1
|
Kim SH, Kim CH, Lee CH, Lee J, Kang H, Cho S, Jang WH, Park M, Ha M, Kim J, Um W, Kwon S, Lee S, Kim JW, Chung CH, Park JH. Glycoengineered stem cell-derived extracellular vesicles for targeted therapy of acute kidney injury. Biomaterials 2025; 318:123165. [PMID: 39923538 DOI: 10.1016/j.biomaterials.2025.123165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/20/2025] [Accepted: 02/03/2025] [Indexed: 02/11/2025]
Abstract
Acute kidney injury (AKI) is associated with high morbidity and mortality rates, primarily due to the lack of effective therapeutic options for kidney repair. To restore the biological function of injured kidney, there is a need to protect renal tubular epithelial cells (RTECs) and regulate M1 macrophages, responsible for progress of AKI. Herein, based on metabolic glycoengineering-mediated click chemistry, we prepare the engineered extracellular vesicles (pSEVs), derived from PEGylated hyaluronic acid (HA)-modified mesenchymal stem cells. Owing to their cell-protective and anti-inflammatory properties, pSEVs effectively prevent the apoptosis of RTECs and inhibit the polarization of macrophages into an inflammatory phenotype in vitro. When systemically administered into the cisplatin-induced AKI animal model, pSEVs selectively accumulate in injured kidneys via HA-mediated binding to CD44 and toll-like receptor4 which are over-expressed on RTECs and M1 macrophages, respectively. This targeted delivery efficiently alleviates AKI-related symptoms, as evidenced by delayed kidney weight reduction, and decreased levels of creatinine, blood urea nitrogen, and neutrophil gelatinase-associated lipocalin. Overall, pSEVs show potent anti-inflammatory effects and specific targeting to injured kidneys, presenting a considerable potential as the therapeutics for AKI.
Collapse
Affiliation(s)
- So Hee Kim
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea
| | - Chan Ho Kim
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea
| | - Chang Hyun Lee
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea
| | - Jungmi Lee
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea
| | - Heegun Kang
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea
| | - Sohyun Cho
- Department of MetaBioHealth, SKKU Institute for Convergence, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea
| | - Won Ho Jang
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea
| | - Minsung Park
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea
| | - Minji Ha
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea
| | - Jiyeon Kim
- Department of MetaBioHealth, SKKU Institute for Convergence, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea
| | - Wooram Um
- Department of Biotechnology, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan, 48513, Republic of Korea
| | - Seunglee Kwon
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea
| | - Sangho Lee
- Department of Biological Sciences, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Republic of Korea Suwon, Suwon, 16419, Republic of Korea
| | - Jin Woong Kim
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea
| | - Chan-Hwa Chung
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea
| | - Jae Hyung Park
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea; Department of MetaBioHealth, SKKU Institute for Convergence, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea; Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea.
| |
Collapse
|
2
|
Jeong S, Kang JJ, Kim K, lee MH, Cha M, Kim SH, Park J. Supercritical Fluid-Processed Multifunctional Hybrid Decellularized Extracellular Matrix with Chitosan Hydrogel for Improving Photoaged Dermis Microenvironment. Adv Healthc Mater 2025; 14:e2403213. [PMID: 40109208 PMCID: PMC12023828 DOI: 10.1002/adhm.202403213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 01/09/2025] [Indexed: 03/22/2025]
Abstract
To address the demand for reconstructive procedures in extensive subcutaneous tissue defects and significant dermis matrix loss, vascularized adipose tissue regeneration is essential for maintaining volume after material degradation. Accordingly, a double-crosslinked hydrogel that combines polyethylene glycol (PEG)-crosslinked carboxymethyl chitosan (CMC) with a hybrid decellularized extracellular matrix (dECM) is developed. The dECM, sourced from porcine adipose and cardiac tissues, processed using a supercritical fluid technique (scCO2-EtOH) retains 1.5-5-fold more angiogenic and adipogenic cytokines than that processed using traditional methods. This hybrid dECM-based filler demonstrates excellent physical properties and injectability, with injection forces being significantly less than that for crosslinked hyaluronic acid (HA) fillers. Upon incubation at 37 °C, the storage modulus of the fillers increases substantially, eventually enhancing their moldability from additional crosslinking and the thermosensitive nature of collagen. Assessments in a UVB-induced photoaging mouse model indicate that the material maintains superior shape stability, durability, and supports vascularized tissue regeneration, reduces inflammation, and enhances VEGF expression and ECM maturation more effectively compared with that using other fillers. These promising results suggest that the material can serve as a highly effective multifunctional solution for injectable regenerative medical applications and is well-suited for potential clinical trials.
Collapse
Affiliation(s)
- Seol‐Ha Jeong
- Department of Plastic and Reconstructive SurgerySeoul National University Boramae HospitalSeoul National University College of MedicineSeoul07061Republic of Korea
- Bio‐max InstituteSeoul National UniversitySeoul08826Republic of Korea
| | - Jae Jun Kang
- R&D CenterMedifab Co. Ltd5 Gasan digital 1‐ro, Geumcheon‐guSeoul08594Republic of Korea
| | - Ki‐Myo Kim
- Department of Plastic and Reconstructive SurgerySeoul National University Boramae HospitalSeoul National University College of MedicineSeoul07061Republic of Korea
| | - Mi hyun lee
- Department of Plastic and Reconstructive SurgerySeoul National University Boramae HospitalSeoul National University College of MedicineSeoul07061Republic of Korea
| | - Misun Cha
- R&D CenterMedifab Co. Ltd5 Gasan digital 1‐ro, Geumcheon‐guSeoul08594Republic of Korea
| | - Su Hee Kim
- R&D CenterMedifab Co. Ltd5 Gasan digital 1‐ro, Geumcheon‐guSeoul08594Republic of Korea
| | - Ji‐Ung Park
- Department of Plastic and Reconstructive SurgerySeoul National University Boramae HospitalSeoul National University College of MedicineSeoul07061Republic of Korea
- Bio‐max InstituteSeoul National UniversitySeoul08826Republic of Korea
| |
Collapse
|
3
|
Kim J, Jo T, Nam H, Kim BJ, Nam SM, Kim J, Choi J, Jeong W. Adipose-derived exosomes as a preventative strategy against complications in hyaluronic acid filler applications: A comprehensive in vivo analysis. J Plast Reconstr Aesthet Surg 2025; 102:498-505. [PMID: 39181844 DOI: 10.1016/j.bjps.2024.07.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/19/2024] [Accepted: 07/22/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND The aim of this study was to investigate the impact of exosomes derived from adipose-derived stem cells (ASCs) on complications arising from hyaluronic acid (HA) filler injections. METHODS An HA hydrogel blended with adipose stem cell-derived exosomes was prepared and administered to the inguinal fat pads of 16 C57BL/6J mice. The control group received only HA filler (HA group), and the study group was treated with a combination of HA filler and exosomes (exoHA group). Biopsy was performed 1 week and 1, 2, 3, and 6 months after the injections. The effects were assessed using hematoxylin and eosin and Masson's trichrome staining for histological examination, immunohistochemistry for collagen type I and Vascular Endothelial Growth Factor (VEGF), RNA sequencing, and quantitative real-time polymerase chain reaction (PCR) (Il6, Ifng, Hif1a, Acta2, Col1a1). RESULTS RNA sequencing revealed significant downregulation of the hypoxia (false discovery rate [FDR] q = 0.007), inflammatory response (FDR q = 0.009), TNFα signaling via NFκB (FDR q = 0.007), and IL6 JAK-STAT signaling (FDR q = 0.009) gene sets in the exoHA group. Quantitative PCR demonstrated a decrease in expression of proinflammatory cytokines (Il6, P < 0.05; Hif1a, P < 0.05) and fibrosis markers (Acta2, P < 0.05; Col1a1, P < 0.05) within the exoHA group, indicating reduced inflammation and fibrosis. Compared to the exoHA group, the HA group exhibited a thicker and more irregular capsules surrounding the HA filler after 6 months. CONCLUSION The addition of ASC-derived exosomes to HA fillers significantly reduces inflammation and accelerates collagen capsule maturation, indicating a promising strategy to mitigate the formation of HA filler-related nodules.
Collapse
Affiliation(s)
- Jeonghun Kim
- Department of Plastic and Reconstructive Surgery, Dongsan Hospital, Keimyung University School of Medicine, Daegu, South Korea
| | - Taehee Jo
- Department of Plastic and Reconstructive Surgery, Dongsan Hospital, Keimyung University School of Medicine, Daegu, South Korea
| | - Hajin Nam
- Department of Plastic and Reconstructive Surgery, Dongsan Hospital, Keimyung University School of Medicine, Daegu, South Korea
| | - Byung Jun Kim
- Department of Plastic and Reconstructive Surgery, Institute of Human-Environment Interface Biology, College of Medicine, Seoul Nat'l University, Seoul, South Korea
| | - Seung Min Nam
- Department of Plastic and Reconstructive Surgery, Soonchunhyang University Bucheon Hospital, Bucheon, South Korea
| | - Junhyung Kim
- Department of Plastic and Reconstructive Surgery, Dongsan Hospital, Keimyung University School of Medicine, Daegu, South Korea
| | - Jaehoon Choi
- Department of Plastic and Reconstructive Surgery, Dongsan Hospital, Keimyung University School of Medicine, Daegu, South Korea
| | - Woonhyeok Jeong
- Department of Plastic and Reconstructive Surgery, Dongsan Hospital, Keimyung University School of Medicine, Daegu, South Korea.
| |
Collapse
|
4
|
Xie B, Liu Y, Li X, Yang P, He W. Solubilization techniques used for poorly water-soluble drugs. Acta Pharm Sin B 2024; 14:4683-4716. [PMID: 39664427 PMCID: PMC11628819 DOI: 10.1016/j.apsb.2024.08.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/28/2024] [Accepted: 08/14/2024] [Indexed: 12/13/2024] Open
Abstract
About 40% of approved drugs and nearly 90% of drug candidates are poorly water-soluble drugs. Low solubility reduces the drugability. Effectively improving the solubility and bioavailability of poorly water-soluble drugs is a critical issue that needs to be urgently addressed in drug development and application. This review briefly introduces the conventional solubilization techniques such as solubilizers, hydrotropes, cosolvents, prodrugs, salt modification, micronization, cyclodextrin inclusion, solid dispersions, and details the crystallization strategies, ionic liquids, and polymer-based, lipid-based, and inorganic-based carriers in improving solubility and bioavailability. Some of the most commonly used approved carrier materials for solubilization techniques are presented. Several approved poorly water-soluble drugs using solubilization techniques are summarized. Furthermore, this review summarizes the solubilization mechanism of each solubilization technique, reviews the latest research advances and challenges, and evaluates the potential for clinical translation. This review could guide the selection of a solubilization approach, dosage form, and administration route for poorly water-soluble drugs. Moreover, we discuss several promising solubilization techniques attracting increasing attention worldwide.
Collapse
Affiliation(s)
- Bing Xie
- School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, China
| | - Yaping Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, China
| | - Xiaotong Li
- School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, China
| | - Pei Yang
- School of Science, China Pharmaceutical University, Nanjing 2111198, China
| | - Wei He
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| |
Collapse
|
5
|
Bui VD, Jeon J, Duong VH, Shin S, Lee J, Ghahari F, Kim CH, Jo YJ, Jung WK, Um W, Park JH. Chondroitin sulfate-based microneedles for transdermal delivery of stem cell-derived extracellular vesicles to treat rheumatoid arthritis. J Control Release 2024; 375:105-115. [PMID: 39218160 DOI: 10.1016/j.jconrel.2024.08.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/24/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
For the non-invasive treatment of rheumatoid arthritis (RA), a chondroitin sulfate C (CSC)-based dissolving microneedles (cMN) was prepared to deliver human adipose stem cell-derived extracellular vesicles (hASC-EV) into inflamed joints. Owing to their anti-inflammatory function, the hASC-EV-bearing cMN (EV@cMN) significantly suppressed activated fibroblast-like synoviocytes (aFLS) and M1 macrophages (M1), which are responsible for the progression of RA. In addition, EV@cMN facilitated the chondrogenic differentiation of bone marrow-derived stem cells. In mice with collagen-induced arthritis, EV@cMN efficiently delivered both hASC-EV and CSC to inflamed joints. Interestingly, pro-inflammatory cytokines in the inflamed joints were remarkably downregulated by the synergistic effect of CSC and hASC-EV. Consequently, as judged from the overall clinical score and joint swelling, EV@cMN showed an outstanding therapeutic effect, even comparable to the wild-type mice, without significant adverse effects. Overall, EV@cMN might have therapeutic potential for RA by efficiently delivering CSC and hASC-EV into the inflamed joints in a non-invasive manner.
Collapse
Affiliation(s)
- Van Dat Bui
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Jueun Jeon
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Van Hieu Duong
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Sol Shin
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Jungmi Lee
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Farrokhroo Ghahari
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Chan Ho Kim
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Yu Jin Jo
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Won-Kyo Jung
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence and New-senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan 48513, Republic of Korea
| | - Wooram Um
- Department of Biotechnology, College of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea.
| | - Jae Hyung Park
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea; Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
6
|
Wang Q, Yan H, Zhang J, Tian B, Li W, Xiao J. Agarose-collagen composite microsphere implants: A biocompatible and robust approach for skin tissue regeneration. Int J Biol Macromol 2024; 277:134510. [PMID: 39111473 DOI: 10.1016/j.ijbiomac.2024.134510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/28/2024] [Accepted: 08/03/2024] [Indexed: 08/10/2024]
Abstract
Photoaged skin, a consequence of UV radiation-induced collagen degradation, presents a significant challenge for skin rejuvenation. Synthetic polymer microspheres, while offering collagen regeneration potential, carry risks like granulomas. To overcome this, we developed a novel agarose-collagen composite microsphere implant for skin tissue regeneration. Fabricated using an emulsification-crosslinking method, these microspheres exhibited excellent uniformity and sphericity (with a diameter of ~38.5 μm), as well as attractive injectability. In vitro studies demonstrated their superior biocompatibility, promoting cell proliferation, adhesion, and migration. Further assessments revealed favorable biosafety and blood compatibility. In vivo experiments in photoaged mice showed that implantation of these microspheres effectively reduced wrinkles, increased skin density, and improved elasticity by stimulating fibroblast encapsulation and collagen regeneration. These findings highlight the potential of agarose-collagen microspheres in dermatological and tissue engineering applications, offering a safer alternative for skin rejuvenation.
Collapse
Affiliation(s)
- Qi Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China; Gansu Engineering Research Center of Medical Collagen, Lanzhou, Gansu 730000, PR China
| | - Huiyu Yan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China; Gansu Engineering Research Center of Medical Collagen, Lanzhou, Gansu 730000, PR China
| | - Jingting Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China; Gansu Engineering Research Center of Medical Collagen, Lanzhou, Gansu 730000, PR China
| | - Bei Tian
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China; Gansu Engineering Research Center of Medical Collagen, Lanzhou, Gansu 730000, PR China
| | - Wenhua Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China; Gansu Engineering Research Center of Medical Collagen, Lanzhou, Gansu 730000, PR China
| | - Jianxi Xiao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China; Gansu Engineering Research Center of Medical Collagen, Lanzhou, Gansu 730000, PR China.
| |
Collapse
|
7
|
Lee S, Jung SY, Yoo D, Go D, Park JY, Lee JM, Um W. Alternatives of mesenchymal stem cell-derived exosomes as potential therapeutic platforms. Front Bioeng Biotechnol 2024; 12:1478517. [PMID: 39315312 PMCID: PMC11417005 DOI: 10.3389/fbioe.2024.1478517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 08/26/2024] [Indexed: 09/25/2024] Open
Abstract
With outstanding therapeutic potential in the tissue regeneration and anti-inflammation, mesenchymal stem cell-derived exosomes (MSC-EXOs) have emerged as a prominent therapeutic in recent. However, poor production yield and reproducibility have remained as significant challenges of their practical applications. To surmount these challenges, various alternative materials with stem cell-like functions, have been recently investigated, however, there has been no comprehensive analysis in these alternatives so far. Here, we discuss the recent progress of alternatives of MSC-EXOs, including exosomes and exosome-like nanovesicles from various biological sources such as plants, milk, microbes, and body fluids. Moreover, we extensively compare each alternative by summarizing their unique functions and mode of actions to suggest the expected therapeutic target and future directions for developing alternatives for MSC-EXOs.
Collapse
Affiliation(s)
| | | | | | | | | | - Jong Min Lee
- Department of Biotechnology, College of Fisheries Science, Pukyong National University, Busan, Republic of Korea
| | - Wooram Um
- Department of Biotechnology, College of Fisheries Science, Pukyong National University, Busan, Republic of Korea
| |
Collapse
|
8
|
You DG, Jung JM, Kim CH, An JY, Bui VD, Lee J, Um W, Jo DG, Cho YW, Lee DS, Balaj L, Lee H, Park JH. Stem Cell-Derived Extracellular Vesicle-Bearing Injectable Hydrogel for Collagen Generation in Dermis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:37698-37706. [PMID: 38980897 DOI: 10.1021/acsami.4c07434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Despite the remarkable advances of dermal fillers that reduce wrinkles caused by dermis thickness reduction, they still lack effective hydrogel systems that stimulate collagen generation along with injection convenience. Here, we develop a stem cell-derived extracellular vesicle (EV)-bearing thermosensitive hydrogel (EVTS-Gel) for effective in vivo collagen generation. The TS-Gel undergoes sol-gel transition at 32.6 °C, as demonstrated by the storage and loss moduli crossover. Moreover, the TS-Gel and the EVTS-Gel have comparable rheological properties. Both hydrogels are injected in a sol state; hence, they require lower injection forces than conventional hydrogel-based dermal fillers. When locally administered to mouse skin, the TS-Gel extends the retention time of EVs by 2.23 times. Based on the nature of the controlled EV release, the EVTS-Gel significantly inhibits the dermis thickness reduction caused by aging compared to the bare EV treatment for 24 weeks. After a single treatment, the collagen layer thickness of the EVTS-Gel-treated dermis becomes 2.64-fold thicker than that of the bare EV-treated dermis. Notably, the collagen generation efficacy of the bare EV is poorer than that of the EVTS-Gel of a 10× lesser dose. Overall, the EVTS-Gel shows potential as an antiaging dermal filler for in vivo collagen generation.
Collapse
Affiliation(s)
- Dong Gil You
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Jae Min Jung
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Chan Ho Kim
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Jae Yoon An
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Van Dat Bui
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Jungmi Lee
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Wooram Um
- Department of Biotechnology, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Republic of Korea
| | - Dong-Gyu Jo
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
- ExoStemTech Inc., 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, Republic of Korea
| | - Yong Woo Cho
- ExoStemTech Inc., 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, Republic of Korea
- Department of Materials Science and Chemical Engineering, Hanyang University ERICA, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, Republic of Korea
| | - Doo Sung Lee
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Leonora Balaj
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Hakho Lee
- Center for Systems Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Jae Hyung Park
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
- ExoStemTech Inc., 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, Republic of Korea
| |
Collapse
|
9
|
Yang Y, Chen H, Li Y, Liang J, Huang F, Wang L, Miao H, Nanda HS, Wu J, Peng X, Zhou Y. Hydrogel Loaded with Extracellular Vesicles: An Emerging Strategy for Wound Healing. Pharmaceuticals (Basel) 2024; 17:923. [PMID: 39065772 PMCID: PMC11280375 DOI: 10.3390/ph17070923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
An increasing number of novel biomaterials have been applied in wound healing therapy. Creating beneficial environments and containing various bioactive molecules, hydrogel- and extracellular vesicle (EV)-based therapies have respectively emerged as effective approaches for wound healing. Moreover, the synergistic combination of these two components demonstrates more favorable outcomes in both chronic and acute wound healing. This review provides a comprehensive discussion and summary of the combined application of EVs and hydrogels to address the intricate scenario of wounds. The wound healing process and related biological mechanisms are outlined in the first section. Subsequently, the utilization of EV-loaded hydrogels during the wound healing process is evaluated and discussed. The moist environment created by hydrogels is conducive to wound tissue regeneration. Additionally, the continuous and controlled release of EVs from various origins could be achieved by hydrogel encapsulation. Finally, recent in vitro and in vivo studies reported on hydrogel dressings loaded with EVs are summarized and challenges and opportunities for the future clinical application of this therapeutic approach are outlined.
Collapse
Affiliation(s)
- Yucan Yang
- Key Laboratory of Liver Injury Diagnosis and Repair, and Department of Hepatobiliary Surgery, The 2nd Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China; (Y.Y.); (H.C.); (Y.L.); (J.L.); (F.H.); (L.W.); (H.M.)
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, Dongguan Key Laboratory of Advanced Drug Delivery and Biosensing Research and Development, School of Pharmacy, and Dongguan Innovation Institute, Guangdong Medical University, Dongguan 523808, China
| | - Huizhi Chen
- Key Laboratory of Liver Injury Diagnosis and Repair, and Department of Hepatobiliary Surgery, The 2nd Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China; (Y.Y.); (H.C.); (Y.L.); (J.L.); (F.H.); (L.W.); (H.M.)
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, Dongguan Key Laboratory of Advanced Drug Delivery and Biosensing Research and Development, School of Pharmacy, and Dongguan Innovation Institute, Guangdong Medical University, Dongguan 523808, China
| | - Yunjie Li
- Key Laboratory of Liver Injury Diagnosis and Repair, and Department of Hepatobiliary Surgery, The 2nd Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China; (Y.Y.); (H.C.); (Y.L.); (J.L.); (F.H.); (L.W.); (H.M.)
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, Dongguan Key Laboratory of Advanced Drug Delivery and Biosensing Research and Development, School of Pharmacy, and Dongguan Innovation Institute, Guangdong Medical University, Dongguan 523808, China
| | - Junting Liang
- Key Laboratory of Liver Injury Diagnosis and Repair, and Department of Hepatobiliary Surgery, The 2nd Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China; (Y.Y.); (H.C.); (Y.L.); (J.L.); (F.H.); (L.W.); (H.M.)
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, Dongguan Key Laboratory of Advanced Drug Delivery and Biosensing Research and Development, School of Pharmacy, and Dongguan Innovation Institute, Guangdong Medical University, Dongguan 523808, China
| | - Feng Huang
- Key Laboratory of Liver Injury Diagnosis and Repair, and Department of Hepatobiliary Surgery, The 2nd Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China; (Y.Y.); (H.C.); (Y.L.); (J.L.); (F.H.); (L.W.); (H.M.)
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, Dongguan Key Laboratory of Advanced Drug Delivery and Biosensing Research and Development, School of Pharmacy, and Dongguan Innovation Institute, Guangdong Medical University, Dongguan 523808, China
| | - Liyan Wang
- Key Laboratory of Liver Injury Diagnosis and Repair, and Department of Hepatobiliary Surgery, The 2nd Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China; (Y.Y.); (H.C.); (Y.L.); (J.L.); (F.H.); (L.W.); (H.M.)
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, Dongguan Key Laboratory of Advanced Drug Delivery and Biosensing Research and Development, School of Pharmacy, and Dongguan Innovation Institute, Guangdong Medical University, Dongguan 523808, China
| | - Huilai Miao
- Key Laboratory of Liver Injury Diagnosis and Repair, and Department of Hepatobiliary Surgery, The 2nd Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China; (Y.Y.); (H.C.); (Y.L.); (J.L.); (F.H.); (L.W.); (H.M.)
| | - Himansu Sekhar Nanda
- Biomaterials and Biomanufacturing Laboratory, Discipline of Mechanical Engineering, PDPM Indian Institute of Information Technology Design and Manufacturing, Jabalpur 482005, Madhya Pradesh, India;
| | - Jin Wu
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China;
| | - Xinsheng Peng
- Key Laboratory of Liver Injury Diagnosis and Repair, and Department of Hepatobiliary Surgery, The 2nd Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China; (Y.Y.); (H.C.); (Y.L.); (J.L.); (F.H.); (L.W.); (H.M.)
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, Dongguan Key Laboratory of Advanced Drug Delivery and Biosensing Research and Development, School of Pharmacy, and Dongguan Innovation Institute, Guangdong Medical University, Dongguan 523808, China
| | - Yubin Zhou
- Key Laboratory of Liver Injury Diagnosis and Repair, and Department of Hepatobiliary Surgery, The 2nd Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China; (Y.Y.); (H.C.); (Y.L.); (J.L.); (F.H.); (L.W.); (H.M.)
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, Dongguan Key Laboratory of Advanced Drug Delivery and Biosensing Research and Development, School of Pharmacy, and Dongguan Innovation Institute, Guangdong Medical University, Dongguan 523808, China
| |
Collapse
|
10
|
Gui Q, Ding N, Yao Z, Wu M, Fu R, Wang Y, Zhao Y, Zhu L. Extracellular vesicles derived from mesenchymal stem cells: the wine in Hebe's hands to treat skin aging. PRECISION CLINICAL MEDICINE 2024; 7:pbae004. [PMID: 38516531 PMCID: PMC10955876 DOI: 10.1093/pcmedi/pbae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 02/22/2024] [Indexed: 03/23/2024] Open
Abstract
Owing to its constant exposure to the external environment and various stimuli, skin ranks among the organs most vulnerable to manifestations of aging. Preventing and delaying skin aging has become one of the prominent research subjects in recent years. Mesenchymal stem cells (MSCs) are multipotent stem cells derived from mesoderm with high self-renewal ability and multilineage differentiation potential. MSC-derived extracellular vesicles (MSC-EVs) are nanoscale biological vesicles that facilitate intercellular communication and regulate biological behavior. Recent studies have shown that MSC-EVs have potential applications in anti-aging therapy due to their anti-inflammatory, anti-oxidative stress, and wound healing promoting abilities. This review presents the latest progress of MSC-EVs in delaying skin aging. It mainly includes the MSC-EVs promoting the proliferation and migration of keratinocytes and fibroblasts, reducing the expression of matrix metalloproteinases, resisting oxidative stress, and regulating inflammation. We then briefly discuss the recently discovered treatment methods of MSC-EVs in the field of skin anti-aging. Moreover, the advantages and limitations of EV-based treatments are also presented.
Collapse
Affiliation(s)
- Qixiang Gui
- Department of Plastic and Reconstructive Surgery, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai 200001, China
| | - Neng Ding
- Department of Plastic and Reconstructive Surgery, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai 200001, China
| | - Zuochao Yao
- Department of Plastic and Reconstructive Surgery of Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Minjuan Wu
- Department of Histology and Embryology, Naval Medical University, Shanghai 200433, China
| | - Ruifeng Fu
- Shanghai Key Laboratory of Cell Engineering, Translational Medical Research Center, Naval Medical University, Shanghai 200433, China
| | - Yue Wang
- Department of Histology and Embryology, Naval Medical University, Shanghai 200433, China
- Shanghai Key Laboratory of Cell Engineering, Translational Medical Research Center, Naval Medical University, Shanghai 200433, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200092, China
| | - Yunpeng Zhao
- Shanghai Key Laboratory of Cell Engineering, Translational Medical Research Center, Naval Medical University, Shanghai 200433, China
| | - Lie Zhu
- Department of Plastic and Reconstructive Surgery, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai 200001, China
| |
Collapse
|
11
|
Wang Z, Zeng H, Wang C, Wang J, Zhang J, Qu S, Han Y, Yang L, Ni Y, Peng W, Liu H, Tang H, Zhao Q, Zhang Y. Tim4 deficiency reduces CD301b + macrophage and aggravates periodontitis bone loss. Int J Oral Sci 2024; 16:20. [PMID: 38418808 PMCID: PMC10902347 DOI: 10.1038/s41368-023-00270-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 03/02/2024] Open
Abstract
Periodontitis is a common chronic inflammatory disease that causes the periodontal bone destruction and may ultimately result in tooth loss. With the progression of periodontitis, the osteoimmunology microenvironment in periodontitis is damaged and leads to the formation of pathological alveolar bone resorption. CD301b+ macrophages are specific to the osteoimmunology microenvironment, and are emerging as vital booster for conducting bone regeneration. However, the key upstream targets of CD301b+ macrophages and their potential mechanism in periodontitis remain elusive. In this study, we concentrated on the role of Tim4, a latent upstream regulator of CD301b+ macrophages. We first demonstrated that the transcription level of Timd4 (gene name of Tim4) in CD301b+ macrophages was significantly upregulated compared to CD301b- macrophages via high-throughput RNA sequencing. Moreover, several Tim4-related functions such as apoptotic cell clearance, phagocytosis and engulfment were positively regulated by CD301b+ macrophages. The single-cell RNA sequencing analysis subsequently discovered that Cd301b and Timd4 were specifically co-expressed in macrophages. The following flow cytometric analysis indicated that Tim4 positive expression rates in total macrophages shared highly synchronized dynamic changes with the proportions of CD301b+ macrophages as periodontitis progressed. Furthermore, the deficiency of Tim4 in mice decreased CD301b+ macrophages and eventually magnified alveolar bone resorption in periodontitis. Additionally, Tim4 controlled the p38 MAPK signaling pathway to ultimately mediate CD301b+ macrophages phenotype. In a word, Tim4 might regulate CD301b+ macrophages through p38 MAPK signaling pathway in periodontitis, which provided new insights into periodontitis immunoregulation as well as help to develop innovative therapeutic targets and treatment strategies for periodontitis.
Collapse
Affiliation(s)
- Ziming Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Hao Zeng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Can Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Jiaolong Wang
- School of Stomatology, Nanchang University, Nanchang, China
| | - Jing Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Shuyuan Qu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Yue Han
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Liu Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Yueqi Ni
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Wenan Peng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Huan Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Hua Tang
- Institute of Infection and Immunity, Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Qin Zhao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.
| | - Yufeng Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China.
| |
Collapse
|
12
|
Du S, Zhou X, Zheng B. Beyond Traditional Medicine: EVs-Loaded Hydrogels as a Game Changer in Disease Therapeutics. Gels 2024; 10:162. [PMID: 38534580 DOI: 10.3390/gels10030162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/29/2024] [Accepted: 02/06/2024] [Indexed: 03/28/2024] Open
Abstract
Extracellular vesicles (EVs), especially exosomes, have shown great therapeutic potential in the treatment of diseases, as they can target cells or tissues. However, the therapeutic effect of EVs is limited due to the susceptibility of EVs to immune system clearance during transport in vivo. Hydrogels have become an ideal delivery platform for EVs due to their good biocompatibility and porous structure. This article reviews the preparation and application of EVs-loaded hydrogels as a cell-free therapy strategy in the treatment of diseases. The article also discusses the challenges and future outlook of EVs-loaded hydrogels.
Collapse
Affiliation(s)
- Shutong Du
- Institute for Cell Analysis, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Xiaohu Zhou
- Institute for Cell Analysis, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Bo Zheng
- Institute for Cell Analysis, Shenzhen Bay Laboratory, Shenzhen 518132, China
| |
Collapse
|
13
|
Lee S, Baek SW, Kim DS, Park SY, Kim JH, Jung JW, Lee JK, Park GM, Park CG, Han DK. Injectable Microparticle-containing hydrogel with controlled release of bioactive molecules for facial rejuvenation. Mater Today Bio 2024; 24:100890. [PMID: 38162281 PMCID: PMC10755792 DOI: 10.1016/j.mtbio.2023.100890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/20/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024] Open
Abstract
The skin is the largest organ and a crucial barrier for protection against various intrinsic and extrinsic factors. As we age, the skin's components become more vulnerable to damage, forming wrinkles. Among different procedures, hyaluronic acid-based hydrogel has been extensively utilized for skin regeneration and reducing wrinkles. However, it has limitations like low retention and weak mechanical properties. In this study, we suggested the poly(l-lactic acid) (PLLA) microparticles containing alkaline magnesium hydroxide and nitric oxide-generating zinc oxide and rejuvenative hyaluronic acid (HA) hydrogels including these functional microparticles and asiaticoside, creating a novel delivery system for skin rejuvenation and regeneration. The fabricated rejuvenative hydrogels have exhibited enhanced biocompatibility, pH neutralization, reactive oxygen species scavenging, collagen biosynthesis, and angiogenesis capabilities in vitro and in vivo. Additionally, an excellent volume retention ability was demonstrated due to the numerous hydrogen bonds that formed between hyaluronic acid and asiaticoside. Overall, our advanced injectable hydrogel containing functional microparticles, with controlled release of bioactive molecules, has a significant potential for enhancing the regeneration and rejuvenation of the skin.
Collapse
Affiliation(s)
- Semi Lee
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyenggi 13488, South Korea
| | - Seung-Woon Baek
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyenggi 13488, South Korea
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyenggi 16419, South Korea
- Department of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyenggi 16419, South Korea
| | - Da-Seul Kim
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyenggi 13488, South Korea
| | - So-Yeon Park
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyenggi 13488, South Korea
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, South Korea
| | - Jun Hyuk Kim
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyenggi 13488, South Korea
| | - Ji-Won Jung
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyenggi 13488, South Korea
| | - Jun-Kyu Lee
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyenggi 13488, South Korea
| | - Gi-Min Park
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyenggi 13488, South Korea
| | - Chun Gwon Park
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyenggi 16419, South Korea
- Department of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyenggi 16419, South Korea
| | - Dong Keun Han
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyenggi 13488, South Korea
| |
Collapse
|
14
|
Pourtalebi Jahromi L, Rothammer M, Fuhrmann G. Polysaccharide hydrogel platforms as suitable carriers of liposomes and extracellular vesicles for dermal applications. Adv Drug Deliv Rev 2023; 200:115028. [PMID: 37517778 DOI: 10.1016/j.addr.2023.115028] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/26/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
Lipid-based nanocarriers have been extensively investigated for their application in drug delivery. Particularly, liposomes are now clinically established for treating various diseases such as fungal infections. In contrast, extracellular vesicles (EVs) - small cell-derived nanoparticles involved in cellular communication - have just recently sparked interest as drug carriers but their development is still at the preclinical level. To drive this development further, the methods and technologies exploited in the context of liposome research should be applied in the domain of EVs to facilitate and accelerate their clinical translation. One of the crucial steps for EV-based therapeutics is designing them as proper dosage forms for specific applications. This review offers a comprehensive overview of state-of-the-art polysaccharide-based hydrogel platforms designed for artificial and natural vesicles with application in drug delivery to the skin. We discuss their various physicochemical and biological properties and try to create a sound basis for the optimization of EV-embedded hydrogels as versatile therapeutic avenues.
Collapse
Affiliation(s)
- Leila Pourtalebi Jahromi
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Biology, Pharmaceutical Biology, Staudtstr. 5, 91058 Erlangen, Germany
| | - Markus Rothammer
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Biology, Pharmaceutical Biology, Staudtstr. 5, 91058 Erlangen, Germany
| | - Gregor Fuhrmann
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Biology, Pharmaceutical Biology, Staudtstr. 5, 91058 Erlangen, Germany; FAU NeW, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany.
| |
Collapse
|
15
|
Wei J, Ou Z, Tong B, Liao Z, Yang C. Engineered extracellular vesicles as therapeutics of degenerative orthopedic diseases. Front Bioeng Biotechnol 2023; 11:1162263. [PMID: 37362216 PMCID: PMC10289007 DOI: 10.3389/fbioe.2023.1162263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/19/2023] [Indexed: 06/28/2023] Open
Abstract
Degenerative orthopedic diseases, as a global public health problem, have made serious negative impact on patients' quality of life and socio-economic burden. Traditional treatments, including chemical drugs and surgical treatments, have obvious side effects and unsatisfactory efficacy. Therefore, biological therapy has become the focus of researches on degenerative orthopedic diseases. Extracellular vesicles (EVs), with superior properties of immunoregulatory, growth support, and drug delivery capabilities, have emerged as a new cell-free strategy for the treatment of many diseases, including degenerative orthopedic diseases. An increasing number of studies have shown that EVs can be engineered through cargo loading, surface modification, and chemical synthesis to improve efficiency, specificity, and safety. Herein, a comprehensive overview of recent advances in engineering strategies and applications of engineered EVs as well as related researches in degenerative orthopedic diseases, including osteoarthritis (OA), osteoporosis (OP), intervertebral disc degeneration (IDD) and osteonecrosis of the femoral head (ONFH), is provided. In addition, we analyze the potential and challenges of applying engineered EVs to clinical practice.
Collapse
Affiliation(s)
| | | | | | | | - Cao Yang
- *Correspondence: Zhiwei Liao, ; Cao Yang,
| |
Collapse
|
16
|
Wu H, Zhang Z, Zhang Y, Zhao Z, Zhu H, Yue C. Extracellular vesicle: A magic lamp to treat skin aging, refractory wound, and pigmented dermatosis? Front Bioeng Biotechnol 2022; 10:1043320. [PMID: 36420445 PMCID: PMC9676268 DOI: 10.3389/fbioe.2022.1043320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/24/2022] [Indexed: 09/19/2023] Open
Abstract
Exposure of the skin to an external stimulus may lead to a series of irreversible dysfunctions, such as skin aging, refractory wounds, and pigmented dermatosis. Nowadays, many cutaneous treatments have failed to strike a balance between cosmetic needs and medical recovery. Extracellular vesicles (EVs) are one of the most promising therapeutic tools. EVs are cell-derived nanoparticles that can carry a variety of cargoes, such as nucleic acids, lipids, and proteins. They also have the ability to communicate with neighboring or distant cells. A growing body of evidence suggests that EVs play a significant role in skin repair. We summarize the current findings of EV therapy in skin aging, refractory wound, and pigmented dermatosis and also describe the novel engineering strategies for optimizing EV function and therapeutic outcomes.
Collapse
Affiliation(s)
- Haiyan Wu
- Key Laboratory of Microbial Drugs Innovation and Transformation of Yan’an, School of Basic Medicine, Yan’an University, Yan’an, China
- Institute for Regenerative Medicine & Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhenchun Zhang
- Key Laboratory of Microbial Drugs Innovation and Transformation of Yan’an, School of Basic Medicine, Yan’an University, Yan’an, China
- Institute for Regenerative Medicine & Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuemeng Zhang
- Key Laboratory of Microbial Drugs Innovation and Transformation of Yan’an, School of Basic Medicine, Yan’an University, Yan’an, China
| | - Zhenlin Zhao
- Shenzhen Ruipuxun Academy for Stem Cell & Regenerative Medicine, Shenzhen, China
| | - Hongming Zhu
- Institute for Regenerative Medicine & Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Shenzhen Ruipuxun Academy for Stem Cell & Regenerative Medicine, Shenzhen, China
| | - Changwu Yue
- Key Laboratory of Microbial Drugs Innovation and Transformation of Yan’an, School of Basic Medicine, Yan’an University, Yan’an, China
| |
Collapse
|
17
|
Zhuang Z, Zhou Y, Xu J, Pan L. Anti-asthmatic miR-224-5p inhibits the FHL1/MAPK pathway to repress airway smooth muscle cell proliferation in a murine model of asthma-like airway inflammation. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2022; 18:88. [PMID: 36184652 PMCID: PMC9526920 DOI: 10.1186/s13223-022-00724-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 09/04/2022] [Indexed: 11/30/2022]
Abstract
Background The proliferation of airway smooth muscle cells (ASMCs) contributes to the contractility and inflammation in the pathophysiology of asthma. This intrigued us to clarify the effect of microRNA (miR)-224-5p on biological characteristics of ASMCs in mice with asthma-like airway inflammation and responses through the FHL1-dependent MAPK pathway. Methods An ovalbumin (OVA)-induced asthma mouse model was established, where ASMCs were isolated. The expression of FHL1 was determined in asthmatic mice. Artificial modulation of FHL1 expression was performed to explore its effect on airway inflammation of asthmatic mice and ASMC proliferation and apoptosis. Afterwards, we analyzed the interaction among miR-224-5p, FHL1 and the MAPK pathway, and explored their combined impacts on airway inflammation of asthmatic mice and ASMC proliferation and apoptosis. Results FHL1 was highly expressed and miR-224-5p was poorly expressed in asthmatic mice. FHL1 was verified to be a target of miR-224-5p. Loss of FHL1 function reduced airway inflammation in asthmatic mice and proliferation of ASMCs while inducing their apoptosis. Besides, miR-224-5p inhibited the MAPK pathway by binding to FHL1. Overexpression of miR-224-5p relieved airway inflammation, inhibited ASMC proliferation, and increased apoptosis, which could be reversed by overexpression of FHL1. Conclusion Altogether, miR-224-5p inhibited airway inflammation in asthmatic mice and ASMC proliferation through blocking the MAPK pathway by down-regulating FHL1. Supplementary Information The online version contains supplementary material available at 10.1186/s13223-022-00724-9.
Collapse
Affiliation(s)
- Zhifang Zhuang
- Wujin Hospital Affiliated with Jiangsu University, Changzhou, 213002, People's Republic of China.,Wujin Clinical College of Xuzhou Medical University, Changzhou, 213002, People's Republic of China
| | - Yanjuan Zhou
- Wujin Hospital Affiliated with Jiangsu University, Changzhou, 213002, People's Republic of China.,Wujin Clinical College of Xuzhou Medical University, Changzhou, 213002, People's Republic of China
| | - Jiao Xu
- Wujin Hospital Affiliated with Jiangsu University, Changzhou, 213002, People's Republic of China.,Wujin Clinical College of Xuzhou Medical University, Changzhou, 213002, People's Republic of China
| | - Leying Pan
- Wujin Hospital Affiliated with Jiangsu University, Changzhou, 213002, People's Republic of China. .,Wujin Clinical College of Xuzhou Medical University, Changzhou, 213002, People's Republic of China.
| |
Collapse
|