1
|
Du FX, Liu SL, Li Y, Wang JK, Chen J, Bo ML, Zhang P, Bo GY, Huang QQ. High-throughput arousing interconnected interfaces for excellent sodium storage chemistry. J Colloid Interface Sci 2025; 677:1005-1015. [PMID: 39128284 DOI: 10.1016/j.jcis.2024.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/31/2024] [Accepted: 08/03/2024] [Indexed: 08/13/2024]
Abstract
Heterostructures endow electrochemical hybrids with promising energy storage properties owing to synergistic effects and interfacial interaction. However, developing a facile but effective approach to maximize interface effects is crucial but challenging. Herein, a bimetallic sulfide/carbon heterostructure is realized in a confined carbon network via a high-throughput template-assisted strategy to induce highly active and stable electrode architecture. The designed heterostructures not only yield abundant interconnected Co9S8/MoS2/N-doped carbon (Co9S8/MoS2/NC) heterojunctions with continuous channels for ion/electron transfer but maintain excellent conversion reversibility. Serving as anode for sodium storage, the Co9S8/MoS2/NC framework displayed excellent sodium storage properties (reversible capacity of 480 mAh/g after 100 cycles at 0.2 A/g and 286.2 mAh/g after 500 cycles at 2 A/g). Given this, this study can guide future design protocols for interface engineering by forming dynamic channels of conversion reaction kinetics for potential applications in high-performance electrodes.
Collapse
Affiliation(s)
- Fang-Xiao Du
- College of Materials Science and Engineering, Yangtze Normal University, Chongqing 408100, China
| | - Song-Li Liu
- College of Materials Science and Engineering, Yangtze Normal University, Chongqing 408100, China.
| | - Yang Li
- College of Materials Science and Engineering, Yangtze Normal University, Chongqing 408100, China.
| | - Jian-Kang Wang
- College of Materials Science and Engineering, Yangtze Normal University, Chongqing 408100, China
| | - Jun Chen
- CVC Testing Technology Co., Ltd., China National Electric Apparatus Research Institute Co., Ltd., Guangzhou 510000, China
| | - Mao-Lin Bo
- College of Materials Science and Engineering, Yangtze Normal University, Chongqing 408100, China
| | - Peng Zhang
- College of Materials Science and Engineering, Yangtze Normal University, Chongqing 408100, China
| | - Guang-Yuan Bo
- College of Materials and Chemical Engineering, China Three Gorges University, Hubei 443002, China
| | - Qing-Qing Huang
- College of Materials and Chemical Engineering, China Three Gorges University, Hubei 443002, China
| |
Collapse
|
2
|
Wang L, Huang F, Song X, Li J, Zhu G, Jin Z, Dai Z. Rational Design of Quasi-1D Multicore-Shell MnSe@N-Doped Carbon Nanorods as High-Performance Anode Material for Sodium-Ion Batteries. NANO LETTERS 2024; 24:11349-11357. [PMID: 39235045 DOI: 10.1021/acs.nanolett.4c01408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Sodium-ion batteries (SIBs) are considered one of the promising candidates for energy storage devices due to the low cost and low redox potential of sodium. However, their implementation is hindered by sluggish kinetics and rapid capacity decay caused by inferior conductivity, lattice deterioration, and volume changes of conversion-type anode materials. Herein, we report the design of a multicore-shell anode material based on manganese selenide (MnSe) nanoparticle encapsulated N-doped carbon (MnSe@NC) nanorods. Benefiting from the conductive multicore-shell structure, the MnSe@NC anodes displayed prominent rate capability (152.7 mA h g-1 at 5 A g-1) and long lifespan (132.7 mA h g-1 after 2000 cycles at 5 A g-1), verifying the essence of reasonable anode construction for high-performance SIBs. Systematic in situ microscopic and spectroscopic methods revealed a highly reversible conversion reaction mechanism of MnSe@NC. Our study proposes a promising route toward developing advanced transition metal selenide anodes and comprehending electrochemical reaction mechanisms toward high-performance SIBs.
Collapse
Affiliation(s)
- Lei Wang
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210023, P. R. China
| | - Fei Huang
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210023, P. R. China
| | - Xinmei Song
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Tianchang New Materials and Energy Technology Research Center, Research Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Jiayi Li
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR
| | - Guoyin Zhu
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, Jiangsu 210044, P. R. China
| | - Zhong Jin
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Tianchang New Materials and Energy Technology Research Center, Research Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Zhihui Dai
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210023, P. R. China
| |
Collapse
|
3
|
Wang W, Xiong F, Zhu S, Yan M, Liao X, Yu K, Cui L, Chen J, Wang J, Lan R, Xie J, An Q, Mai L. Electron-injection-engineering induced dual-phase MoO 2.8F 0.2/MoO 2.4F 0.6 heterostructure for magnesium storage. Natl Sci Rev 2024; 11:nwae238. [PMID: 39131923 PMCID: PMC11312365 DOI: 10.1093/nsr/nwae238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 06/22/2024] [Accepted: 07/09/2024] [Indexed: 08/13/2024] Open
Abstract
Rechargeable magnesium batteries (RMBs) have received increased attention due to their high volumetric capacity and safety. Nevertheless, the sluggish diffusion kinetics of highly polarized Mg2+ in host lattices severely hinders the development of RMBs. Herein, we report an electron injection strategy for modulating the Mo 4d-orbital splitting manner and first fabricate a dual-phase MoO2.8F0.2/MoO2.4F0.6 heterostructure to accelerate Mg2+ diffusion. The electron injection strategy triggers weak Jahn-Teller distortion in MoO6 octahedra and reorganization of the Mo 4d-orbital, leading to a partial phase transition from orthorhombic phase MoO2.8F0.2 to cubic phase MoO2.4F0.6. As a result, the designed heterostructure generates a built-in electric field, simultaneously improving its electronic conductivity and ionic diffusivity by at least one order of magnitude compared to MoO2.8F0.2 and MoO2.4F0.6. Importantly, the assembled MoO2.8F0.2/MoO2.4F0.6//Mg full cell exhibits a remarkable reversible capacity of 172.5 mAh g-1 at 0.1 A g-1, pushing forward the orbital-scale manipulation for high-performance RMBs.
Collapse
Affiliation(s)
- Weixiao Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Fangyu Xiong
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Shaohua Zhu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Mengyu Yan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Xiaobin Liao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Kesong Yu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Lianmeng Cui
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Jinghui Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Junjun Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Ruoqi Lan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Jun Xie
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| | - Qinyou An
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
- Hubei Longzhong Laboratory, Wuhan University of Technology (Xiangyang Demonstration Zone), Xiangyang 441000, China
- Hainan Institute, Wuhan University of Technology, Sanya 572000, China
| | - Liqiang Mai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
- Hubei Longzhong Laboratory, Wuhan University of Technology (Xiangyang Demonstration Zone), Xiangyang 441000, China
- Hainan Institute, Wuhan University of Technology, Sanya 572000, China
| |
Collapse
|
4
|
Zhao W, Ma X, Wang X, Zhou H, He X, Yao Y, Ren Y, Luo Y, Zheng D, Sun S, Liu Q, Li L, Chu W, Wang Y, Sun X. Synergistically Coupling Atomic-Level Defect-Manipulation and Nanoscopic-Level Interfacial Engineering Enables Fast and Durable Sodium Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311055. [PMID: 38295001 DOI: 10.1002/smll.202311055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/04/2024] [Indexed: 02/02/2024]
Abstract
Through inducing interlayer anionic ligands and functionally modifying conductive carbon-skeleton on the transition metal chalcogenides (TMCs) parent to achieve atomic-level defect-manipulation and nanoscopic-level architecture design is of great significance, which can broaden interlayer distance, optimize electronic structure, and mitigate structural deformation to endow high-efficiency battery performance of TMCs. Herein, an intriguing 3D biconcave hollow-tyre-like anode constituted by carbon-packaged defective-rich SnSSe nanosheet grafting onto Aspergillus niger spores-derived hollow-carbon (ANDC@SnSSe@C) is reported. Systematically experimental investigations and theoretical analyses forcefully demonstrate the existence of anion Se ligand and outer-carbon all-around encapsulation on the ANDC@SnSSe@C can effectively yield abundant structural defects and Na+-reactivity sites, accelerate rapid ion migration, widen interlayer spacing, as well as relieve volume expansion, thus further resolving the critical issues throughout the charge-discharge processes. As anticipated, as-fabricated ANDC@SnSSe@C anode contributes extraordinary reversible capacity, wonderful cyclic lifespan with 83.4% capacity retention over 2000 cycles at 20.0 A g-1, and exceptional rate capability. A series of correlated kinetic investigations and ex situ characterizations deeply reveal the underlying springheads for the ion-transport kinetics, as well as synthetically elucidate phase-transformation mechanism of the ANDC@SnSSe@C. Furthermore, the ANDC@SnSSe@C-based sodium ion full cell and hybrid capacitor offer high-capacity contribution and remarkable energy-density output, indicative of its great practicability.
Collapse
Affiliation(s)
- Wenxi Zhao
- School of Electronic Information Engineering, Yangtze Normal University, Fuling, Chongqing, 408100, China
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Xiaoqing Ma
- School of Electronic Information Engineering, Yangtze Normal University, Fuling, Chongqing, 408100, China
| | - Xiaodeng Wang
- School of Electronic Information and Electrical Engineering, Chongqing University of Arts and Sciences, Yongchuan, Chongqing, 402160, China
| | - Hao Zhou
- School of Electronic Information Engineering, Yangtze Normal University, Fuling, Chongqing, 408100, China
| | - Xun He
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Yongchao Yao
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Yuchun Ren
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Yongsong Luo
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Dongdong Zheng
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Shengjun Sun
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Qian Liu
- Institute for Advanced Study, Chengdu University, Chengdu, Sichuan, 610106, China
| | - Luming Li
- Institute for Advanced Study, Chengdu University, Chengdu, Sichuan, 610106, China
| | - Wei Chu
- Institute for Advanced Study, Chengdu University, Chengdu, Sichuan, 610106, China
| | - Yan Wang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Xuping Sun
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China
| |
Collapse
|
5
|
Shen S, Chen Y, Gu X, Chen K, Qiu Z, Liu P, Zhang Y, Xiang J, Yang Y, Cao F, Wang C, Wan W, He X, Liang X, Bao N, Chen M, Xia Y, Xia X, Zhang W. Juice Vesicles Bioreactors Technology for Constructing Advanced Carbon-Based Energy Storage. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400245. [PMID: 38377331 DOI: 10.1002/adma.202400245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/02/2024] [Indexed: 02/22/2024]
Abstract
The construction of high-quality carbon-based energy materials through biotechnology has always been an eager goal of the scientific community. Herein, juice vesicles bioreactors (JVBs) bio-technology based on hesperidium (e.g., pomelo, waxberry, oranges) is first reported for preparation of carbon-based composites with controllable components, adjustable morphologies, and sizes. JVBs serve as miniature reaction vessels that enable sophisticated confined chemical reactions to take place, ultimately resulting in the formations of complex carbon composites. The newly developed approach is highly versatile and can be compatible with a wide range of materials including metals, alloys, and metal compounds. The growth and self-assembly mechanisms of carbon composites via JVBs are explained. For illustration, NiCo alloy nanoparticles are successfully in situ implanted into pomelo vesicles crosslinked carbon (PCC) by JVBs, and their applications as sulfur/carbon cathodes for lithium-sulfur batteries are explored. The well-designed PCC/NiCo-S electrode exhibits superior high-rate properties and enhanced long-term stability. Synergistic reinforcement mechanisms on transportation of ions/electrons of interface reactions and catalytic conversion of lithium polysulfides arising from metal alloy and carbon architecture are proposed with the aid of DFT calculations. The research provides a novel biosynthetic route to rational design and fabrication of carbon composites for advanced energy storage.
Collapse
Affiliation(s)
- Shenghui Shen
- School of Materials Science and & Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
- Narada Powder Source Co. Ltd., Hangzhou, 310014, P. R. China
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu, 210009, P. R. China
| | - Yanbin Chen
- School of Materials Science and & Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Xinyi Gu
- School of Materials Science and & Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Ketong Chen
- School of Materials Science and & Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Zhong Qiu
- Institute of Fundamental and Frontier Science, University of Electronic Science and Technology of China, Chengdu, 611371, P. R. China
| | - Ping Liu
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Yongqi Zhang
- Institute of Fundamental and Frontier Science, University of Electronic Science and Technology of China, Chengdu, 611371, P. R. China
| | - Jiayuan Xiang
- Narada Powder Source Co. Ltd., Hangzhou, 310014, P. R. China
| | - Yefeng Yang
- School of Materials Science and & Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Feng Cao
- Department of Engineering Technology, Huzhou College, Huzhou, 313000, P. R. China
| | - Chen Wang
- Zhejiang Academy of Science and Technology for Inspection & Quarantine, Hangzhou, 311215, P. R. China
| | - Wangjun Wan
- Zhejiang Academy of Science and Technology for Inspection & Quarantine, Hangzhou, 311215, P. R. China
| | - Xinping He
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Xinqi Liang
- Institute of Fundamental and Frontier Science, University of Electronic Science and Technology of China, Chengdu, 611371, P. R. China
- Key Laboratory of Engineering Dielectric and Applications, School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin, 150080, P. R. China
| | - Ningzhong Bao
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu, 210009, P. R. China
| | - Minghua Chen
- Key Laboratory of Engineering Dielectric and Applications, School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin, 150080, P. R. China
| | - Yang Xia
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Xinhui Xia
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Wenkui Zhang
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| |
Collapse
|
6
|
Li J, Yu H, Zhao Y, Zhu K, Zhu C, Ren J, Chou S, Chen Y. Stress Dissipation Driven by Multi-Interface Built-In Electric Fields and Desert-Rose-Like Structure for Ultrafast and Superior Long-Term Sodium Ion Storage. Angew Chem Int Ed Engl 2024; 63:e202318000. [PMID: 38226788 DOI: 10.1002/anie.202318000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/02/2024] [Accepted: 01/16/2024] [Indexed: 01/17/2024]
Abstract
The kinetics and durability of conversion-based anodes greatly depend on the intrinsic stress regulating ability of the electrode materials, which has been significantly neglected. Herein, a stress dissipation strategy driven by multi-interface built-in electric fields (BEFs) and architected structure, is innovatively proposed to design ultrafast and long-term sodium ion storage anodes. Binary Mo/Fe sulfide heterostructured nanorods with multi-interface BEFs and staggered cantilever configuration are fabricated to prove our concept. Multi-physics simulations and experimental results confirm that the inner stress in multiple directions can be dissipated by the multi-interface BEFs at the micro-scale, and by the staggered cantilever structure at the macro-scale, respectively. As a result, our designed heterostructured nanorods anode exhibits superb rate capability (332.8 mAh g-1 at 10.0 A g-1 ) and durable cyclic stability over 900 cycles at 5.0 A g-1 , outperforming other metal chalcogenides. This proposed stress dissipation strategy offers a new insight for developing stable structures for conversion-based anodes.
Collapse
Affiliation(s)
- Jinhang Li
- Key Laboratory of In-Fiber Integrated Optics (Ministry of Education), College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Huiying Yu
- Laboratory of Superlight Materials and Surface Technology (Ministry of Education), College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Yingying Zhao
- Key Laboratory of In-Fiber Integrated Optics (Ministry of Education), College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001, China
- Laboratory of Superlight Materials and Surface Technology (Ministry of Education), College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Kai Zhu
- Laboratory of Superlight Materials and Surface Technology (Ministry of Education), College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Chunling Zhu
- Laboratory of Superlight Materials and Surface Technology (Ministry of Education), College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Jing Ren
- Key Laboratory of In-Fiber Integrated Optics (Ministry of Education), College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Shulei Chou
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Yujin Chen
- Key Laboratory of In-Fiber Integrated Optics (Ministry of Education), College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001, China
- Laboratory of Superlight Materials and Surface Technology (Ministry of Education), College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
| |
Collapse
|
7
|
Zhao W, Ma X, Gao L, Wang X, Luo Y, Wang Y, Li T, Ying B, Zheng D, Sun S, Liu Q, Zheng Y, Sun X, Feng W. Hierarchical Architecture Engineering of Branch-Leaf-Shaped Cobalt Phosphosulfide Quantum Dots: Enabling Multi-Dimensional Ion-Transport Channels for High-Efficiency Sodium Storage. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305190. [PMID: 37640375 DOI: 10.1002/adma.202305190] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/13/2023] [Indexed: 08/31/2023]
Abstract
New-fashioned electrode hosts for sodium-ion batteries (SIBs) are elaborately engineered to involve multifunctional active components that can synergistically conquer the critical issues of severe volume deformation and sluggish reaction kinetics of electrodes toward immensely enhanced battery performance. Herein, it is first reported that single-phase CoPS, a new metal phosphosulfide for SIBs, in the form of quantum dots, is successfully introduced into a leaf-shaped conductive carbon nanosheet, which can be further in situ anchored on a 3D interconnected branch-like N-doped carbon nanofiber (N-CNF) to construct a hierarchical branch-leaf-shaped CoPS@C@N-CNF architecture. Both double carbon decorations and ultrafine crystal of the CoPS in-this exquisite architecture hold many significant superiorities, such as favorable train-relaxation, fast interfacial ion-migration, multi-directional migration pathways, and sufficiently exposed Na+ -storage sites. In consequence, the CoPS@C@N-CNF affords remarkable long-cycle durability over 10 000 cycles at 20.0 A g-1 and superior rate capability. Meanwhile, the CoPS@C@N-CNF-based sodium-ion full cell renders the potential proof-of-feasibility for practical applications in consideration of its high durability over a long-term cyclic lifespan with remarkable reversible capacity. Moreover, the phase transformation mechanism of the CoPS@C@N-CNF and fundamental springhead of the enhanced performance are disclosed by in situ X-ray diffraction, ex situ high-resolution TEM, and theoretical calculations.
Collapse
Affiliation(s)
- Wenxi Zhao
- School of Electronic Information Engineering, Yangtze Normal University, Fuling, Chongqing, 408100, China
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Xiaoqing Ma
- School of Electronic Information Engineering, Yangtze Normal University, Fuling, Chongqing, 408100, China
| | - Lixia Gao
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, College of Pharmacy, Chongqing University of Arts and Sciences, Yongchuan, Chongqing, 402160, China
| | - Xiaodeng Wang
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, College of Pharmacy, Chongqing University of Arts and Sciences, Yongchuan, Chongqing, 402160, China
| | - Yongsong Luo
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Yan Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Tingshuai Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Binwu Ying
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Dongdong Zheng
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Shengjun Sun
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Qian Liu
- Institute for Advanced Study, Chengdu University, Chengdu, Sichuan, 610106, China
| | - Yinyuan Zheng
- Huzhou Key Laboratory of Translational Medicine, Department of General Surgery, First People's Hospital affiliated to Huzhou University, Huzhou, Zhejiang, 313000, China
| | - Xuping Sun
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Wenming Feng
- Huzhou Key Laboratory of Translational Medicine, Department of General Surgery, First People's Hospital affiliated to Huzhou University, Huzhou, Zhejiang, 313000, China
| |
Collapse
|
8
|
Rao Y, Zhu K, Zhang G, Dang F, Chen J, Liang P, Kong Z, Guo J, Zheng H, Zhang J, Yan K, Liu J, Wang J. Interfacial Engineering of MoS 2/V 2O 3@C-rGO Composites with Pseudocapacitance-Enhanced Li/Na-Ion Storage Kinetics. ACS APPLIED MATERIALS & INTERFACES 2023; 15:55734-55744. [PMID: 37985366 DOI: 10.1021/acsami.3c12385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Molybdenum sulfide has been widely investigated as a prospective anode material for Li+/Na+ storage because of its unique layered structure and high theoretical capacity. However, the enormous volume variation and poor conductivity limit the development of molybdenum sulfide. The rational design of a heterogeneous interface is of great importance to improve the structure stability and electrical conductivity of electrode materials. Herein, a high-temperature mixing method is implemented in the hydrothermal process to synthesize the hybrid structure of MoS2/V2O3@carbon-graphene (MoS2/V2O3@C-rGO). The MoS2/V2O3@C-rGO composites exhibit superior Li+/Na+ storage performance due to the construction of the interface between the MoS2 and V2O3 components and the introduction of carbon materials, delivering a prominent reversible capacity of 564 mAh g-1 at 1 A g-1 after 600 cycles for lithium-ion batteries and 376.3 mAh g-1 at 1 A g-1 after 450 cycles for sodium-ion batteries. Theoretical calculations confirm that the construction of the interface between the MoS2 and V2O3 components can accelerate the reaction kinetics and enhance the charge-ionic transport of molybdenum sulfide. The results illustrate that interfacial engineering may be an effective guide to obtain high-performance electrode materials for Li+/Na+ storage.
Collapse
Affiliation(s)
- Yu Rao
- State Key Laboratory of Mechanics and Control for Aerospace Structures, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Kongjun Zhu
- State Key Laboratory of Mechanics and Control for Aerospace Structures, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Guoliang Zhang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061, China
| | - Feng Dang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061, China
| | - Jiatao Chen
- State Key Laboratory of Mechanics and Control for Aerospace Structures, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Penghua Liang
- State Key Laboratory of Mechanics and Control for Aerospace Structures, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Zhihan Kong
- State Key Laboratory of Mechanics and Control for Aerospace Structures, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Jun Guo
- State Key Laboratory of Mechanics and Control for Aerospace Structures, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Hongjuan Zheng
- State Key Laboratory of Mechanics and Control for Aerospace Structures, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Jie Zhang
- State Key Laboratory of Mechanics and Control for Aerospace Structures, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Kang Yan
- State Key Laboratory of Mechanics and Control for Aerospace Structures, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Jinsong Liu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Jing Wang
- State Key Laboratory of Mechanics and Control for Aerospace Structures, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| |
Collapse
|
9
|
Zheng T, Hu P, Wang Z, Guo T. 2D Amorphous Iron Selenide Sulfide Nanosheets for Stable and Rapid Sodium-Ion Storage. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2306577. [PMID: 37572373 DOI: 10.1002/adma.202306577] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/03/2023] [Indexed: 08/14/2023]
Abstract
Sodium ion batteries (SIBs) suffer from large electrode volume change and sluggish redox kinetics for the relatively large ionic radius of sodium ions, raising a significant challenge to improve their long-term cyclability and rate capacity. Here, it is proposed to apply 2D amorphous iron selenide sulfide nanosheets (a-FeSeS NSs) as an anode material for SIBs and demonstrate that they exhibit remarkable rate capability of 528.7 mAh g-1 at 1 A g-1 and long-life cycle (10 000 cycles) performance (300.4 mAh g-1 ). This performance is much more superior to that of the previously reported Fe-based anode materials, which is attributed to their amorphous structure that alleviates volume expansion of electrode, 2D nature that facilitates electrons/ions transfer, and the S/Se double anions that offer more reaction sites and stabilize the amorphous structure. Such a 2D amorphous strategy provides a fertile platform for structural engineering of other electrode materials, making a more secure energy prospect closer to a reality.
Collapse
Affiliation(s)
- Tian Zheng
- School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Pengfei Hu
- School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Zhongchang Wang
- Department of Advanced Materials and Computing, International Iberian Nanotechnology Laboratory (INL), 4715-330, Braga, Portugal
| | - Tianqi Guo
- Department of Advanced Materials and Computing, International Iberian Nanotechnology Laboratory (INL), 4715-330, Braga, Portugal
| |
Collapse
|
10
|
Li J, Zhang Y, Mao Y, Zhao Y, Kan D, Zhu K, Chou S, Zhang X, Zhu C, Ren J, Chen Y. Dual-Functional Z-Scheme TiO 2 @MoS 2 @NC Multi-Heterostructures for Photo-Driving Ultrafast Sodium Ion Storage. Angew Chem Int Ed Engl 2023; 62:e202303056. [PMID: 37243514 DOI: 10.1002/anie.202303056] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/17/2023] [Accepted: 05/25/2023] [Indexed: 05/29/2023]
Abstract
Exploiting dual-functional photoelectrodes to harvest and store solar energy is a challenging but efficient way for achieving renewable energy utilization. Herein, multi-heterostructures consisting of N-doped carbon coated MoS2 nanosheets supported by tubular TiO2 with photoelectric conversion and electronic transfer interfaces are designed. When a photo sodium ion battery (photo-SIB) is assembled based on the heterostructures, its capacity increases to 399.3 mAh g-1 with a high photo-conversion efficiency of 0.71 % switching from dark to visible light at 2.0 A g-1 . Remarkably, the photo-SIB can be recharged by light only, with a striking capacity of 231.4 mAh g-1 . Experimental and theoretical results suggest that the proposed multi-heterostructures can enhance charge transfer kinetics, maintain structural stability, and facilitate the separation of photo-excited carriers. This work presents a new strategy to design dual-functional photoelectrodes for efficient use of solar energy.
Collapse
Affiliation(s)
- Jinhang Li
- Key Laboratory of In-Fiber Integrated Optics (Ministry of Education), College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Yuqiang Zhang
- Key Laboratory of In-Fiber Integrated Optics (Ministry of Education), College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Yiyang Mao
- Laboratory of Superlight Materials and Surface Technology (Ministry of Education), College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Yingying Zhao
- Key Laboratory of In-Fiber Integrated Optics (Ministry of Education), College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001, China
- Laboratory of Superlight Materials and Surface Technology (Ministry of Education), College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Dongxiao Kan
- Northwest Institute for Non-Ferrous Metal Research Xi'an, Shaanxi, 710016, China
| | - Kai Zhu
- Laboratory of Superlight Materials and Surface Technology (Ministry of Education), College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Shulei Chou
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University Wenzhou, Zhejiang, 325035, China
| | - Xitian Zhang
- Key Laboratory for Photonic and Electronic Bandgap Materials (Ministry of Education), School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, China
| | - Chunling Zhu
- Laboratory of Superlight Materials and Surface Technology (Ministry of Education), College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Jing Ren
- Key Laboratory of In-Fiber Integrated Optics (Ministry of Education), College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Yujin Chen
- Key Laboratory of In-Fiber Integrated Optics (Ministry of Education), College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001, China
- Laboratory of Superlight Materials and Surface Technology (Ministry of Education), College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
| |
Collapse
|
11
|
Shen S, Chen Y, Zhou J, Zhang H, Xia X, Yang Y, Zhang Y, Noori A, Mousavi MF, Chen M, Xia Y, Zhang W. Microbe‐Mediated Biosynthesis of Multidimensional Carbon‐Based Materials for Energy Storage Applications. ADVANCED ENERGY MATERIALS 2023; 13. [DOI: 10.1002/aenm.202204259] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Indexed: 01/06/2025]
Abstract
AbstractBiosynthesis methods are considered to be a promising technology for engineering new carbon‐based materials or redesigning the existing ones for specific purposes with the aid of synthetic biology. Lots of biosynthetic processes including metabolism, fermentation, biological mineralization, and gene editing have been adopted to prepare novel carbon‐based materials with exceptional properties that cannot be realized by traditional chemical methods, because microbes evolved to possess special abilities to modulate components/structure of materials. In this review, the recent development on carbon‐based materials prepared via different biosynthesis methods and various microbe factories (such as bacteria, yeasts, fungus, viruses, proteins) are systematically reviewed. The types of biotechniques and the corresponding mechanisms for the synthesis of carbon‐based materials are outlined. This review also focuses on the structural design and compositional engineering of carbon‐based nanostructures (e.g., metals, semiconductors, metal oxides, metal sulfides, phosphates, Mxenes) derived from biotechnology and their applications in electrochemical energy storage devices. Moreover, the relationship of the architecture–composition–electrochemical behavior and performance enhancement mechanism is also deeply discussed and analyzed. Finally, the development perspectives and challenges on the biosynthetic carbons are proposed and may pave a new avenue for rational design of advanced materials for the low‐carbon economy.
Collapse
Affiliation(s)
- Shenghui Shen
- School of Materials Science and Engineering Zhejiang Sci‐Tech University Hangzhou 310018 China
| | - Yanbin Chen
- School of Materials Science and Engineering Zhejiang Sci‐Tech University Hangzhou 310018 China
| | - Jiancang Zhou
- Department of Critical Care Medicine Sir Run Run Shaw Hospital Zhejiang University School of Medicine Hangzhou 310016 China
| | - Haomiao Zhang
- Department of Critical Care Medicine Sir Run Run Shaw Hospital Zhejiang University School of Medicine Hangzhou 310016 China
- State Key Laboratory of Silicon Materials Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province School of Materials Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Xinhui Xia
- Department of Critical Care Medicine Sir Run Run Shaw Hospital Zhejiang University School of Medicine Hangzhou 310016 China
- State Key Laboratory of Silicon Materials Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province School of Materials Science and Engineering Zhejiang University Hangzhou 310027 China
- College of Materials Science and Engineering Zhejiang University of Technology Hangzhou 310014 China
| | - Yefeng Yang
- School of Materials Science and Engineering Zhejiang Sci‐Tech University Hangzhou 310018 China
| | - Yongqi Zhang
- Institute of Fundamental and Frontier Science University of Electronic Science and Technology of China Chengdu 611371 China
| | - Abolhassan Noori
- Department of Chemistry Faculty of Basic Sciences Tarbiat Modares University Tehran 14117‐13116 Iran
| | - Mir F. Mousavi
- Department of Chemistry Faculty of Basic Sciences Tarbiat Modares University Tehran 14117‐13116 Iran
| | - Minghua Chen
- Key Laboratory of Engineering Dielectric and Applications (Ministry of Education) School of Electrical and Electronic Engineering Harbin University of Science and Technology Harbin 150080 P. R. China
| | - Yang Xia
- College of Materials Science and Engineering Zhejiang University of Technology Hangzhou 310014 China
| | - Wenkui Zhang
- College of Materials Science and Engineering Zhejiang University of Technology Hangzhou 310014 China
| |
Collapse
|
12
|
Sun Y, Sun J, Sanchez JS, Xia Z, Xiao L, Chen R, Palermo V. Surface chemistry and structure manipulation of graphene-related materials to address the challenges of electrochemical energy storage. Chem Commun (Camb) 2023; 59:2571-2583. [PMID: 36749576 DOI: 10.1039/d2cc06772b] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Energy storage devices are important components in portable electronics, electric vehicles, and the electrical distribution grid. Batteries and supercapacitors have achieved great success as the spearhead of electrochemical energy storage devices, but need to be further developed in order to meet the ever-increasing energy demands, especially attaining higher power and energy density, and longer cycling life. Rational design of electrode materials plays a critical role in developing energy storage systems with higher performance. Graphene, the well-known 2D allotrope of carbon, with a unique structure and excellent properties has been considered a "magic" material with its high energy storage capability, which can not only aid in addressing the issues of the state-of-the-art lithium-ion batteries and supercapacitors, but also be crucial in the so-called post Li-ion battery era covering different technologies, e.g., sodium ion batteries, lithium-sulfur batteries, structural batteries, and hybrid supercapacitors. In this feature article, we provide a comprehensive overview of the strategies developed in our research to create graphene-based composite electrodes with better ionic conductivity, electron mobility, specific surface area, mechanical properties, and device performance than state-of-the-art electrodes. We summarize the strategies of structure manipulation and surface modification with specific focus on tackling the existing challenges in electrodes for batteries and supercapacitors by exploiting the unique properties of graphene-related materials.
Collapse
Affiliation(s)
- Yue Sun
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Jinhua Sun
- Department of Industrial and Materials Science, Chalmers University of Technology, SE-412 96 Göteborg, Sweden.
| | - Jaime S Sanchez
- Electrochemical Processes Unit, IMDEA Energy Institute, Avda. Ramon de la Sagra 3, Parque Tecnologico de Mostoles, 28935, Mostoles, Spain
| | - Zhenyuan Xia
- Department of Industrial and Materials Science, Chalmers University of Technology, SE-412 96 Göteborg, Sweden. .,Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, I-40129 Bologna, Italy.
| | - Linhong Xiao
- Department of Organismal Biology, Uppsala University, SE-752 36 Uppsala, Sweden
| | - Ruiqi Chen
- Department of Industrial and Materials Science, Chalmers University of Technology, SE-412 96 Göteborg, Sweden.
| | - Vincenzo Palermo
- Department of Industrial and Materials Science, Chalmers University of Technology, SE-412 96 Göteborg, Sweden. .,Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, I-40129 Bologna, Italy.
| |
Collapse
|
13
|
Zhou S, Zheng Q, Tang S, Sun SG, Liao HG. Liquid cell electrochemical TEM: Unveiling the real-time interfacial reactions of advanced Li-metal batteries. J Chem Phys 2022; 157:230901. [PMID: 36550040 DOI: 10.1063/5.0129238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Li metal batteries (LMBs) reveal great application prospect in next-generation energy storage, because of their high energy density and low electrochemical potential, especially when paired with elemental sulfur and oxygen cathodes. Complex interfacial reactions have long been a big concern because of the elusive formation/dissolution of Li metal at the solid-electrolyte interface (SEI) layer, which leads to battery degradation under practical operating conditions. To precisely track the reactions at the electrode/electrolyte interfaces, in the past ten years, high spatio-temporal resolution, in situ electrochemical transmission electron microscopy (EC-TEM) has been developed. A preliminary understanding of the structural and chemical variation of Li metal during nucleation/growth and SEI layer formation has been obtained. In this perspective, we give a brief introduction of liquid cell development. Then, we comparably discuss the different configurations of EC-TEM based on open-cell and liquid-cell, and focus on the recent advances of liquid-cell EC-TEM and its investigation in the electrodes, electrolytes, and SEI. Finally, we present a perspective of liquid-cell EC-TEM for future LMB research.
Collapse
Affiliation(s)
- Shiyuan Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials, Xiamen University, Xiamen 361005, People's Republic of China
| | - Qizheng Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials, Xiamen University, Xiamen 361005, People's Republic of China
| | - Shi Tang
- State Key Laboratory of Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials, Xiamen University, Xiamen 361005, People's Republic of China
| | - Shi-Gang Sun
- State Key Laboratory of Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials, Xiamen University, Xiamen 361005, People's Republic of China
| | - Hong-Gang Liao
- State Key Laboratory of Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials, Xiamen University, Xiamen 361005, People's Republic of China
| |
Collapse
|
14
|
Fu Z, Liu W, Huang C, Mei T. A Review of Performance Prediction Based on Machine Learning in Materials Science. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12172957. [PMID: 36079994 PMCID: PMC9457802 DOI: 10.3390/nano12172957] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/07/2022] [Accepted: 08/24/2022] [Indexed: 05/11/2023]
Abstract
With increasing demand in many areas, materials are constantly evolving. However, they still have numerous practical constraints. The rational design and discovery of new materials can create a huge technological and social impact. However, such rational design and discovery require a holistic, multi-stage design process, including the design of the material composition, material structure, material properties as well as process design and engineering. Such a complex exploration using traditional scientific methods is not only blind but also a huge waste of time and resources. Machine learning (ML), which is used across data to find correlations in material properties and understand the chemical properties of materials, is being considered a new way to explore the materials field. This paper reviews some of the major recent advances and applications of ML in the field of properties prediction of materials and discusses the key challenges and opportunities in this cross-cutting area.
Collapse
Affiliation(s)
- Ziyang Fu
- School of Computer Science and Information Engineering, Hubei University, Wuhan 430062, China
- Hubei Software Engineering Technology Research Center, Wuhan 430062, China
- Hubei Engineering Research Center for Smart Government and Artificial Intelligence Application, Wuhan 430062, China
| | - Weiyi Liu
- School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Chen Huang
- School of Computer Science and Information Engineering, Hubei University, Wuhan 430062, China
- Hubei Software Engineering Technology Research Center, Wuhan 430062, China
- Hubei Engineering Research Center for Smart Government and Artificial Intelligence Application, Wuhan 430062, China
- Correspondence: (C.H.); (T.M.)
| | - Tao Mei
- School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Wuhan 430062, China
- Key Laboratory for the Green Preparation and Application of Functional Materials, Wuhan 430062, China
- Correspondence: (C.H.); (T.M.)
| |
Collapse
|
15
|
Hu X, Zhu R, Wang B, Liu X, Wang H. Dual Regulation of Metal Doping and Adjusting Cut-Off Voltage for MoSe 2 to Achieve Reversible Sodium Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200437. [PMID: 35714299 DOI: 10.1002/smll.202200437] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/19/2022] [Indexed: 06/15/2023]
Abstract
MoSe2 , as a typical 2D material, possesses tremendous potential in Na-ion batteries (SIBs) owing to larger interlayer distance, more favorable band gap structure, and higher theoretical specific capacity than other analogs. Nevertheless, the low intrinsic electronic conductivity and irreversible conversion of discharged products of Mo/Na2 Se to MoSe2 seriously hamper its electrochemical performance. Herein, through a facile hydrothermal method combined with calcination process, Sn-doped MoSe2 nanosheets grown on graphene substrate in the vertical direction are fabricated. Benefiting from the improved electronic conductivity contributed by the abundant defects and expanded interlamellar spacing of MoSe2 originated from Sn doping, combined with a smart strategy of raising discharge cut-off voltage to 0.2 V during the actual performance testing for SIBs, the as-fabricated anode material delivers superior Na-ions storage performance in terms of electrons/ions transfer, reversible sodium storage as well as cycle stability. An ultra-stable reversible specific capacity of 268.5 mAh g-1 at 1 A g-1 can be maintained after 1600 cycles. Moreover, the great sodium storage property in the SIB full-cell system of the as-obtained nanocomposite illustrates practical potential. Density functional theory calculation and in situ/ex situ measurements are employed to further reveal the storage mechanism and process of Na-ions.
Collapse
Affiliation(s)
- Xuejiao Hu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials science, Northwest University, Xi'an, 710127, P. R. China
- Shaanxi Joint Lab of Graphene (NWU), Xi'an, 710127, P. R. China
| | - Ruiyu Zhu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials science, Northwest University, Xi'an, 710127, P. R. China
- Shaanxi Joint Lab of Graphene (NWU), Xi'an, 710127, P. R. China
| | - Beibei Wang
- Shaanxi Joint Lab of Graphene (NWU), Xi'an, 710127, P. R. China
- State Key Lab Incubation Base of Photoelectric Technology and Functional Materials, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, Northwest University, Xi'an, 710069, P. R. China
| | - Xiaojie Liu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials science, Northwest University, Xi'an, 710127, P. R. China
- Shaanxi Joint Lab of Graphene (NWU), Xi'an, 710127, P. R. China
| | - Hui Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials science, Northwest University, Xi'an, 710127, P. R. China
- Shaanxi Joint Lab of Graphene (NWU), Xi'an, 710127, P. R. China
| |
Collapse
|
16
|
Huang J, Yao Y, Huang M, Zhang Y, Xie Y, Li M, Yang L, Wei X, Li Z. Creating Unidirectional Fast Ion Diffusion Channels in G/NiS 2 -MoS 2 Heterostructures for High-Performance Sodium-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200782. [PMID: 35373474 DOI: 10.1002/smll.202200782] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/10/2022] [Indexed: 06/14/2023]
Abstract
Exploring novel electrode composites and their unique interface physics plays a significant role in tuning electrochemical properties for boosting the performance of sodium-ion batteries (SIBs). Herein, mixed-dimensional G/NiS2 -MoS2 heterostructures are synthesized in a low-cost meteorological vulcanization process. The stable graphene supporting layer and nanowire heterostructure guarantee an outstanding structural stability to tolerate certain volume changes during the charge/discharge process. The rational construction of NiS2 -MoS2 heterostructures induces abundant interfaces and unique ion diffusion channels, which render fast electrochemical kinetics and superior reversible capacities for high-performance SIBs. Interestingly, theoretical studies reveal that the anisotropic diffusion barriers create unidirectional "high-speed" channels, which can lead to ordered and fast Na+ insertion/extraction in designed heterostructures. G/NiS2 -MoS2 anode exhibits a high capacity of 509.6 mA h g-1 after 500 cycles and a coulombic efficiency >99% at 0.5 A g-1 , which also displays excellent cycling performance with the capacity of 383.8 mA h g-1 after the 1000 cycles at 5 A g-1 . Furthermore, full cells are constructed exhibiting a high capacity of 70 mA h g-1 at 0.1 A g-1 after 150 cycles and applied to light LEDs. This study provides a feasible strategy of constructing mixed-dimensional heterostructures for SIBs with excellent performance and a long service lifetime.
Collapse
Affiliation(s)
- Jianhua Huang
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Yongsheng Yao
- Department of Physics and Laboratory for Quantum Engineering and Micro-Nano Energy Technology, Xiangtan University, Xiangtan, Hunan, 411105, China
| | - Ming Huang
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Yufei Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Yunfei Xie
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Mingliang Li
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Liuli Yang
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Xiaolin Wei
- Department of Physics and Laboratory for Quantum Engineering and Micro-Nano Energy Technology, Xiangtan University, Xiangtan, Hunan, 411105, China
| | - Ziwei Li
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
- Skate Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Shanghai, 201899, China
| |
Collapse
|
17
|
Cai M, Zhang H, Zhang Y, Xiao B, Wang L, Li M, Wu Y, Sa B, Liao H, Zhang L, Chen S, Peng DL, Wang MS, Zhang Q. Boosting the potassium-ion storage performance enabled by engineering of hierarchical MoSSe nanosheets modified with carbon on porous carbon sphere. Sci Bull (Beijing) 2022; 67:933-945. [DOI: 10.1016/j.scib.2022.02.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/24/2022] [Accepted: 02/14/2022] [Indexed: 11/30/2022]
|
18
|
Liu X, Ji H, Peng B, Cui Z, Liu Q, Zhao Q, Yang L, Wang D. Cotton textile inspires MoS 2@reduced graphene oxide anodes towards high-rate capability or long-cycle stability sodium/lithium-ion batteries. Inorg Chem Front 2022. [DOI: 10.1039/d2qi02010f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Textile-based electrodes show superior energy storage performances, including high-rate capability for Na-ion batteries and long-cycling stability for Li-ion batteries, as elucidated by morphology differences that sodiation/desodiation brings intense nanomachine effect.
Collapse
Affiliation(s)
- Xue Liu
- Key Laboratory of Textile Fiber and Products (Wuhan Textile University), Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Haicong Ji
- Key Laboratory of Textile Fiber and Products (Wuhan Textile University), Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Bin Peng
- Key Laboratory of Textile Fiber and Products (Wuhan Textile University), Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Zhaoning Cui
- Key Laboratory of Textile Fiber and Products (Wuhan Textile University), Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Qiongzhen Liu
- Key Laboratory of Textile Fiber and Products (Wuhan Textile University), Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Qinghua Zhao
- Key Laboratory of Textile Fiber and Products (Wuhan Textile University), Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Liyan Yang
- Key Laboratory of Textile Fiber and Products (Wuhan Textile University), Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Dong Wang
- Key Laboratory of Textile Fiber and Products (Wuhan Textile University), Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China
| |
Collapse
|