1
|
Lee JJ, Han SJ, Choi C, Seo C, Hwang S, Kim J, Hong JP, Jang J, Kyhm J, Kim JW, Yu BS, Lim JA, Wang G, Kang J, Kim Y, Ahn SK, Ahn J, Hwang DK. Polarization-sensitive in-sensor computing in chiral organic integrated 2D p-n heterostructures for mixed-multimodal image processing. Nat Commun 2025; 16:4624. [PMID: 40389506 PMCID: PMC12089370 DOI: 10.1038/s41467-025-59935-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 05/06/2025] [Indexed: 05/21/2025] Open
Abstract
Sensor-based computing minimizes latency and energy consumption by processing data at the capture point, thereby eliminating extensive data transfer and enabling real-time decision-making. Here, we present a breakthrough in in-sensor computing via circularly polarized light detectors that integrate cholesteric liquid crystal reflectors with two-dimensional van der Waals p-n heterostructures. Our device exhibits a high dissymmetry factor (1.90), allowing effective separation of mixed circularly polarized images, along with a rapid photoresponse (4 μs) and wide linear dynamic range (up to 114.1 dB), suitable for analog multiply-and-accumulate operations in convolution-based in-sensor computing. Harnessing these detectors, we propose mixed-multimodal in-sensor computing using the chiral state of circularly polarized light to dynamically control responsivity, which enables the blending of two arbitrary image processing modes within a single, non-reconfigurable circuit. By effectively integrating polarization-sensitive detectors into the in-sensor computing framework, the proposed architecture preserves kernel optimization capabilities while simplifying circuit complexity.
Collapse
Affiliation(s)
- Je-Jun Lee
- Center of Quantum Technology, Post-Silicon Semiconductor Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Seong-Jun Han
- Center of Quantum Technology, Post-Silicon Semiconductor Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea
| | - Changsoon Choi
- Center of Quantum Technology, Post-Silicon Semiconductor Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Chaewon Seo
- School of Chemical Engineering, Pusan National University, Busan, Republic of Korea
| | - Seungkwon Hwang
- Energy and Environment Materials Research Division, Korea Institute of materials Science (KIMS), Changwon, Korea
| | - Jihyun Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, Republic of Korea
| | - Jung Pyo Hong
- Center of Quantum Technology, Post-Silicon Semiconductor Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea
| | - Jisu Jang
- Center of Quantum Technology, Post-Silicon Semiconductor Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Jihoon Kyhm
- Technology Support Center, Research Resources Division, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Jung Woo Kim
- Center of Quantum Technology, Post-Silicon Semiconductor Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea
| | - Byoung-Soo Yu
- Center of Quantum Technology, Post-Silicon Semiconductor Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Division of Nanoscience & Technology, KIST School, University of Science and Technology (UST), Seoul, Republic of Korea
| | - Jung Ah Lim
- Division of Nanoscience & Technology, KIST School, University of Science and Technology (UST), Seoul, Republic of Korea
- Soft Hybrid Materials Research Center, Advanced Materials Research Division, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Gunuk Wang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea
| | - Joohoon Kang
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, Republic of Korea
| | - Yonghun Kim
- Energy and Environment Materials Research Division, Korea Institute of materials Science (KIMS), Changwon, Korea
| | - Suk-Kyun Ahn
- School of Chemical Engineering, Pusan National University, Busan, Republic of Korea.
| | - Jongtae Ahn
- Department of Physics, Changwon National University, Changwon, Republic of Korea.
| | - Do Kyung Hwang
- Center of Quantum Technology, Post-Silicon Semiconductor Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea.
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea.
- Division of Nanoscience & Technology, KIST School, University of Science and Technology (UST), Seoul, Republic of Korea.
| |
Collapse
|
2
|
Wang D, Wang S, Dong Y, Wu X, Shen J, Feng S, Wang Z, Huang W. An Opto-Iontronic Cholesteric Liquid Crystalline Retina for Multimodal Circularly Polarized Neuromorphic Vision. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2419747. [PMID: 40025907 DOI: 10.1002/adma.202419747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/31/2025] [Indexed: 03/04/2025]
Abstract
Circularly polarized light (CPL) is fundamental to phase-controlled imaging, quantum optics, and optical computing. Conventional CPL detection, relying on polarizers and quarter-wave plates, complicates device design and reduces sensitivity. Among emerging CPL detectors, organic field-effect transistors (OFET) with helical organic semiconductors are highly promising due to their compact structures but suffer tedious synthesis, low dissymmetric factors (gph < 0.1), and high operating voltages (> 50 V). To address these issues, an opto-iontronic cholesteric liquid crystalline (i-CLC) film is developed that is both electrically and photonically active, serving as the dielectric in phototransistors. The well-defined cholesteric structure and broadly tunable pitches of the i-CLC film enable it to detect CPL with an excellent "handedness" selectivity across a broad spectrum. Moreover, its ionic nature provides a high capacitance (up to 580 nF cm- 2 @20 Hz). The resulting flexible CPL detectors achieve an unprecedentedly high dissymmetry factor (gph = 1.33) at low operating voltages (< 5 V), showcasing significant potential in optical communication and data encryption. Furthermore, leveraging high gph, they can perform in-sensor computing for highly accurate semantic segmentation using fused multimodal visual inputs (e.g., circularly polarized and ordinary light), achieving an accuracy of 75.73% and a mean intersection over the union of 0.3982, surpassing the performance of non-CPL photodetectors. Additionally, it optimizes power consumption by a factor of 102 compared to most conventional visual processing systems, offering a groundbreaking hardware solution for high-performance neuromorphic CPL vision.
Collapse
Affiliation(s)
- Donghui Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Shaocong Wang
- Department of Electrical and Electronic Engineering, University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong SAR, 25809, P. R. China
| | - Yu Dong
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Xiaosong Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Jinghui Shen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Shiyu Feng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Zhongrui Wang
- Department of Electrical and Electronic Engineering, University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong SAR, 25809, P. R. China
| | - Weiguo Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| |
Collapse
|
3
|
Gao K, Lee SH, Zhao W, Ahn J, Kim TW, Li Z, Zhuo H, Wang Z, Zheng X, Yan Y, Chang G, Ma W, Zhang M, Long G, Oh JH, Shang X. Reversal of chirality in solutions and aggregates of chiral tetrachlorinated diperylene diimides towards efficient circularly polarized light detection. MATERIALS HORIZONS 2025; 12:1903-1912. [PMID: 39688194 DOI: 10.1039/d4mh01435a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Helicenes exhibit promise as active layer materials for circularly polarized light (CPL) detectors due to their strong chiroptical activity. However, their practical application is limited by the complicated synthesis and loosely solid-state packing. This study introduces a chiral induction strategy towards the synthesis of helicene derivatives, chiral tetrachlorinated diperylene diimides ((SSSS)-4CldiPDI or (RRRR)-4CldiPDI). When incorporating the chiral (S/R)-1-cyclohexylethyl (Cy) substituents, the chirality is directly transferred to the π-aromatic core and forms the PP- or MM-helicene subunit. Notably, (SSSS)-Cy induces preferred PP helicity while (RRRR)-Cy leads to the MM helicity in the monomers. However, these molecules exhibit reversed chirality in crystals, where (SSSS)-Cy controls MM helicity and (RRRR)-Cy induces PP helicity. Theoretical calculations reveal that the (SSSS)-PP structure demonstrates lower energy distribution in monomers, whereas the (SSSS)-MM structure exhibits lower energy in crystals. Then, the CPL detection based on n-type PDI-helicene derivatives is achieved by using (SSSS)-4CldiPDI or (RRRR)-4CldiPDI crystals. The maximum photocurrent dissymmetry factor gph of +0.16 for (RRRR)-4CldiPDI and -0.15 for (SSSS)-4CldiPDI is obtained. Our work demonstrates a novel chiral induction strategy for designing helicene-based materials with both high dissymmetry factor and large charge carrier mobility, which offers great potential for the advancement of CPL detection.
Collapse
Affiliation(s)
- Ke Gao
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China.
| | - Sang Hyuk Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| | - Wenkai Zhao
- Tianjin Key Lab for Rare Earth Materials and Applications, Smart Sensing Interdisciplinary Science Center, Renewable Energy Conversion and Storage Center (RECAST), School of Materials Science and Engineering, Nankai University, Tianjin 300350, P. R. China.
| | - Jaeyong Ahn
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| | - Tae Woo Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| | - Zhenping Li
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China.
| | - Huagui Zhuo
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China.
| | - Zhiwei Wang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China.
| | - Xinglong Zheng
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Yang Yan
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Gang Chang
- Instrumental Analysis Center of Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Wei Ma
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Mingming Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China.
| | - Guankui Long
- Tianjin Key Lab for Rare Earth Materials and Applications, Smart Sensing Interdisciplinary Science Center, Renewable Energy Conversion and Storage Center (RECAST), School of Materials Science and Engineering, Nankai University, Tianjin 300350, P. R. China.
| | - Joon Hak Oh
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| | - Xiaobo Shang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China.
| |
Collapse
|
4
|
Wen X, Wang F, Du S, Jiang Y, Zhang L, Liu M. Achiral Solvent Inversed Helical Pathway and Cosolvent Controlled Excited-State "Majority Rule" in Enantiomeric Dansulfonamide Assemblies. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401954. [PMID: 38733233 DOI: 10.1002/smll.202401954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/26/2024] [Indexed: 05/13/2024]
Abstract
Achiral solvents are commonly utilized to induce the self-assembly of chiral molecules. This study demonstrates that achiral solvents can trigger helicity inversion in the assemblies of dansyl amphiphiles and control the excited-state "majority rule" in assemblies composed of pure enantiomers, through variation of the cosolvent ratio. Specifically, enantiomers of dansyl amphiphiles self-assemble into helical structures with opposite handedness in methanol (MeOH) and acetonitrile (MeCN), together with inversed circular dichroism and circularly polarized luminescence (CPL) signals. When a mixture of MeOH and MeCN is employed, the achiral cosolvents collectively affect the CPL of the assemblies in a way similar to that of "mixed enantiomers". The dominant cosolvent governs the CPL signal. As the cosolvent composition shifts from pure MeCN to MeOH, the CPL signals undergo a significant inversion and amplification, with two maxima observed at ≈20% MeOH and 20% MeCN. This study deepens the comprehension of how achiral solvents modulate helical nanostructures and their excited-state chiroptical properties.
Collapse
Affiliation(s)
- Xin Wen
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences (CAS), ZhongGuanCun North First Street 2, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Fulin Wang
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences (CAS), ZhongGuanCun North First Street 2, Beijing, 100190, P. R. China
| | - Sifan Du
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences (CAS), ZhongGuanCun North First Street 2, Beijing, 100190, P. R. China
| | - Yuqian Jiang
- Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Li Zhang
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences (CAS), ZhongGuanCun North First Street 2, Beijing, 100190, P. R. China
| | - Minghua Liu
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences (CAS), ZhongGuanCun North First Street 2, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
5
|
Ham SH, Han MJ, Kim M. Chiral Materials for Optics and Electronics: Ready to Rise? MICROMACHINES 2024; 15:528. [PMID: 38675339 PMCID: PMC11052036 DOI: 10.3390/mi15040528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/25/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024]
Abstract
Chiral materials have gained burgeoning interest in optics and electronics, beyond their classical application field of drug synthesis. In this review, we summarize the diverse chiral materials developed to date and how they have been effectively applied to optics and electronics to get an understanding and vision for the further development of chiral materials for advanced optics and electronics.
Collapse
Affiliation(s)
- Seo-Hyeon Ham
- Department of Chemical Engineering, Dankook University, Yongin 16890, Republic of Korea;
| | - Moon Jong Han
- Department of Electronic Engineering, Gachon University, Seongnam 13120, Republic of Korea
| | - Minkyu Kim
- Department of Chemical Engineering, Dankook University, Yongin 16890, Republic of Korea;
| |
Collapse
|
6
|
Wang Q, Bao J, Zhang Y, Wang Y, Qiu D, Yang J, Zhang J, Gao H, Wu Y, Dong H, Yang H, Wei Z. High-Performance Organic Narrow Dual-Band Circular Polarized Light Detection for Encrypted Communications and Color Imaging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312396. [PMID: 38198647 DOI: 10.1002/adma.202312396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/02/2024] [Indexed: 01/12/2024]
Abstract
Conventional circularly polarized light (CPL) detectors necessitate several optical elements, posing difficulties in achieving miniature and integrated devices. Recently developed organic CPL detectors require no additional optical elements but usually suffer from low detectivity or low asymmetry factor (g-factor). Here, an organic CPL detector with excellent detectivity and a high g-factor is fabricated. By employing an inverted quasi-planar heterojunction (IPHJ) structure and incorporating an additional liquid crystal film, a CPL detector with an outstanding g-factor of 1.62 is developed. Unfavorable charge injection is effectively suppressed by the IPHJ structure, which reduces the dark current of the organic photodetector. Consequently, a left CPL detectivity of 6.16 × 1014 Jones at 640 nm is realized, surpassing all of the latest photodiode-type CPL detectors. Adopting a liquid crystal film with adjustable wavelengths of selectively reflected light, the hybrid device achieves narrow dual-band CPL detection, varying from 530 to 640 nm, with a half-maximum full width below 90 nm. Notably, the device achieves excellent stability of 260 000 on/off cycles without attenuation. To the best of the authors' knowledge, all these features have rarely been reported in previous work. The CPL detector arrays are also demonstrated for encrypted communications and color imaging.
Collapse
Affiliation(s)
- Qingkai Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jinying Bao
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Yajie Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Yuheng Wang
- Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Dingding Qiu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Jiaxin Yang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solid, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jianqi Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Hanfei Gao
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yuchen Wu
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Huanli Dong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solid, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Huai Yang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Zhixiang Wei
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| |
Collapse
|
7
|
Kwon Y, Jung J, Lee WB, Oh JH. Axially Chiral Organic Semiconductors for Visible-Blind UV-Selective Circularly Polarized Light Detection. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308262. [PMID: 38311579 PMCID: PMC11005684 DOI: 10.1002/advs.202308262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/23/2023] [Indexed: 02/06/2024]
Abstract
Technologies that detect circularly polarized light (CPL), particularly in the UV region, have significant potential for various applications, including bioimaging and optical communication. However, a major challenge in directly sensing CPL arises from the conflicting requirements of planar structures for efficient charge transport and distorted structures for effective interaction with CPL. Here, a novel design of an axially chiral n-type organic semiconductor is presented to surmount the challenge, in which a binaphthyl group results in a high dissymmetry factor at the molecular level, while maintaining excellent electron-transporting characteristics through the naphthalene diimide group. Experimental and computational methods reveal different stacking behaviors in homochiral and heterochiral assemblies, yielding different structures: Nanowires and nanoparticles, respectively. Especially, the homochiral assemblies exhibit effective π-π stacking between naphthalene diimides despite axial chirality. Thus, phototransistors fabricated using enantiomers exhibit a high maximum electron mobility of 0.22 cm2 V-1 s-1 and a detectivity of 3.9 × 1012 Jones, alongside the CPL distinguishing ability with a dissymmetry factor of responsivity of 0.05. Furthermore, the material possesses a wide bandgap, contributing to its excellent visible-blind UV-selective detection. These findings highlight the new strategy for compact CPL detectors, coupled with the demonstration of less-explored n-type and UV region phototransistors.
Collapse
Affiliation(s)
- Yejin Kwon
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
| | - Je‐Yeon Jung
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
| | - Won Bo Lee
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
| | - Joon Hak Oh
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
| |
Collapse
|
8
|
Eichelmann R, Jeudy P, Schneider L, Zerhoch J, Mayer PR, Ballmann J, Deschler F, Gade LH. Chiral Bay-Alkynylated Tetraazaperylenes: Photophysics and Chiroptical Properties. Org Lett 2024; 26:1172-1177. [PMID: 38300988 DOI: 10.1021/acs.orglett.3c04257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Fully bay-alkynylated octaazaperopyrene dioxide (OAPPDO) derivatives were accessible through Stille cross coupling reaction of the corresponding bay-chlorinated derivatives. This steric congestion of the bay area led to helically chiral fluorophores, and chiral resolution of two derivatives allowed the investigation of their chiroptical properties as well as their kinetics of enantiomerization and the related thermodynamic parameters depending on the size of the terminal alkynyl substituent. An increase of the latter resulted in stable OAPPDO atropisomers at room temperature. The dynamics of the photoexcited states of two of the OAPPDO derivatives were investigated by transient absorption (TA) and time-resolved photoluminescence (tr-PL) spectroscopy.
Collapse
Affiliation(s)
- Robert Eichelmann
- Anorganisch-Chemisches Institut, Universität Heidelberg, 69120 Heidelberg, Germany
| | - Pierre Jeudy
- Anorganisch-Chemisches Institut, Universität Heidelberg, 69120 Heidelberg, Germany
| | - Lars Schneider
- Physikalisch-Chemisches Institut, Universität Heidelberg, 69120 Heidelberg, Germany
| | - Jonathan Zerhoch
- Physikalisch-Chemisches Institut, Universität Heidelberg, 69120 Heidelberg, Germany
| | - Paula R Mayer
- Anorganisch-Chemisches Institut, Universität Heidelberg, 69120 Heidelberg, Germany
| | - Joachim Ballmann
- Anorganisch-Chemisches Institut, Universität Heidelberg, 69120 Heidelberg, Germany
| | - Felix Deschler
- Physikalisch-Chemisches Institut, Universität Heidelberg, 69120 Heidelberg, Germany
| | - Lutz H Gade
- Anorganisch-Chemisches Institut, Universität Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
9
|
Han H, Choi JH, Ahn J, Lee H, Choi C, Jung W, Yeom J, Hwang DK, Sung BJ, Lim JA. Chiral Diketopyrrolopyrrole-Based Conjugated Polymers with Intramolecular Rotation-Isomeric Conformation Asymmetry for Near-Infrared Circularly Polarized Light-Sensing Organic Phototransistors. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 38032109 DOI: 10.1021/acsami.3c13976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Recent advances in chiral nanomaterials interacting with circularly polarized (CP) light open new expectations for optoelectronics in various research fields such as quantum- and biology-related technology. To fully utilize the great potential of chiral optoelectronic devices, the development of chiral optoelectronic devices that function in the near-infrared (NIR) region is required. Herein, we demonstrate a NIR-absorbing, chiroptical, low-band-gap polymer semiconductor for high-performance NIR CP light phototransistors. A newly synthesized diketopyrrolopyrrole-based donor-acceptor-type chiral π-conjugated polymer with an asymmetric alkyl side chain exhibits strong chiroptical activity in a wavelength range of 700-1000 nm. We found that the attachment of an enantiomerically pure stereogenic alkyl substituent to the π-conjugated chromophore backbone led to strong chiroptical activity through symmetry breaking of the π-conjugation of the backbone in a molecular rotational motion while maintaining the coplanar backbone conformation for efficient charge transport. The NIR CP light-sensing phototransistors based on a chiral π-conjugated polymer photoactive single channel layer exhibit a high photoresponsivity of 26 A W-1 under NIR CP light irradiation at 920 nm, leading to excellent NIR CP light distinguishability. This study will provide a rationale and strategy for designing chiral π-conjugated polymers for high-performance NIR chiral optoelectronics.
Collapse
Affiliation(s)
- Hyemi Han
- Center for Optoelectronic Materials and Devices, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Jong Ho Choi
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea
| | - Jongtae Ahn
- Center for Optoelectronic Materials and Devices, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Hanna Lee
- Center for Optoelectronic Materials and Devices, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Changsoon Choi
- Center for Optoelectronic Materials and Devices, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Wookjin Jung
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jihyeon Yeom
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Do Kyung Hwang
- Center for Optoelectronic Materials and Devices, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Nanoscience and Technology, KIST School, University of Science and Technology (UST), Seoul 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Bong June Sung
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea
| | - Jung Ah Lim
- Center for Optoelectronic Materials and Devices, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Nanoscience and Technology, KIST School, University of Science and Technology (UST), Seoul 02792, Republic of Korea
| |
Collapse
|
10
|
Qin Z, Wang T, Gao H, Li Y, Dong H, Hu W. Organic Polarized Light-Emitting Transistors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301955. [PMID: 37358028 DOI: 10.1002/adma.202301955] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/13/2023] [Indexed: 06/27/2023]
Abstract
Electrically driven polarized light-emitting sources are central to various applications including quantum computers, optical communication, and 3D displays, but serious challenges remain due to the inevitable incorporation of complex optical elements in conventional devices. Here, organic polarized light-emitting transistors (OPLETs), a kind of novel device that integrates the functions of organic field-effect transistors, organic light-emitting diodes, and polarizers into one unique device, are demonstrated with a degree of polarization (DOP) as high as 0.97, which is comparable to completely linearly polarized light (DOP = 1). Under the modulation of gate voltage, robust and efficient polarization emission is proven, ascribed to the intrinsic in-plane anisotropy of the molecular transition dipole moment in organic semiconductors and the open-ended feature of OPLETs instead of other factors. As a result, high-contrast optical imaging and anti-counterfeiting security are successfully demonstrated based on OPLETs, establishing a new direction for photonic and electronic integration toward on-chip miniaturized optoelectronic applications.
Collapse
Affiliation(s)
- Zhengsheng Qin
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tianyu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Haikuo Gao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yang Li
- Normal College, Shenyang University, Shenyang, 110044, China
| | - Huanli Dong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| |
Collapse
|
11
|
Lee H, Hwang JH, Song SH, Han H, Han S, Suh BL, Hur K, Kyhm J, Ahn J, Cho JH, Hwang DK, Lee E, Choi C, Lim JA. Chiroptical Synaptic Heterojunction Phototransistors Based on Self-Assembled Nanohelix of π-Conjugated Molecules for Direct Noise-Reduced Detection of Circularly Polarized Light. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304039. [PMID: 37501319 PMCID: PMC10520648 DOI: 10.1002/advs.202304039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Indexed: 07/29/2023]
Abstract
High-performance chiroptical synaptic phototransistors are successfully demonstrated using heterojunctions composed of a self-assembled nanohelix of a π-conjugated molecule and a metal oxide semiconductor. To impart strong chiroptical activity to the device, a diketopyrrolopyrrole-based π-conjugated molecule decorated with chiral glutamic acid is newly synthesized; this molecule is capable of supramolecular self-assembly through noncovalent intermolecular interactions. In particular, nanohelix formed by intertwinded fibers with strong and stable chiroptical activity in a solid-film state are obtained through hydrogen-bonding-driven, gelation-assisted self-assembly. Phototransistors based on interfacial charge transfer at the heterojunction from the chiroptical nanohelix to the metal oxide semiconductor show excellent chiroptical detection with a high photocurrent dissymmetry factor of 1.97 and a high photoresponsivity of 218 A W-1 . The chiroptical phototransistor demonstrates photonic synapse-like, time-dependent photocurrent generation, along with persistent photoconductivity, which is attributed to the interfacial charge trapping. Through the advantage of synaptic functionality, a trained convolutional neural network successfully recognizes noise-reduced circularly polarized images of handwritten alphabetic characters with better than 89.7% accuracy.
Collapse
Affiliation(s)
- Hanna Lee
- Center for Opto‐Electronic Materials and DevicesKorea Institute of Science and TechnologySeoul02792Republic of Korea
- Department of Chemical and Biomolecular EngineeringYonsei UniversitySeoul03722Republic of Korea
| | - Jun Ho Hwang
- School of Materials Science and EngineeringGwangju Institute of Science and TechnologyGwangju61005Republic of Korea
| | - Seung Ho Song
- Center for Opto‐Electronic Materials and DevicesKorea Institute of Science and TechnologySeoul02792Republic of Korea
| | - Hyemi Han
- Center for Opto‐Electronic Materials and DevicesKorea Institute of Science and TechnologySeoul02792Republic of Korea
| | - Seo‐Jung Han
- Chemical and Biological Integrative Research CenterKorea Institute of Science and TechnologySeoul02792Republic of Korea
- Division of Bio‐Medical Science and TechnologyKIST SchoolUniversity of Science and Technology of KoreaSeoul02792Republic of Korea
| | - Bong Lim Suh
- Extreme Materials Research CenterKorea Institute of Science and TechnologySeoul02792Republic of Korea
| | - Kahyun Hur
- Extreme Materials Research CenterKorea Institute of Science and TechnologySeoul02792Republic of Korea
| | - Jihoon Kyhm
- Technology Support CenterKorea Institute of Science and TechnologySeoul02792Republic of Korea
| | - Jongtae Ahn
- Center for Opto‐Electronic Materials and DevicesKorea Institute of Science and TechnologySeoul02792Republic of Korea
| | - Jeong Ho Cho
- Department of Chemical and Biomolecular EngineeringYonsei UniversitySeoul03722Republic of Korea
| | - Do Kyung Hwang
- Center for Opto‐Electronic Materials and DevicesKorea Institute of Science and TechnologySeoul02792Republic of Korea
- KU‐KIST Graduate School of Converging Science and TechnologyKorea UniversitySeoul02841Republic of Korea
- Division of Nano and Information TechnologyKIST SchoolUniversity of Science and TechnologySeoul02792Republic of Korea
| | - Eunji Lee
- School of Materials Science and EngineeringGwangju Institute of Science and TechnologyGwangju61005Republic of Korea
| | - Changsoon Choi
- Center for Opto‐Electronic Materials and DevicesKorea Institute of Science and TechnologySeoul02792Republic of Korea
| | - Jung Ah Lim
- Center for Opto‐Electronic Materials and DevicesKorea Institute of Science and TechnologySeoul02792Republic of Korea
- Division of Nano and Information TechnologyKIST SchoolUniversity of Science and TechnologySeoul02792Republic of Korea
| |
Collapse
|
12
|
Mahlmeister B, Schembri T, Stepanenko V, Shoyama K, Stolte M, Würthner F. Enantiopure J-Aggregate of Quaterrylene Bisimides for Strong Chiroptical NIR-Response. J Am Chem Soc 2023. [PMID: 37285519 DOI: 10.1021/jacs.3c03367] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Chiral polycyclic aromatic hydrocarbons can be tailored for next-generation photonic materials by carefully designing their molecular as well as supramolecular architectures. Hence, excitonic coupling can boost the chiroptical response in extended aggregates but is still challenging to achieve by pure self-assembly. Whereas most reports on these potential materials cover the UV and visible spectral range, systems in the near infrared (NIR) are underdeveloped. We report a new quaterrylene bisimide derivative with a conformationally stable twisted π-backbone enabled by the sterical congestion of a fourfold bay-arylation. Rendering the π-subplanes accessible by small imide substituents allows for a slip-stacked chiral arrangement by kinetic self-assembly in low polarity solvents. The well dispersed solid-state aggregate reveals a sharp optical signature of strong J-type excitonic coupling in both absorption (897 nm) and emission (912 nm) far in the NIR region and reaches absorption dissymmetry factors up to 1.1 × 10-2. The structural elucidation was achieved by atomic force microscopy and single-crystal X-ray analysis which we combined to derive a structural model of a fourfold stranded enantiopure superhelix. We could deduce that the role of phenyl substituents is not only granting stable axial chirality but also guiding the chromophore into a chiral supramolecular arrangement needed for strong excitonic chirality.
Collapse
Affiliation(s)
- Bernhard Mahlmeister
- Center for Nanosystems Chemistry (CNC) & Bavarian Polymer Institute (BPI), Universität Würzburg, 97074 Würzburg, Germany
| | - Tim Schembri
- Center for Nanosystems Chemistry (CNC) & Bavarian Polymer Institute (BPI), Universität Würzburg, 97074 Würzburg, Germany
| | - Vladimir Stepanenko
- Institut für Organische Chemie, Universität Würzburg, 97074 Würzburg, Germany
| | - Kazutaka Shoyama
- Institut für Organische Chemie, Universität Würzburg, 97074 Würzburg, Germany
| | - Matthias Stolte
- Center for Nanosystems Chemistry (CNC) & Bavarian Polymer Institute (BPI), Universität Würzburg, 97074 Würzburg, Germany
- Institut für Organische Chemie, Universität Würzburg, 97074 Würzburg, Germany
| | - Frank Würthner
- Center for Nanosystems Chemistry (CNC) & Bavarian Polymer Institute (BPI), Universität Würzburg, 97074 Würzburg, Germany
- Institut für Organische Chemie, Universität Würzburg, 97074 Würzburg, Germany
| |
Collapse
|
13
|
Liu L, Wei Z, Meskers SCJ. Semi-Transparent, Chiral Organic Photodiodes with Incident Direction-Dependent Selectivity for Circularly Polarized Light. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209730. [PMID: 36577393 DOI: 10.1002/adma.202209730] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Detection of the circular polarization of light is possible using chiral semiconductors, yet the mechanisms remain poorly understood. Semi-transparent chiral photodiodes allow for a simple experiment to investigate the basis of their selectivity: changing the side from which the diode is illuminated. A reversal of circular selectivity is observed in photocurrent generation when changing the direction of illumination on organic, bulk-heterojunction cells. The change in selectivity can be explained by a space-charge limitation on the collection of photocarriers in combination with preferential absorption of one of the circular polarizations of near-infrared light by the chiral non-fullerene acceptor. The space-charge limitation is supported by detailed measurements of frequency and intensity dependence of dc and ac photocurrents.
Collapse
Affiliation(s)
- Lixuan Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China
- Molecular Materials and Nanosystems, Institute for Complex Molecular Systems, Eindhoven University of Technology, P. O. box 513, Eindhoven, NL, 5600MB, The Netherlands
| | - Zhixiang Wei
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China
| | - Stefan C J Meskers
- Molecular Materials and Nanosystems, Institute for Complex Molecular Systems, Eindhoven University of Technology, P. O. box 513, Eindhoven, NL, 5600MB, The Netherlands
| |
Collapse
|
14
|
Zhang C, Xu C, Chen C, Cheng J, Zhang H, Ni F, Wang X, Zou G, Qiu L. Optically Programmable Circularly Polarized Photodetector. ACS NANO 2022; 16:12452-12461. [PMID: 35938975 DOI: 10.1021/acsnano.2c03746] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The detection of circularly polarized light (CPL) has aroused wide attention from both the scientific and industrial communities. However, from the optical activity of the chiral layer in the conventional CPL photodetectors, the sign inversion property is difficult to be achieved. As a result, great challenges arise during the preparation of miniaturized and integrated devices for tunable CPL detection applications. Along these lines, in this work, by taking advantage of the CPL-induced chirality characteristics of the achiral poly(9,9-di-n-hexylfluorene-alt-benzothiadiazole) (F6BT) and the good crystalline and electrical properties of the poly(3-hexylthiophene) (P3HT) film, an optically programmable CPL photodetector was fabricated. Interestingly, the device exhibited excellent discrimination between left- and right-handed CPL, while the maximum anisotropy factor of responsivity was 0.425. On top of that, the rigorously controlled chirality of the F6BT and the capability to be switched by the handedness of CPL was leveraged to realize the switchable detection of both L-CPL and R-CPL. Furthermore, a CPL photodetector array was fabricated, and the image processing and cryptographic characteristics were demonstrated. The proposed device configuration can find application in various scientific fields, including photonics, emission, conversion, or sensing with CPL but also is anticipated to play a key role for imaging and anticounterfeiting applications.
Collapse
Affiliation(s)
- Can Zhang
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Optoelectronic Technology, Hefei University of Technology, Hefei 230009, China
- Intelligent Interconnected Systems Laboratory of Anhui, Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronic Engineering, Hefei University of Technology, Hefei 230009, China
| | - Chenyin Xu
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Optoelectronic Technology, Hefei University of Technology, Hefei 230009, China
| | - Cuifen Chen
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Optoelectronic Technology, Hefei University of Technology, Hefei 230009, China
| | - Junjie Cheng
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, iChEM, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Hongli Zhang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, iChEM, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Fan Ni
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Optoelectronic Technology, Hefei University of Technology, Hefei 230009, China
- Intelligent Interconnected Systems Laboratory of Anhui, Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronic Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xiaohong Wang
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Optoelectronic Technology, Hefei University of Technology, Hefei 230009, China
- Intelligent Interconnected Systems Laboratory of Anhui, Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronic Engineering, Hefei University of Technology, Hefei 230009, China
| | - Gang Zou
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, iChEM, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Longzhen Qiu
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Optoelectronic Technology, Hefei University of Technology, Hefei 230009, China
- Intelligent Interconnected Systems Laboratory of Anhui, Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronic Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
15
|
Wang W, Yuan Z, Wang S, Li X, Ji B, Xiao J. Effect of Annulation Mode of Twistarene on the Physical Property and Self‐Assembly Behavior of Functionalized Curved Aromatic Molecules. Chemistry 2022; 28:e202201233. [DOI: 10.1002/chem.202201233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Wei Wang
- College of Chemistry and Environmental Science Key Laboratory of Chemical Biology of Hebei Province Hebei University Baoding 071002 P. R. China
| | - Ziwei Yuan
- College of Chemistry and Environmental Science Key Laboratory of Chemical Biology of Hebei Province Hebei University Baoding 071002 P. R. China
| | - Sujuan Wang
- College of Chemistry and Environmental Science Key Laboratory of Chemical Biology of Hebei Province Hebei University Baoding 071002 P. R. China
| | - Xueqing Li
- College of Chemistry and Environmental Science Key Laboratory of Chemical Biology of Hebei Province Hebei University Baoding 071002 P. R. China
| | - Bingliang Ji
- College of Chemistry and Environmental Science Key Laboratory of Chemical Biology of Hebei Province Hebei University Baoding 071002 P. R. China
| | - Jinchong Xiao
- College of Chemistry and Environmental Science Key Laboratory of Chemical Biology of Hebei Province Hebei University Baoding 071002 P. R. China
| |
Collapse
|
16
|
Ward MD, Shi W, Gasparini N, Nelson J, Wade J, Fuchter MJ. Best practices in the measurement of circularly polarised photodetectors. JOURNAL OF MATERIALS CHEMISTRY. C 2022; 10:10452-10463. [PMID: 35967516 PMCID: PMC9332130 DOI: 10.1039/d2tc01224c] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/30/2022] [Indexed: 05/19/2023]
Abstract
Circularly polarised light will revolutionise emerging technologies, including encrypted light-based communications, quantum computing, bioimaging and multi-channel data processing. In order to make use of these remarkable opportunities, high performance photodetectors that can accurately differentiate between left- and right-handed circularly polarised light are desperately needed. Whilst this potential has resulted in considerable research interest in chiral materials and circularly polarised photodetecting devices, their translation into real-world technologies is limited by non-standardised reporting and testing protocols. This mini-review provides an accessible introduction into the working principles of circularly polarised photodetectors and a comprehensive overview of the performance metrics of state-of-the-art devices. We propose a rigorous device characterisation procedure that will allow for standardised evaluation of novel devices, which we hope will accelerate research and investment in this area.
Collapse
Affiliation(s)
- Matthew D Ward
- Department of Physics, Imperial College London South Kensington Campus London SW7 2AZ UK
- Centre for Processable Electronics, Imperial College London South Kensington Campus London SW7 2AZ UK
| | - Wenda Shi
- Centre for Processable Electronics, Imperial College London South Kensington Campus London SW7 2AZ UK
- Department of Chemistry and Molecular Sciences Research Hub, Imperial College London White City Campus, 82 Wood Lane London W12 0BZ UK
| | - Nicola Gasparini
- Centre for Processable Electronics, Imperial College London South Kensington Campus London SW7 2AZ UK
- Department of Chemistry and Molecular Sciences Research Hub, Imperial College London White City Campus, 82 Wood Lane London W12 0BZ UK
| | - Jenny Nelson
- Department of Physics, Imperial College London South Kensington Campus London SW7 2AZ UK
- Centre for Processable Electronics, Imperial College London South Kensington Campus London SW7 2AZ UK
| | - Jessica Wade
- Centre for Processable Electronics, Imperial College London South Kensington Campus London SW7 2AZ UK
- Department of Materials, Imperial College London South Kensington Campus London SW7 2AZ UK
| | - Matthew J Fuchter
- Centre for Processable Electronics, Imperial College London South Kensington Campus London SW7 2AZ UK
- Department of Chemistry and Molecular Sciences Research Hub, Imperial College London White City Campus, 82 Wood Lane London W12 0BZ UK
| |
Collapse
|
17
|
Li J, Li P, Fan M, Zheng X, Guan J, Yin M. Chirality of Perylene Diimides: Design Strategies and Applications. Angew Chem Int Ed Engl 2022; 61:e202202532. [DOI: 10.1002/anie.202202532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Indexed: 12/13/2022]
Affiliation(s)
- Jie Li
- State Key Laboratory of Chemical Resource Engineering Beijing Laboratory of Biomedical Materials Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Pengyu Li
- State Key Laboratory of Chemical Resource Engineering Beijing Laboratory of Biomedical Materials Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Mingyu Fan
- State Key Laboratory of Chemical Resource Engineering Beijing Laboratory of Biomedical Materials Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Xian Zheng
- State Key Laboratory of Chemical Resource Engineering Beijing Laboratory of Biomedical Materials Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Jun Guan
- Key Lab of Organic Optoelectronics & Molecular Engineering Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Meizhen Yin
- State Key Laboratory of Chemical Resource Engineering Beijing Laboratory of Biomedical Materials Beijing University of Chemical Technology Beijing 100029 P. R. China
| |
Collapse
|
18
|
Organic donor-acceptor heterojunctions for high performance circularly polarized light detection. Nat Commun 2022; 13:3454. [PMID: 35705562 PMCID: PMC9200767 DOI: 10.1038/s41467-022-31186-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
Development of highly efficient and stable lateral organic circularly polarized light photodetector is a fundamental prerequisite for realization of circularly polarized light integrated applications. However, chiral semiconductors with helical structure are usually found with intrinsically low field-effect mobilities, which becomes a bottleneck for high-performance and multi-wavelength circularly polarized light detection. To address this problem, here we demonstrate a novel strategy to fabricate multi-wavelength circularly polarized light photodetector based on the donor-acceptor heterojunction, where efficient exciton separation enables chiral acceptor layer to provide differentiated concentration of holes to the channel of organic field-effect transistors. Benefitting from the low defect density at the semiconductor/dielectric interface, the photodetectors exhibit excellent stability, enabling current roll-off of about 3–4% over 500 cycles. The photocurrent dissymmetry value and responsivity for circularly polarized light photodetector in air are 0.24 and 0.28 A W−1, respectively. We further demonstrate circularly polarized light communication based on a real-time circularly polarized light detector by decoding the light signal. As the proof-of-concept, the results hold the promise of large-scale circularly polarized light integrated photonic applications. Here, the authors report a strategy to fabricate multi-wavelength circularly polarized light photodetectors consisting of bilayer donor-acceptor heterojunctions with chiral active layers.
Collapse
|
19
|
Li J, Li P, Fan M, Zheng X, Guan J, Yin M. Chirality of Perylene Diimides: Design Strategies and Applications. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jie Li
- Beijing University of Chemical Technology College of Materials Science and Engineering 100029 Beijing CHINA
| | - Pengyu Li
- Beijing University of Chemical Technology College of Materials Science and Engineering CHINA
| | - Mingyu Fan
- Beijing University of Chemical Technology College of Materials Science and Engineering CHINA
| | - Xian Zheng
- Beijing University of Chemical Technology College of Materials Science and Engineering CHINA
| | - Jun Guan
- Tsinghua University Department of Chemistry CHINA
| | - Meizhen Yin
- Beijing University of Chemical Technology College of Materials Science and Engineering No. 15 Bei San Huan Dong Lu 100029 Beijing CHINA
| |
Collapse
|
20
|
Kim H, Kim RM, Namgung SD, Cho NH, Son JB, Bang K, Choi M, Kim SK, Nam KT, Lee JW, Oh JH. Ultrasensitive Near-Infrared Circularly Polarized Light Detection Using 3D Perovskite Embedded with Chiral Plasmonic Nanoparticles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104598. [PMID: 34978155 PMCID: PMC8844506 DOI: 10.1002/advs.202104598] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/24/2021] [Indexed: 05/05/2023]
Abstract
Chiral organic ligand-incorporated low-dimensional metal-halide perovskites have received increasing attention for next-generation photodetectors because of the direct detection capability of circularly polarized light (CPL), which overcomes the requirement for subsidiary optical components in conventional CPL photodetectors. However, most chiral perovskites have been based on low-dimensional structures that confine chiroptical responses to the ultraviolet (UV) or short-wavelength visible region and limit photocurrent due to their wide bandgap and poor charge transport. Here, chiroptical properties of 3D Cs0.05 FA0.5 MA0.45 Pb0.5 Sn0.5 I3 polycrystalline films are achieved by incorporating chiral plasmonic gold nanoparticles (AuNPs) into the mixed PbSn perovskite, without sacrificing its original optoelectronic properties. CPL detectors fabricated using chiral AuNP-embedded perovskite films can operate without external power input; they exhibit remarkable chirality in the near-infrared (NIR) region with a high anisotropy factor of responsivity (gres ) of 0.55, via giant plasmon resonance shift of chiral plasmonic AuNPs. In addition, a CPL detector array fabricated on a plastic substrate demonstrates highly sensitive self-powered NIR detection with superior flexibility and durability.
Collapse
Affiliation(s)
- Hongki Kim
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
- Department of Chemical EngineeringPohang University of Science and Technology (POSTECH)Pohang37673Republic of Korea
| | - Ryeong Myeong Kim
- Department of Materials Science and EngineeringSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
| | - Seok Daniel Namgung
- Department of Materials Science and EngineeringSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
| | - Nam Heon Cho
- Department of Materials Science and EngineeringSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
| | - Jung Bae Son
- Department of ChemistrySeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
| | - Kijoon Bang
- Department of Mechanical and Aerospace EngineeringSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
- Global Frontier Center for Multiscale Energy SystemsSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
| | - Mansoo Choi
- Department of Mechanical and Aerospace EngineeringSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
- Global Frontier Center for Multiscale Energy SystemsSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
| | - Seong Keun Kim
- Department of ChemistrySeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
| | - Ki Tae Nam
- Department of Materials Science and EngineeringSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
| | - Jong Woo Lee
- Department of ChemistryMyongji University116 Myongji‐roYonginGyeonggi‐do17058Republic of Korea
| | - Joon Hak Oh
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
| |
Collapse
|
21
|
Liu L, Yang Y, Wei Z. Chiral Organic Optoelectronic Materials and Circularly Polarized Light Luminescence and Detection. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a22030123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
22
|
Zhang C, Wang X, Qiu L. Circularly Polarized Photodetectors Based on Chiral Materials: A Review. Front Chem 2021; 9:711488. [PMID: 34568276 PMCID: PMC8455893 DOI: 10.3389/fchem.2021.711488] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 06/28/2021] [Indexed: 11/13/2022] Open
Abstract
Circularly polarized light (CPL) plays an important role in many photonic techniques, including tomographic scanning based on circular polarization ellipsometry, optical communication and information of spin, and quantum-based optical calculation and information processing. To fully exploit the functions of CPL in these fields, integrated photoelectric sensors capable of detecting CPL are essential. Photodetectors based on chiral materials can directly detect CPL due to their intrinsic optical activity, without the need to be coupled with polarizers and quarter-wave plates as in conventional photodetectors. This review summarizes the recent research progress in CPL photodetectors based on chiral materials. We first briefly introduce the CPL photodetectors based on different types of chiral materials and their working principles. Finally, current challenges and future opportunities in the development of CPL photodetectors are prospected.
Collapse
Affiliation(s)
- Can Zhang
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei, China
| | - Xiaohong Wang
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei, China
- Anhui Key Laboratory of Advanced Functional Materials and Devices, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, China
| | - Longzhen Qiu
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei, China
- Anhui Key Laboratory of Advanced Functional Materials and Devices, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, China
- Key Laboratory of Measuring Theory and Precision Instrument, Hefei University of Technology, Hefei, China
| |
Collapse
|
23
|
Zhang X, Liu X, Li L, Ji C, Yao Y, Luo J. Great Amplification of Circular Polarization Sensitivity via Heterostructure Engineering of a Chiral Two-Dimensional Hybrid Perovskite Crystal with a Three-Dimensional MAPbI 3 Crystal. ACS CENTRAL SCIENCE 2021; 7:1261-1268. [PMID: 34345674 PMCID: PMC8323243 DOI: 10.1021/acscentsci.1c00649] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Indexed: 05/04/2023]
Abstract
Chiral hybrid perovskites have brought an unprecedented opportunity for circularly polarized light (CPL) detection. However, the circular polarization sensitivity of such a detector remains extremely low because of the high exciton recombination rate in those single-phase hybrid perovskites. Here, a heterostructure construction strategy is proposed to reduce the electron-hole recombination rate in a chiral hybrid perovskite and achieve CPL detectors with greatly amplified circular polarization sensitivity. A heterostructure crystal, namely, [(R)-MPA]2MAPb2I7/MAPbI3 ((R)-MPA = (R)-methylphenethylamine, MA = methylammonium), has been successfully created by integrating a chiral two-dimensional (2D) perovskite with its three-dimensional counterpart via solution-processed heteroepitaxy. Strikingly, the sharp interface of the as-grown heterostructure crystal facilitates the formation of a built-in electric field, enabling the combined concepts of charge transfer and chirality transfer, which effectively reduces the recombination probability for photogenerated carriers while retaining chiroptical activity of chiral 2D perovskite. Thereby, the resultant CPL detector exhibits significantly amplified circular polarization sensitivity at zero bias with an impressive anisotropy factor up to 0.67, which is about six times higher than that of the single-phase [(R)-MPA]2MAPb2I7 (0.1). As a proof-of-concept, the strategy we presented here enables a novel path to modulate circular polarization sensitivity and will be helpful to design chiral hybrid perovskites for advanced chiroptical devices.
Collapse
Affiliation(s)
- Xinyuan Zhang
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research
on the Structure of Matter, Chinese Academy
of Sciences, Fuzhou, Fujian 350002, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Xitao Liu
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research
on the Structure of Matter, Chinese Academy
of Sciences, Fuzhou, Fujian 350002, China
- Fujian
Science & Technology Innovation Laboratory for Optoelectronic
Information of China, Fuzhou, Fujian 350108, P. R. China
| | - Lina Li
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research
on the Structure of Matter, Chinese Academy
of Sciences, Fuzhou, Fujian 350002, China
- Fujian
Science & Technology Innovation Laboratory for Optoelectronic
Information of China, Fuzhou, Fujian 350108, P. R. China
| | - Chengmin Ji
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research
on the Structure of Matter, Chinese Academy
of Sciences, Fuzhou, Fujian 350002, China
- Fujian
Science & Technology Innovation Laboratory for Optoelectronic
Information of China, Fuzhou, Fujian 350108, P. R. China
| | - Yunpeng Yao
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research
on the Structure of Matter, Chinese Academy
of Sciences, Fuzhou, Fujian 350002, China
| | - Junhua Luo
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research
on the Structure of Matter, Chinese Academy
of Sciences, Fuzhou, Fujian 350002, China
- School
of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
- Fujian
Science & Technology Innovation Laboratory for Optoelectronic
Information of China, Fuzhou, Fujian 350108, P. R. China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
24
|
Hao J, Lu H, Mao L, Chen X, Beard MC, Blackburn JL. Direct Detection of Circularly Polarized Light Using Chiral Copper Chloride-Carbon Nanotube Heterostructures. ACS NANO 2021; 15:7608-7617. [PMID: 33821628 PMCID: PMC10156083 DOI: 10.1021/acsnano.1c01134] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The emergent properties of chiral organic-inorganic hybrid materials offer opportunities in spin-dependent optoelectronic devices. One of the most promising applications where spin, charge, and light are strongly coupled is circularly polarized light (CPL) detection. However, the performance of state-of-the-art CPL detectors using chiral hybrid metal halide semiconductors is still limited by the low anisotropy factor, poor conductivity, and limited photoresponsivity. Here, we synthesize 0D chiral copper chloride hybrids, templated by chiral methylbenzylammonium (R/S-MBA), i.e., (R-/S-MBA)2CuCl4, that display circular dichroism for the ligand-to-metal charge transfer transition with an absorption anisotropy factor (gCD) among the largest reported for chiral metal halide semiconductor hybrids. To circumvent the poor conductivity of the unpercolated inorganic framework of this chiral absorber, we develop a direct CPL detector that utilizes a heterojunction between the chiral (MBA)2CuCl4 absorber layer and a semiconducting single-walled carbon nanotube (s-SWCNT) transport channel. Our chiral heterostructure shows high photoresponsivity of 452 A/W, a competitive anisotropy factor (gres) of up to 0.21, a current response in microamperes, and low working voltage down to 0.01 V. Our results clearly demonstrate a useful strategy toward high-performance chiral optoelectronic devices, where a nanoscale heterostructure enables direct CPL detection even for highly insulating chiral materials.
Collapse
Affiliation(s)
- Ji Hao
- Chemistry & Nanoscience Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Haipeng Lu
- Chemistry & Nanoscience Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China (SAR)
| | - Lingling Mao
- Materials Department and Materials Research Laboratory University of California, Santa Barbara, California 93106, United States
| | - Xihan Chen
- Chemistry & Nanoscience Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Matthew C Beard
- Chemistry & Nanoscience Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Jeffrey L Blackburn
- Materials Science Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| |
Collapse
|
25
|
Shang X, Ahn J, Lee JH, Kim JC, Ohtsu H, Choi W, Song I, Kwak SK, Oh JH. Bay-Substitution Effect of Perylene Diimides on Supramolecular Chirality and Optoelectronic Properties of Their Self-Assembled Nanostructures. ACS APPLIED MATERIALS & INTERFACES 2021; 13:12278-12285. [PMID: 33667057 DOI: 10.1021/acsami.0c23138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
One-dimensional (1D) organic chiral supramolecules have received a great deal of attention for their promising applications in chiral recognition systems, chemical sensors, catalysts, and optoelectronics. Compared to modifications at the imide position of a perylene diimide (PDI), few studies have explored bay substitution of chiral PDIs and their self-assemblies into 1D nanomaterials. Herein, we describe the synthesis of three bay-substituted PDIs and explore the effects of bay substitution on supramolecular chirality by examining circular dichroism spectra and the optoelectronic performance of chiral PDI nanomaterials in phototransistors. Among the three fabricated self-assemblies, nanomaterials based on (R)-CN-CPDI-Ph exhibited the highest electron mobility of 0.17 cm2 V-1 s-1, a low threshold voltage of -1 V, and enhanced optoelectronic performance. For example, the photoresponsivity and external quantum efficiency of (R)-CN-CPDI-Ph assemblies were 4-fold higher than those of (R)-2Br-CPDI-Ph and (R)-2F-CPDI-Ph. All three nanomaterials exhibited fast switching speeds compared with previously reported N-substituted PDIs, suggesting that bay substitution can be an effective means of achieving rapid photoswitching. A comprehensive study using density functional theory calculations and crystal analyses revealed that the enhanced optoelectronic performance of (R)-CN-CPDI-Ph nanomaterials is related to the substitution of CN at the bay position of PDI. This minor change provides simultaneous improvements in electron injectability and structural order. Our findings demonstrate that bay substitution can significantly impact the self-assembly, supramolecular chirality, and optoelectronic properties of PDI nanomaterials.
Collapse
Affiliation(s)
- Xiaobo Shang
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Jaeyong Ahn
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Jeong Hyeon Lee
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jin Chul Kim
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Hiroyoshi Ohtsu
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Wanuk Choi
- Energy Materials Laboratory, Korea Institute of Energy Research (KIER), Daejeon 34129, Republic of Korea
| | - Inho Song
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Sang Kyu Kwak
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Joon Hak Oh
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| |
Collapse
|