents is synchronized because the Ru complex and PTX are covalently conjugate to the polymer, and off-target toxicity during circulation is also mostly avoided. Red light irradiation at the tumor directly cleaves the Ru complex and produces 1 O2 for photodynamic therapy. Sequentially, the generated 1 O2 triggers the breakage of the linker to release the PTX for chemotherapy. Therefore, this novel sequential dual-model release strategy creates a synergistic chemo-photodynamic therapy while minimizing drug leakage. This study offers a new platform to develop smart delivery systems for the on-demand release of therapeutic agents in vivo.
Collapse
Affiliation(s)
- Maomao He
- State Key Laboratory of Fine ChemicalsLiaoning key Laboratory of Polymer Science and EngineeringSchool of Chemical EngineeringDalian University of TechnologyDalian116024China
| | - Guangli He
- State Key Laboratory of Fine ChemicalsLiaoning key Laboratory of Polymer Science and EngineeringSchool of Chemical EngineeringDalian University of TechnologyDalian116024China
| | - Peiyuan Wang
- CAS Key Laboratory of Design and Assembly of Functional NanostructuresFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhou350002China
| | - Suhua Jiang
- CAS Key Laboratory of Design and Assembly of Functional NanostructuresFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhou350002China
| | - Ziyue Jiao
- State Key Laboratory of Fine ChemicalsLiaoning key Laboratory of Polymer Science and EngineeringSchool of Chemical EngineeringDalian University of TechnologyDalian116024China
| | - Dongmei Xi
- State Key Laboratory of Fine ChemicalsLiaoning key Laboratory of Polymer Science and EngineeringSchool of Chemical EngineeringDalian University of TechnologyDalian116024China
| | - Pengcheng Miao
- State Key Laboratory of Fine ChemicalsLiaoning key Laboratory of Polymer Science and EngineeringSchool of Chemical EngineeringDalian University of TechnologyDalian116024China
| | - Xuefei Leng
- State Key Laboratory of Fine ChemicalsLiaoning key Laboratory of Polymer Science and EngineeringSchool of Chemical EngineeringDalian University of TechnologyDalian116024China
| | - Zhiyong Wei
- State Key Laboratory of Fine ChemicalsLiaoning key Laboratory of Polymer Science and EngineeringSchool of Chemical EngineeringDalian University of TechnologyDalian116024China
| | - Yang Li
- State Key Laboratory of Fine ChemicalsLiaoning key Laboratory of Polymer Science and EngineeringSchool of Chemical EngineeringDalian University of TechnologyDalian116024China
| | - Yanjun Yang
- State Key Laboratory of Fine ChemicalsLiaoning key Laboratory of Polymer Science and EngineeringSchool of Chemical EngineeringDalian University of TechnologyDalian116024China
| | - Ran Wang
- State Key Laboratory of Fine ChemicalsLiaoning key Laboratory of Polymer Science and EngineeringSchool of Chemical EngineeringDalian University of TechnologyDalian116024China
| | - Jianjun Du
- State Key Laboratory of Fine ChemicalsLiaoning key Laboratory of Polymer Science and EngineeringSchool of Chemical EngineeringDalian University of TechnologyDalian116024China
- Ningbo Institute of Dalian University of TechnologyNingbo315016China
| | - Jiangli Fan
- State Key Laboratory of Fine ChemicalsLiaoning key Laboratory of Polymer Science and EngineeringSchool of Chemical EngineeringDalian University of TechnologyDalian116024China
- Ningbo Institute of Dalian University of TechnologyNingbo315016China
| | - Wen Sun
- State Key Laboratory of Fine ChemicalsLiaoning key Laboratory of Polymer Science and EngineeringSchool of Chemical EngineeringDalian University of TechnologyDalian116024China
- Ningbo Institute of Dalian University of TechnologyNingbo315016China
| | - Xiaojun Peng
- State Key Laboratory of Fine ChemicalsLiaoning key Laboratory of Polymer Science and EngineeringSchool of Chemical EngineeringDalian University of TechnologyDalian116024China
- Ningbo Institute of Dalian University of TechnologyNingbo315016China
| |
Collapse
|
39
|
Wang L, Zhu W, Zhou Y, Li Q, Jiao L, Qiu H, Bing W, Zhang Z. A biodegradable and near-infrared light-activatable photothermal nanoconvertor for bacterial inactivation. J Mater Chem B 2021; 10:3834-3840. [PMID: 34779465 DOI: 10.1039/d1tb01781k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The development of biodegradable nanomaterials for near-infrared photothermal antibacterial is of great significance to improve the biosafety of nano-antibacterial strategies in clinical application. In this study, a new nano-antibacterial strategy was developed, in which a biodegradable charge-transfer nanocomplex acted as a high-efficiency near-infrared light-activatable photothermal nanoconvertor. The charge-transfer nanocomplex was synthesized through oxidation-induced self-assembly of 3,3',5,5'-tetramethylbenzidine molecules. This nanocomplex can efficiently convert light energy around 900 nm into heat energy, with a photothermal conversion efficiency of up to 30%. More importantly, the nanocomplex can spontaneously degrade under physiological conditions within 12 hours. Utilizing the photothermal effect of this nanocomplex, both Gram-positive bacteria and Gram-negative bacteria can be inactivated within 2 minutes. In addition, the inactivation mechanism was systematically discussed and the results indicated that the photothermal effect induced bacterial cell membrane damage was probably responsible for the antibacterial effect.
Collapse
Affiliation(s)
- Luyao Wang
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun, 130012, China.
| | - Weisheng Zhu
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Yuan Zhou
- Department of Pharmacy, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 44200, China.,College of Pharmacy, Hubei University of Traditional Chinese Medicine, Wuhan, 430065, China
| | - Qisi Li
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Lizhi Jiao
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Hao Qiu
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Wei Bing
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun, 130012, China. .,Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun, 130012, China
| | - Zhijun Zhang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
40
|
Zhao Y, Ouyang X, Peng Y, Peng S. Stimuli Responsive Nitric Oxide-Based Nanomedicine for Synergistic Therapy. Pharmaceutics 2021; 13:1917. [PMID: 34834332 PMCID: PMC8622285 DOI: 10.3390/pharmaceutics13111917] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/14/2021] [Accepted: 10/22/2021] [Indexed: 12/18/2022] Open
Abstract
Gas therapy has received widespread attention from the medical community as an emerging and promising therapeutic approach to cancer treatment. Among all gas molecules, nitric oxide (NO) was the first one to be applied in the biomedical field for its intriguing properties and unique anti-tumor mechanisms which have become a research hotspot in recent years. Despite the great progress of NO in cancer therapy, the non-specific distribution of NO in vivo and its side effects on normal tissue at high concentrations have impaired its clinical application. Therefore, it is important to develop facile NO-based nanomedicines to achieve the on-demand release of NO in tumor tissue while avoiding the leakage of NO in normal tissue, which could enhance therapeutic efficacy and reduce side effects at the same time. In recent years, numerous studies have reported the design and development of NO-based nanomedicines which were triggered by exogenous stimulus (light, ultrasound, X-ray) or tumor endogenous signals (glutathione, weak acid, glucose). In this review, we summarized the design principles and release behaviors of NO-based nanomedicines upon various stimuli and their applications in synergistic cancer therapy. We also discuss the anti-tumor mechanisms of NO-based nanomedicines in vivo for enhanced cancer therapy. Moreover, we discuss the existing challenges and further perspectives in this field in the aim of furthering its development.
Collapse
Affiliation(s)
- Yijun Zhao
- Zhuhai Institute of Translational Medicine, Zhuhai Precision Medical Center, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai 519000, China; (Y.Z.); (X.O.)
| | - Xumei Ouyang
- Zhuhai Institute of Translational Medicine, Zhuhai Precision Medical Center, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai 519000, China; (Y.Z.); (X.O.)
| | - Yongjun Peng
- The Department of Medical Imaging, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai 519000, China
| | - Shaojun Peng
- Zhuhai Institute of Translational Medicine, Zhuhai Precision Medical Center, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai 519000, China; (Y.Z.); (X.O.)
| |
Collapse
|
41
|
Luo L, Wang H, Tian W, Li X, Zhu Z, Huang R, Luo H. Targeting ferroptosis-based cancer therapy using nanomaterials: strategies and applications. Theranostics 2021; 11:9937-9952. [PMID: 34815796 PMCID: PMC8581438 DOI: 10.7150/thno.65480] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/10/2021] [Indexed: 12/14/2022] Open
Abstract
As an iron-dependent mode of programmed cell death induced by lipid peroxidation, ferroptosis plays an important role in cancer therapy. The metabolic reprogramming in tumor microenvironment allows the possibility of targeting ferroptosis in cancer treatment. Recent studies reveal that nanomaterials targeting ferroptosis have prospects for the development of new cancer treatments. However, the design ideas of nanomaterials targeting ferroptosis sometimes vary. Therefore, in addition to the need for a systematic summary of these ideas, new ideas and insights are needed to make possible the construction of nanomaterials for effectively targeting this cell death pathway. At the same time, further optimization of nanomaterials design is required to make them appropriate for clinical treatment. In this context, we summarize this cross-cutting research area covering from the known mechanism of ferroptosis to providing feasible ideas for nanomaterials design as well as their clinical application. We aim to provide new insights and enlightenment for the next step in developing new nanomaterials for cancer treatment.
Collapse
Affiliation(s)
- Lianxiang Luo
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong, 524023, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, Guangdong, 524023, China
| | - Han Wang
- The First Clinical College, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| | - Wen Tian
- The First Clinical College, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| | - Xiaoling Li
- Experimental Animal Center, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| | - Zheng Zhu
- Affiliations Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Riming Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Hui Luo
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong, 524023, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, Guangdong, 524023, China
| |
Collapse
|
42
|
Xu X, Zeng Z, Ding X, Shan T, Liu Q, Chen M, Chen J, Xia M, He Y, Huang Z, Huang Y, Zhao C. Reactive oxygen species-activatable self-amplifying Watson-Crick base pairing-inspired supramolecular nanoprodrug for tumor-specific therapy. Biomaterials 2021; 277:121128. [PMID: 34537502 DOI: 10.1016/j.biomaterials.2021.121128] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/08/2021] [Accepted: 09/08/2021] [Indexed: 12/23/2022]
Abstract
Intratumoral upregulated reactive oxygen species (ROS) has been extensively exploited as exclusive stimulus to activate drug release for tumor-specific therapy. However, insufficient endogenous ROS and tumor heterogeneity severely restrict clinical translation of current ROS-responsive drug delivery systems. Herein, a tailored ROS-activatable self-amplifying supramolecular nanoprodrug was developed for reinforced ROS-responsiveness and highly selective antitumor therapy. A novel ROS-cleavable CA-based thioacetal linker CASOH was synthesized with ROS generator cinnamaldehyde (CA) incorporated into its molecular structure, to skillfully realize self-amplifying positive feedback loop of "ROS-activated CA release with CA-induced ROS regeneration". CASOH was modified with a cytosine analogue gemcitabine (GEM) to obtain ROS-activatable self-immolative prodrug CAG, which could be selectively activated in tumor cells and further achieve self-boosting "snowballing" activation via ROS compensation, while keep inactive in normal cells. Through Watson-Crick nucleobase pairing (G≡C)-like hydrogen bonds, CAG efficiently crosslinked with a matched guanine-rich acyclovir-modified hyaluronic acid conjugate HA-ACV, to self-assemble into pH/ROS dual-responsive supramolecular nanoprodrug HCAG. With high stability, beneficial tumor targeting capacity and pH/ROS-responsiveness, HCAG nanoformulation exhibited remarkable in vivo antitumor efficacy with minimal systemic toxicity. Based on unique tumor-specific self-amplifying prodrug activation and Watson-Crick base pairing-inspired supramolecular self-assembly, this study provides an inspirational strategy of exploiting novel ROS-responsive nanoplatform with reinforced responsiveness and specificity for future clinical translation.
Collapse
Affiliation(s)
- Xiaoyu Xu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Zishan Zeng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Xin Ding
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Ting Shan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Qiuxing Liu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Meixu Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Jie Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Meng Xia
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Yuanfeng He
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Zeqian Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Yanjuan Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Chunshun Zhao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China.
| |
Collapse
|
43
|
Sarbadhikary P, George BP, Abrahamse H. Recent Advances in Photosensitizers as Multifunctional Theranostic Agents for Imaging-Guided Photodynamic Therapy of Cancer. Theranostics 2021; 11:9054-9088. [PMID: 34522227 PMCID: PMC8419035 DOI: 10.7150/thno.62479] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 07/27/2021] [Indexed: 12/20/2022] Open
Abstract
In recent years tremendous effort has been invested in the field of cancer diagnosis and treatment with an overall goal of improving cancer management, therapeutic outcome, patient survival, and quality of life. Photodynamic Therapy (PDT), which works on the principle of light-induced activation of photosensitizers (PS) leading to Reactive Oxygen Species (ROS) mediated cancer cell killing has received increased attention as a promising alternative to overcome several limitations of conventional cancer therapies. Compared to conventional therapies, PDT offers the advantages of selectivity, minimal invasiveness, localized treatment, and spatio-temporal control which minimizes the overall therapeutic side effects and can be repeated as needed without interfering with other treatments and inducing treatment resistance. Overall PDT efficacy requires proper planning of various parameters like localization and concentration of PS at the tumor site, light dose, oxygen concentration and heterogeneity of the tumor microenvironment, which can be achieved with advanced imaging techniques. Consequently, there has been tremendous interest in the rationale design of PS formulations to exploit their theranostic potential to unleash the imperative contribution of medical imaging in the context of successful PDT outcomes. Further, recent advances in PS formulations as activatable phototheranostic agents have shown promising potential for finely controlled imaging-guided PDT due to their propensity to specifically turning on diagnostic signals simultaneously with photodynamic effects in response to the tumor-specific stimuli. In this review, we have summarized the recent progress in the development of PS-based multifunctional theranostic agents for biomedical applications in multimodal imaging combined with PDT. We also present the role of different imaging modalities; magnetic resonance, optical, nuclear, acoustic, and photoacoustic in improving the pre-and post-PDT effects. We anticipate that the information presented in this review will encourage future development and design of PSs for improved image-guided PDT for cancer treatment.
Collapse
Affiliation(s)
| | - Blassan P. George
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein, South Africa
| | | |
Collapse
|
44
|
Huang Z, Chen Y, Zhang J, Li W, Shi M, Qiao M, Zhao X, Hu H, Chen D. Laser/GSH-Activatable Oxaliplatin/Phthalocyanine-Based Coordination Polymer Nanoparticles Combining Chemophotodynamic Therapy to Improve Cancer Immunotherapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:39934-39948. [PMID: 34396771 DOI: 10.1021/acsami.1c11327] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
There are two severe obstacles in cancer immunotherapy. The first is that the low response rate challenges the immune response owing to the immunosuppressive tumor microenvironment (ITM) and poor immunogenicity of the tumor. The second obstacle is that the dense and intricate pathophysiology barrier seriously restricts deep drug delivery in solid tumors. A laser/glutathione (GSH)-activatable nanosystem with tumor penetration for achieving highly efficient immunotherapy is reported. The core of the nanosystem was synthesized by coordinating zinc ions with GSH-activatable oxaliplatin (OXA) prodrugs and carboxylated phthalocyanine. Such an OXA/phthalocyanine-based coordination polymer nanoparticle (OPCPN) was wrapped by a phospholipid bilayer and NTKPEG. NTKPEG is a PEGylated indoleamine 2,3-dioxygenase 1 (IDO1) inhibitor prodrug containing a thioketal (TK) linker, which was modified on the OPCPN (OPCPN@NTKPEG). Upon the laser irradiation tumor site, ROS production of the OPCPN@NTKPEG triggers cleavage of NTKPEG by degradation of TK for promoted tumor penetration and uptake. OXA, phthalocyanine, and IDO1 inhibitor were released by the intracellular high-level GSH. OXA inhibits cell growth and is combined with photodynamic therapy (PDT) to induce immunogenic cell death (ICD). The IDO1 inhibitor reversed the ITM by suppressing IDO1-mediated Trp degradation and exhaustion of cytotoxic T cells. Laser/GSH-activatable drug delivery was more conducive to enhancing ICD and reversing ITM in deep tumors. Chemo-PDT with OPCPN@NTKPEG significantly regressed tumor growth and reduced metastasis by improved cancer immunotherapy.
Collapse
Affiliation(s)
- Ziyuan Huang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Yuying Chen
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Jiulong Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Wenpan Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Menghao Shi
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Mingxi Qiao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Xiuli Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Haiyang Hu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Dawei Chen
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| |
Collapse
|
45
|
Li H, Lu Y, Chung J, Han J, Kim H, Yao Q, Kim G, Wu X, Long S, Peng X, Yoon J. Activation of apoptosis by rationally constructing NIR amphiphilic AIEgens: surmounting the shackle of mitochondrial membrane potential for amplified tumor ablation. Chem Sci 2021; 12:10522-10531. [PMID: 34447545 PMCID: PMC8356816 DOI: 10.1039/d1sc02227j] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/25/2021] [Indexed: 12/13/2022] Open
Abstract
In recent years, the use of aggregation-induced emission luminogens (AIEgens) for biological imaging and phototherapy has become an area of intense research. However, most traditional AIEgens suffer from undesired aggregation in aqueous media with "always on" fluorescence, or their targeting effects cannot be maintained accurately in live cells with the microenvironment changes. These drawbacks seriously impede their application in the fields of bio-imaging and antitumor therapy, which require a high signal-to-noise ratio. Herein, we propose a molecular design strategy to tune the dispersity of AIEgens in both lipophilic and hydrophilic systems to obtain the novel near-infrared (NIR, ∼737 nm) amphiphilic AIE photosensitizer (named TPA-S-TPP) with two positive charges as well as a triplet lifetime of 11.43 μs. The synergistic effects of lipophilicity, electrostatic interaction, and structure-anchoring enable the wider dynamic range of AIEgen TPA-S-TPP for mitochondrial targeting with tolerance to the changes of mitochondrial membrane potential (ΔΨ m). Intriguingly, TPA-S-TPP was difficult for normal cells to be taken up, indicative of low inherent toxicity for normal cells and tissues. Deeper insight into the changes of mitochondrial membrane potential and cleaved caspase 3 levels further revealed the mechanism of tumor cell apoptosis activated by AIEgen TPA-S-TPP under light irradiation. With its advantages of low dark toxicity and good biocompatibility, acting as an efficient theranostic agent, TPA-S-TPP was successfully applied to kill cancer cells and to efficiently inhibit tumor growth in mice. This study will provide a new avenue for researchers to design more ideal amphiphilic AIE photosensitizers with NIR fluorescence.
Collapse
Affiliation(s)
- Haidong Li
- Department of Chemistry and Nanoscience, Ewha Womans University Seoul 03760 Korea
| | - Yang Lu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology 2 Linggong Road Dalian 116024 P. R. China
| | - Jeewon Chung
- Department of Chemistry and Nanoscience, Ewha Womans University Seoul 03760 Korea
| | - Jingjing Han
- Department of Chemistry and Nanoscience, Ewha Womans University Seoul 03760 Korea
| | - Heejeong Kim
- Department of Chemistry and Nanoscience, Ewha Womans University Seoul 03760 Korea
| | - Qichao Yao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology 2 Linggong Road Dalian 116024 P. R. China
- Ningbo Institute of Dalian University of Technology 26 Yucai Road, Jiangbei District Ningbo 315016 P. R. China
| | - Gyoungmi Kim
- Department of Chemistry and Nanoscience, Ewha Womans University Seoul 03760 Korea
| | - Xiaofeng Wu
- Department of Chemistry and Nanoscience, Ewha Womans University Seoul 03760 Korea
| | - Saran Long
- State Key Laboratory of Fine Chemicals, Dalian University of Technology 2 Linggong Road Dalian 116024 P. R. China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology 2 Linggong Road Dalian 116024 P. R. China
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University Seoul 03760 Korea
| |
Collapse
|
46
|
Chang D, Ma Y, Xu X, Xie J, Ju S. Stimuli-Responsive Polymeric Nanoplatforms for Cancer Therapy. Front Bioeng Biotechnol 2021; 9:707319. [PMID: 34249894 PMCID: PMC8267819 DOI: 10.3389/fbioe.2021.707319] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 05/27/2021] [Indexed: 12/12/2022] Open
Abstract
Polymeric nanoparticles have been widely used as carriers of drugs and bioimaging agents due to their excellent biocompatibility, biodegradability, and structural versatility. The principal application of polymeric nanoparticles in medicine is for cancer therapy, with increased tumor accumulation, precision delivery of anticancer drugs to target sites, higher solubility of pharmaceutical properties and lower systemic toxicity. Recently, the stimuli-responsive polymeric nanoplatforms attracted more and more attention because they can change their physicochemical properties responding to the stimuli conditions, such as low pH, enzyme, redox agents, hypoxia, light, temperature, magnetic field, ultrasound, and so on. Moreover, the unique properties of stimuli-responsive polymeric nanocarriers in target tissues may significantly improve the bioactivity of delivered agents for cancer treatment. This review introduces stimuli-responsive polymeric nanoparticles and their applications in tumor theranostics with the loading of chemical drugs, nucleic drugs and imaging molecules. In addition, we discuss the strategy for designing multifunctional polymeric nanocarriers and provide the perspective for the clinical applications of these stimuli-responsive polymeric nanoplatforms.
Collapse
Affiliation(s)
- Di Chang
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Yuanyuan Ma
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Xiaoxuan Xu
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Jinbing Xie
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Shenghong Ju
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| |
Collapse
|
47
|
Gao Z, Li C, Shen J, Ding D. Organic optical agents for image-guided combined cancer therapy. Biomed Mater 2021; 16. [PMID: 33873169 DOI: 10.1088/1748-605x/abf980] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 04/19/2021] [Indexed: 01/10/2023]
Abstract
As a promising non-invasive treatment method, phototherapy has attracted extensive attention in the field of combined cancer therapy. Among various optical agents, organic ones have been considered as a promising clinical phototheranostic agent due to its high safety and non-toxic property. In addition, due to the clear structure, facile processability, organic optical agents can be easily endowed with multiple imaging and phototherapeutic functions, significantly simplifying the relatively complex system of imaging-guided combined cancer therapy. This review summarizes the recent research on organic optical agents in imaging-guided combined cancer therapy. The application of organic optical agents in a variety of combined cancer therapeutic modes guided by imaging are introduced respectively, including photodynamic and photothermal combined therapy, phototherapy-combined cancer chemotherapy, and phototherapy-combined cancer immunotherapy. Finally, the concluding remarks and the future prospects are discussed.
Collapse
Affiliation(s)
- Zhiyuan Gao
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin 300041, People's Republic of China.,Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin 300071, People's Republic of China
| | - Cong Li
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin 300041, People's Republic of China
| | - Jing Shen
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin 300041, People's Republic of China
| | - Dan Ding
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin 300041, People's Republic of China.,Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin 300071, People's Republic of China
| |
Collapse
|
48
|
Ghanbari-Movahed M, Kaceli T, Mondal A, Farzaei MH, Bishayee A. Recent Advances in Improved Anticancer Efficacies of Camptothecin Nano-Formulations: A Systematic Review. Biomedicines 2021; 9:480. [PMID: 33925750 PMCID: PMC8146681 DOI: 10.3390/biomedicines9050480] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 04/21/2021] [Accepted: 04/24/2021] [Indexed: 12/12/2022] Open
Abstract
Camptothecin (CPT), a natural plant alkaloid, has indicated potent antitumor activities via targeting intracellular topoisomerase I. The promise that CPT holds in therapies is restricted through factors that include lactone ring instability and water insolubility, which limits the drug oral solubility and bioavailability in blood plasma. Novel strategies involving CPT pharmacological and low doses combined with nanoparticles have indicated potent anticancer activity in vitro and in vivo. This systematic review aims to provide a comprehensive and critical evaluation of the anticancer ability of nano-CPT in various cancers as a novel and more efficient natural compound for drug development. Studies were identified through systematic searches of PubMed, Scopus, and ScienceDirect. Eligibility checks were performed based on predefined selection criteria. Eighty-two papers were included in this systematic review. There was strong evidence for the association between antitumor activity and CPT treatment. Furthermore, studies indicated that CPT nano-formulations have higher antitumor activity in comparison to free CPT, which results in enhanced efficacy for cancer treatment. The results of our study indicate that CPT nano-formulations are a potent candidate for cancer treatment and may provide further support for the clinical application of natural antitumor agents with passive targeting of tumors in the future.
Collapse
Affiliation(s)
- Maryam Ghanbari-Movahed
- Medical Technology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran;
- Department of Biology, Faculty of Science, University of Guilan, Rasht 4193833697, Iran
| | - Tea Kaceli
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA;
| | - Arijit Mondal
- Department of Pharmaceutical Chemistry, Bengal College of Pharmaceutical Technology, Dubrajpur 731123, India;
| | - Mohammad Hosein Farzaei
- Medical Technology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran;
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA;
| |
Collapse
|