1
|
Cheng X, Chen H, Li W, Tu Z, Wang Y, Wei H, Wang S, Liu L, Rong Z. Nanozyme-Catalyzed Colorimetric Microfluidic Immunosensor for the Filtration Enrichment and Ultrasensitive Detection of Salmonella typhimurium in Food Samples. Anal Chem 2025; 97:6454-6463. [PMID: 40043091 DOI: 10.1021/acs.analchem.4c05607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Rapid screening of foodborne pathogens is crucial to prevent food poisoning. In this study, we proposed a nanozyme-catalyzed colorimetric microfluidic immunosensor (Nano-CMI) for the filtration enrichment and ultrasensitive detection of Salmonella typhimurium in complex matrices. Gold-core porous platinum shell nanopompoms (Au@Pt nanopompoms) were synthesized with excellent peroxidase-like activity to oxidize 3,3',5,5'-tetramethylbenzidine with significant color change. The Au@Pt nanopompoms demonstrated a large reaction area, superior catalytic property, and good stability. The microfluidic chip used in the Nano-CMI was designed based on the size disparities among S. typhi, Au@Pt nanopompoms, and the pore sizes of filters I and II. Thus, a biosensor containing pretreatment, incubation, enrichment, and detection of four-in-one functions was established and performed under the drive of a medical plastic syringe. This biosensor can accomplish ultrasensitive detection of S. typhi with a limit of detection as low as 9 cfu/mL within 20 min, which makes it suitable for point-of-care testing. The proposed Nano-CMI also possessed high specificity and good repeatability (RSD < 2.1%) and can thus be applied directly to the analysis of real food samples, suggesting its great potential for practical application in the food safety field.
Collapse
Affiliation(s)
- Xiaodan Cheng
- Bioinformatics Center of AMMS, Beijing 100850, P. R. China
| | - Hong Chen
- Bioinformatics Center of AMMS, Beijing 100850, P. R. China
| | - Weijia Li
- Bioinformatics Center of AMMS, Beijing 100850, P. R. China
| | - Zhijie Tu
- Bioinformatics Center of AMMS, Beijing 100850, P. R. China
| | - Yunxiang Wang
- Bioinformatics Center of AMMS, Beijing 100850, P. R. China
| | - Hongjuan Wei
- Bioinformatics Center of AMMS, Beijing 100850, P. R. China
| | - Shengqi Wang
- Bioinformatics Center of AMMS, Beijing 100850, P. R. China
- State Key Laboratory of Kidney Diseases, Beijing 100853, P. R. China
| | - Liyan Liu
- Bioinformatics Center of AMMS, Beijing 100850, P. R. China
| | - Zhen Rong
- Bioinformatics Center of AMMS, Beijing 100850, P. R. China
| |
Collapse
|
2
|
Zhao W, Han M, Huang X, Xiao T, Xie D, Zhao Y, Tan M, Zhu B, Chen Y, Tang BZ. Weight Differences-Based Multi-level Signal Profiling for Homogeneous and Ultrasensitive Intelligent Bioassays. ACS NANO 2025; 19:10515-10528. [PMID: 40059671 DOI: 10.1021/acsnano.5c01436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Current high-sensitivity immunoassay protocols often involve complex signal generation designs or rely on sophisticated signal-loading and readout devices, making it challenging to strike a balance between sensitivity and ease of use. In this study, we propose a homogeneous-based intelligent analysis strategy called Mata, which uses weight analysis to quantify basic immune signals through signal subunits. We perform nanomagnetic labeling of target capture events on micrometer-scale polystyrene subunits, enabling magnetically regulated kinetic signal expression. Signal subunits are classified through the multi-level signal classifier in synergy with the developed signal weight analysis and deep learning recognition models. Subsequently, the basic immune signals are quantified to achieve ultra-high sensitivity. Mata achieves a detection of 0.61 pg/mL in 20 min for interleukin-6 detection, demonstrating sensitivity comparable to conventional digital immunoassays and over 22-fold that of chemiluminescence immunoassay and reducing detection time by more than 70%. The entire process relies on a homogeneous reaction and can be performed using standard bright-field optical imaging. This intelligent analysis strategy balances high sensitivity and convenient operation and has few hardware requirements, presenting a promising high-sensitivity analysis solution with wide accessibility.
Collapse
Affiliation(s)
- Weiqi Zhao
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, Liaoning 116034, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Minjie Han
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xiaolin Huang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Jiangxi, Nanchang 330047, China
| | - Ting Xiao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Dingyang Xie
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yongkun Zhao
- College of Engineering, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Mingqian Tan
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Beiwei Zhu
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Yiping Chen
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| |
Collapse
|
3
|
Zhou H, Cai Y, He L, Li T, Wang Z, Li L, Hu T, Li X, Zhuang L, Huang X, Li Y. Phase Transition of Wax Enabling CRISPR Diagnostics for Automatic At-Home Testing of Multiple Sexually Transmitted Infection Pathogens. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407931. [PMID: 39498734 DOI: 10.1002/smll.202407931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/04/2024] [Indexed: 11/07/2024]
Abstract
Sexually transmitted infections (STIs) significantly impact women's reproductive health. Rapid, sensitive, and affordable detection of these pathogens is essential, especially for home-based self-testing, which is crucial for individuals who prioritize privacy or live in areas with limited access to healthcare services. Herein, an automated diagnostic system called Wax-CRISPR has been designed specifically for at-home testing of multiple STIs. This system employs a unique strategy by using the solid-to-liquid phase transition of wax to sequentially isolate and mix recombinase polymerase amplification (RPA) and CRISPR assays in a microfluidic chip. By incorporating a home-built controlling system, Wax-CRISPR achieves true one-pot multiplexed detection. The system can simultaneously detect six common critical gynecological pathogens (CT, MG, UU, NG, HPV 16, and HPV 18) within 30 min, with a detection limit reaching 10-18 M. Clinical evaluation demonstrates that the system achieves a sensitivity of 96.8% and a specificity of 97.3% across 100 clinical samples. Importantly, eight randomly recruited untrained operators performe a double-blinded test and successfully identified the STI targets in 33 clinical samples. This wax-transition-based one-pot CRISPR assay offers advantages such as low-cost, high-stability, and user-friendliness, making it a useful platform for at-home or field-based testing of multiple pathogen infections.
Collapse
Affiliation(s)
- Hu Zhou
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Yixuan Cai
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Liang He
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Tao Li
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan, 430065, China
- Hubei Shizhen Laboratory, 16 Huangjia Lake West Road, Wuhan, 430065, China
| | - Zhijie Wang
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Li Li
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ting Hu
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xi Li
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Liang Zhuang
- Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaoyuan Huang
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ying Li
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan, 430065, China
- Hubei Shizhen Laboratory, 16 Huangjia Lake West Road, Wuhan, 430065, China
| |
Collapse
|
4
|
Bartosik M, Moranova L, Izadi N, Strmiskova J, Sebuyoya R, Holcakova J, Hrstka R. Advanced technologies towards improved HPV diagnostics. J Med Virol 2024; 96:e29409. [PMID: 38293790 DOI: 10.1002/jmv.29409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/04/2024] [Accepted: 01/07/2024] [Indexed: 02/01/2024]
Abstract
Persistent infection with high-risk types of human papillomaviruses (HPV) is a major cause of cervical cancer, and an important factor in other malignancies, for example, head and neck cancer. Despite recent progress in screening and vaccination, the incidence and mortality are still relatively high, especially in low-income countries. The mortality and financial burden associated with the treatment could be decreased if a simple, rapid, and inexpensive technology for HPV testing becomes available, targeting individuals for further monitoring with increased risk of developing cancer. Commercial HPV tests available in the market are often relatively expensive, time-consuming, and require sophisticated instrumentation, which limits their more widespread utilization. To address these challenges, novel technologies are being implemented also for HPV diagnostics that include for example, isothermal amplification techniques, lateral flow assays, CRISPR-Cas-based systems, as well as microfluidics, paperfluidics and lab-on-a-chip devices, ideal for point-of-care testing in decentralized settings. In this review, we first evaluate current commercial HPV tests, followed by a description of advanced technologies, explanation of their principles, critical evaluation of their strengths and weaknesses, and suggestions for their possible implementation into medical diagnostics.
Collapse
Affiliation(s)
- Martin Bartosik
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Ludmila Moranova
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Nasim Izadi
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Johana Strmiskova
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Ravery Sebuyoya
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jitka Holcakova
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Roman Hrstka
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| |
Collapse
|
5
|
Zhu Y, Liu J, Liu S, Zhu X, Wu J, Zhou Q, He J, Wang H, Gao W. CRISPR/Cas12a-assisted visible fluorescence for pseudo dual nucleic acid detection based on an integrated chip. Anal Chim Acta 2023; 1280:341860. [PMID: 37858552 DOI: 10.1016/j.aca.2023.341860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND A false negative result is one of the major problems in nucleic acid detection. Failure to screen positive samples for pathogens or viruses poses a risk to public health. This situation will lead to more serious consequences for infectious pathogens or viruses. At present, the common solution is to introduce exogenous or endogenous internal control. Because it amplifies and is detected separately from the target gene, it cannot avoid false negative results caused by DNA extraction failure or reagent inactivation. There is an urgent need for a simple and reliable method to solve the false negative problem of nucleic acid detection. RESULTS We established a chip and an on-chip detection method for the integrated detection of target genes and internal control using the CRISPR system in LAMP amplification products. The chip is processed from a low-cost PMMA board and has three chambers and some channels. After adding the sample, the chip only needs to be rotated twice, and the sample enters three chambers successively depending on its gravity for dual LAMP reaction and CRISPR detections. With a portable LED blue light exciter, visual fluorescence detection is realized. Whether the detection result is positive, negative, or invalid can be determined according to the fluorescence in the CRISPR chamber for target gene and CRISPR chamber for internal control. In this study, the detection of Salmonella enterica in Fenneropenaeus chinensis was taken as an example. The results showed good specificity and sensitivity. It could detect as low as 15 copies/μL of Salmonella enterica. SIGNIFICANCE The on-chip detection solves the problem of aerosol contamination and false negative results. It has the advantages of high sensitivity, high specificity, high accuracy, and low cost. This research will advance the development of nucleic acid detection technology, providing a new and reliable strategy for POCT detection of pathogenic bacteria and viruses.
Collapse
Affiliation(s)
- Yuanyuan Zhu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Jianlin Liu
- Department of Information Technology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, China
| | - Shanna Liu
- Department of Information Technology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, China
| | - Xinjian Zhu
- Department of Information Technology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, China
| | - Jian Wu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311200, China.
| | - Qingli Zhou
- Department of Information Technology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, China.
| | - Jinsong He
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Huanying Wang
- Key Laboratory of Microbiol Technology and Bioinformatics of Zhejiang Province, Zhejiang Institute of Microbiology, Hangzhou, 310012, China
| | - Wenwen Gao
- Key Laboratory of Microbiol Technology and Bioinformatics of Zhejiang Province, Zhejiang Institute of Microbiology, Hangzhou, 310012, China
| |
Collapse
|
6
|
Li DY, Jiang YJ, Nie KH, Li J, Li YF, Huang CZ, Li CM. Rational design of genotyping nanodevice for HPV subtype distinction. Anal Chim Acta 2023; 1276:341651. [PMID: 37573127 DOI: 10.1016/j.aca.2023.341651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 08/14/2023]
Abstract
There are more than 200 subtypes of human papillomavirus (HPV), and high-risk HPVs are a leading cause of cervical cancer. Identifying the genotypes of HPV is significant for clinical diagnosis and cancer control. Herein, we used programmable and modified DNA as the backbone to construct fluorescent genotyping nanodevice for HPV subtype distinction. In our strategy, the dye-labeled single-stranded recognize-DNA (R-DNA) was hybridized with Black Hole Quencher (BHQ) labeled single-stranded link-DNA (L-DNA) to form three functionalized DNA (RL-DNA). Through the extension of polycytosine (poly-C) in L-DNA, three RL-DNAs can be more firmly adsorbed on graphene oxide to construct reliable genotyping nanodevice. The genotyping nanodevice had low background noise since the dual energy transfer, including Förster resonance energy transfer (FRET) from dye to BHQ and the resonance energy transfer (RET) from dye to graphene oxide. Meanwhile, the programmability of DNA allows the proposed strategy to simultaneously and selectively distinguish several HPV subtypes in solution using DNA labeled with different dyes. To demonstrate clinical potential, we show multiplexed assay of HPV subtypes in cervical scrapes, and it has been successfully applied in HPV-DNA analysis in cervical scrapes samples. The genotyping nanodevice could be developed for simultaneous and multiplex analysis of several oligonucleotides in a homogeneous solution by adjusting the recognition sequence, demonstrating its potential application in the rapid screening of multiple biomarkers.
Collapse
Affiliation(s)
- De Yu Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Yong Jian Jiang
- Key Laboratory of Luminescent and Real-Time Analytical System (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Kun Han Nie
- Key Laboratory of Luminescent and Real-Time Analytical System (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Jing Li
- Key Laboratory of Luminescent and Real-Time Analytical System (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Yuan Fang Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| | - Cheng Zhi Huang
- Key Laboratory of Luminescent and Real-Time Analytical System (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Chun Mei Li
- Key Laboratory of Luminescent and Real-Time Analytical System (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| |
Collapse
|
7
|
Fan W, Ren W, Jia D, Shi J, Liu C. Digital-like Enzyme Inhibition Mechanism-Based Strategy for the Digital Sensing of Heparin-Specific Biomarkers. Anal Chem 2023; 95:13690-13697. [PMID: 37632468 DOI: 10.1021/acs.analchem.3c02983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2023]
Abstract
A new microbead (MB)-based digital flow cytometric sensing system is proposed for the sensitive detection of heparin-specific biomarkers, including heparin-binding protein (HBP) and heparinase. This strategy takes advantage of the inherent space-confined enzymatic behavior of T4 polynucleotide kinase phosphatase (T4 PNKP) around a single MB and the heparin's digital-like inhibitory effect on T4 PNKP. By integrating with an on-bead terminal deoxynucleotidyl transferase (TdT)-catalyzed fluorescence signal amplification technology, the concentration of HBP and heparinase can be digitally determined by the number of fluorescence-positive/-negative MBs which can be easily counted by flow cytometry. This is not only the first test to expand the application scenario of T4 PNKP to the digital detection of different biomarkers but also pioneers a new direction for fabricating digital biosensing platforms based on the enzyme inhibition mechanism.
Collapse
Affiliation(s)
- Wenjiao Fan
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi Province 710119, P. R. China
| | - Wei Ren
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi Province 710119, P. R. China
| | - Dailu Jia
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi Province 710119, P. R. China
| | - Jingjing Shi
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi Province 710119, P. R. China
| | - Chenghui Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi Province 710119, P. R. China
| |
Collapse
|
8
|
Wang D, Wang X, Ye F, Zou J, Qu J, Jiang X. An Integrated Amplification-Free Digital CRISPR/Cas-Assisted Assay for Single Molecule Detection of RNA. ACS NANO 2023; 17:7250-7256. [PMID: 37052221 PMCID: PMC10108731 DOI: 10.1021/acsnano.2c10143] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 04/10/2023] [Indexed: 05/09/2023]
Abstract
Conventional nucleic acid detection technologies usually rely on amplification to improve sensitivity, which has drawbacks, such as amplification bias, complicated operation, high requirements for complex instruments, and aerosol pollution. To address these concerns, we developed an integrated assay for the enrichment and single molecule digital detection of nucleic acid based on a CRISPR/Cas13a and microwell array. In our design, magnetic beads capture and concentrate the target from a large volume of sample, which is 100 times larger than reported earlier. The target-induced CRISPR/Cas13a cutting reaction was then dispersed and limited to a million individual femtoliter-sized microwells, thereby enhancing the local signal intensity to achieve single-molecule detection. The limit of this assay for amplification-free detection of SARS-CoV-2 is 2 aM. The implementation of this study will establish a "sample-in-answer-out" single-RNA detection technology without amplification and improve the sensitivity and specificity while shortening the detection time. This research has broad prospects in clinical application.
Collapse
Affiliation(s)
- Dou Wang
- Shenzhen Key Laboratory of Smart Healthcare
Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of
Biomedical Engineering, Southern University of Science and
Technology, No. 1088, Xueyuan Road, Xili, Nanshan District, Shenzhen,
Guangdong 518055, P. R. China
| | - Xuedong Wang
- Shenzhen Key Laboratory of Smart Healthcare
Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of
Biomedical Engineering, Southern University of Science and
Technology, No. 1088, Xueyuan Road, Xili, Nanshan District, Shenzhen,
Guangdong 518055, P. R. China
| | - Feidi Ye
- Department of Clinical Laboratory,
Shenzhen Third People’s Hospital, Second Hospital Affiliated to
Southern University of Science and Technology, National Clinical Research Center for
Infectious Diseases, Guangdong, 518055, P. R.
China
| | - Jin Zou
- Department of Clinical Laboratory,
Shenzhen Third People’s Hospital, Second Hospital Affiliated to
Southern University of Science and Technology, National Clinical Research Center for
Infectious Diseases, Guangdong, 518055, P. R.
China
| | - Jiuxin Qu
- Department of Clinical Laboratory,
Shenzhen Third People’s Hospital, Second Hospital Affiliated to
Southern University of Science and Technology, National Clinical Research Center for
Infectious Diseases, Guangdong, 518055, P. R.
China
| | - Xingyu Jiang
- Shenzhen Key Laboratory of Smart Healthcare
Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of
Biomedical Engineering, Southern University of Science and
Technology, No. 1088, Xueyuan Road, Xili, Nanshan District, Shenzhen,
Guangdong 518055, P. R. China
| |
Collapse
|
9
|
Li Z, Hua L, Xie L, Wang D, Jiang X. Automated Microfluidic Nucleic Acid Detection Platform-Integrated RPA-T7-Cas13a for Pathogen Diagnosis. Anal Chem 2023; 95:6940-6947. [PMID: 37083348 DOI: 10.1021/acs.analchem.3c00242] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
There is a growing urgent need for point-of-care testing (POCT) devices that integrate sample pretreatment and nucleic acid detection in a rapid, economical, and non-labor-intensive way. Here, we have developed an automated, portable nucleic acid detection system employing microfluidic chips integrating rotary valve-assisted sample pretreatment and recombinase polymerase amplification (RPA)-T7-Cas13a into one-step nucleic acid detection. The RPA and clustered regularly interspaced short palindromic repeats (CRISPR)/Cas13a were integrated into a single-chamber reaction. As a validation model, we used this method to detect Group B streptococci (GBS) DNA and achieved a detection sensitivity of 8 copies/reaction, which is 6 times more sensitive than gold-standard polymerase chain reactions (PCRs). Dual specific recognition of RPA with CRISPR/Cas13a makes our method ultraspecific, with correct detection of Group B streptococci from 8 kinds of pathogenic bacteria. For the 16 positive and 24 negative clinical GBS samples, our assay achieved 100% accuracy compared to the PCR technique. The whole procedure can be automatically completed within 30 min, providing a more robust, sensitive, and accurate molecular diagnostic tool for POCT.
Collapse
Affiliation(s)
- Zheng Li
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088, Xueyuan Road, Nanshan District, Shenzhen 518055, Guangdong, China
| | - Liyan Hua
- Shaoguan Maternal and Child Health Hospital, No. 3, Dongdi South Road, Shaoguan 512026, Guangdong, China
| | - Liming Xie
- Shaoguan Maternal and Child Health Hospital, No. 3, Dongdi South Road, Shaoguan 512026, Guangdong, China
| | - Dou Wang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088, Xueyuan Road, Nanshan District, Shenzhen 518055, Guangdong, China
| | - Xingyu Jiang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088, Xueyuan Road, Nanshan District, Shenzhen 518055, Guangdong, China
| |
Collapse
|
10
|
Liang H, Chen L, Zhang H, Liu X. Simple Method to Generate Droplets Spontaneously by a Superhydrophobic Double-Layer Split Nozzle. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:4730-4738. [PMID: 36961251 DOI: 10.1021/acs.langmuir.3c00126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Given the problems of traditional droplet generation devices, such as the complex structure and processing technology, difficulty in droplet separation, and low transfer accuracy, we propose a low-adhesion superhydrophobic double-layer split nozzle (SDSN). It realizes spontaneous droplet generation by using an interfacial tension force inside the micro-hole to drive the droplet snap-off. It successfully achieves stable and highly consistent droplets on the micrometer-scale circular micro-hole. Droplets with a volume in the range of 0.65-1.75 ± 0.007 μL can be precisely achieved by adjusting the hole size of the SDSN from 100 to 500 μm. The SDSN is prepared by conventional mechanical drilling, chemical etching, and low surface energy modification. Compared with traditional droplet generation devices, no photolithography process is required, and the cost is lower. Moreover, the droplets can be obtained directly without any post-processing, avoiding the problem of separating droplets from another solution. The stability of SDSN is good, and the droplet volume is not affected by the fluctuation of external conditions. The rate of droplet generation can be freely adjusted by adjusting the speed of the electronic microinjection pump without affecting the droplet volume. It enables efficient droplet transfer without liquid residue, which improves the transfer accuracy and helps to save the use of expensive reagents. This simple but effective structure will be of great help to make breakthroughs in next-generation spontaneous droplet generation, liquid transport, and digital microfluidic devices.
Collapse
Affiliation(s)
- Hao Liang
- MEMS Center, Harbin Institute of Technology, Harbin 150001, China
| | - Liang Chen
- MEMS Center, Harbin Institute of Technology, Harbin 150001, China
| | - Haifeng Zhang
- Key Laboratory of Micro-Systems and Micro-structures Manufacturing, Ministry of Education, Harbin 150001, China
- MEMS Center, Harbin Institute of Technology, Harbin 150001, China
| | - Xiaowei Liu
- Key Laboratory of Micro-Systems and Micro-structures Manufacturing, Ministry of Education, Harbin 150001, China
- MEMS Center, Harbin Institute of Technology, Harbin 150001, China
- State Key Laboratory of Urban Water Resource & Environment (Harbin Institute of Technology), Harbin 150001, China
| |
Collapse
|
11
|
Fan W, Dong Y, Ren W, Liu C. Single microentity analysis-based ultrasensitive bioassays: Recent advances, applications, and perspectives. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.117035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
12
|
Mao C, Wang S, Li J, Feng Z, Zhang T, Wang R, Fan C, Jiang X. Metal-Organic Frameworks in Microfluidics Enable Fast Encapsulation/Extraction of DNA for Automated and Integrated Data Storage. ACS NANO 2023; 17:2840-2850. [PMID: 36728704 DOI: 10.1021/acsnano.2c11241] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
DNA as an exceptional data storage medium offers high information density. However, DNA storage requires specialized equipment and tightly controlled environments for storage. Fast encapsulation within minutes for enhanced DNA stability to do away with specialized equipment and fast DNA extraction remain a challenge. Here, we report a DNA microlibrary that can be encapsulated by metal-organic frameworks (MOFs) within 10 min and extracted (5 min) in a single microfluidic chip for automated and integrated DNA-based data storage. The DNA microlibrary@MOFs enhances the stability of data-encoded DNA against harsh environments. The encoded information can be read out perfectly after accelerated aging, equivalent to being readable after 10 years of storage at 25 °C, 50% relative humidity, and 10 000 lx sunlight radiation. Moreover, the library enables fast retrieval of target data via flow cytometry and can be reproduced after each access.
Collapse
Affiliation(s)
- Cuiping Mao
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, No 1088, Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, People's Republic of China
| | - Shuchen Wang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, No 1088, Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, People's Republic of China
| | - Jiankai Li
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, No 1088, Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, People's Republic of China
| | - Zhuowei Feng
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, No 1088, Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, People's Republic of China
| | - Tong Zhang
- Department of Electronic and Electrical Engineering, Southern University of Science and Technology, No 1088, Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, People's Republic of China
| | - Rui Wang
- Department of Electronic and Electrical Engineering, Southern University of Science and Technology, No 1088, Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, People's Republic of China
| | - Chunhai Fan
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, No 800, DongChuan Road, Minhang District, Shanghai 200240, People's Republic of China
| | - Xingyu Jiang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, No 1088, Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, People's Republic of China
| |
Collapse
|
13
|
Li Z, Xu X, Wang D, Jiang X. Recent advancements in nucleic acid detection with microfluidic chip for molecular diagnostics. Trends Analyt Chem 2023; 158:116871. [PMID: 36506265 PMCID: PMC9721164 DOI: 10.1016/j.trac.2022.116871] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
The coronavirus disease 2019 (COVID-19) has extensively promoted the application of nucleic acid testing technology in the field of clinical testing. The most widely used polymerase chain reaction (PCR)-based nucleic acid testing technology has problems such as complex operation, high requirements of personnel and laboratories, and contamination. The highly miniaturized microfluidic chip provides an essential tool for integrating the complex nucleic acid detection process. Various microfluidic chips have been developed for the rapid detection of nucleic acid, such as amplification-free microfluidics in combination with clustered regularly interspaced short palindromic repeats (CRISPR). In this review, we first summarized the routine process of nucleic acid testing, including sample processing and nucleic acid detection. Then the typical microfluidic chip technologies and new research advances are summarized. We also discuss the main problems of nucleic acid detection and the future developing trend of the microfluidic chip.
Collapse
|
14
|
Yamura S, Kawada N, Yamakado S, Kyosei Y, Watabe S, Yoshimura T, Murase Y, Mitarai S, Ito E. Non-amplification nucleic acid detection with thio-NAD cycling. J Microbiol Methods 2023; 204:106647. [PMID: 36496031 DOI: 10.1016/j.mimet.2022.106647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/01/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
The PCR technique is indispensable in biology and medicine, but some difficulties are associated with its use, including false positive or false negative amplifications. To avoid these issues, a non-amplification nucleic acid detection protocol is needed. In the present study, we propose a method in which nucleic-acid probe hybridization is combined with thio-NAD cycling to detect nucleic acids without amplification. We report our application of this method for the detection of the gene of MPT64 in Mycobacterium tuberculosis. Two different cDNA probes targeted the mpt64 gene: the first probe was used to immobilize the mpt64 gene, and the second probe, linked with alkaline phosphatase (ALP), was hybridized to a target sequence in the mpt64 gene. A substrate was then hydrolyzed by ALP, and a cycling reaction was conducted by a dehydrogenase with its co-factors (thio-NAD and NADH). The single-stranded DNA, double-stranded DNA, plasmid DNA for the mpt64 gene, and whole genome of M. tuberculosis var. BCG were detected at the level of 105-106 copies/assay, whereas the non-tuberculosis mycobacteria (e.g., M. avium, M. intracellulare, M. kansasii, and M. abscessus) were below the limits of detection. The present method enables us to avoid the errors inherent in nucleic acid amplification methods.
Collapse
Affiliation(s)
- Sou Yamura
- Department of Biology, Waseda University, Shinjuku, Tokyo, Japan
| | - Naoki Kawada
- Department of Biology, Waseda University, Shinjuku, Tokyo, Japan
| | | | - Yuta Kyosei
- Department of Biology, Waseda University, Shinjuku, Tokyo, Japan
| | - Satoshi Watabe
- Waseda Research Institute for Science and Engineering, Waseda University, Shinjuku, Tokyo, Japan
| | - Teruki Yoshimura
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Tobetsu, Hokkaido, Japan
| | - Yoshiro Murase
- The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Kiyose, Tokyo, Japan
| | - Satoshi Mitarai
- The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Kiyose, Tokyo, Japan
| | - Etsuro Ito
- Department of Biology, Waseda University, Shinjuku, Tokyo, Japan; Waseda Research Institute for Science and Engineering, Waseda University, Shinjuku, Tokyo, Japan; Graduate Institute of Medicine, Kaohsiung Medical University, Sanmin, Kaohsiung, Taiwan.
| |
Collapse
|
15
|
Fan W, Ren W, Liu C. Advances in optical counting and imaging of micro/nano single-entity reactors for biomolecular analysis. Anal Bioanal Chem 2023; 415:97-117. [PMID: 36322160 PMCID: PMC9628437 DOI: 10.1007/s00216-022-04395-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/14/2022] [Accepted: 10/19/2022] [Indexed: 11/07/2022]
Abstract
Ultrasensitive detection of biomarkers is of paramount importance in various fields. Superior to the conventional ensemble measurement-based assays, single-entity assays, especially single-entity detection-based digital assays, not only can reach ultrahigh sensitivity, but also possess the potential to examine the heterogeneities among the individual target molecules within a population. In this review, we summarized the current biomolecular analysis methods that based on optical counting and imaging of the micro/nano-sized single entities that act as the individual reactors (e.g., micro-/nanoparticles, microemulsions, and microwells). We categorize the corresponding techniques as analog and digital single-entity assays and provide detailed information such as the design principles, the analytical performance, and their implementation in biomarker analysis in this work. We have also set critical comments on each technique from these aspects. At last, we reflect on the advantages and limitations of the optical single-entity counting and imaging methods for biomolecular assay and highlight future opportunities in this field.
Collapse
Affiliation(s)
- Wenjiao Fan
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Xi’an, 710119 Shaanxi Province People’s Republic of China ,Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Xi’an, 710119 Shaanxi Province People’s Republic of China ,School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an, 710119 Shaanxi Province People’s Republic of China
| | - Wei Ren
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Xi’an, 710119 Shaanxi Province People’s Republic of China ,Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Xi’an, 710119 Shaanxi Province People’s Republic of China ,School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an, 710119 Shaanxi Province People’s Republic of China
| | - Chenghui Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Xi’an, 710119 Shaanxi Province People’s Republic of China ,Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Xi’an, 710119 Shaanxi Province People’s Republic of China ,School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an, 710119 Shaanxi Province People’s Republic of China
| |
Collapse
|
16
|
Wang J, Jing G, Huang W, Xin L, Du J, Cai X, Xu Y, Lu X, Chen W. Rapid In Situ Hydrogel LAMP for On-Site Large-Scale Parallel Single-Cell HPV Detection. Anal Chem 2022; 94:18083-18091. [PMID: 36517452 DOI: 10.1021/acs.analchem.2c04701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Rapid human papillomavirus (HPV) screening is urgently needed for preventing and early diagnosis of cervical cancer in rural areas. To date, no HPV nucleic acid test (NAT) can be implemented within a single patient visit starting from clinical samples. Here, we develop a hydrogel loop-mediated isothermal amplification (LAMP) method in a fashion of large-scale parallel (about 1000 cells) in situ HPV DNA detection in clinical cervical exfoliated cells at the single-cell level. It can be used with a hotplate and smartphone to obtain HPV NAT results in less than 30 min, which is especially suitable for the on-site scenario. We apply this rapid HPV NAT on 40 clinical cervical exfoliated cell samples and compare the results to a clinical gold standard quantitative polymerase chain reaction (qPCR) method [area under curve (AUC), 1.00]. Meanwhile, our assay can provide HPV infection information for large-scale parallel single clinical cervical exfoliated cells, which cannot be received from traditional NAT methods. Our findings suggest the potential of in situ hydrogel LAMP as a powerful tool for clinical HPV screening and fundamental research.
Collapse
Affiliation(s)
- Jidong Wang
- Medical Research Center, Huazhong University of Science and Technology Union Shenzhen Hospital, The 6th Affiliated Hospital, Shenzhen University Health Science Center, Shenzhen 518052, P. R. China
| | - Gaoxing Jing
- School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, P. R. China
| | - Wenxuan Huang
- School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, P. R. China
| | - Luhua Xin
- School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, P. R. China
| | - Jihui Du
- Medical Research Center, Huazhong University of Science and Technology Union Shenzhen Hospital, The 6th Affiliated Hospital, Shenzhen University Health Science Center, Shenzhen 518052, P. R. China
| | - Xiaoqing Cai
- School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, P. R. China
| | - Ying Xu
- School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, P. R. China
| | - Xi Lu
- School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, P. R. China
| | - Wenwen Chen
- School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, P. R. China
| |
Collapse
|
17
|
Hu X, Qin W, Yuan R, Zhang L, Wang L, Ding K, Liu R, Huang W, Zhang H, Luo Y. Programmable molecular circuit discriminates multidrug-resistant bacteria. Mater Today Bio 2022; 16:100379. [PMID: 36042850 PMCID: PMC9420371 DOI: 10.1016/j.mtbio.2022.100379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 10/31/2022] Open
Abstract
Recognizing multidrug-resistant (MDR) bacteria with high accuracy and precision from clinical samples has long been a difficulty. For reliable detection of MDR bacteria, we investigated a programmable molecular circuit called the Background-free isothermal circuital kit (BRICK). The BRICK method provides a near-zero background signal by integrating four inherent modules equivalent to the conversion, amplification, separation, and reading modules. Interference elimination is largely owing to a molybdenum disulfide nanosheets-based fluorescence nanoswitch and non-specific suppression mediated by molecular inhibitors. In less than 70 min, an accurate distinction of various MDR bacteria was achieved without bacterial lysis. The BRICK technique detected 6.73 CFU/mL of methicillin-resistant Staphylococcus aureus in clinical samples in a proof-of-concept trial. By simply reprogramming the sequence panel, such a high signal-to-noise characteristic has been proven in the four other superbugs. The proposed BRICK method can provide a universal platform for infection surveillance and environmental management thanks to its superior programmability.
Collapse
Affiliation(s)
- Xiaolin Hu
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, 174 Shazhengjie, Shapingba District, Chongqing, 400044, China
| | - Weichao Qin
- Department of Clinical Laboratory, Jiangjin Hospital, Chongqing University, 725 Jiangzhou Road, Jiangjin District, Chongqing, 402260, China
| | - Rui Yuan
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, 174 Shazhengjie, Shapingba District, Chongqing, 400044, China
| | - Liangliang Zhang
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, 174 Shazhengjie, Shapingba District, Chongqing, 400044, China
| | - Liangting Wang
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, 174 Shazhengjie, Shapingba District, Chongqing, 400044, China
| | - Ke Ding
- Department of Oncology, Jiangjin Hospital, Chongqing University, 725 Jiangzhou Road, Jiangjin District, Chongqing, 402260, China
| | - Ruining Liu
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, 174 Shazhengjie, Shapingba District, Chongqing, 400044, China
| | - Wanyun Huang
- Life Science Laboratories, Biology Department, University of Massachusetts Amherst, 240 Thatcher Road, Amherst, MA, 01002, USA
| | - Hong Zhang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 247 Beiyuan Street, Jinan, Shandong, 250033, China
| | - Yang Luo
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, 174 Shazhengjie, Shapingba District, Chongqing, 400044, China
- Department of Clinical Laboratory, Jiangjin Hospital, Chongqing University, 725 Jiangzhou Road, Jiangjin District, Chongqing, 402260, China
- Department of Clinical Laboratory, Fuling Hospital, Chongqing University, 2 Gaosuntang Road, Fuling District, Chongqing, 408099, China
| |
Collapse
|
18
|
Mou L, Mandal K, Mecwan MM, Hernandez AL, Maity S, Sharma S, Herculano RD, Kawakita S, Jucaud V, Dokmeci MR, Khademhosseini A. Integrated biosensors for monitoring microphysiological systems. LAB ON A CHIP 2022; 22:3801-3816. [PMID: 36074812 PMCID: PMC9635816 DOI: 10.1039/d2lc00262k] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Microphysiological systems (MPSs), also known as organ-on-a-chip models, aim to recapitulate the functional components of human tissues or organs in vitro. Over the last decade, with the advances in biomaterials, 3D bioprinting, and microfluidics, numerous MPSs have emerged with applications to study diseased and healthy tissue models. Various organs have been modeled using MPS technology, such as the heart, liver, lung, and blood-brain barrier. An important aspect of in vitro modeling is the accurate phenotypical and functional characterization of the modeled organ. However, most conventional characterization methods are invasive and destructive and do not allow continuous monitoring of the cells in culture. On the other hand, microfluidic biosensors enable in-line, real-time sensing of target molecules with an excellent limit of detection and in a non-invasive manner, thereby effectively overcoming the limitation of the traditional techniques. Consequently, microfluidic biosensors have been increasingly integrated into MPSs and used for in-line target detection. This review discusses the state-of-the-art microfluidic biosensors by providing specific examples, detailing their main advantages in monitoring MPSs, and highlighting current developments in this field. Finally, we describe the remaining challenges and potential future developments to advance the current state-of-the-art in integrated microfluidic biosensors.
Collapse
Affiliation(s)
- Lei Mou
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, California, USA.
- Department of Clinical Laboratory, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, No. 63 Duobao Road, Liwan District, Guangzhou, Guangdong, P. R. China
| | - Kalpana Mandal
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, California, USA.
| | - Marvin Magan Mecwan
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, California, USA.
| | - Ana Lopez Hernandez
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, California, USA.
| | - Surjendu Maity
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, California, USA.
| | - Saurabh Sharma
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, California, USA.
| | - Rondinelli Donizetti Herculano
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, California, USA.
- Department of Bioprocess and Biotechnology Engineering, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP 14801-902, Brazil
| | - Satoru Kawakita
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, California, USA.
| | - Vadim Jucaud
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, California, USA.
| | - Mehmet Remzi Dokmeci
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, California, USA.
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, California, USA.
| |
Collapse
|
19
|
Jia D, Fan W, Ren W, Liu C. One-step detection of T4 polynucleotide kinase activity based on single particle-confined enzyme reaction and digital particle counting. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
Internal heating method of loop-mediated isothermal amplification for detection of HPV-6 DNA. Mikrochim Acta 2022; 189:212. [PMID: 35507110 PMCID: PMC9065241 DOI: 10.1007/s00604-022-05283-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/14/2022] [Indexed: 11/02/2022]
Abstract
Loop-mediated isothermal amplification (LAMP) is a promising diagnostic tool for genetic amplification, which is known for its rapid process, simple operation, high amplification efficiency, and excellent sensitivity. However, most of the existing heating methods are external for completion of molecular amplification with possibility of contamination of specimens. The present research provided an internal heating method for LAMP using magnetic nanoparticles (MNPs), which is called nano-LAMP. Near-infrared light with an excitation wavelength of 808 nm was employed as the heating source; hydroxy naphthol blue (HNB) was used as an indicator to conduct methodological research. We demonstrate that the best temperature was controlled at a working power of 2 W and 4.8 µg/µL concentration of nanoparticles. The lowest limit for the detection of HPV by the nano-LAMP method is 102 copies/mL, which was confirmed by a gel electrophoresis assay. In the feasibility investigation of validated clinical samples, all 10 positive HPV-6 specimens amplified by nano-LAMP were consistent with conventional LAMP methods. Therefore, the nano-LAMP detection method using internal heating of MNPs may bring a new vision to the exploration of thermostatic detection in the future.
Collapse
|
21
|
Research on the Centrifugal Driving of a Water-in-Oil Droplet in a Microfluidic Chip with Spiral Microchannel. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Combining the advantages of droplet-based microfluidics and centrifugal driving, a method for centrifugally driving W/O droplets with spiral microchannel is proposed in this paper. A physical model of droplet flow was established to study the flow characteristics of the W/O droplet in the spiral microchannel driven by centrifugal force, and kinematic analysis was performed based on the rigid body assumption. Then, the theoretical formula of droplet flow rate was obtained. The theoretical value was compared with the actual value measured in the experiments. The result shows that the trend of the theoretical value is consistent with the measured value, and the theoretical value is slightly larger than the experimentally measured value caused by deformation. Moreover, it is found that the mode of centrifugal driving with spiral microchannel has better flow stability than the traditional centrifugal driving structure. A larger regulation speed range can be achieved by adjusting the motor speed without using expensive equipment or precise instruments. This study can provide a basis and theoretical reference for the development of droplet-based centrifugal microfluidic chips.
Collapse
|
22
|
Zhang L, Fan W, Jia D, Feng Q, Ren W, Liu C. Microchamber-Free Digital Flow Cytometric Analysis of T4 Polynucleotide Kinase Phosphatase Based on Single-Enzyme-to-Single-Bead Space-Confined Reaction. Anal Chem 2021; 93:14828-14836. [PMID: 34713697 DOI: 10.1021/acs.analchem.1c03724] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Digital bioassays have attracted extensive attention in biomedical applications due to their ultrahigh sensitivity. However, traditional digital bioassays require numerous microchambers such as droplets or microwells, which restricts their application scope. Herein, we propose a microchamber-free flow cytometric method for the digital quantification of T4 polynucleotide kinase phosphatase (T4 PNKP) based on an unprecedented phenomenon that each T4 PNKP molecule-catalyzed reaction can be spatially self-confined on a single microbead, which ultimately enables the one-target-to-one-fluorescence-positive microbead digital signal transduction. The digital signal-readout mode can clearly detect T4 PNKP concentrations as low as 1.28 × 10-10 U/μL, making it most sensitive method to date. Significantly, T4 PNKP can be specifically distinguished from other phosphatases and nucleases in complex samples by digitally counting the fluorescence-positive microbeads, which cannot be realized by traditional bulk measurement-based methods. Taking advantage of the novel space-confined enzymatic feature of T4 PNKP, this digital mechanism can use T4 PNKP as the enzyme label to fabricate digital sensing systems toward various biomolecules such as digital enzyme-linked immunosorbent assay (ELISA). Therefore, this work not only enlarges the toolbox for high-sensitivity biomolecule detection but also opens new gates to fabricate next-generation digital assays.
Collapse
Affiliation(s)
- Lijun Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province; School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, Shaanxi Province, P. R. China
| | - Wenjiao Fan
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province; School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, Shaanxi Province, P. R. China
| | - Dailu Jia
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province; School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, Shaanxi Province, P. R. China
| | - Qinya Feng
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province; School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, Shaanxi Province, P. R. China
| | - Wei Ren
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province; School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, Shaanxi Province, P. R. China
| | - Chenghui Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province; School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, Shaanxi Province, P. R. China
| |
Collapse
|