1
|
Wang ZH, Zeng X, Zhang S, Li H, Zhou J, Yang Y, Huang W, Zhao F, Liu Z, Liu J, Hu Y, Shi J. Acoustic-Magnetic Responsive Nanomotor Augments Oral Drug Delivery by Gastrointestinal Site Navigation and Mucus Layer Penetration. ACS NANO 2025. [PMID: 40299707 DOI: 10.1021/acsnano.4c07866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2025]
Abstract
Oral administration is a traditional, safe, and widely used drug delivery strategy. However, the delivery efficiency of the oral drug delivery system is hindered by the long gastrointestinal tract, filled with dense and viscous mucus. Herein, we presented an acoustic-magnetic responsive nanomotor (MMSNP) for oral drug delivery via gastrointestinal site navigation and mucus layer penetration. MMSNP has a Janus rod-shaped structure composed of iron tetroxide and mesoporous silica, which could be guided to various intestinal segments with an external magnetic field based on the demand of different diseases. In addition, the rod-like system could effectively penetrate the dense and viscous mucus under ultrasound radiation to improve the bioavailability of loaded drugs. In diabetes rats, small intestinal navigation and mucus penetration of the nanomotor increased the oral relative bioavailability of metformin (Met) by 78.0% and the effective hypoglycemic time by 1.1-fold than pure Met. In orthotopic colorectal cancer (CRC)-bearing mice, magnetically mediated colorectal navigation increased the anchoring efficiency of nanomotors by 4.2-fold, and ultrasound propulsion increased the mucus penetration efficiency of MMSNP by 5.2-fold, leading to a vastly improved delivery efficiency of cisplatin (CP) and a superior tumor inhibition rate of 97.2%. This simple and versatile nanomotor has broad application prospects in the treatment of gastrointestinal diseases, providing a promising and universal strategy for clinical conversion of orally administered drugs.
Collapse
Affiliation(s)
- Zhi-Hao Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, Zhengzhou 450001, China
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, China
| | - Xuejiao Zeng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, Zhengzhou 450001, China
| | - Shuhao Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, Zhengzhou 450001, China
| | - Hailong Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, Zhengzhou 450001, China
| | - Jianchao Zhou
- Department of Pharmacy, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yefei Yang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, Zhengzhou 450001, China
| | - Wanting Huang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, Zhengzhou 450001, China
| | - Fengqin Zhao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, Zhengzhou 450001, China
| | - Zhongyang Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Junjie Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, Zhengzhou 450001, China
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, China
| | - Yurong Hu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, Zhengzhou 450001, China
| | - Jinjin Shi
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, Zhengzhou 450001, China
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
2
|
Xia Y, Chen Z, Zhang X, Yang P, Wang Z. Phosphatidylcholine Liposome Accelerated Platinum Nanomachines (PLANEs) With Enhanced Penetration Capability for Thrombus Mechanotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2418590. [PMID: 40270288 DOI: 10.1002/adma.202418590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 03/07/2025] [Indexed: 04/25/2025]
Abstract
Thrombotic cardiovascular diseases remain the leading cause of mortality worldwide. However, current thrombolytic therapeutics suffer from limited efficacy and a high risk of severe bleeding. Here, a phosphatidylcholine liposome accelerated platinum nanomachine (PLANE) for thrombus mechanotherapy is designed, constructed by encapsulating platinum nanomotors within isotropic, lubricating phosphatidylcholine (PC) liposomes. The precisely engineered PLANE exhibits superior lubricity and linear motion. Under laser irradiation and hydrogen peroxide treatment, PLANEs achieve significantly higher velocities than conventional platinum nanomotors, facilitating deep penetration into the thrombi. Further functionalization with thrombus-targeting peptides enables the cPLANEs to selectively accumulate at the thrombotic sites in vivo, demonstrating excellent thrombolytic efficacy. This work presents a novel surface modification strategy for optimizing the motion behavior of platinum nanomotors, offering a promising non-pharmaceutic approach for thrombotic disease treatment.
Collapse
Affiliation(s)
- Yuqiong Xia
- Lab of Molecular Imaging and Translational Medicine (MITM) Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University & International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment, Xi'an, Shaanxi, 710126, P. R. China
| | - Zhaoxu Chen
- Lab of Molecular Imaging and Translational Medicine (MITM) Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University & International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment, Xi'an, Shaanxi, 710126, P. R. China
| | - Xianghan Zhang
- Lab of Molecular Imaging and Translational Medicine (MITM) Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University & International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment, Xi'an, Shaanxi, 710126, P. R. China
| | - Peng Yang
- Lab of Molecular Imaging and Translational Medicine (MITM) Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University & International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment, Xi'an, Shaanxi, 710126, P. R. China
| | - Zhongliang Wang
- Lab of Molecular Imaging and Translational Medicine (MITM) Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University & International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment, Xi'an, Shaanxi, 710126, P. R. China
| |
Collapse
|
3
|
Ma H, Guo Y, Xu X, Ye L, Cheng Y, Wang X. Janus micro/nanomotors for enhanced disease treatment through their deep penetration capability. Acta Biomater 2025; 196:50-77. [PMID: 40015356 DOI: 10.1016/j.actbio.2025.02.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 02/10/2025] [Accepted: 02/24/2025] [Indexed: 03/01/2025]
Abstract
Nanotherapeutic systems have provided an innovative means for the treatment of a wide range of diseases in modern medicine. However, the limited penetration of nanoparticles into focal tissues still greatly hampered their clinical application. With their unique two-sided structure and superior motility, Janus micro/nanomotors are expected to significantly improve the penetration of nanocarriers into organisms, thereby enhancing the therapeutic effects of diseases. This review introduces Janus micro/nanomotors with different morphologies and focuses on their propulsion mechanisms, including chemical field-driven, external physical field-driven, biologically-driven, and hybrid-driven mechanisms. We explore the research progress of Janus micro/nanomotors in various disease treatment areas (including cancer, cardiovascular diseases, neurological diseases, bacterial/fungal infections, and chronic inflammatory diseases) and elucidate the implementation strategies of Janus micro/nanomotors in facilitating disease therapies. Finally, we discuss the biosafety and biocompatibility of Janus micro/nanomotor, while exploring current challenges and opportunities in the field. We look forward to the Janus micro/nanomotor therapeutic platform demonstrating surprising therapeutic effects in the clinical treatment of diseases. STATEMENT OF SIGNIFICANCE: Micro/nanomotors are the highly promising nanotherapeutic systems due to their self-propelled motion capability. Janus micro/nanomotors possess an asymmetric structure with different physical or chemical properties on both sides. The flexibility of this bifunctional surface allows them to hold promise for improving the penetration of nanotherapeutic systems and enhancing therapeutic efficacy for complex diseases. This review focuses on the latest advancements in Janus micro/nanomotors for enhanced disease treatment, including the structural types and driving mechanisms, the enhancement effect to cope with different disease treatments, the biocompatibility and safety, the current challenges and possible solutions. These insights inform the design of deep-penetrating nanotherapeutic systems and the strategies of enhanced disease treatment.
Collapse
Affiliation(s)
- Haoran Ma
- Biochemical Engineering Research Center, School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243032, China
| | - Yuxuan Guo
- Biochemical Engineering Research Center, School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243032, China
| | - Xia Xu
- Biochemical Engineering Research Center, School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243032, China
| | - Lei Ye
- Biochemical Engineering Research Center, School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243032, China
| | - Yuanyuan Cheng
- Biochemical Engineering Research Center, School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243032, China
| | - Xiaoxiao Wang
- Biochemical Engineering Research Center, School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243032, China.
| |
Collapse
|
4
|
Jing D, Zhang J, Li Z, Yan W, Guo Y. Nanomotors activating both cGAS-STING pathway and immune checkpoint blockade for tumor therapy and bioimaging. Talanta 2025; 284:127258. [PMID: 39586211 DOI: 10.1016/j.talanta.2024.127258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 11/27/2024]
Abstract
Cellular innate immune response is closely related to cGAS-STING pathway and PD-1/PD-L1 immune checkpoint blockade. The lack of tissue penetration of STING agonists and nanomedicines in conventional approaches reduces their immunotherapeutic efficacy. At the same time, because the cGAS-STING signaling pathway is silent in many breast cancer cells, it cannot play its role. To address these challenges, here, we developed a silica nanomotor based on bubble propulsion. Its hollow structure was packed with the photosensitizer Ce6 molecule. Under 808 nm laser irradiation, Ce6 produced 1O2, which lead to intracellular DNA damage and further activated the cGAS-STING pathway, stimulating the maturation of DC cells, and enhancing the tumor infiltration of CD8+ T cells. The nanomotor had an asymmetrical structure. One side of the nanomotor was modified with Pt nanoparticle. This asymmetric modification can catalyze H2O2 in the environment, producing an asymmetric concentration of O2, which realized the bubble driving nanomotor movement and enhances penetration into breast cancer cells of nanomotor. The other side of the nanomotor was modified the LXL-1 aptamer, triphenylphosphine and peptide CLP002. Peptide CLP002 specifically bound residues of PD-L1 interaction with PD-1, blocked the mutual binding between PD-1 and PD-L1, and further improved the immune response ability of tumor infiltrating T cells. In this study, we developed a multi-pronged immunotherapy strategy of intelligent target finding, breaking through the physiological barrier through kinetic energy, accurately intervening the target and bioimaging, providing a new idea for breast cancer cells targeted therapy.
Collapse
Affiliation(s)
- Dan Jing
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Ji Zhang
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Ziyi Li
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Wennan Yan
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Yingshu Guo
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.
| |
Collapse
|
5
|
Wang ZH, Zeng X, Huang W, Yang Y, Zhang S, Yang M, Liu H, Zhao F, Li A, Zhang Z, Liu J, Shi J. Bioactive nanomotor enabling efficient intestinal barrier penetration for colorectal cancer therapy. Nat Commun 2025; 16:1678. [PMID: 39956840 PMCID: PMC11830786 DOI: 10.1038/s41467-025-57045-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 02/10/2025] [Indexed: 02/18/2025] Open
Abstract
Oral drug delivery systems had natural potential for colorectal cancer drug therapy. While the drug delivery efficiency is severely hindered by the complex intestinal barriers, especially mucus and epithelium barriers, resulting in unsatisfactory therapeutic effects and limited clinical translation. In this work, a bioactive self-thermophoretic and gas dual-driven nanomotor is developed for colorectal cancer therapy through efficient intestinal mucus and epithelial barrier penetration. The nanomotor shows intestinal mucus barrier penetration and the paracellular pathway reversibly opening properties of intestinal epithelium barrier, increasing the delivery efficiency of cisplatin by 3.5 folds. Owing to the targeted delivery of cisplatin and the reduced side effects on normal intestinal tissues, the therapeutic efficiency of the nanomotor for colorectal cancer in vivo is as high as 98.6%. With autonomous and reversible intestinal barriers penetration property, the nanoplatform may innovate the current oral drug delivery.
Collapse
Affiliation(s)
- Zhi-Hao Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, Zhengzhou, 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou, 450001, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou, 450001, China
| | - Xuejiao Zeng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, Zhengzhou, 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou, 450001, China
| | - Wanting Huang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, Zhengzhou, 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou, 450001, China
| | - Yanbo Yang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, Zhengzhou, 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou, 450001, China
| | - Shuhao Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, Zhengzhou, 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou, 450001, China
| | - Mingzhu Yang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, Zhengzhou, 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou, 450001, China
| | - Hua Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, Zhengzhou, 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou, 450001, China
| | - Fengqin Zhao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, Zhengzhou, 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou, 450001, China
| | - Airong Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, Zhengzhou, 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou, 450001, China
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, Zhengzhou, 450001, China.
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou, 450001, China.
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou, 450001, China.
| | - Junjie Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, Zhengzhou, 450001, China.
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou, 450001, China.
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou, 450001, China.
| | - Jinjin Shi
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, Zhengzhou, 450001, China.
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou, 450001, China.
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou, 450001, China.
| |
Collapse
|
6
|
Wei M, Jiang Q, Bian S, Chang P, Li B, Shi C, Zhu Y, Wang Y, Hou P, Li J. Dual-mode-driven nanomotors targeting inflammatory macrophages for the MRI and synergistic treatment of atherosclerosis. J Nanobiotechnology 2025; 23:54. [PMID: 39881324 PMCID: PMC11776285 DOI: 10.1186/s12951-025-03136-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 01/19/2025] [Indexed: 01/31/2025] Open
Abstract
With the progress of atherosclerosis (AS), the arterial lumen stenosis and compact plaque structure, the thickening intima and the narrow gaps between endothelial cells significantly limit the penetration efficiency of nanoprobe to plaque, weakening the imaging sensitivity and therapy efficiency. Thus, in this study, a H2O2-NIR dual-mode nanomotor, Gd-doped mesoporous carbon nanoparticles/Pt with rapamycin (RAPA) loading and AntiCD36 modification (Gd-MCNs/Pt-RAPA-AC) was constructed. The asymmetric deposition of Pt on Gd-MCNs catalyzed H2O2 at the inflammatory site to produce O2, which could promote the self-motion of the nanomotor and ease inflammation microenvironment of AS plaque. Near-infrared (NIR) laser irradiation promoted the photothermal conversion of Gd-MCNs to generate the thermal propulsion of nanomotor and photothermal ablation of inflammatory macrophages. Meanwhile, the modification of AntiCD36 to bind with inflammatory macrophages further promotes the targeting effect. The released RAPA could inhibit the inflammatory side effects caused by photothermal effects, and promote macrophage autophagy to hinder the development of AS. The dual-mode propulsion nanomotors combining with the synergistic therapy of photothermal treatment, anti-inflammatory and pro-autophagy provided improved theranositc effect of AS.
Collapse
Affiliation(s)
- Min Wei
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, China
- Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, China
| | - Qiaoji Jiang
- Xuzhou Medical University, Xuzhou, 221004, China
| | - Shuang Bian
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, China
- Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, China
| | - Pengzhao Chang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, China
- Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, China
| | - Bangbang Li
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, China
- Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, China
| | - Changzhou Shi
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, China
- Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, China
| | - Yangang Zhu
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, China
- Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, China
| | - Yanchen Wang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, China
- Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, China
| | - Pingfu Hou
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China.
| | - Jingjing Li
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, China.
- Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, China.
| |
Collapse
|
7
|
Wang R, Nie W, Yan X, Luo K, Zhang Q, Wang T, Lu E, Chen Y, Luo Y, Zhang Z, Wang H, Zhao J, Sha X. Biomimetic Nanomotors for Deep Ischemia Penetration and Ferroptosis Inhibition in Neuroprotective Therapy of Ischemic Stroke. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2409176. [PMID: 39600046 DOI: 10.1002/adma.202409176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/11/2024] [Indexed: 11/29/2024]
Abstract
Nerve injury represents the primary reason of mortality and disability in ischemic stroke, but effective drug delivery to the region of cerebral ischemia and hypoxia poses a significant challenge in neuroprotective treatment. To address these clinical challenges, a biomimetic nanomotor, Pt@LF is designed, to facilitate deep delivery of neuroprotective agents and inhibit ferroptosis in ischemic stroke. Pt@LF traverses the blood-brain barrier (BBB) and penetrates into deep cerebral ischemic-hypoxic areas due to the active targeting capacity of apo-lactoferrin (Apo-LF) and the self-propelling motion properties of nanomotors. Subsequently, Pt@LF loosens thrombus and alleviates the "no reflow" phenomenon via mechanical thrombolysis. Thanks to the various enzyme-like abilities and multi-target ferroptosis inhibition capability, Pt@LF ameliorates the inflammatory microenvironment and rescues dying neurons. In conclusion, Pt@LF demonstrates efficiently deep penetration and neuroprotective effects in vitro and vivo. And this study provides a promising therapeutic platform for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Rui Wang
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery (Ministry of Education), Shanghai, 201203, China
| | - Weimin Nie
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery (Ministry of Education), Shanghai, 201203, China
| | - Xin Yan
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery (Ministry of Education), Shanghai, 201203, China
| | - Kuankuan Luo
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery (Ministry of Education), Shanghai, 201203, China
| | - Qi Zhang
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery (Ministry of Education), Shanghai, 201203, China
| | - Tao Wang
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery (Ministry of Education), Shanghai, 201203, China
| | - Enhao Lu
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery (Ministry of Education), Shanghai, 201203, China
| | - Yiting Chen
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery (Ministry of Education), Shanghai, 201203, China
| | - Yu Luo
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery (Ministry of Education), Shanghai, 201203, China
| | - Zhiwen Zhang
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery (Ministry of Education), Shanghai, 201203, China
| | - He Wang
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Ministry of Education), Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200 433, China
- Department of Radiology, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, 200 081, China
| | - Jing Zhao
- Department of Neurology, Minhang Hospital, Fudan University, Shanghai, 201 102, China
- Institute of Healthy Yangtze River Delta, Shanghai Jiao Tong University, Shanghai, 200 030, China
| | - Xianyi Sha
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery (Ministry of Education), Shanghai, 201203, China
- Quzhou Fudan Institute, Quzhou, 324 002, China
| |
Collapse
|
8
|
He T, Yang Y, Chen X. A Lifetime of Catalytic Micro-/Nanomotors. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 15:13. [PMID: 39791773 PMCID: PMC11723389 DOI: 10.3390/nano15010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/22/2024] [Accepted: 12/23/2024] [Indexed: 01/12/2025]
Abstract
Microscopic and nanoscopic motors, often referred to as micro-/nanomotors, are autonomous devices capable of converting chemical energy from their surroundings into mechanical motion or forces necessary for propulsion. These devices draw inspiration from natural biomolecular motor proteins, and in recent years, synthetic micro-/nanomotors have attracted significant attention. Among these, catalytic micro-/nanomotors have emerged as a prominent area of research. Despite considerable progress in their design and functionality, several obstacles remain, especially regarding the development of biocompatible materials and fuels, the integration of intelligent control systems, and the translation of these motors into practical applications. Thus, a comprehensive understanding of the current advancements in catalytic micro-/nanomotors is critical. This review aims to provide an in-depth overview of their fabrication techniques, propulsion mechanisms, key influencing factors, control methodologies, and potential applications. Furthermore, we examine their physical and hydrodynamic properties in fluidic environments to optimize propulsion efficiency. Lastly, we evaluate their biosafety and biocompatibility to facilitate their use in biological systems. The review also addresses key challenges and proposes potential solutions to advance their practical deployment.
Collapse
Affiliation(s)
| | | | - Xuebo Chen
- School of Electronic and Information Engineering, University of Science and Technology Liaoning, Anshan 114051, China; (T.H.); (Y.Y.)
| |
Collapse
|
9
|
Yan Z, Ding N, Lin S, Zhang S, Xiao Y, Xie Y, Zhang S. Polysaccharide Based Self-Driven Tubular Micro/Nanomotors as a Comprehensive Platform for Quercetin Loading and Anti-inflammatory Function. Biomacromolecules 2024; 25:6840-6854. [PMID: 39315891 DOI: 10.1021/acs.biomac.4c01084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Quercetin (QR) is a natural flavonoid with strong anti-inflammatory properties, but it suffers from poor water solubility and bioavailability. Micro/nanomotors (NMs) are tiny devices that convert external energy or chemical fuels into an autonomous motion. They are characterized by their small size, rapid movement, and self-assembly capabilities, which can enhance the delivery of bioactive ingredients. The study synthesized natural polysaccharide-based nanotubes (NTs) using a layer-by-layer self-assembly method and combined with urease (Ure), glucose oxidase (GOx), and Fe3O4 to create three types of NMs. These NMs were well-dispersed and biocompatible. In vitro experiments showed that NMs-Fe3O4 has excellent photothermal conversion properties and potential for use in photothermal therapy. Cellular inflammation model results demonstrated that QR-loaded NMs were not only structurally stable but also improved bioavailability and effectively inhibited the release of inflammatory mediators such as IL-1β and IL-6, providing a safe and advanced carrier system for the effective use of bioactive components in food.
Collapse
Affiliation(s)
- Zhiyu Yan
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Ni Ding
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Songyi Lin
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Siqi Zhang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Yingchen Xiao
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Yuxin Xie
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Simin Zhang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
- Liaoning Engineering Research Center of Special Dietary Food, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
10
|
Mayol B, Pradana-López S, García A, de la Torre C, Díez P, Villalonga A, Anillo C, Vilela D, Sánchez A, Martínez-Ruiz P, Martínez-Máñez R, Villalonga R. Self-propelled enzyme-controlled IR-mesoporous silica Janus nanomotor for smart delivery. J Colloid Interface Sci 2024; 671:294-302. [PMID: 38815366 DOI: 10.1016/j.jcis.2024.05.134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/08/2024] [Accepted: 05/18/2024] [Indexed: 06/01/2024]
Abstract
Here, we report the preparation of a novel Janus nanoparticle with opposite Ir and mesoporous silica nanoparticles through a partial surface masking with toposelective modification method. This nanomaterial was employed to construct an enzyme-powered nanomachine with self-propulsion properties for on-command delivery. The cargo-loaded nanoparticle was provided with a pH-sensitive gate and unit control at the mesoporous face by first attaching boronic acid residues and further immobilization of glucose oxidase through reversible boronic acid esters with the carbohydrate residues of the glycoenzyme. Addition of glucose leads to the enzymatic production of H2O2 and gluconic acid, being the first compound catalytically decomposed at the Ir nanoparticle face producing O2 and causing the nanomachine propulsion. Gluconic acid leads to a pH reduction at the nanomachine microenvironment causing the disruption of the gating mechanism with the subsequent cargo release. This work demonstrates that enzyme-mediated self-propulsion improved release efficiency being this nanomotor successfully employed for the smart release of Doxorubicin in HeLa cancer cells.
Collapse
Affiliation(s)
- Beatriz Mayol
- Nanosensors and Nanomachines Group, Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28040 Madrid, Spain
| | - Sandra Pradana-López
- Nanosensors and Nanomachines Group, Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28040 Madrid, Spain
| | - Alba García
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, Valencia, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Cristina de la Torre
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, Valencia, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Paula Díez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain; Unidad Mixta de Investigación en Nanomedicina y Sensores. Universitat Politècnica de València, Instituto de Investigación Sanitaria La Fe, Av. Fernando Abril Martorell, 106 Torre A 7ª planta. 46026, Valencia, Spain
| | - Anabel Villalonga
- Nanosensors and Nanomachines Group, Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28040 Madrid, Spain
| | - Carlos Anillo
- Nanosensors and Nanomachines Group, Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28040 Madrid, Spain
| | - Diana Vilela
- Nanosensors and Nanomachines Group, Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28040 Madrid, Spain
| | - Alfredo Sánchez
- Nanosensors and Nanomachines Group, Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28040 Madrid, Spain
| | - Paloma Martínez-Ruiz
- Nanosensors and Nanomachines Group, Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28040 Madrid, Spain
| | - Ramón Martínez-Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, Valencia, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain; Unidad Mixta de Investigación en Nanomedicina y Sensores. Universitat Politècnica de València, Instituto de Investigación Sanitaria La Fe, Av. Fernando Abril Martorell, 106 Torre A 7ª planta. 46026, Valencia, Spain.
| | - Reynaldo Villalonga
- Nanosensors and Nanomachines Group, Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28040 Madrid, Spain.
| |
Collapse
|
11
|
Candreva A, Ricciardi L, Szerb EI, La Deda M. A "Talking" between Gold Nanoparticle and a Luminescent Iridium(III) Complex: A Study of the Effect Due to the Interaction between Plasmon Resonance and a Fluorophore. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1543. [PMID: 39404270 PMCID: PMC11477608 DOI: 10.3390/nano14191543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/17/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024]
Abstract
This paper explores a novel synthesis and characterization of silica-coated gold nanorods (AuNRs) embedding a highly emissive cyclometalated iridium(III) complex, denoted as Ir1. We investigate the optical properties and the interplay between the metal compound and gold plasmon, observing how the emission of Ir1 incorporated into the nanoparticles shows two emission bands, one in the blue and the other in the green-orange range of the visible spectrum. To obtain a clearer picture of what we were observing, we synthesized analogous nanosystems, from which it was possible to highlight the effect of different features. Based on what we observed, we proposed that the fraction of the iridium(III) complex in direct contact with the surface of the gold nanoparticle undergoes a "demixing" of the excited state, which, for cyclometalated iridium complexes, is generally considered a mixed LC+MLCT state. This preliminary study sheds light on the complexity of the "talking" between a fluorophore and a plasmonic system, highlighting the importance of considering the emitter typology when modeling such systems.
Collapse
Affiliation(s)
- Angela Candreva
- Department of Chemistry and Chemical Technologies, University of Calabria, I-87036 Rende, Italy;
- CNR-NANOTEC Institute of Nanotechnology, National Research Council, I-87036 Rende, Italy;
| | - Loredana Ricciardi
- CNR-NANOTEC Institute of Nanotechnology, National Research Council, I-87036 Rende, Italy;
| | - Elisabeta I. Szerb
- Coriolan Dragulescu Institute of Chemistry, Romanian Academy, 24, Mihai Viteazu Bvd., 300223 Timisoara, Romania;
| | - Massimo La Deda
- Department of Chemistry and Chemical Technologies, University of Calabria, I-87036 Rende, Italy;
- CNR-NANOTEC Institute of Nanotechnology, National Research Council, I-87036 Rende, Italy;
| |
Collapse
|
12
|
Zhou T, Zhu K, Yang Z, Qian Z, Zong S, Cui Y, Wang Z. Chemically Powered Nanomotors with Magnetically Responsive Function for Targeted Delivery of Exosomes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311207. [PMID: 38751193 DOI: 10.1002/smll.202311207] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/29/2024] [Indexed: 10/01/2024]
Abstract
Janus structure plays a crucial role in achieving chemically driven nanomotors with exceptional motion performance. However, Janus-structured chemically driven nanomotors with magnetic responsiveness are commonly fabricated by sputtering metal films. In the study, a self-assembly technique is employed to asymmetrically modify the surfaces of magnetic silica (SiO2@Fe3O4) nanoparticles with platinum nanoparticles, resulting in the formation of this kind nanomotors. Compared to platinum film, platinum nanoparticles exhibit a larger surface area and a higher catalytic activity. Hence, the nanomotors demonstrate improved diffusion capabilities at a significantly lower concentration (0.05%) of hydrogen peroxide (H2O2). Meanwhile, exosomes have gained attention as a potential tool for the efficient delivery of biological therapeutic drugs due to their biocompatibility. However, the clinical applications of exosomes are limited by their restricted tropism. The previously obtained nanomotors are utilized to deliver exosomes, greatly enhancing its targetability. The drug doxorubicin (DOX) is subsequently encapsulated within exosomes, acting as a representative drug model. Under the conditions of H2O2 concentration at the tumor site, the exosomes exhibited a significantly enhanced rate of entry into the breast cancer cells. The utilization of the nanomotors for exosomes presents a novel approach in the development of hybrid chemically and magnetically responsive nanomotors.
Collapse
Affiliation(s)
- Tong Zhou
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing, 210096, China
| | - Kai Zhu
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing, 210096, China
| | - Zhaoyan Yang
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing, 210096, China
| | - Ziting Qian
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing, 210096, China
| | - Shenfei Zong
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing, 210096, China
| | - Yiping Cui
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing, 210096, China
| | - Zhuyuan Wang
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing, 210096, China
| |
Collapse
|
13
|
Chen Y, Xu W, Tian H, Gao J, Ye Y, Qin H, Wang H, Song Y, Shao C, Peng F, Tu Y. NIR-II Light-Actuated Nanomotors for Enhanced Photoimmunotherapy Toward Hepatocellular Carcinoma. ACS APPLIED MATERIALS & INTERFACES 2024; 16:39051-39063. [PMID: 39028802 DOI: 10.1021/acsami.4c06994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
Light-propelled nanomotors, which can convert external light into mechanical motion, have shown considerable potential in the construction of a new generation of drug delivery systems. However, the therapeutic efficacy of light-driven nanomotors is always unsatisfactory due to the limited penetration depth of near-infrared-I (NIR-I) light and the inherent biocompatibility of the motor itself. Herein, an asymmetric nanomotor (Pd@ZIF-8/R848@M JNMs) with efficient motion capability is successfully constructed for enhanced photoimmunotherapy toward hepatocellular carcinoma. Under near-infrared-II (NIR-II) irradiation, Pd@ZIF-8/R848@M JNMs convert light energy into heat energy, exhibiting self-thermophoretic locomotion to penetrate deeper into tumor tissues to achieve photothermal therapy. At the same time, functionalized with an immune-activated agent Resiquimod (R848), our nanomotors could convert a "cold tumor" into a "hot tumor", transforming the immunosuppressive microenvironment into an immune-activated state, thus achieving immunotherapy. Dual photoimmunotherapy of the as-developed NIR-II light-driven Pd@ZIF-8/R848@M JNMs demonstrates considerable tumor inhibition effects, offering a promising therapeutic approach in the field of anticancer therapy.
Collapse
Affiliation(s)
- Yichi Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin 150081, China
| | - Wenxin Xu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Huimin Tian
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin 150081, China
| | - Junbin Gao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yicheng Ye
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hanfeng Qin
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hong Wang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yanzhen Song
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Chuxiao Shao
- Key Laboratory of Joint Diagnosis and Treatment of Chronic Liver Disease and Liver Cancer of Lishui, Central Laboratory of Lishui People's Hospital, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang 323000, China
| | - Fei Peng
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yingfeng Tu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
14
|
MacKenzie HK, Zhang Y, Zheng W, Shaikh H, MacFarlane LR, Musgrave RA, Manners I. Functional Noncentrosymmetric Nanoparticle-Nanofiber Hybrids via Selective Fragmentation. J Am Chem Soc 2024; 146:18504-18512. [PMID: 38946087 DOI: 10.1021/jacs.4c04234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Noncentrosymmetric nanostructures are an attractive synthetic target as they can exhibit complex interparticle interactions useful for numerous applications. However, generating uniform, colloidally stable, noncentrosymmetric nanoparticles with low aspect ratios is a significant challenge using solution self-assembly approaches. Herein, we outline the synthesis of noncentrosymmetric multiblock co-nanofibers by subsequent living crystallization-driven self-assembly of block co-polymers, spatially confined attachment of nanoparticles, and localized nanofiber fragmentation. Using this strategy, we have fabricated uniform diblock and triblock noncentrosymmetric π-conjugated nanofiber-nanoparticle hybrid structures. Additionally, in contrast to Brownian motion typical of centrosymmetric nanoparticles, we demonstrated that these noncentrosymmetric nanofibers undergo ballistic motion in the presence of H2O2 and thus could be employed as nanomotors in various applications, including drug delivery and environmental remediation.
Collapse
Affiliation(s)
- Harvey K MacKenzie
- Department of Chemistry, University of Victoria, Victoria, BC V8W 3V6, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 5C2, Canada
| | - Yifan Zhang
- Department of Chemistry, University of Victoria, Victoria, BC V8W 3V6, Canada
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Key Laboratory of Green Catalysis of Higher Education Institutes of Sichuan, School of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong 643000, P. R. China
| | - Weijia Zheng
- Department of Chemistry, University of Victoria, Victoria, BC V8W 3V6, Canada
| | - Huda Shaikh
- Department of Chemistry, University of Victoria, Victoria, BC V8W 3V6, Canada
| | - Liam R MacFarlane
- Department of Chemistry, University of Victoria, Victoria, BC V8W 3V6, Canada
| | - Rebecca A Musgrave
- Department of Chemistry, King's College London, 7 Trinity Street, London SE1 1DB, United Kingdom
| | - Ian Manners
- Department of Chemistry, University of Victoria, Victoria, BC V8W 3V6, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 5C2, Canada
| |
Collapse
|
15
|
Tan S, Liu Z, Cong M, Zhong X, Mao Y, Fan M, Jiao F, Qiao H. Dandelion-derived vesicles-laden hydrogel dressings capable of neutralizing Staphylococcus aureus exotoxins for the care of invasive wounds. J Control Release 2024; 368:355-371. [PMID: 38432468 DOI: 10.1016/j.jconrel.2024.02.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/01/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
Delayed wound healing caused by bacterial infection remains a major challenge in clinical treatment. Exotoxins incorporated in bacterial extracellular vesicles play a key role as the disease-causing virulence factors. Safe and specific antivirulence agents are expected to be developed as an effective anti-bacterial infection strategy, instead of single antibiotic therapy. Plant-derived extracellular vesicle-like nanoparticles have emerged as promising therapeutic agents for skin diseases, but the elucidations of specific mechanisms of action and clinical transformation still need to be advanced. Here, dandelion-derived extracellular vesicle-like nanoparticles (TH-EVNs) are isolated and exert antivirulence activity through specifically binding to Staphylococcus aureus (S. aureus) exotoxins, thereby protecting the host cell from attack. The neutralization of TH-EVNs against exotoxins has considerable binding force and stability, showing complete detoxification effect in vivo. Then gelatin methacryloyl hydrogel is developed as TH-EVNs-loaded dressing for S. aureus exotoxin-invasive wounds. Hydrogel dressings demonstrate good physical and mechanical properties, thus achieving wound retention and controlled release of TH-EVNs, in addition to promoting cell proliferation and migration. In vivo results show accelerated re-epithelialization, promotion of collagen maturity and reduction of inflammation after treatment. Collectively, the developed TH-EVNs-laden hydrogel dressings provide a potential therapeutic approach for S. aureus exotoxin- associated trauma.
Collapse
Affiliation(s)
- Shenyu Tan
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhuoya Liu
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Minghui Cong
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiaoqing Zhong
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yinping Mao
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Mingjie Fan
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Fangwen Jiao
- Department of Pathogen Biology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Hongzhi Qiao
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
16
|
Li J, Li R, Wang W, Lan K, Zhao D. Ordered Mesoporous Crystalline Frameworks Toward Promising Energy Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311460. [PMID: 38163922 DOI: 10.1002/adma.202311460] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/13/2023] [Indexed: 01/03/2024]
Abstract
Ordered mesoporous crystalline frameworks (MCFs), which possess both functional frameworks and well-defined porosity, receive considerable attention because of their unique properties including high surface areas, large pore sizes, tailored porous structures, and compositions. Construction of novel crystalline mesoporous architectures that allows for rich accessible active sites and efficient mass transfer is envisaged to offer ample opportunities for potential energy-related applications. In this review, the rational synthesis, unique structures, and energy applications of MCFs are the main focus. After summarizing the synthetic approaches, an emphasis is placed on the delicate control of crystallites, mesophases, and nano-architectures by concluding basic principles and showing representative examples. Afterward, the currently fabricated components of MCFs such as metals, metal oxides, metal sulfides, and metal-organic frameworks are described in sequence. Further, typical applications of MCFs in rechargeable batteries, supercapacitors, electrocatalysis, and photocatalysis are highlighted. This review ends with the possible development and synthetic challenges of MCFs as well as a future prospect for high-efficiency energy applications, which underscores a pathway for developing advanced materials.
Collapse
Affiliation(s)
- Jialong Li
- College of Energy Materials and Chemistry, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Rongyao Li
- College of Energy Materials and Chemistry, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Wendi Wang
- College of Energy Materials and Chemistry, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Kun Lan
- College of Energy Materials and Chemistry, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Dongyuan Zhao
- College of Energy Materials and Chemistry, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, P. R. China
- College of Chemistry and Materials, Department of Chemistry, Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
17
|
Ventura J, Llopis-Lorente A, Abdelmohsen LKEA, van Hest JCM, Martínez-Máñez R. Models of Chemical Communication for Micro/Nanoparticles. Acc Chem Res 2024; 57:815-830. [PMID: 38427324 PMCID: PMC10956390 DOI: 10.1021/acs.accounts.3c00619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 03/02/2024]
Abstract
Engineering chemical communication between micro/nanosystems (via the exchange of chemical messengers) is receiving increasing attention from the scientific community. Although a number of micro- and nanodevices (e.g., drug carriers, sensors, and artificial cells) have been developed in the last decades, engineering communication at the micro/nanoscale is a recent emergent topic. In fact, most of the studies in this research area have been published within the last 10 years. Inspired by nature─where information is exchanged by means of molecules─the development of chemical communication strategies holds wide implications as it may provide breakthroughs in many areas including nanotechnology, artificial cell research, biomedicine, biotechnology, and ICT. Published examples rely on nanotechnology and synthetic biology for the creation of micro- and nanodevices that can communicate. Communication enables the construction of new complex systems capable of performing advanced coordinated tasks that go beyond those carried out by individual entities. In addition, the possibility to communicate between synthetic and living systems can further advance our understanding of biochemical processes and provide completely new tailored therapeutic and diagnostic strategies, ways to tune cellular behavior, and new biotechnological tools. In this Account, we summarize advances by our laboratories (and others) in the engineering of chemical communication of micro- and nanoparticles. This Account is structured to provide researchers from different fields with general strategies and common ground for the rational design of future communication networks at the micro/nanoscale. First, we cover the basis of and describe enabling technologies to engineer particles with communication capabilities. Next, we rationalize general models of chemical communication. These models vary from simple linear communication (transmission of information between two points) to more complex pathways such as interactive communication and multicomponent communication (involving several entities). Using illustrative experimental designs, we demonstrate the realization of these models which involve communication not only between engineered micro/nanoparticles but also between particles and living systems. Finally, we discuss the current state of the topic and the future challenges to be addressed.
Collapse
Affiliation(s)
- Jordi Ventura
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Universitat
Politècnica de València, Universitat de València, Camino de Vera
s/n, 46022 València, Spain
| | - Antoni Llopis-Lorente
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Universitat
Politècnica de València, Universitat de València, Camino de Vera
s/n, 46022 València, Spain
- CIBER
de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Loai K. E. A. Abdelmohsen
- Department
of Chemical Engineering & Chemistry, Department of Biomedical
Engineering, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Het Kranenveld 14, 5600 MB Eindhoven, The Netherlands
| | - Jan C. M. van Hest
- Department
of Chemical Engineering & Chemistry, Department of Biomedical
Engineering, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Het Kranenveld 14, 5600 MB Eindhoven, The Netherlands
| | - Ramón Martínez-Máñez
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Universitat
Politècnica de València, Universitat de València, Camino de Vera
s/n, 46022 València, Spain
- Unidad
Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València,
Instituto de Investigación Sanitaria La Fe, Av Fernando Abril Martorell 106, 46026 Valencia, Spain
- Unidad
Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades
y Nanomedicina, Universitat Politècnica
de València, Centro
de Investigación Príncipe Felipe, C/Eduardo Primo Yúfera
3, 46100 Valencia, Spain
- CIBER
de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
18
|
Luo Z, Wang R, Deng X, Chen T, Ma X, Zhang Y, Gao C, Wu A. Janus mesoporous organosilica/platinum nanomotors for active treatment of suppurative otitis media. NANOSCALE 2024; 16:3006-3010. [PMID: 38226693 DOI: 10.1039/d3nr05666j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
We report a Janus mesoporous organosilica/platinum (MOS/Pt) nanomotor for active targeted treatment of suppurative otitis media, as a new type of multi-functional ear drop. The efficient propulsion of MOS/Pt nanomotors in hydrogen peroxide ear-cleaning drops significantly improves their binding efficiency with Staphylococcus aureus and enhances their antibacterial efficacy.
Collapse
Affiliation(s)
- Zhizhou Luo
- Biomedical Research Institute, Wenzhou Medical University, Zhejiang 315300, China.
| | - Ruonan Wang
- Biomedical Research Institute, Wenzhou Medical University, Zhejiang 315300, China.
| | - Xiaoxia Deng
- Biomedical Research Institute, Wenzhou Medical University, Zhejiang 315300, China.
| | - Tianxiang Chen
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials at Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Xuehua Ma
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials at Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Yujie Zhang
- Biomedical Research Institute, Wenzhou Medical University, Zhejiang 315300, China.
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials at Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Changyong Gao
- Biomedical Research Institute, Wenzhou Medical University, Zhejiang 315300, China.
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials at Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Aiguo Wu
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials at Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
- University of Chinese Academy of Science, Beijing, 100049, China
| |
Collapse
|
19
|
Qi Q, Shen Q, Geng J, An W, Wu Q, Wang N, Zhang Y, Li X, Wang W, Yu C, Li L. Stimuli-responsive biodegradable silica nanoparticles: From native structure designs to biological applications. Adv Colloid Interface Sci 2024; 324:103087. [PMID: 38278083 DOI: 10.1016/j.cis.2024.103087] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 12/24/2023] [Accepted: 01/05/2024] [Indexed: 01/28/2024]
Abstract
Due to their inherent advantages, silica nanoparticles (SiNPs) have greatly potential applications as bioactive materials in biosensors/biomedicine. However, the long-term and nonspecific accumulation in healthy tissues may give rise to toxicity, thereby impeding their widespread clinical application. Hence, it is imperative and noteworthy to develop biodegradable and clearable SiNPs for biomedical purposes. Recently, the design of multi-stimuli responsive SiNPs to improve degradation efficiency under specific pathological conditions has increased their clinical trial potential as theranostic nanoplatform. This review comprehensively summaries the rational design and recent progress of biodegradable SiNPs under various internal and external stimuli for rapid in vivo degradation and clearance. In addition, the factors that affect the biodegradation of SiNPs are also discussed. We believe that this systematic review will offer profound stimulus and timely guide for further research in the field of SiNP-based nanosensors/nanomedicine.
Collapse
Affiliation(s)
- Qianhui Qi
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China; Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China
| | - Qian Shen
- Key Laboratory of Flexible Electronics (KLOFE) and School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing 211800, China
| | - Jiaying Geng
- Key Laboratory of Flexible Electronics (KLOFE) and School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing 211800, China
| | - Weizhen An
- Key Laboratory of Flexible Electronics (KLOFE) and School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing 211800, China
| | - Qiong Wu
- Key Laboratory of Flexible Electronics (KLOFE) and School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing 211800, China
| | - Nan Wang
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Yu Zhang
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xue Li
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Wei Wang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China.
| | - Changmin Yu
- Key Laboratory of Flexible Electronics (KLOFE) and School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing 211800, China; State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China.
| | - Lin Li
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
| |
Collapse
|
20
|
Li QF, Wang JT, Wang Z. Improving the stability of perovskite nanocrystals via SiO 2 coating and their applications. RSC Adv 2024; 14:1417-1430. [PMID: 38174228 PMCID: PMC10763656 DOI: 10.1039/d3ra07231b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024] Open
Abstract
Lead halide perovskite nanocrystals (LHP NCs) with outstanding optical properties have been regarded as promising alternatives to traditional phosphors for lighting and next-generation display technology. However, the practical applications of LHP NCs are seriously hindered by their poor stability upon exposure to moisture, oxygen, light, and heat. Hence, various strategies have been proposed to solve this issue. In this review, we have focused our attention on improving the stability of LHP NCs via SiO2 coating because it has the advantages of simple operation, less toxicity, and easy repetition. SiO2 coating is classified into four types: (a) in situ hydrolytic coating, (b) mesoporous silica loading, (c) mediated anchoring, and (d) double coating. The potential applications of SiO2-coated LHP NCs in the field of optoelectronics, biology, and catalysis are presented to elucidate the reliability and availability of SiO2 coating. Finally, the future development and challenges in the preparation of SiO2-coated LHP NCs are analyzed in order to promote the commercialization process of LHP NC-related commodities.
Collapse
Affiliation(s)
- Qing-Feng Li
- Henan Key Laboratory of Rare Earth Functional Materials, International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University Zhoukou 466001 Henan China
| | - Jin-Tao Wang
- Henan Key Laboratory of Rare Earth Functional Materials, International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University Zhoukou 466001 Henan China
| | - Zhenling Wang
- College of Materials Engineering, Henan International Joint Laboratory of Rare Earth Composite Materials, Henan University of Engineering Xinzheng 451191 China
| |
Collapse
|
21
|
Huang H, Yang S, Ying Y, Chen X, Puigmartí-Luis J, Zhang L, Pané S. 3D Motion Manipulation for Micro- and Nanomachines: Progress and Future Directions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305925. [PMID: 37801654 DOI: 10.1002/adma.202305925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/08/2023] [Indexed: 10/08/2023]
Abstract
In the past decade, micro- and nanomachines (MNMs) have made outstanding achievements in the fields of targeted drug delivery, tumor therapy, microsurgery, biological detection, and environmental monitoring and remediation. Researchers have made significant efforts to accelerate the rapid development of MNMs capable of moving through fluids by means of different energy sources (chemical reactions, ultrasound, light, electricity, magnetism, heat, or their combinations). However, the motion of MNMs is primarily investigated in confined two-dimensional (2D) horizontal setups. Furthermore, three-dimensional (3D) motion control remains challenging, especially for vertical movement and control, significantly limiting its potential applications in cargo transportation, environmental remediation, and biotherapy. Hence, an urgent need is to develop MNMs that can overcome self-gravity and controllably move in 3D spaces. This review delves into the latest progress made in MNMs with 3D motion capabilities under different manipulation approaches, discusses the underlying motion mechanisms, explores potential design concepts inspired by nature for controllable 3D motion in MNMs, and presents the available 3D observation and tracking systems.
Collapse
Affiliation(s)
- Hai Huang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Shihao Yang
- Department of Mechanical and Automation Engineering, the Chinese University of Hong Kong, Shatin, N.T., Hong Kong, 999077, China
| | - Yulong Ying
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Xiangzhong Chen
- Institute of Optoelectronics, State Key Laboratory of Photovoltaic Science and Technology, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Fudan University, Shanghai, 200433, China
| | - Josep Puigmartí-Luis
- Departament de Ciència dels Materials i Química Física, Institut de Química Teòrica i Computacional, University of Barcelona (UB), Barcelona, 08028, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, Barcelona, 08010, Spain
| | - Li Zhang
- Department of Mechanical and Automation Engineering, the Chinese University of Hong Kong, Shatin, N.T., Hong Kong, 999077, China
| | - Salvador Pané
- Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zürich, Tannenstrasse 3, Zürich, CH-8092, Switzerland
| |
Collapse
|
22
|
Kariminia S, Shamsipur M, Mansouri K. A novel magnetically guided, oxygen propelled CoPt/Au nanosheet motor in conjugation with a multilayer hollow microcapsule for effective drug delivery and light triggered drug release. J Mater Chem B 2023; 12:176-186. [PMID: 38055010 DOI: 10.1039/d3tb01888a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
In recent years, nanomotors have been developed and attracted extensive attention in biomedical applications. In this work, a magnetically-guided oxygen-propelled CoPt/gold nanosheet motor (NSM) was prepared and used as an active self-propelled platform that can load, transfer and control the release of drug carrier to cancer cells. As a drug carrier, the microcapsules were constructed by the layer-by-layer (LbL) coating of chitosan and carboxymethyl cellulose layers, followed by incorporation of gold and magnetite nanoparticles. Doxorubicin (DOX) as an anti-cancer drug was loaded onto the synthesized microcapsules with a loading efficiency of 77%. The prepared NSMs can deliver the DOX loaded magnetic multilayer microcapsule to the target cancer cell based on the catalytic decomposition of H2O2 solution (1% v/v) via guidance from an external magnetic force. The velocity of NSM was determined to be 25.1 μm s-1 in 1% H2O2. Under near-infrared irradiation, and due to the photothermal effect of the gold nanoparticles, the proposed system was found to rapidly release more drugs compared to that of an internal stimulus diffusion process. Moreover, the investigation of cytotoxicity of NSMs and multilayer microcapsules clearly revealed that they have negligible side effects over all the concentrations tested.
Collapse
Affiliation(s)
| | | | - Kamran Mansouri
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
23
|
Zeng X, Yang M, Liu H, Zhang Z, Hu Y, Shi J, Wang ZH. Light-driven micro/nanomotors in biomedical applications. NANOSCALE 2023; 15:18550-18570. [PMID: 37962424 DOI: 10.1039/d3nr03760f] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Nanotechnology brings hope for targeted drug delivery. However, most current drug delivery systems use passive delivery strategies with limited therapeutic efficiency. Over the past two decades, research on micro/nanomotors (MNMs) has flourished in the biomedical field. Compared with other driven methods, light-driven MNMs have the advantages of being reversible, simple to control, clean, and efficient. Under light irradiation, the MNMs can overcome several barriers in the body and show great potential in the treatment of various diseases, such as tumors, and gastrointestinal, cardiovascular and cerebrovascular diseases. Herein, the classification and mechanism of light-driven MNMs are introduced briefly. Subsequently, the applications of light-driven MNMs in overcoming physiological and pathological barriers in the past five years are highlighted. Finally, the future prospects and challenges of light-driven MNMs are discussed as well. This review will provide inspiration and direction for light-driven MNMs to overcome biological barriers in vivo and promote the clinical application of light-driven MNMs in the biomedical field.
Collapse
Affiliation(s)
- Xuejiao Zeng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou, 450001, China
| | - Mingzhu Yang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou, 450001, China
| | - Hua Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou, 450001, China
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou, 450001, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou, 450001, China
| | - Yurong Hu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou, 450001, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou, 450001, China
| | - Jinjin Shi
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou, 450001, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou, 450001, China
| | - Zhi-Hao Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou, 450001, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou, 450001, China
| |
Collapse
|
24
|
Xu B, Li S, Shi R, Liu H. Multifunctional mesoporous silica nanoparticles for biomedical applications. Signal Transduct Target Ther 2023; 8:435. [PMID: 37996406 PMCID: PMC10667354 DOI: 10.1038/s41392-023-01654-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/07/2023] [Accepted: 09/10/2023] [Indexed: 11/25/2023] Open
Abstract
Mesoporous silica nanoparticles (MSNs) are recognized as a prime example of nanotechnology applied in the biomedical field, due to their easily tunable structure and composition, diverse surface functionalization properties, and excellent biocompatibility. Over the past two decades, researchers have developed a wide variety of MSNs-based nanoplatforms through careful design and controlled preparation techniques, demonstrating their adaptability to various biomedical application scenarios. With the continuous breakthroughs of MSNs in the fields of biosensing, disease diagnosis and treatment, tissue engineering, etc., MSNs are gradually moving from basic research to clinical trials. In this review, we provide a detailed summary of MSNs in the biomedical field, beginning with a comprehensive overview of their development history. We then discuss the types of MSNs-based nanostructured architectures, as well as the classification of MSNs-based nanocomposites according to the elements existed in various inorganic functional components. Subsequently, we summarize the primary purposes of surface-functionalized modifications of MSNs. In the following, we discuss the biomedical applications of MSNs, and highlight the MSNs-based targeted therapeutic modalities currently developed. Given the importance of clinical translation, we also summarize the progress of MSNs in clinical trials. Finally, we take a perspective on the future direction and remaining challenges of MSNs in the biomedical field.
Collapse
Affiliation(s)
- Bolong Xu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Shanshan Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Rui Shi
- National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, 100035, Beijing, China.
| | - Huiyu Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, China.
| |
Collapse
|
25
|
Kuzin A, Chen G, Zhu F, Gorin D, Mohan B, Choudhury U, Cui J, Modi K, Huang G, Mei Y, Solovev AA. Bridging the gap: harnessing liquid nanomachine know-how for tackling harmful airborne particulates. NANOSCALE 2023; 15:17727-17738. [PMID: 37881900 DOI: 10.1039/d3nr03808d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
The emergence of "nanomotors", "nanomachines", and "nanorobotics" has transformed dynamic nanoparticle research, driving a transition from passive to active and intelligent nanoscale systems. This review examines two critical fields: the investigation of airborne particles, significant contributors to air pollution, and the rapidly emerging domain of catalytic and field-controlled nano- and micromotors. We examine the basic concepts of nano- and micromachines in motion and envision their possible use in a gaseous medium to trap and neutralize hazardous particulates. While past studies described the application of nanotechnology and nanomotors in various scenarios, airborne nano/micromachine motion and their control have yet to be thoroughly explored. This review intends to promote multidisciplinary research on nanomachines' propulsion and task-oriented applications, highlighting their relevance in obtaining a cleaner atmospheric environment, a critical component to consider for human health.
Collapse
Affiliation(s)
- Aleksei Kuzin
- Department of Materials Science & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, P. R. China.
- Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Guoxiang Chen
- Department of Materials Science & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, P. R. China.
| | - Fenyang Zhu
- Department of Materials Science & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, P. R. China.
| | - Dmitry Gorin
- Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Brij Mohan
- Centro de Quimica Estrutural, Institute of Molecular Sciences, Instituto Superior Tecnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Udit Choudhury
- Department of Polymer and Process Engineering, Indian Institute of Technology - Roorkee, Saharanpur Campus, Saharanpur 247001, India
| | - Jizhai Cui
- Department of Materials Science & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, P. R. China.
| | - Krunal Modi
- Department of Humanities and Sciences, School of Engineering, Indrashil University, Kadi, Mehsana 382740, Gujarat, India
| | - Gaoshan Huang
- Department of Materials Science & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, P. R. China.
- Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai 200433, P. R. China
- International Institute of Intelligent Nanorobots and Nanosystems, Fudan University, Shanghai 200433, P. R. China
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Fudan University, Shanghai 200433, P. R. China
| | - Yongfeng Mei
- Department of Materials Science & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, P. R. China.
- Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai 200433, P. R. China
- International Institute of Intelligent Nanorobots and Nanosystems, Fudan University, Shanghai 200433, P. R. China
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Fudan University, Shanghai 200433, P. R. China
- Yiwu Research Institute of Fudan University, Yiwu 322000, Zhejiang, P. R. China
| | - Alexander A Solovev
- Department of Materials Science & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, P. R. China.
| |
Collapse
|
26
|
Zheng Y, Wang B, Cai Y, Zhou X, Dong R. Five in One: Multi-Engine Highly Integrated Microrobot. SMALL METHODS 2023; 7:e2300390. [PMID: 37452173 DOI: 10.1002/smtd.202300390] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/27/2023] [Indexed: 07/18/2023]
Abstract
A multi-engine highly integrated microrobot, which is a Janus hemispherical shell structure composed of Pt and α-Fe2 O3 , is successfully developed. The microrobot can be efficiently driven and flexibly regulated by five stimuli, including an optical field, an acoustic field, magnetic field, an electric field, and chemical fuel. In addition, no matter which way it is driven by, the direction can be effectively controlled through the magnetic field regulation. Furthermore, this microrobot can also utilize magnetic or acoustic fields to achieve excellent aggregation control and swarm movement. Finally, this study demonstrates that the microrobots' propulsion can be effectively synergistically enhanced through the simultaneous action of two driving mechanisms, which can greatly improve the performance of the motor in applications, such as pollutant degradation. This multi-engine, highly integrated microrobot not only can adapt to more complex environments and has a wider application range, better application prospects, but also provides important ideas for designing future advanced micro/nanorobots.
Collapse
Affiliation(s)
- Yuhong Zheng
- School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Bochu Wang
- Department of chemistry and biochemistry, University of California San Diego, La Jolla, California, 92093, USA
| | - Yuepeng Cai
- School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Xiaosong Zhou
- School of Chemistry and Chemical Engineering, Key Laboratory of Clean Energy Materials, Chemistry of Guangdong Higher Education Institutes, Lingnan Normal University, Zhanjiang, Guangdong, 524048, P. R. China
| | - Renfeng Dong
- School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| |
Collapse
|
27
|
Ye Y, Tian H, Jiang J, Huang W, Zhang R, Li H, Liu L, Gao J, Tan H, Liu M, Peng F, Tu Y. Magnetically Actuated Biodegradable Nanorobots for Active Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300540. [PMID: 37382399 PMCID: PMC10477856 DOI: 10.1002/advs.202300540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/27/2023] [Indexed: 06/30/2023]
Abstract
An efficient and cost-effective therapeutic vaccine is highly desirable for the prevention and treatment of cancer, which helps to strengthen the immune system and activate the T cell immune response. However, initiating such an adaptive immune response efficiently remains challenging, especially the deficient antigen presentation by dendritic cells (DCs) in the immunosuppressive tumor microenvironment. Herein, an efficient and dynamic antigen delivery system based on the magnetically actuated OVA-CaCO3 -SPIO robots (OCS-robots) is rationally designed for active immunotherapy. Taking advantage of the unique dynamic features, the developed OCS-robots achieve controllable motion capability under the rotating magnetic field. Specifically, with the active motion, the acid-responsiveness of OCS-robots is beneficial for the tumor acidity attenuating and lysosome escape as well as the subsequent antigen cross-presentation of DCs. Furthermore, the dynamic OCS-robots boost the crosstalk between the DCs and antigens, which displays prominent tumor immunotherapy effect on melanoma through cytotoxic T lymphocytes (CTLs). Such a strategy of dynamic vaccine delivery system enables the active activation of immune system based on the magnetically actuated OCS-robots, which presents a plausible paradigm for incredibly efficient cancer immunotherapy by designing multifunctional and novel robot platforms in the future.
Collapse
Affiliation(s)
- Yicheng Ye
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug ScreeningSchool of Pharmaceutical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Hao Tian
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug ScreeningSchool of Pharmaceutical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Jiamiao Jiang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug ScreeningSchool of Pharmaceutical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Weichang Huang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug ScreeningSchool of Pharmaceutical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Ruotian Zhang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug ScreeningSchool of Pharmaceutical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Huaan Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug ScreeningSchool of Pharmaceutical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Lu Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug ScreeningSchool of Pharmaceutical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Junbin Gao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug ScreeningSchool of Pharmaceutical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Haixin Tan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug ScreeningSchool of Pharmaceutical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Meihuan Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug ScreeningSchool of Pharmaceutical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Fei Peng
- School of Materials Science and EngineeringSun Yat‐Sen UniversityGuangzhou510275China
| | - Yingfeng Tu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug ScreeningSchool of Pharmaceutical SciencesSouthern Medical UniversityGuangzhou510515China
| |
Collapse
|
28
|
Lu Q, Yu H, Zhao T, Zhu G, Li X. Nanoparticles with transformable physicochemical properties for overcoming biological barriers. NANOSCALE 2023; 15:13202-13223. [PMID: 37526946 DOI: 10.1039/d3nr01332d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
In recent years, tremendous progress has been made in the development of nanomedicines for advanced therapeutics, yet their unsatisfactory targeting ability hinders the further application of nanomedicines. Nanomaterials undergo a series of processes, from intravenous injection to precise delivery at target sites. Each process faces different or even contradictory requirements for nanoparticles to pass through biological barriers. To overcome biological barriers, researchers have been developing nanomedicines with transformable physicochemical properties in recent years. Physicochemical transformability enables nanomedicines to responsively switch their physicochemical properties, including size, shape, surface charge, etc., thus enabling them to cross a series of biological barriers and achieve maximum delivery efficiency. In this review, we summarize recent developments in nanomedicines with transformable physicochemical properties. First, the biological dilemmas faced by nanomedicines are analyzed. Furthermore, the design and synthesis of nanomaterials with transformable physicochemical properties in terms of size, charge, and shape are summarized. Other switchable physicochemical parameters such as mobility, roughness and mechanical properties, which have been sought after most recently, are also discussed. Finally, the prospects and challenges for nanomedicines with transformable physicochemical properties are highlighted.
Collapse
Affiliation(s)
- Qianqian Lu
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), Fudan University, Shanghai 200433, P. R. China.
| | - Hongyue Yu
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), Fudan University, Shanghai 200433, P. R. China.
| | - Tiancong Zhao
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), Fudan University, Shanghai 200433, P. R. China.
| | - Guanjia Zhu
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, P. R. China.
| | - Xiaomin Li
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), Fudan University, Shanghai 200433, P. R. China.
| |
Collapse
|
29
|
Garrido-Cano I, Adam-Artigues A, Lameirinhas A, Blandez JF, Candela-Noguera V, Lluch A, Bermejo B, Sancenón F, Cejalvo JM, Martínez-Máñez R, Eroles P. Delivery of miR-200c-3p Using Tumor-Targeted Mesoporous Silica Nanoparticles for Breast Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:38323-38334. [PMID: 37549382 PMCID: PMC10436244 DOI: 10.1021/acsami.3c07541] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/25/2023] [Indexed: 08/09/2023]
Abstract
Despite advances in breast cancer treatment, it remains the leading cause of cancer-related death in women worldwide. In this context, microRNAs have emerged as potential therapeutic targets but still present some limitations for in vivo applications. Particularly, miR-200c-3p is a well-known tumor suppressor microRNA that inhibits tumor progression and metastasis in breast cancer through downregulating ZEB1 and ZEB2. Based on the above, we describe the design and validation of a nanodevice using mesoporous silica nanoparticles for miR-200c-3p delivery for breast cancer treatment. We demonstrate the biocompatibility of the synthesized nanodevices as well as their ability to escape from endosomes/lysosomes and inhibit tumorigenesis, invasion, migration, and proliferation of tumor cells in vitro. Moreover, tumor targeting and effective delivery of miR-200c-3p from the nanoparticles in vivo are confirmed in an orthotopic breast cancer mouse model, and the therapeutic efficacy is also evidenced by a decrease in tumor size and lung metastasis, while showing no signs of toxicity. Overall, our results provide evidence that miR-200c-3p-loaded nanoparticles are a potential strategy for breast cancer therapy and a safe and effective system for tumor-targeted delivery of microRNAs.
Collapse
Affiliation(s)
- Iris Garrido-Cano
- Biomedical
Research Institute INCLIVA, Valencia 46010, Spain
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Universitat Politècnica
de València, Universitat de València, Valencia 46010, Spain
| | | | - Ana Lameirinhas
- Biomedical
Research Institute INCLIVA, Valencia 46010, Spain
| | - Juan F. Blandez
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Universitat Politècnica
de València, Universitat de València, Valencia 46010, Spain
- CIBER
de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid 28029, Spain
- Unidad
Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València,
IIS La Fe, Valencia 46026, Spain
| | - Vicente Candela-Noguera
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Universitat Politècnica
de València, Universitat de València, Valencia 46010, Spain
| | - Ana Lluch
- Biomedical
Research Institute INCLIVA, Valencia 46010, Spain
- Centro
de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid 28029, Spain
- Universitat
de València, Valencia 46010, Spain
- Clinical
Oncology Department, Hospital Clínico
Universitario de Valencia, Valencia 46010, Spain
| | - Begoña Bermejo
- Biomedical
Research Institute INCLIVA, Valencia 46010, Spain
- Centro
de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid 28029, Spain
- Clinical
Oncology Department, Hospital Clínico
Universitario de Valencia, Valencia 46010, Spain
| | - Felix Sancenón
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Universitat Politècnica
de València, Universitat de València, Valencia 46010, Spain
- CIBER
de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid 28029, Spain
- Unidad
Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València,
IIS La Fe, Valencia 46026, Spain
- Unidad
Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades
y Nanomedicina. Universitat Politècnica de Valencia, Centro de Investigación Príncipe Felipe, Valencia 46012, Spain
| | - Juan Miguel Cejalvo
- Biomedical
Research Institute INCLIVA, Valencia 46010, Spain
- Centro
de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid 28029, Spain
- Clinical
Oncology Department, Hospital Clínico
Universitario de Valencia, Valencia 46010, Spain
| | - Ramón Martínez-Máñez
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Universitat Politècnica
de València, Universitat de València, Valencia 46010, Spain
- CIBER
de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid 28029, Spain
- Unidad
Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València,
IIS La Fe, Valencia 46026, Spain
- Unidad
Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades
y Nanomedicina. Universitat Politècnica de Valencia, Centro de Investigación Príncipe Felipe, Valencia 46012, Spain
| | - Pilar Eroles
- Biomedical
Research Institute INCLIVA, Valencia 46010, Spain
- Centro
de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid 28029, Spain
- Universitat
de València, Valencia 46010, Spain
| |
Collapse
|
30
|
Lin X, Li F, Guan J, Wang X, Yao C, Zeng Y, Liu X. Janus Silica Nanoparticle-Based Tumor Microenvironment Modulator for Restoring Tumor Sensitivity to Programmed Cell Death Ligand 1 Immune Checkpoint Blockade Therapy. ACS NANO 2023; 17:14494-14507. [PMID: 37485850 DOI: 10.1021/acsnano.3c01019] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
An immunosuppressive tumor microenvironment (TME) with inadequate and exhausted tumor-infiltrating cytotoxic lymphocytes and abundant cellular immunosuppressors is the major obstacle responsible for the poor efficacy of PD-1/PD-L1 (programmed cell death 1 and its ligand 1) immune checkpoint blockade (ICB) therapy. Herein, a Janus silica nanoparticle (JSNP)-based immunomodulator is explored to reshape the TME for boosting the therapeutic outcomes of αPD-L1 therapy. The designed JSNP has two distinct domains, namely, an ultra pH-responsive side (UPS), which could encapsulate PI3Kγ inhibitor IPI549 in the pore structure, and a polycation-grafted intra-glutathione (GSH)-sensitive side (IGS), which could absorb CXCL9 cDNA on the surface. The final IPI549@UPS-IGS-PDMAEMA@CXCL9 cDNA (IUIPC) could release IPI549 in weak acid TME to target myeloid-derived suppressor cells (MDSCs) to reverse negative immunoregulation and then release CXCL9 cDNA in tumor cells with abundant GSH for sustained CXCL9 chemokine expression and secretion to improve cytotoxic lymphocyte recruitment signals, thereby jointly restoring tumor sensitivity to PD-1/PD-L1 ICB therapy. As expected, the IUIPC-mediated TME remodeling during αPD-L1 therapy significantly ameliorated TME immunosuppression, as well as induced potent systemic antitumor immune responses, which ultimately achieved a robustly boosted antitumor efficacy proven by remarkable suppression of primary tumor growth, obvious prevention of tumor recurrence, and significant regression of abscopal tumors. Hence, the IUIPC-mediated TME-regulating strategy provides an enormous perspective for the improvement of PD-1/PD-L1 ICB therapy.
Collapse
Affiliation(s)
- Xinyi Lin
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
- Fujian Provincial Clinical Research Center for Hepatobiliary and Pancreatic Tumors, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Photonics and Sensing, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Feida Li
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, P. R. China
| | - Jianhua Guan
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, P. R. China
| | - Xiaoyan Wang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, P. R. China
| | - Cuiping Yao
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Photonics and Sensing, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yongyi Zeng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
- Fujian Provincial Clinical Research Center for Hepatobiliary and Pancreatic Tumors, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
- Fujian Provincial Clinical Research Center for Hepatobiliary and Pancreatic Tumors, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
| |
Collapse
|
31
|
Liu T, Yan M, Zhou S, Liang Q, He Y, Zhang X, Zeng H, Liu J, Kong B. Site-Selective Superassembly of a Multilevel Asymmetric Nanomotor with Wavelength-Modulated Propulsion Mechanisms. ACS NANO 2023. [PMID: 37498219 DOI: 10.1021/acsnano.3c03346] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Micro-/nanomotors with advanced motion manipulation have recently received mounting interest; however, research focusing on the motion regulation strategies is still limited, as the simple construction and composition of micro-/nanomotors restrict the functionality. Herein, a multifunctional TiO2-SiO2-mesoporous carbon nanomotor is synthesized via an interfacial superassembly strategy. This nanomotor shows an asymmetric matchstick-like structure, with a head composed of TiO2 and a tail composed of SiO2. Mesoporous carbon is selectively grown on the surface of TiO2 through surface-charge-mediated assembly. The spatially anisotropic distribution of the photocatalytic TiO2 domain and photothermal carbon domain enables multichannel control of the motion, where the speed can be regulated by energy input and the directionality can be regulated by wavelength. Upon UV irradiation, the nanomotor exhibits a head-leading self-diffusiophoretic motion, while upon NIR irradiation, the nanomotor exhibits a tail-leading self-thermophoretic motion. As a proof-of-concept, this mechanism-switchable nanomotor is employed in wavelength-regulated targeted cargo delivery on a microfluidic chip. From an applied point of view, this nanomotor holds potential in biomedical applications such as active drug delivery and phototherapy. From a fundamental point of view, this research can provide insight into the relationship between the nanostructures, propulsion mechanisms, and motion performance.
Collapse
Affiliation(s)
- Tianyi Liu
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, P. R. China
- DICP-Surrey Joint Centre for Future Materials, Department of Chemical and Process Engineering, University of Surrey, Guildford, Surrey GU2 7XH, U.K
| | - Miao Yan
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, P. R. China
| | - Shan Zhou
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, P. R. China
| | - Qirui Liang
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, P. R. China
| | - Yanjun He
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, P. R. China
| | - Xin Zhang
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, P. R. China
| | - Hui Zeng
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, P. R. China
| | - Jian Liu
- DICP-Surrey Joint Centre for Future Materials, Department of Chemical and Process Engineering, University of Surrey, Guildford, Surrey GU2 7XH, U.K
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, Inner Mongolia, P.R. China
| | - Biao Kong
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, P. R. China
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang 322000, China
- Shandong Research Institute, Fudan University, Shandong 250103, China
| |
Collapse
|
32
|
Fernández-Gómez P, Pérez de la Lastra Aranda C, Tosat-Bitrián C, Bueso de Barrio JA, Thompson S, Sot B, Salas G, Somoza Á, Espinosa A, Castellanos M, Palomo V. Nanomedical research and development in Spain: improving the treatment of diseases from the nanoscale. Front Bioeng Biotechnol 2023; 11:1191327. [PMID: 37545884 PMCID: PMC10401050 DOI: 10.3389/fbioe.2023.1191327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/23/2023] [Indexed: 08/08/2023] Open
Abstract
The new and unique possibilities that nanomaterials offer have greatly impacted biomedicine, from the treatment and diagnosis of diseases, to the specific and optimized delivery of therapeutic agents. Technological advances in the synthesis, characterization, standardization, and therapeutic performance of nanoparticles have enabled the approval of several nanomedicines and novel applications. Discoveries continue to rise exponentially in all disease areas, from cancer to neurodegenerative diseases. In Spain, there is a substantial net of researchers involved in the development of nanodiagnostics and nanomedicines. In this review, we summarize the state of the art of nanotechnology, focusing on nanoparticles, for the treatment of diseases in Spain (2017-2022), and give a perspective on the future trends and direction that nanomedicine research is taking.
Collapse
Affiliation(s)
- Paula Fernández-Gómez
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Madrid, Spain
| | - Carmen Pérez de la Lastra Aranda
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Madrid, Spain
- Centro de Investigaciones Biológicas Margarita Salas-CSIC, Madrid, Spain
| | - Carlota Tosat-Bitrián
- Centro de Investigaciones Biológicas Margarita Salas-CSIC, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Sebastián Thompson
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Madrid, Spain
| | - Begoña Sot
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Madrid, Spain
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Unidad de Innovación Biomédica, Madrid, Spain
- Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJ UAM), Madrid, Spain
| | - Gorka Salas
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Madrid, Spain
- Unidad Asociada al Centro Nacional de Biotecnología (CSIC), Madrid, Spain
| | - Álvaro Somoza
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Madrid, Spain
- Unidad Asociada al Centro Nacional de Biotecnología (CSIC), Madrid, Spain
| | - Ana Espinosa
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Madrid, Spain
- Instituto de Ciencia de Materiales de Madrid, ICMM-CSIC, Madrid, Spain
| | - Milagros Castellanos
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Madrid, Spain
| | - Valle Palomo
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Unidad Asociada al Centro Nacional de Biotecnología (CSIC), Madrid, Spain
| |
Collapse
|
33
|
Yu Y, Lin R, Yu H, Liu M, Xing E, Wang W, Zhang F, Zhao D, Li X. Versatile synthesis of metal-compound based mesoporous Janus nanoparticles. Nat Commun 2023; 14:4249. [PMID: 37460612 DOI: 10.1038/s41467-023-40017-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 07/06/2023] [Indexed: 07/20/2023] Open
Abstract
The construction of mesoporous Janus nanoparticles (mJNPs) with controllable components is of great significance for the development of sophisticated nanomaterials with synergistically enhanced functionalities and applications. However, the compositions of reported mJNPs are mainly the functionally inert SiO2 and polymers. The universal synthesis of metal-compound based mJNPs with abundant functionalities is urgently desired, but remains a substantial challenge. Herein, we present a hydrophilicity mediated interfacial selective assembly strategy for the versatile synthesis of metal-compound based mJNPs. Starting from the developed silica-based mJNPs with anisotropic dual-surface of hydrophilic SiO2 and hydrophobic organosilica, metal precursor can selectively deposit onto the hydrophilic SiO2 subunit to form the metal-compound based mJNPs. This method shows good universality and can be used for the synthesis of more than 20 kinds of metal-compound based mJNPs, including alkali-earth metal compounds, transition metal compounds, rare-earth metal compounds etc. Besides, the composition of the metal-compound subunit can be well tuned from single to multiple metal elements, even high-entropy complexes. We believe that the synthesis method and obtained new members of mJNPs provide a very broad platform for the construction and application of mJNPs with rational designed functions and structures.
Collapse
Affiliation(s)
- Yan Yu
- Department of Chemistry, Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Molecular Engineering of Polymers, iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Runfeng Lin
- Department of Chemistry, Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Molecular Engineering of Polymers, iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Hongyue Yu
- Department of Chemistry, Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Molecular Engineering of Polymers, iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Minchao Liu
- Department of Chemistry, Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Molecular Engineering of Polymers, iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Enyun Xing
- Department of Chemistry, Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Molecular Engineering of Polymers, iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Wenxing Wang
- Department of Chemistry, Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Molecular Engineering of Polymers, iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Fan Zhang
- Department of Chemistry, Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Molecular Engineering of Polymers, iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Dongyuan Zhao
- Department of Chemistry, Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Molecular Engineering of Polymers, iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Xiaomin Li
- Department of Chemistry, Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Molecular Engineering of Polymers, iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
34
|
Mafakheri F, Asakereh A, Khoee S, Kamankesh M. Synthesis of magnetic electroactive nanomotors based on sodium alginate/chitosan and investigation the influence of the external electric field on the mechanism of locomotion. Sci Rep 2023; 13:10326. [PMID: 37365264 DOI: 10.1038/s41598-023-37463-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/22/2023] [Indexed: 06/28/2023] Open
Abstract
In this paper, we report a novel electric-driven Janus nanomotor (JNMs) based on SPIONs nanoparticle decorated with chitosan (Cs) and sodium alginate (Na/Alg) using the Pickering emulsion method. The JNMs dispersed in aqueous media exhibit linear trajectories under DC electric field, and the driving force is attributed to the self-electro-osmotic mechanism and surface modifications. This study offers an approach to remotely control the motion modes of the JNMs, including start, stop, directional and programmable motion, which can be advantageous for various application scenarios. The diffusion coefficient and velocity of the JNMs were investigated through mean square displacement analysis for single particle of JNMs, both in distilled water and in the presence of different di and trivalent metal cations (Fe3+, Al3+, Ba2+, Ca2+ and Mg2+) as crosslinking agents, as well as monovalent salts (LiCl and KCl). The results revealed that the motion of JNMs was fastest in the presence of Fe3+ as crosslinker agent (about 7.2181 μm2/s) due to its higher charge than equimolar Na+ . Moreover, it was demonstrated that increasing the ionic strength led to relatively higher speeds of JNMs, as the solution polarity increased and, as a result, the driving force of electro-osmoesis enhanced.
Collapse
Affiliation(s)
- Fariba Mafakheri
- Polymer Laboratory, School of Chemistry, College of Science, University of Tehran, Tehran, 14155-6455, Iran
| | - Ali Asakereh
- Polymer Laboratory, School of Chemistry, College of Science, University of Tehran, Tehran, 14155-6455, Iran
| | - Sepideh Khoee
- Polymer Laboratory, School of Chemistry, College of Science, University of Tehran, Tehran, 14155-6455, Iran.
| | - Mojtaba Kamankesh
- Polymer Laboratory, School of Chemistry, College of Science, University of Tehran, Tehran, 14155-6455, Iran
| |
Collapse
|
35
|
Žiemytė M, Escudero A, Díez P, Ferrer MD, Murguía JR, Martí-Centelles V, Mira A, Martínez-Máñez R. Ficin-Cyclodextrin-Based Docking Nanoarchitectonics of Self-Propelled Nanomotors for Bacterial Biofilm Eradication. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2023; 35:4412-4426. [PMID: 37332683 PMCID: PMC10269336 DOI: 10.1021/acs.chemmater.3c00587] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/21/2023] [Indexed: 06/20/2023]
Abstract
Development of bioinspired nanomotors showing effective propulsion and cargo delivery capabilities has attracted much attention in the last few years due to their potential use in biomedical applications. However, implementation of this technology in realistic settings is still a barely explored field. Herein, we report the design and application of a multifunctional gated Janus platinum-mesoporous silica nanomotor constituted of a propelling element (platinum nanodendrites) and a drug-loaded nanocontainer (mesoporous silica nanoparticle) capped with ficin enzyme modified with β-cyclodextrins (β-CD). The engineered nanomotor is designed to effectively disrupt bacterial biofilms via H2O2-induced self-propelled motion, ficin hydrolysis of the extracellular polymeric matrix (EPS) of the biofilm, and controlled pH-triggered cargo (vancomycin) delivery. The effective synergic antimicrobial activity of the nanomotor is demonstrated in the elimination of Staphylococcus aureus biofilms. The nanomotor achieves 82% of EPS biomass disruption and a 96% reduction in cell viability, which contrasts with a remarkably lower reduction in biofilm elimination when the components of the nanomotors are used separately at the same concentrations. Such a large reduction in biofilm biomass in S. aureus has never been achieved previously by any conventional therapy. The strategy proposed suggests that engineered nanomotors have great potential for the elimination of biofilms.
Collapse
Affiliation(s)
- Miglė Žiemytė
- Genomics
& Health Department, FISABIO Foundation, 46020 València, Spain
| | - Andrea Escudero
- Instituto
Interuniversitario de Reconocimiento Molecular y Desarrollo Tecnológico
(IDM), Universitat Politècnica de València, Universitat
de València, València 46022, Spain
- Unidad
Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València,
Instituto de Investigación Sanitaria La Fe, 46026 València, Spain
- CIBER
de Bioingeniería, Biomateriales y
Nanomedicina (CIBER-BBN), Instituto Carlos III, 28029 Madrid, Spain
| | - Paula Díez
- Instituto
Interuniversitario de Reconocimiento Molecular y Desarrollo Tecnológico
(IDM), Universitat Politècnica de València, Universitat
de València, València 46022, Spain
- Unidad
Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València,
Instituto de Investigación Sanitaria La Fe, 46026 València, Spain
- CIBER
de Bioingeniería, Biomateriales y
Nanomedicina (CIBER-BBN), Instituto Carlos III, 28029 Madrid, Spain
| | - María D. Ferrer
- Genomics
& Health Department, FISABIO Foundation, 46020 València, Spain
- CIBER of
Epidemiology and Public Health (CIBERESP), Instituto Carlos III, 28029 Madrid, Spain
- Departamento
de Química, Universitat Politècnica
de València, Cami
de Vera s/n, 46022 València, Spain
| | - Jose R. Murguía
- Instituto
Interuniversitario de Reconocimiento Molecular y Desarrollo Tecnológico
(IDM), Universitat Politècnica de València, Universitat
de València, València 46022, Spain
- Unidad
Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades
y Nanomedicina, València, Universitat
Politècnica de València, Centro de Investigación
Príncipe Felipe, 46012 València, Spain
- CIBER
de Bioingeniería, Biomateriales y
Nanomedicina (CIBER-BBN), Instituto Carlos III, 28029 Madrid, Spain
| | - Vicente Martí-Centelles
- Instituto
Interuniversitario de Reconocimiento Molecular y Desarrollo Tecnológico
(IDM), Universitat Politècnica de València, Universitat
de València, València 46022, Spain
- CIBER
de Bioingeniería, Biomateriales y
Nanomedicina (CIBER-BBN), Instituto Carlos III, 28029 Madrid, Spain
| | - Alex Mira
- Genomics
& Health Department, FISABIO Foundation, 46020 València, Spain
- CIBER of
Epidemiology and Public Health (CIBERESP), Instituto Carlos III, 28029 Madrid, Spain
- Departamento
de Química, Universitat Politècnica
de València, Cami
de Vera s/n, 46022 València, Spain
| | - Ramón Martínez-Máñez
- Instituto
Interuniversitario de Reconocimiento Molecular y Desarrollo Tecnológico
(IDM), Universitat Politècnica de València, Universitat
de València, València 46022, Spain
- Unidad
Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades
y Nanomedicina, València, Universitat
Politècnica de València, Centro de Investigación
Príncipe Felipe, 46012 València, Spain
- Unidad
Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València,
Instituto de Investigación Sanitaria La Fe, 46026 València, Spain
- CIBER
de Bioingeniería, Biomateriales y
Nanomedicina (CIBER-BBN), Instituto Carlos III, 28029 Madrid, Spain
- Departamento
de Química, Universitat Politècnica
de València, Cami
de Vera s/n, 46022 València, Spain
| |
Collapse
|
36
|
Zhang X, Qu Q, Yang A, Wang J, Cheng W, Zhou A, Xiong R, Huang C. Prussian blue composite microswimmer based on alginate-chitosan for biofilm removal. Int J Biol Macromol 2023:124963. [PMID: 37244336 DOI: 10.1016/j.ijbiomac.2023.124963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/10/2023] [Accepted: 05/05/2023] [Indexed: 05/29/2023]
Abstract
Bacterial infections pose a serious threat to public health, causing worldwide morbidity and about 80 % of bacterial infections are related to biofilm. Removing biofilm without antibiotics remains an interdisciplinary challenge. To solve this problem, we presented a dual-power driven antibiofilm system Prussian blue composite microswimmers based on alginate-chitosan, which designed into an asymmetric structure to achieve self-driven in the fuel solution and magnetic field. Prussian blue embedded in the microswimmers given it the ability to convert light and heat, catalyze Fenton reaction, and produce bubbles and reactive oxygen species. Moreover, with the addition of Fe3O4, the microswimmers could move in group under external magnetic field. The composite microswimmers displayed excellent antibacterial activity against S. aureus biofilm with an efficiency as high as 86.94 %. It is worth mentioning that the microswimmers were fabricated with device-simple and low-cost gas-shearing method. This system integrating physical destruction, chemical damage such chemodynamic therapy and photothermal therapy, and finally kill the plankton bacteria embedded in biofilm. This approach may cause an autonomous, multifunctional antibiofilm platform to promote the present most areas with harmful biofilm difficult to locate the surface for removal.
Collapse
Affiliation(s)
- Xiaoli Zhang
- Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China
| | - Qingli Qu
- Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China
| | - Anquan Yang
- Zhejiang OSM Group Co., Ltd, Huzhou 313000, PR China
| | - Jing Wang
- Zhejiang OSM Group Co., Ltd, Huzhou 313000, PR China
| | - Weixia Cheng
- Children's Hospital of Nanjing Medical University, Nanjing 210008, PR China
| | - Aying Zhou
- Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China
| | - Ranhua Xiong
- Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China
| | - Chaobo Huang
- Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China.
| |
Collapse
|
37
|
Guo Y, Jing D, Liu S, Yuan Q. Construction of intelligent moving micro/nanomotors and their applications in biosensing and disease treatment. Theranostics 2023; 13:2993-3020. [PMID: 37284438 PMCID: PMC10240815 DOI: 10.7150/thno.81845] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/26/2023] [Indexed: 06/08/2023] Open
Abstract
Micro/nanomotors are containers that pass through liquid media and carry cargo. Because they are tiny, micro/nanomotors exhibit excellent potential for biosensing and disease treatment applications. However, their size also makes overcoming random Brownian forces very challenging for micro/nanomotors moving on targets. Additionally, to achieve desired practical applications, the expensive materials, short lifetimes, poor biocompatibility, complex preparation methods, and side effects of micro/nanomotors must be addressed, and potential adverse effects must be evaluated both in vivo and in practical applications. This has led to the continuous development of key materials for driving micro/nanomotors. In this work, we review the working principles of micro/nanomotors. Metallic and nonmetallic nanocomplexes, enzymes, and living cells are explored as key materials for driving micro/nanomotors. We also consider the effects of exogenous stimulations and endogenous substance conditions on micro/nanomotor motions. The discussion focuses on micro/nanomotor applications in biosensing, treating cancer and gynecological diseases, and assisted fertilization. By addressing micro/nanomotor shortcomings, we propose directions for further developing and applying micro/nanomotors.
Collapse
Affiliation(s)
- Yingshu Guo
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China
| | - Dan Jing
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China
| | - Shiwei Liu
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China
| | - Quan Yuan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Hunan University, Changsha, 410082, P. R. China
| |
Collapse
|
38
|
Bailey MR, Gmür TA, Grillo F, Isa L. Modular Attachment of Nanoparticles on Microparticle Supports via Multifunctional Polymers. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2023; 35:3731-3741. [PMID: 37181676 PMCID: PMC10173378 DOI: 10.1021/acs.chemmater.3c00555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/13/2023] [Indexed: 05/16/2023]
Abstract
Nanoparticles are key to a range of applications, due to the properties that emerge as a result of their small size. However, their size also presents challenges to their processing and use, especially in relation to their immobilization on solid supports without losing their favorable functionalities. Here, we present a multifunctional polymer-bridge-based approach to attach a range of presynthesized nanoparticles onto microparticle supports. We demonstrate the attachment of mixtures of different types of metal-oxide nanoparticles, as well as metal-oxide nanoparticles modified with standard wet chemistry approaches. We then show that our method can also create composite films of metal and metal-oxide nanoparticles by exploiting different chemistries simultaneously. We finally apply our approach to the synthesis of designer microswimmers with decoupled mechanisms of steering (magnetic) and propulsion (light) via asymmetric nanoparticle binding, aka Toposelective Nanoparticle Attachment. We envision that this ability to freely mix available nanoparticles to produce composite films will help bridge the fields of catalysis, nanochemistry, and active matter toward new materials and applications.
Collapse
|
39
|
Fan L, Lin J, Yu A, Chang K, Tseng J, Su J, Chang A, Lu S, Lee E. Diffusiophoresis of a Weakly Charged Liquid Metal Droplet. Molecules 2023; 28:molecules28093905. [PMID: 37175315 PMCID: PMC10180433 DOI: 10.3390/molecules28093905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Diffusiophoresis of a weakly charged liquid metal droplet (LMD) is investigated theoretically, motivated by its potential application in drug delivery. A general analytical formula valid for weakly charged condition is adopted to explore the droplet phoretic behavior. We determined that a liquid metal droplet, which is a special category of the conducting droplet in general, always moves up along the chemical gradient in sole chemiphoresis, contrary to a dielectric droplet where the droplet tends to move down the chemical gradient most of the time. This suggests a therapeutic nanomedicine such as a gallium LMD is inherently superior to a corresponding dielectric liposome droplet in drug delivery in terms of self-guiding to its desired destination. The droplet moving direction can still be manipulated via the polarity dependence; however, there should be an induced diffusion potential present in the electrolyte solution under consideration, which spontaneously generates an extra electrophoresis component. Moreover, the smaller the conducting liquid metal droplet is, the faster it moves in general, which means a smaller LMD nanomedicine is preferred. These findings demonstrate the superior features of an LMD nanomedicine in drug delivery.
Collapse
Affiliation(s)
- Leia Fan
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Jason Lin
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Annie Yu
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Kevin Chang
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Jessica Tseng
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Judy Su
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Amy Chang
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Shirley Lu
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Eric Lee
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
40
|
Liu L, Li S, Yang K, Chen Z, Li Q, Zheng L, Wu Z, Zhang X, Su L, Wu Y, Song J. Drug-Free Antimicrobial Nanomotor for Precise Treatment of Multidrug-Resistant Bacterial Infections. NANO LETTERS 2023; 23:3929-3938. [PMID: 37129144 DOI: 10.1021/acs.nanolett.3c00632] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Manufacturing heteronanostructures with specific physicochemical characteristics and tightly controllable designs is very appealing. Herein, we reported NIR-II light-driven dual plasmonic (AuNR-SiO2-Cu7S4) antimicrobial nanomotors with an intended Janus configuration through the overgrowth of copper-rich Cu7S4 nanocrystals at only one high-curvature site of Au nanorods (Au NRs). These nanomotors were applied for photoacoustic imaging (PAI)-guided synergistic photothermal and photocatalytic treatment of bacterial infections. Both the photothermal performance and photocatalytic activity of the nanomotors are dramatically improved owing to the strong plasmon coupling between Au NRs and the Cu7S4 component and enhanced energy transfer. The motion behavior of nanomotors promotes transdermal penetration and enhances the matter-bacteria interaction. More importantly, the directional navigation and synergistic antimicrobial activity of the nanomotors could be synchronously driven by NIR-II light. The marriage of active motion and enhanced antibacterial activity resulted in the expected good antibacterial effects in an abscess infection mouse model.
Collapse
Affiliation(s)
- Luntao Liu
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Shuqin Li
- School of Chemical and Biological Engineering, Qilu Institute of Technology, Jinan 250200, P. R. China
| | - Kaiqiong Yang
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Zhongxiang Chen
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Qingqing Li
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Liting Zheng
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Zongsheng Wu
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Xuan Zhang
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Lichao Su
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Ying Wu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jibin Song
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
41
|
Kargari Aghmiouni D, Khoee S. Dual-Drug Delivery by Anisotropic and Uniform Hybrid Nanostructures: A Comparative Study of the Function and Substrate-Drug Interaction Properties. Pharmaceutics 2023; 15:1214. [PMID: 37111700 PMCID: PMC10142803 DOI: 10.3390/pharmaceutics15041214] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/23/2023] [Accepted: 04/02/2023] [Indexed: 04/29/2023] Open
Abstract
By utilizing nanoparticles to upload and interact with several pharmaceuticals in varying methods, the primary obstacles associated with loading two or more medications or cargos with different characteristics may be addressed. Therefore, it is feasible to evaluate the benefits provided by co-delivery systems utilizing nanoparticles by investigating the properties and functions of the commonly used structures, such as multi- or simultaneous-stage controlled release, synergic effect, enhanced targetability, and internalization. However, due to the unique surface or core features of each hybrid design, the eventual drug-carrier interactions, release, and penetration processes may vary. Our review article focused on the drug's loading, binding interactions, release, physiochemical, and surface functionalization features, as well as the varying internalization and cytotoxicity of each structure that may aid in the selection of an appropriate design. This was achieved by comparing the actions of uniform-surfaced hybrid particles (such as core-shell particles) to those of anisotropic, asymmetrical hybrid particles (such as Janus, multicompartment, or patchy particles). Information is provided on the use of homogeneous or heterogeneous particles with specified characteristics for the simultaneous delivery of various cargos, possibly enhancing the efficacy of treatment techniques for illnesses such as cancer.
Collapse
Affiliation(s)
| | - Sepideh Khoee
- Polymer Laboratory, School of Chemistry, College of Science, University of Tehran, Tehran 14155-6455, Iran
| |
Collapse
|
42
|
Biological Use of Nanostructured Silica-Based Materials Functionalized with Metallodrugs: The Spanish Perspective. Int J Mol Sci 2023; 24:ijms24032332. [PMID: 36768659 PMCID: PMC9917151 DOI: 10.3390/ijms24032332] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/11/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Since the pioneering work of Vallet-Regí's group on the design and synthesis of mesoporous silica-based materials with therapeutic applications, during the last 15 years, the potential use of mesoporous silica nanostructured materials as drug delivery vehicles has been extensively explored. The versatility of these materials allows the design of a wide variety of platforms that can incorporate numerous agents of interest (fluorophores, proteins, drugs, etc.) in a single scaffold. However, the use of these systems loaded with metallodrugs as cytotoxic agents against different diseases and with distinct therapeutic targets has been studied to a much lesser extent. This review will focus on the work carried out in this field, highlighting both the pioneering and recent contributions of Spanish groups that have synthesized a wide variety of systems based on titanium, tin, ruthenium, copper and silver complexes supported onto nanostructured silica. In addition, this article will also discuss the importance of the structural features of the systems for evaluating and modulating their therapeutic properties. Finally, the most interesting results obtained in the study of the potential therapeutic application of these metallodrug-functionalized silica-based materials against cancer and bacteria will be described, paying special attention to preclinical trials in vivo.
Collapse
|
43
|
Zhang X, Qu Q, Yang A, Wang J, Cheng W, Deng Y, Zhou A, Lu T, Xiong R, Huang C. Chitosan enhanced the stability and antibiofilm activity of self-propelled Prussian blue micromotor. Carbohydr Polym 2023; 299:120134. [PMID: 36876772 DOI: 10.1016/j.carbpol.2022.120134] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/11/2022] [Accepted: 09/17/2022] [Indexed: 11/25/2022]
Abstract
The emergence, spread and difficult removal of bacteria biofilm, represent an ever-increasing persistent infections and medical complications challenge worldwide. Herein, a self-propelled system Prussian blue micromotor (PB MMs) were constructed by gas-shearing technology for efficient degradation of biofilms by combining chemodynamic therapy (CDT) and photothermal therapy (PTT). With the interpenetrating network crosslinked by alginate, chitosan (CS) and metal ions as the substrate, PB was generated and embedded in the micromotor at the same time of crosslinking. The micromotors are more stable and could capture bacteria with the addition of CS. The micromotors show excellent performance, containing photothermal conversion, reactive oxygen species (ROS) generation and bubble produced by catalyzing Fenton reaction for motion, which served as therapeutic agent could chemically kill bacteria and physically destroy biofilm. This research work opens a new path of an innovative strategy to efficiently remove biofilm.
Collapse
Affiliation(s)
- Xiaoli Zhang
- Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China
| | - Qingli Qu
- Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China
| | - Anquan Yang
- Zhejiang OSM Group Co., Ltd, Huzhou 313000, PR China
| | - Jing Wang
- Zhejiang OSM Group Co., Ltd, Huzhou 313000, PR China
| | - Weixia Cheng
- Children's Hospital of Nanjing Medical University, Nanjing 210008, PR China
| | - Yankang Deng
- Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China
| | - Aying Zhou
- Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China
| | - Tao Lu
- Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China
| | - Ranhua Xiong
- Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China
| | - Chaobo Huang
- Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China.
| |
Collapse
|
44
|
Liu T, Xie L, Price CAH, Liu J, He Q, Kong B. Controlled propulsion of micro/nanomotors: operational mechanisms, motion manipulation and potential biomedical applications. Chem Soc Rev 2022; 51:10083-10119. [PMID: 36416191 DOI: 10.1039/d2cs00432a] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Inspired by natural mobile microorganisms, researchers have developed micro/nanomotors (MNMs) that can autonomously move by transducing different kinds of energies into kinetic energy. The rapid development of MNMs has created tremendous opportunities for biomedical fields including diagnostics, therapeutics, and theranostics. Although the great progress has been made in MNM research, at a fundamental level, the accepted propulsion mechanisms are still a controversial matter. In practical applications such as precision nanomedicine, the precise control of the motion, including the speed and directionality, of MNMs is also important, which makes advanced motion manipulation desirable. Very recently, diverse MNMs with different propulsion strategies, morphologies, sizes, porosities and chemical structures have been fabricated and applied for various uses. Herein, we thoroughly summarize the physical principles behind propulsion strategies, as well as the recent advances in motion manipulation methods and relevant biomedical applications of these MNMs. The current challenges in MNM research are also discussed. We hope this review can provide a bird's eye overview of the MNM research and inspire researchers to create novel and more powerful MNMs.
Collapse
Affiliation(s)
- Tianyi Liu
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, China. .,DICP-Surrey Joint Centre for Future Materials, Department of Chemical and Process Engineering, University of Surrey, Guildford, Surrey GU2 7XH, UK.
| | - Lei Xie
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, China.
| | - Cameron-Alexander Hurd Price
- DICP-Surrey Joint Centre for Future Materials, Department of Chemical and Process Engineering, University of Surrey, Guildford, Surrey GU2 7XH, UK.
| | - Jian Liu
- DICP-Surrey Joint Centre for Future Materials, Department of Chemical and Process Engineering, University of Surrey, Guildford, Surrey GU2 7XH, UK. .,State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China.,College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia, 010021, PR China
| | - Qiang He
- Key Laboratory of Microsystems and Microstructures Manufacturing (Ministry of Education), Harbin Institute of Technology, Harbin, China.
| | - Biao Kong
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, China. .,Yiwu Research Institute of Fudan University, Yiwu, Zhejiang 322000, China
| |
Collapse
|
45
|
Florensa M, Llenas M, Medina-Gutiérrez E, Sandoval S, Tobías-Rossell G. Key Parameters for the Rational Design, Synthesis, and Functionalization of Biocompatible Mesoporous Silica Nanoparticles. Pharmaceutics 2022; 14:2703. [PMID: 36559195 PMCID: PMC9788600 DOI: 10.3390/pharmaceutics14122703] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/11/2022] Open
Abstract
Over the last few years, research on silica nanoparticles has rapidly increased. Particularly on mesoporous silica nanoparticles (MSNs), as nanocarriers for the treatment of various diseases because of their physicochemical properties and biocompatibility. The use of MSNs combined with therapeutic agents can provide better encapsulation and effective delivery. MSNs as nanocarriers might also be a promising tool to lower the therapeutic dosage levels and thereby to reduce undesired side effects. Researchers have explored several routes to conjugate both imaging and therapeutic agents onto MSNs, thus expanding their potential as theranostic platforms, in order to allow for the early diagnosis and treatment of diseases. This review introduces a general overview of recent advances in the field of silica nanoparticles. In particular, the review tackles the fundamental aspects of silicate materials, including a historical presentation to new silicates and then focusing on the key parameters that govern the tailored synthesis of functional MSNs. Finally, the biomedical applications of MSNs are briefly revised, along with their biocompatibility, biodistribution and degradation. This review aims to provide the reader with the tools for a rational design of biocompatible MSNs for their application in the biomedical field. Particular attention is paid to the role that the synthesis conditions have on the physicochemical properties of the resulting MSNs, which, in turn, will determine their pharmacological behavior. Several recent examples are highlighted to stress the potential that MSNs hold as drug delivery systems, for biomedical imaging, as vaccine adjuvants and as theragnostic agents.
Collapse
Affiliation(s)
| | | | | | - Stefania Sandoval
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Barcelona, Spain
| | - Gerard Tobías-Rossell
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Barcelona, Spain
| |
Collapse
|
46
|
Self-propelled Janus nanomotor as active probe for detection of pepsinogen by lateral flow immunoassay. Mikrochim Acta 2022; 189:468. [DOI: 10.1007/s00604-022-05538-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 10/14/2022] [Indexed: 11/27/2022]
|
47
|
Mesoporous silicas in materials engineering: Nanodevices for bionanotechnologies. Mater Today Bio 2022; 17:100472. [PMCID: PMC9627595 DOI: 10.1016/j.mtbio.2022.100472] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
|
48
|
Karimi MR, Khoee S, Shaghaghi B. Smart transformation of bowl shape chitosan nanomotors to disc shape in simulated biological media and consequent controlled velocity. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
49
|
Wang H, Chen X, Qi Y, Wang C, Huang L, Wang R, Li J, Xu X, Zhou Y, Liu Y, Xue X. Self-Propelled Nanomotors with an Alloyed Engine for Emergency Rescue of Traumatic Brain Injury. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2206779. [PMID: 36189876 DOI: 10.1002/adma.202206779] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/22/2022] [Indexed: 06/16/2023]
Abstract
In severe traumatic brain injury (sTBI), acute oxidative stress and inflammatory cascades rapidly spread to cause irreversible brain damage and low survival rate within minutes. Therefore, developing a feasible solution for the quick-treatment of life-threatening emergency is urgently demanded to earn time for hospital treatment. Herein, Janus catalysis-driven nanomotors (JCNs) are carefully constructed via plasma-induced alloying technology and sputtering-caused half-coating strategy. The theoretical calculation and experiment results indicate that the heteroatom-doping alloyed engine endows JCNs with much higher catalytic activity for removing reactive oxygen species and reactive nitrogen species than common Pt-based engines. When JCNs are dropped to the surface of the ruptured skull, they can effectively catalyze endogenous hydrogen peroxide, which induces movement as fuels to promote JCNs to deep brain lesions for further nanocatalyst-mediated cascade-blocking therapy. The results demonstrate that the JCNs successfully block the inflammatory cascades, thereby reversing multiple behavioral defects and dramatically declining the mortality of sTBI mice. This work provides a revolutionary nanomotor-based strategy to sense brain injury and scavenge oxidative stress. Meanwhile, the JCNs provide a feasible strategy to adapt various first-aid scenarios due to their self-propelled movement combined with highly multienzyme-like catalytic activity, exhibiting tremendous therapeutic potential to help people for emergency pretreatment.
Collapse
Affiliation(s)
- Heping Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, P. R. China
| | - Xi Chen
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, P. R. China
| | - Yilin Qi
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, P. R. China
| | - Chunxiao Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, P. R. China
| | - Liwen Huang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, P. R. China
| | - Ran Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, P. R. China
| | - Jiamin Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, P. R. China
| | - Xihan Xu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, P. R. China
| | - Yutong Zhou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, P. R. China
| | - Yang Liu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, P. R. China
| | - Xue Xue
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, P. R. China
| |
Collapse
|
50
|
Liu L, Li Q, Chen L, Song L, Zhang X, Huo H, You Z, Wu Y, Wu Z, Ye J, Fu Q, Su L, Zhang X, Yang H, Song J. Plasmon enhanced catalysis-driven nanomotors with autonomous navigation for deep cancer imaging and enhanced radiotherapy. Chem Sci 2022; 13:12840-12850. [PMID: 36519050 PMCID: PMC9645394 DOI: 10.1039/d2sc03036e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/13/2022] [Indexed: 12/01/2023] Open
Abstract
Radiosensitizers potentiate the radiotherapy effect while effectively reducing the damage to healthy tissues. However, limited sample accumulation efficiency and low radiation energy deposition in the tumor significantly reduce the therapeutic effect. Herein, we developed multifunctional photocatalysis-powered dandelion-like nanomotors composed of amorphous TiO2 components and Au nanorods (∼93 nm in length and ∼16 nm in outer diameter) by a ligand-mediated interface regulation strategy for NIR-II photoacoustic imaging-guided synergistically enhanced cancer radiotherapy. The non-centrosymmetric nanostructure generates stronger local plasmonic near-fields close to the Au-TiO2 interface. Moreover, the Au-TiO2 Schottky heterojunction greatly facilitates the separation of photogenerated electron-hole pairs, enabling hot electron injection, finally leading to highly efficient plasmon-enhanced photocatalytic activity. The nanomotors exhibit superior motility both in vitro and in vivo, propelled by H2 generated via NIR-catalysis on one side of the Au nanorod, which prevents them from returning to circulation and effectively improves the sample accumulation in the tumor. Additionally, a high radiation dose deposition in the form of more hydroxyl radical generation and glutathione depletion is authenticated. Thus, synergistically enhanced radiotherapeutic efficacy is achieved in both a subcutaneous tumor model and an orthotopic model.
Collapse
Affiliation(s)
- Luntao Liu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University Fuzhou 350108 China
| | - Qingqing Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University Fuzhou 350108 China
| | - Lanlan Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University Fuzhou 350108 China
| | - Lihong Song
- Department of Nuclear Medicine, Han Dan Central Hospital Handan 056001 Hebei China
| | - Xueqiang Zhang
- Department of Nuclear Medicine, Han Dan Central Hospital Handan 056001 Hebei China
| | - Hongqi Huo
- Department of Nuclear Medicine, Han Dan Central Hospital Handan 056001 Hebei China
| | - Zhixin You
- Department of Nuclear Medicine, Han Dan Central Hospital Handan 056001 Hebei China
| | - Ying Wu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University Fuzhou 350108 China
| | - Zongsheng Wu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University Fuzhou 350108 China
| | - Jiamin Ye
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University Fuzhou 350108 China
| | - Qinrui Fu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University Fuzhou 350108 China
| | - Lichao Su
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University Fuzhou 350108 China
| | - Xuan Zhang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University Fuzhou 350108 China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University Fuzhou 350108 China
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University Fuzhou 350108 China
| |
Collapse
|