1
|
Sebastian A, Shanmuganathan MAA, Tripathy C, Chakravarty S, Ghosh S. Understanding Neurogenesis and Neuritogenesis via Molecular Insights, Gender Influence, and Therapeutic Implications: Intervention of Nanomaterials. ACS APPLIED BIO MATERIALS 2025; 8:12-41. [PMID: 39718903 DOI: 10.1021/acsabm.4c01079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
Neurological disorders impact global health by affecting both central and peripheral nervous systems. Understanding the neurogenic processes, i.e., neurogenesis and neuritogenesis, is of paramount importance in the context of nervous system development and regeneration as they hold promising therapeutic implications. Neurogenesis forms functional neurons from precursor cells, while neuritogenesis involves extending neurites for neuron connections. This review discusses how these processes are influenced by genetics, epigenetics, neurotrophic factors, environment, neuroinflammation, and neurotransmitters. It also covers gender-specific aspects of neurogenesis and neuritogenesis, their impact on brain plasticity, and susceptibility to neurological disorders. Alterations in these processes, under the influence of cytokines, growth factors, neurotransmitters, and aging, are linked to neurological disorders and potential therapeutic targets. Gender-specific effects of pharmacological interventions, like SSRIs, TCAs, atypical antipsychotics, and lithium, are explored in this review. Hormone-mediated effects of BDNF and PPAR-γ agonists, as well as variations in efficacy and tolerability of MAOIs, AEDs, NMDA receptor modulators, and ampakines, are detailed for accurate therapeutic design. The review also discusses nanotechnology's significant contribution to neural tissue regeneration for mending neurodegenerative disorders, enhancing neuronal connectivity, and stem cell differentiation. Gold nanoparticles support hippocampal neurogenesis, while other nanoparticles aid neuron growth and neurite outgrowth. Quantum dots and nanolayered double hydroxides assist neuroregeneration, which improves brain drug delivery. Gender-specific responses to nanomedicines designed to enhance neuroregeneration have not been extensively investigated. However, we have specified certain gender-related variables that should be taken into account during the development of nanomedicines in an aim to improve therapeutic efficacy. Further research on gender-specific responses to nanomedicines in neural processes could enhance personalized treatments for neurological disorders, paving the way for novel therapeutic approaches in neuroscience.
Collapse
Affiliation(s)
- Aishwarya Sebastian
- Polymers & Functional Materials Division, CSIR- Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Mohanraj Alias Ayyappan Shanmuganathan
- Polymers & Functional Materials Division, CSIR- Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Chinmayee Tripathy
- Applied Biology Division, CSIR- Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sumana Chakravarty
- Applied Biology Division, CSIR- Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sutapa Ghosh
- Polymers & Functional Materials Division, CSIR- Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
2
|
Singh M, Verma Y, Rana SS. Dose and time dependent morphodynamic changes in the ovary of nano-nickel treated rats A SEM study. Tissue Cell 2024; 91:102598. [PMID: 39486134 DOI: 10.1016/j.tice.2024.102598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/25/2024] [Accepted: 10/26/2024] [Indexed: 11/04/2024]
Abstract
AIMS Present study demonstrates dose and time dependent effects of NiONPs (<30 nm) on the ovaries of Wistar rat. METHODS Female rats were gavaged NiONPs or NiOMPs (5 mg/kg b.w.) for 24 h, 15 days and 30 days, euthanized and ovaries thus removed were analyzed for nickel bioaconcentration and processed for scanning electron microscopy. Serum samples were analyzed to compare the effects of nickel nano & microparticles on progesterone and estradiol values. RESULTS Results confirmed the bioaccumulation of Ni in ovarian tissue. Its concentration was higher in NiONPs treated rats than NiOMPs treated rats. Progesterone level increased whereas estradiol values decreased in NiONPs and NiOMPs treated rats. SEM results also exhibited dose dependent effects on the morphology of corpoluteal complex. The structural changes varied from formation of blebs to distorted microvilli and germinal epithelium. CONCLUSION It is hypothesized that NiONPs/NiOMPs are biodegraded into smaller fragments that conjugate with amino acids and or alter downstream signaling pathways, generate ROS and modulate protein structure activity relationships. Finally, these processes manifest into morphological alterations in the ovary. Biopersistence of nickel in female reproductive system may compromise with fertility and reproductive performance of exposed population.
Collapse
Affiliation(s)
- Meenu Singh
- Department of Toxicology, Ch. Charan Singh University Meerut, 250 004, India
| | - Yeshvandra Verma
- Department of Toxicology, Ch. Charan Singh University Meerut, 250 004, India
| | - Sv S Rana
- Department of Toxicology, Ch. Charan Singh University Meerut, 250 004, India.
| |
Collapse
|
3
|
Cisneros EP, Morse BA, Savk A, Malik K, Peppas NA, Lanier OL. The role of patient-specific variables in protein corona formation and therapeutic efficacy in nanomedicine. J Nanobiotechnology 2024; 22:714. [PMID: 39548452 PMCID: PMC11566257 DOI: 10.1186/s12951-024-02954-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/24/2024] [Indexed: 11/18/2024] Open
Abstract
Despite their potential, the adoption of nanotechnology in therapeutics remains limited, with only around eighty nanomedicines approved in the past 30 years. This disparity is partly due to the "one-size-fits-all" approach in medical design, which often overlooks patient-specific variables such as biological sex, genetic ancestry, disease state, environment, and age that influence nanoparticle behavior. Nanoparticles (NPs) must be transported through systemic, microenvironmental, and cellular barriers that vary across heterogeneous patient populations. Key patient-dependent properties impacting NP delivery include blood flow rates, body fat distribution, reproductive organ vascularization, hormone and protein levels, immune responses, and chromosomal differences. Understanding these variables is crucial for developing effective, patient-specific nanotechnologies. The formation of a protein corona around NPs upon exposure to biological fluids significantly alters NP properties, affecting biodistribution, pharmacokinetics, cytotoxicity, and organ targeting. The dynamics of the protein corona, such as time-dependent composition and formation of soft and hard coronas, depend on NP characteristics and patient-specific serum components. This review highlights the importance of understanding protein corona formation across different patient backgrounds and its implications for NP design, including sex, ancestry, age, environment, and disease state. By exploring these variables, we aim to advance the development of personalized nanomedicine, improving therapeutic efficacy and patient outcomes.
Collapse
Affiliation(s)
- Ethan P Cisneros
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX, USA
| | - Brinkley A Morse
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX, USA
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
- Department of Neurology, Dell Medical School, The University of Texas, Austin, USA
| | - Ani Savk
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX, USA
| | - Khyati Malik
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX, USA
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Nicholas A Peppas
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX, USA
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
- Department of Surgery and Perioperative Care, Dell Medical School, University of Texas at Austin, Austin, TX, USA
- Department of Pediatrics, Dell Medical School, University of Texas at Austin, Austin, TX, USA
| | - Olivia L Lanier
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM, USA.
- Department of Biomedical Engineering, University of New Mexico, Albuquerque, NM, USA.
- Cancer Therapeutics Program, University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA.
| |
Collapse
|
4
|
Carter D, Better M, Abbasi S, Zulfiqar F, Shapiro R, Ensign LM. Nanomedicine for Maternal and Fetal Health. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2303682. [PMID: 37817368 PMCID: PMC11004090 DOI: 10.1002/smll.202303682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/25/2023] [Indexed: 10/12/2023]
Abstract
Conception, pregnancy, and childbirth are complex processes that affect both mother and fetus. Thus, it is perhaps not surprising that in the United States alone, roughly 11% of women struggle with infertility and 16% of pregnancies involve some sort of complication. This presents a clear need to develop safe and effective treatment options, though the development of therapeutics for use in women's health and particularly in pregnancy is relatively limited. Physiological and biological changes during the menstrual cycle and pregnancy impact biodistribution, pharmacokinetics, and efficacy, further complicating the process of administration and delivery of therapeutics. In addition to the complex pharmacodynamics, there is also the challenge of overcoming physiological barriers that impact various routes of local and systemic administration, including the blood-follicle barrier and the placenta. Nanomedicine presents a unique opportunity to target and sustain drug delivery to the reproductive tract and other relevant organs in the mother and fetus, as well as improve the safety profile and minimize side effects. Nanomedicine-based approaches have the potential to improve the management and treatment of infertility, obstetric complications, and fetal conditions.
Collapse
Affiliation(s)
- Davell Carter
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Marina Better
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Saed Abbasi
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Fareeha Zulfiqar
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rachel Shapiro
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Laura M. Ensign
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, MD, USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Departments of Gynecology and Obstetrics, Biomedical Engineering, Oncology, and Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
5
|
Bendellaa M, Cave C, Godard A, Dalonneau F, Sickinger A, Goze C, Maury O, Le Gendre P, Bodio E, Busser B, Sancey L. WazaGaY: An Innovative Aza-BODIPY-Derived Near-Infrared Fluorescent Probe for Enhanced Tumor Imaging. J Med Chem 2024; 67:16635-16648. [PMID: 39289797 DOI: 10.1021/acs.jmedchem.4c01435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Aza-BODIPYs represent a class of fluorophores in which the π-conjugated system is rigidified and stabilized by a boron atom. A promising strategy to enhance their fluorescence properties involves replacing the boron atom with a metal ion. Here, we describe the synthesis and characterization of a water-soluble derivative where the metal is a gallium(III) ion, termed WazaGaY (water-soluble aza-GaDIPY). Water solubility is ensured by two ammonium substituents, inducing a bathochromic shift and a significant increase in quantum yield compared to that of the dimethylamino analog. The cellular behavior of WazaGaY-1 was observed across different tumor cells. In vivo, the distribution and safety profiles were determined, and tumor uptake was assessed in various tumor types. Following intravenous injection, WazaGaY-1 enabled clear discrimination of tumors engrafted subcutaneously in mice with high tumor-to-muscle ratios (ranging from 7 to 20), even in the absence of specific conjugation. Its potential as a contrast agent for fluorescence-guided surgery was confirmed.
Collapse
Affiliation(s)
- Mohamed Bendellaa
- Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences (IAB), Grenoble 38000, France
| | - Charlotte Cave
- Institut de Chimie Moléculaire de l'Université de Bourgogne, Université de Bourgogne, CNRS UMR 6302, Dijon 21078, France
| | - Amélie Godard
- Institut de Chimie Moléculaire de l'Université de Bourgogne, Université de Bourgogne, CNRS UMR 6302, Dijon 21078, France
| | - Fabien Dalonneau
- Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences (IAB), Grenoble 38000, France
| | | | - Christine Goze
- Institut de Chimie Moléculaire de l'Université de Bourgogne, Université de Bourgogne, CNRS UMR 6302, Dijon 21078, France
| | - Olivier Maury
- CNRS, ENS de Lyon, CNRS, LCH, UMR 5182, Lyon F-69342, France
| | - Pierre Le Gendre
- Institut de Chimie Moléculaire de l'Université de Bourgogne, Université de Bourgogne, CNRS UMR 6302, Dijon 21078, France
| | - Ewen Bodio
- Institut de Chimie Moléculaire de l'Université de Bourgogne, Université de Bourgogne, CNRS UMR 6302, Dijon 21078, France
- Nantes Université, CNRS, CEISAM, UMR 6230, Nantes F-44000, France
- Institut Universitaire de France (IUF), Paris 75005, France
| | - Benoit Busser
- Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences (IAB), Grenoble 38000, France
- Institut Universitaire de France (IUF), Paris 75005, France
- Grenoble Alpes University Hospital (CHUGA), Grenoble 38043, France
| | - Lucie Sancey
- Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences (IAB), Grenoble 38000, France
| |
Collapse
|
6
|
Yin T, Han J, Cui Y, Shang D, Xiang H. Prospect of Gold Nanoparticles in Pancreatic Cancer. Pharmaceutics 2024; 16:806. [PMID: 38931925 PMCID: PMC11207630 DOI: 10.3390/pharmaceutics16060806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/13/2024] [Accepted: 02/23/2024] [Indexed: 06/28/2024] Open
Abstract
Pancreatic cancer (PC) is characterized by its notably poor prognosis and high mortality rate, underscoring the critical need for advancements in its diagnosis and therapy. Gold nanoparticles (AuNPs), with their distinctive physicochemical characteristics, demonstrate significant application potential in cancer therapy. For example, upon exposure to lasers of certain wavelengths, they facilitate localized heating, rendering them extremely effective in photothermal therapy. Additionally, their extensive surface area enables the conjugation of therapeutic agents or targeting molecules, increasing the accuracy of drug delivery systems. Moreover, AuNPs can serve as radiosensitizers, enhancing the efficacy of radiotherapy by boosting the radiation absorption in tumor cells. Here, we systematically reviewed the application and future directions of AuNPs in the diagnosis and treatment of PC. Although AuNPs have advantages in improving diagnostic and therapeutic efficacy, as well as minimizing damage to normal tissues, concerns about their potential toxicity and safety need to be comprehensively evaluated.
Collapse
Affiliation(s)
- Tianyi Yin
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; (T.Y.); (J.H.)
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China;
| | - Jingrun Han
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; (T.Y.); (J.H.)
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China;
| | - Yuying Cui
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China;
| | - Dong Shang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; (T.Y.); (J.H.)
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China;
- Institute of Integrative Medicine, Dalian Medical University, Dalian 116044, China
| | - Hong Xiang
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China;
| |
Collapse
|
7
|
Anchordoquy T, Artzi N, Balyasnikova IV, Barenholz Y, La-Beck NM, Brenner JS, Chan WCW, Decuzzi P, Exner AA, Gabizon A, Godin B, Lai SK, Lammers T, Mitchell MJ, Moghimi SM, Muzykantov VR, Peer D, Nguyen J, Popovtzer R, Ricco M, Serkova NJ, Singh R, Schroeder A, Schwendeman AA, Straehla JP, Teesalu T, Tilden S, Simberg D. Mechanisms and Barriers in Nanomedicine: Progress in the Field and Future Directions. ACS NANO 2024; 18:13983-13999. [PMID: 38767983 PMCID: PMC11214758 DOI: 10.1021/acsnano.4c00182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
In recent years, steady progress has been made in synthesizing and characterizing engineered nanoparticles, resulting in several approved drugs and multiple promising candidates in clinical trials. Regulatory agencies such as the Food and Drug Administration and the European Medicines Agency released important guidance documents facilitating nanoparticle-based drug product development, particularly in the context of liposomes and lipid-based carriers. Even with the progress achieved, it is clear that many barriers must still be overcome to accelerate translation into the clinic. At the recent conference workshop "Mechanisms and Barriers in Nanomedicine" in May 2023 in Colorado, U.S.A., leading experts discussed the formulation, physiological, immunological, regulatory, clinical, and educational barriers. This position paper invites open, unrestricted, nonproprietary discussion among senior faculty, young investigators, and students to trigger ideas and concepts to move the field forward.
Collapse
Affiliation(s)
- Thomas Anchordoquy
- Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences, the University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Natalie Artzi
- Brigham and Woman's Hospital, Department of Medicine, Division of Engineering in Medicine, Harvard Medical School, Boston, Massachusetts 02215, United States
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02215, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02215, United States
| | - Irina V Balyasnikova
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University; Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Yechezkel Barenholz
- Membrane and Liposome Research Lab, IMRIC, Hebrew University Hadassah Medical School, Jerusalem 9112102, Israel
| | - Ninh M La-Beck
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, Texas 79601, United States
| | - Jacob S Brenner
- Departments of Medicine and Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Warren C W Chan
- Institute of Biomedical Engineering, University of Toronto, Rosebrugh Building, 164 College Street, Toronto, Ontario M5S 3G9, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Paolo Decuzzi
- Laboratory of Nanotechnology for Precision Medicine, Italian Institute of Technology, 16163 Genova, Italy
| | - Agata A Exner
- Departments of Radiology and Biomedical Engineering, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, United States
| | - Alberto Gabizon
- The Helmsley Cancer Center, Shaare Zedek Medical Center and The Hebrew University of Jerusalem-Faculty of Medicine, Jerusalem, 9103102, Israel
| | - Biana Godin
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas 77030, United States
- Department of Obstetrics and Gynecology, Houston Methodist Hospital, Houston, Texas 77030, United States
- Department of Obstetrics and Gynecology, Weill Cornell Medicine College (WCMC), New York, New York 10065, United States
- Department of Biomedical Engineering, Texas A&M, College Station, Texas 7784,3 United States
| | - Samuel K Lai
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Center for Biohybrid Medical Systems, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Penn Institute for RNA Innovation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - S Moein Moghimi
- School of Pharmacy, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K
- Translational and Clinical Research Institute, Faculty of Health and Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
- Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Center, Aurora, Colorado 80045, United States
| | - Vladimir R Muzykantov
- Department of Systems Pharmacology and Translational Therapeutics, The Perelman School of Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Dan Peer
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
- Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, 69978, Israel
- Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, 69978, Israel
- Cancer Biology Research Center, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Juliane Nguyen
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Rachela Popovtzer
- Faculty of Engineering and the Institute of Nanotechnology & Advanced Materials, Bar-Ilan University, 5290002 Ramat Gan, Israel
| | - Madison Ricco
- Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences, the University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Natalie J Serkova
- Department of Radiology, University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Ravi Singh
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27101, United States
- Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, North Carolina 27101, United States
| | - Avi Schroeder
- Department of Chemical Engineering, Technion, Israel Institute of Technology, Haifa 32000, Israel
| | - Anna A Schwendeman
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48108; Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48108, United States
| | - Joelle P Straehla
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts 02115 United States
- Koch Institute for Integrative Cancer Research at MIT, Cambridge Massachusetts 02139 United States
| | - Tambet Teesalu
- Laboratory of Precision and Nanomedicine, Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Scott Tilden
- Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences, the University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Dmitri Simberg
- Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences, the University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| |
Collapse
|
8
|
Zhao T, Ren M, Shi J, Wang H, Bai J, Du W, Xiang B. Engineering the protein corona: Strategies, effects, and future directions in nanoparticle therapeutics. Biomed Pharmacother 2024; 175:116627. [PMID: 38653112 DOI: 10.1016/j.biopha.2024.116627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/10/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024] Open
Abstract
Nanoparticles (NPs) serve as versatile delivery systems for anticancer, antibacterial, and antioxidant agents. The manipulation of protein-NP interactions within biological systems is crucial to the application of NPs in drug delivery and cancer nanotherapeutics. The protein corona (PC) that forms on the surface of NPs is the interface between biomacromolecules and NPs and significantly influences their pharmacokinetics and pharmacodynamics. Upon encountering proteins, NPs undergo surface alterations that facilitate their clearance from circulation by the mononuclear phagocytic system (MPS). PC behavior depends largely on the biological microenvironment and the physicochemical properties of the NPs. This review describes various strategies employed to engineer PC compositions on NP surfaces. The effects of NP characteristics such as size, shape, surface modification and protein precoating on PC performance were explored. In addition, this study addresses these challenges and guides the future directions of this evolving field.
Collapse
Affiliation(s)
- Tianyu Zhao
- Department of Pharmacy, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Mingli Ren
- Department of Pharmacy, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jiajie Shi
- Department of Breast Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Haijiao Wang
- Department of Pharmacy, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jing Bai
- Department of Pharmacy, Fourth Hospital of Hebei Medical University, Shijiazhuang, China.
| | - Wenli Du
- Department of Pharmacy, Fourth Hospital of Hebei Medical University, Shijiazhuang, China.
| | - Bai Xiang
- Department of Pharmaceutics, Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
9
|
Binici B, Rattray Z, Schroeder A, Perrie Y. The Role of Biological Sex in Pre-Clinical (Mouse) mRNA Vaccine Studies. Vaccines (Basel) 2024; 12:282. [PMID: 38543916 PMCID: PMC10975141 DOI: 10.3390/vaccines12030282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/26/2024] [Accepted: 03/04/2024] [Indexed: 04/01/2024] Open
Abstract
In this study, we consider the influence of biological sex-specific immune responses on the assessment of mRNA vaccines in pre-clinical murine studies. Recognising the established disparities in immune function attributed to genetic and hormonal differences between individuals of different biological sexes, we compared the mRNA expression and immune responses in mice of both biological sexes after intramuscular injection with mRNA incorporated within lipid nanoparticles. Regarding mRNA expression, no significant difference in protein (luciferase) expression at the injection site was observed between female and male mice following intramuscular administration; however, we found that female BALB/c mice exhibit significantly greater total IgG responses across the concentration range of mRNA lipid nanoparticles (LNPs) in comparison to their male counterparts. This study not only contributes to the scientific understanding of mRNA vaccine evaluation but also emphasizes the importance of considering biological sex in vaccine study designs during pre-clinical evaluation in murine studies.
Collapse
Affiliation(s)
- Burcu Binici
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK; (B.B.); (Z.R.)
| | - Zahra Rattray
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK; (B.B.); (Z.R.)
| | - Avi Schroeder
- Department of Chemical Engineering, Technion, Israel Institute of Technology, Haifa 32000, Israel;
| | - Yvonne Perrie
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK; (B.B.); (Z.R.)
| |
Collapse
|
10
|
Poley M. Sex-specific considerations in nanomedicine: highlighting the impact of the menstrual cycle on drug development. Nanomedicine (Lond) 2024; 19:557-560. [PMID: 38127525 DOI: 10.2217/nnm-2023-0347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Tweetable abstract The female menstrual cycle is one of the most overlooked sex-specific factors in drug distribution and response. Unlocking the potential of nanomedicine demands a fundamental understanding of the impact biological sex has on drug distribution, efficacy and adverse effects.
Collapse
Affiliation(s)
- Maria Poley
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Department of Medicine, Division of Engineering in Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
| |
Collapse
|
11
|
Jackman MJ, Li W, Smith A, Workman D, Treacher KE, Corrigan A, Abdulrazzaq F, Sonzini S, Nazir Z, Lawrence MJ, Mahmoudi N, Cant D, Counsell J, Cairns J, Ferguson D, Lenz E, Baquain S, Madla CM, van Pelt S, Moss J, Peter A, Puri S, Ashford M, Mazza M. Impact of the physical-chemical properties of poly(lactic acid)-poly(ethylene glycol) polymeric nanoparticles on biodistribution. J Control Release 2024; 365:491-506. [PMID: 38030083 DOI: 10.1016/j.jconrel.2023.11.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023]
Abstract
Nanoparticle (NP) formulations are inherently polydisperse making their structural characterization and justification of specifications complex. It is essential, however, to gain an understanding of the physico-chemical properties that drive performance in vivo. To elucidate these properties, drug-containing poly(lactic acid) (PLA)-poly(ethylene glycol) (PEG) block polymeric NP formulations (or PNPs) were sub-divided into discrete size fractions and analyzed using a combination of advanced techniques, namely cryogenic transmission electron microscopy, small-angle neutron and X-ray scattering, nuclear magnetic resonance, and hard-energy X-ray photoelectron spectroscopy. Together, these techniques revealed a uniquely detailed picture of PNP size, surface structure, internal molecular architecture and the preferred site(s) of incorporation of the hydrophobic drug, AZD5991, properties which cannot be accessed via conventional characterization methodologies. Within the PNP size distribution, it was shown that the smallest PNPs contained significantly less drug than their larger sized counterparts, reducing overall drug loading, while PNP molecular architecture was critical in understanding the nature of in vitro drug release. The effect of PNP size and structure on drug biodistribution was determined by administrating selected PNP size fractions to mice, with the smaller sized NP fractions increasing the total drug-plasma concentration area under the curve and reducing drug concentrations in liver and spleen, due to greater avoidance of the reticuloendothelial system. In contrast, administration of unfractionated PNPs, containing a large population of NPs with extremely low drug load, did not significantly impact the drug's pharmacokinetic behavior - a significant result for nanomedicine development where a uniform formulation is usually an important driver. We also demonstrate how, in this study, it is not practicable to validate the bioanalytical methodology for drug released in vivo due to the NP formulation properties, a process which is applicable for most small molecule-releasing nanomedicines. In conclusion, this work details a strategy for determining the effect of formulation variability on in vivo performance, thereby informing the translation of PNPs, and other NPs, from the laboratory to the clinic.
Collapse
Affiliation(s)
- Mark J Jackman
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Cambridge, UK.
| | - Weimin Li
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Aaron Smith
- DMPK, Oncology R&D, AstraZeneca, Cambridge, UK
| | - David Workman
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Kevin E Treacher
- New Modalities & Parenteral Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, UK
| | - Adam Corrigan
- Data Sciences and Quantitative Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Fadi Abdulrazzaq
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Silvia Sonzini
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Zahid Nazir
- New Modalities & Parenteral Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, UK
| | - M Jayne Lawrence
- Division of Pharmacy & Optometry and the North West Centre for Advanced Drug Delivery (NoWCADD), School of Health Sciences, University of Manchester, Manchester, UK
| | - Najet Mahmoudi
- ISIS Pulsed Neutron and Muon Source, Rutherford Appleton Laboratory, Chilton, Didcot, UK
| | - David Cant
- National Physical Laboratory, Teddington, UK
| | | | - Jonathan Cairns
- Data Sciences and Quantitative Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Doug Ferguson
- Drug Metabolism and Pharmacokinetics, Early Oncology Research and Development, AstraZeneca, Waltham, MA, USA
| | - Eva Lenz
- Medicinal Chemistry, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Saif Baquain
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Christine M Madla
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Sally van Pelt
- Business, Planning & Operations, AstraZeneca, Cambridge, UK
| | - Jennifer Moss
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Alison Peter
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Sanyogitta Puri
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Marianne Ashford
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Macclesfield, UK
| | - Mariarosa Mazza
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Cambridge, UK.
| |
Collapse
|
12
|
Irvin-Choy NS, Nelson KM, Gleghorn JP, Day ES. Delivery and short-term maternal and fetal safety of vaginally administered PEG-PLGA nanoparticles. Drug Deliv Transl Res 2023; 13:3003-3013. [PMID: 37365402 PMCID: PMC10913101 DOI: 10.1007/s13346-023-01369-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2023] [Indexed: 06/28/2023]
Abstract
At the onset of pregnancy, people with preexisting conditions face additional challenges in carrying their pregnancy to term, as the safety of the developing fetus and pregnant person is a significant factor of concern. Nanoparticle (NP)-based therapies have displayed success against various conditions and diseases in non-pregnant patients, but the use of NPs in maternal-fetal health applications needs to be better established. Local vaginal delivery of NPs is a promising administration route with the potential to yield high cargo retention in the vagina and improved therapeutic efficacy compared to systemic administration that results in rapid NP clearance by the hepatic first-pass effect. In this study, we investigated the biodistribution and short-term toxicity of poly(ethylene glycol)-poly(lactic-co-glycolic acid) (PEG-PLGA) NPs in pregnant mice following vaginal delivery. The NPs were either loaded with DiD fluorophores for tracking cargo distribution (termed DiD-PEG-PLGA NPs) or included Cy5-tagged PLGA in the formulation for tracking polymer distribution (termed Cy5-PEG-PLGA NPs). DiD-PEG-PLGA NPs were administered at gestational day (E)14.5 or 17.5, and cargo biodistribution was analyzed 24 h later by fluorescence imaging of whole excised tissues and histological sections. No gestational differences in DiD distribution were observed, so Cy5-PEG-PLGA NPs were administered at only E17.5 to evaluate polymer distribution in the reproductive organs of pregnant mice. Cy5-PEG-PLGA NPs distributed to the vagina, placentas, and embryos, whereas DiD cargo was only observed in the vagina. NPs did not impact maternal, fetal, or placental weight, suggesting they display no short-term effects on maternal or fetal growth. The results from this study encourage future investigation into the use of vaginally delivered NP therapies for conditions affecting the vagina during pregnancy.
Collapse
Affiliation(s)
- N'Dea S Irvin-Choy
- Department of Biomedical Engineering, University of Delaware, Newark, DE, 19713, USA
| | - Katherine M Nelson
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Jason P Gleghorn
- Department of Biomedical Engineering, University of Delaware, Newark, DE, 19713, USA.
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA.
| | - Emily S Day
- Department of Biomedical Engineering, University of Delaware, Newark, DE, 19713, USA.
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, 19716, USA.
- Helen F. Graham Cancer Center & Research Institute, University of Delaware, Newark, DE, 19713, USA.
| |
Collapse
|
13
|
Nguyen TTA, Demeestere I. A Journey to Reach the Ovary Using Next-Generation Technologies. Int J Mol Sci 2023; 24:16593. [PMID: 38068916 PMCID: PMC10705884 DOI: 10.3390/ijms242316593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
Although effective in terms of the chances of future live birth, the current methods for fertility preservation, such as oocyte, embryo, or ovarian tissue cryopreservation, cannot be offered to all cancer patients in all clinical contexts. Expanding options for fertility preservation is crucial to addressing the need to encompass all situations. One emerging strategy is pharmacoprotection, a non-invasive approach that has the potential to fill existing gaps in fertility preservation. In addition to the identification of the most effective therapeutic agents, the potential for off-target effects remains one of the main limitations of this strategy for clinical application, particularly when healthy ovarian tissue is targeted. This review focuses on the advances in pharmacoprotective approaches and the challenge of targeting the ovaries to deliver these agents. The unique properties of gold nanoparticles (AuNPs) make them an attractive candidate for this purpose. We discuss how AuNPs meet many of the requirements for an ideal drug delivery system, as well as the existing limitations that have hindered the progression of AuNP research into more clinical trials. Additionally, the review highlights microRNA (miRNA) therapy as a next-generation approach to address the issues of fertility preservation and discusses the obstacles that currently impede its clinical availability.
Collapse
Affiliation(s)
| | - Isabelle Demeestere
- Research Laboratory on Human Reproduction, Faculty of Medicine, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium;
| |
Collapse
|
14
|
Anima B, Mondal P, Gurusubramanian G, Roy VK. Mechanistic study of copper nanoparticle (CuNP) toxicity on the mouse uterus via apelin signaling. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:88824-88841. [PMID: 37442930 DOI: 10.1007/s11356-023-28746-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 07/07/2023] [Indexed: 07/15/2023]
Abstract
Copper nanoparticles (CuNPs) have been widely utilized in various applications. Due to its wider application, humans are at risk of its exposure. It has been reported that the exposure of CuNPs can lead to organ accumulation and affect organ toxicity. Recent study suggested that CuNPs can translocate into the uterus and affect uterine injury in rat, whereas uterine toxicity still remains unclear. The uterus is an important female organ which is required to sustain pregnancy. Thus, uterine structure and physiology are important. Therefore, this study hypothesized that CuNPs might have a toxic effect on the uterine features of mice. In this study, we have investigated the potential effects of CuNPs on the uterus of mice both in vivo and in vitro. In in vivo study, two groups of female mice were exposed to 5 and 50 mg/kg/day via oral exposure. In vivo results showed that CuNP treatment decreases the body weight and uterus weight and changes in antioxidant status with low estrogen and progesterone levels. Furthermore, CuNPs up-regulated the expression of caspase3 and down-regulated the expression of apelin receptor (APJ). Immunolocalization of apelin showed low abundance in the CuNP-treated uterus. These results suggest a poor apelin signaling in the uterus after CuNP treatment. The in vivo findings were further supported by the in vitro studies. Firstly, the uterus was cultured with 5 and 40 μg of CuNPs, and in the second in vitro experiment, the uterus was divided into 4 groups: control, 40 μg of CuNPs, 40 μg of CuNPs with apelin, and 40 μg of CuNPs with apelin receptor antagonist (ML221). In vitro study showed that CuNPs could directly induce the oxidative stress and apoptosis as well as changing antioxidant status in the uterus. The in vitro apelin 13 (APLN 13) treatments alleviated the expression of BCL2 and improved the antioxidant markers in CuNP-treated uterus. These results also provided an evidence of apelin-mediated signaling in the CuNP-treated uterus. In summary, our results present evidence that CuNPs can stimulate apoptotic pathways which may lead to uterine impairment due to weak apelin signaling.
Collapse
Affiliation(s)
- Borgohain Anima
- Department of Zoology, Mizoram University, Aizawl, Mizoram, 796 004, India
| | - Pradip Mondal
- Department of Zoology, Netaji Mahavidyalaya, Hooghly, West Bengal, 712616, India
| | | | - Vikas Kumar Roy
- Department of Zoology, Mizoram University, Aizawl, Mizoram, 796 004, India.
| |
Collapse
|
15
|
Taylor J, Sharp A, Rannard SP, Arrowsmith S, McDonald TO. Nanomedicine strategies to improve therapeutic agents for the prevention and treatment of preterm birth and future directions. NANOSCALE ADVANCES 2023; 5:1870-1889. [PMID: 36998665 PMCID: PMC10044983 DOI: 10.1039/d2na00834c] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/27/2023] [Indexed: 06/19/2023]
Abstract
The World Health Organisation (WHO) estimates 15 million babies worldwide are born preterm each year, with 1 million infant mortalities and long-term morbidity in survivors. Whilst the past 40 years have provided some understanding in the causes of preterm birth, along with development of a range of therapeutic options, notably prophylactic use of progesterone or uterine contraction suppressants (tocolytics), the number of preterm births continues to rise. Existing therapeutics used to control uterine contractions are restricted in their clinical use due to pharmacological drawbacks such as poor potency, transfer of drugs to the fetus across the placenta and maternal side effects from activity in other maternal systems. This review focuses on addressing the urgent need for the development of alternative therapeutic systems with improved efficacy and safety for the treatment of preterm birth. We discuss the application of nanomedicine as a viable opportunity to engineer pre-existing tocolytic agents and progestogens into nanoformulations, to improve their efficacy and address current drawbacks to their use. We review different nanomedicines including liposomes, lipid-based carriers, polymers and nanosuspensions highlighting where possible, where these technologies have already been exploited e.g. liposomes, and their significance in improving the properties of pre-existing therapeutic agents within the field of obstetrics. We also highlight where active pharmaceutical agents (APIs) with tocolytic properties have been used for other clinical indications and how these could inform the design of future therapeutics or be repurposed to diversify their application such as for use in preterm birth. Finally we outline and discuss the future challenges.
Collapse
Affiliation(s)
- Jessica Taylor
- Department of Chemistry, University of Liverpool Crown Street Liverpool L69 7ZD UK
| | - Andrew Sharp
- Harris-Wellbeing Preterm Birth Research Centre, Department of Women's and Children's Health, Liverpool Women's Hospital, University of Liverpool Crown Street Liverpool L8 7SS UK
| | - Steve P Rannard
- Department of Chemistry, University of Liverpool Crown Street Liverpool L69 7ZD UK
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool Liverpool L7 3NY UK
| | - Sarah Arrowsmith
- Department of Life Sciences, Manchester Metropolitan University Chester Street Manchester M1 5GD UK
| | - Tom O McDonald
- Department of Chemistry, University of Liverpool Crown Street Liverpool L69 7ZD UK
- Department of Materials, Henry Royce Institute, The University of Manchester Manchester M13 9PL UK
| |
Collapse
|
16
|
Poley M, Chen G, Sharf-Pauker N, Avital A, Kaduri M, Sela M, Raimundo PM, Koren L, Arber S, Egorov E, Shainsky J, Shklover J, Schroeder A. Sex‐Based Differences in the Biodistribution of Nanoparticles and Their Effect on Hormonal, Immune, and Metabolic Function. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Maria Poley
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies Department of Chemical Engineering Technion – Israel Institute of Technology Haifa 32000 Israel
| | - Gal Chen
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies Department of Chemical Engineering Technion – Israel Institute of Technology Haifa 32000 Israel
| | - Noga Sharf-Pauker
- The Norman Seiden Multidisciplinary Program for Nanoscience and Nanotechnology Technion – Israel Institute of Technology Haifa 32000 Israel
| | - Aviram Avital
- The Norman Seiden Multidisciplinary Program for Nanoscience and Nanotechnology Technion – Israel Institute of Technology Haifa 32000 Israel
| | - Maya Kaduri
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies Department of Chemical Engineering Technion – Israel Institute of Technology Haifa 32000 Israel
| | - Mor Sela
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies Department of Chemical Engineering Technion – Israel Institute of Technology Haifa 32000 Israel
| | - Patricia Mora Raimundo
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies Department of Chemical Engineering Technion – Israel Institute of Technology Haifa 32000 Israel
| | - Lilach Koren
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies Department of Chemical Engineering Technion – Israel Institute of Technology Haifa 32000 Israel
| | - Sivan Arber
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies Department of Chemical Engineering Technion – Israel Institute of Technology Haifa 32000 Israel
| | - Egor Egorov
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies Department of Chemical Engineering Technion – Israel Institute of Technology Haifa 32000 Israel
| | - Janna Shainsky
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies Department of Chemical Engineering Technion – Israel Institute of Technology Haifa 32000 Israel
| | - Jeny Shklover
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies Department of Chemical Engineering Technion – Israel Institute of Technology Haifa 32000 Israel
| | - Avi Schroeder
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies Department of Chemical Engineering Technion – Israel Institute of Technology Haifa 32000 Israel
| |
Collapse
|
17
|
Aloisi M, Rossi G, Colafarina S, Guido M, Cecconi S, Poma AMG. The Impact of Metal Nanoparticles on Female Reproductive System: Risks and Opportunities. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13748. [PMID: 36360633 PMCID: PMC9655349 DOI: 10.3390/ijerph192113748] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/16/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Humans have always been exposed to tiny particles via dust storms, volcanic ash, and other natural processes, and our bodily systems are well adapted to protect us from these potentially harmful external agents. However, technological advancement has dramatically increased the production of nanometer-sized particles or nanoparticles (NPs), and many epidemiological studies have confirmed a correlation between NP exposure and the onset of cardiovascular diseases and various cancers. Among the adverse effects on human health, in recent years, potential hazards of nanomaterials on female reproductive organs have received increasing concern. Several animal and human studies have shown that NPs can translocate to the ovary, uterus, and placenta, thus negatively impacting female reproductive potential and fetal health. However, NPs are increasingly being used for therapeutic purposes as tools capable of modifying the natural history of degenerative diseases. Here we briefly summarize the toxic effects of few but widely diffused NPs on female fertility and also the use of nanotechnologies as a new molecular approach for either specific pathological conditions, such as ovarian cancer and infertility, or the cryopreservation of gametes and embryos.
Collapse
|
18
|
Abstract
The field of cancer nanomedicine seeks to overcome the inherent shortcomings of conventional cancer diagnostics and therapies. Yet despite the surge of interest in and attractive attributes of nanotechnologies, challenges remain in their clinical translation, prompting some to argue that they have not yet reached their true potential. In this Viewpoint article, we asked four experts for their opinions on how we can fulfil the great promise of nanomedicine for the detection, diagnosis and treatment of patients with cancer.
Collapse
Affiliation(s)
- Sangeeta N Bhatia
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| | - Xiaoyuan Chen
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, Singapore.
- Department of Surgery, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, Singapore.
- Department of Chemical and Biomolecular Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, Singapore.
- Department of Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, Singapore.
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Marina A Dobrovolskaia
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA.
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging (ExMI), Center for Biohybrid Medical Systems (CBMS), RWTH Aachen University Clinic, Aachen, Germany.
| |
Collapse
|
19
|
Zamborlin A, Ermini ML, Summa M, Giannone G, Frusca V, Mapanao AK, Debellis D, Bertorelli R, Voliani V. The Fate of Intranasally Instilled Silver Nanoarchitectures. NANO LETTERS 2022; 22:5269-5276. [PMID: 35770505 PMCID: PMC9284613 DOI: 10.1021/acs.nanolett.2c01180] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The intranasal administration of drugs allows an effective and noninvasive therapeutic action on the respiratory tract. In an era of rapidly increasing antimicrobial resistance, new approaches to the treatment of communicable diseases, especially lung infections, are urgently needed. Metal nanoparticles are recognized as a potential last-line defense, but limited data on the biosafety and nano/biointeractions preclude their use. Here, we quantitatively and qualitatively assess the fate and the potential risks associated with the exposure to a silver nanomaterial model (i.e., silver ultrasmall-in-nano architectures, AgNAs) after a single dose instillation. Our results highlight that the biodistribution profile and the nano/biointeractions are critically influenced by both the design of the nanomaterial and the chemical nature of the metal. Overall, our data suggest that the instillation of rationally engineered nanomaterials might be exploited to develop future treatments for (non)communicable diseases of the respiratory tract.
Collapse
Affiliation(s)
- Agata Zamborlin
- Center
for Nanotechnology Innovation@ NEST, Istituto
Italiano di Tecnologia, Piazza San Silvestro, 12−56127, Pisa, Italy
- NEST-Scuola
Normale Superiore, Piazza San Silvestro, 12−56127, Pisa, Italy
| | - Maria Laura Ermini
- Center
for Nanotechnology Innovation@ NEST, Istituto
Italiano di Tecnologia, Piazza San Silvestro, 12−56127, Pisa, Italy
| | - Maria Summa
- Translational
Pharmacology, Istituto Italiano di Tecnologia, Via Morego, 30−16163, Genoa, Italy
| | - Giulia Giannone
- Center
for Nanotechnology Innovation@ NEST, Istituto
Italiano di Tecnologia, Piazza San Silvestro, 12−56127, Pisa, Italy
- NEST-Scuola
Normale Superiore, Piazza San Silvestro, 12−56127, Pisa, Italy
| | - Valentina Frusca
- Center
for Nanotechnology Innovation@ NEST, Istituto
Italiano di Tecnologia, Piazza San Silvestro, 12−56127, Pisa, Italy
| | - Ana Katrina Mapanao
- Center
for Nanotechnology Innovation@ NEST, Istituto
Italiano di Tecnologia, Piazza San Silvestro, 12−56127, Pisa, Italy
| | - Doriana Debellis
- Electron
Microscopy Facility, Istituto Italiano di
Tecnologia, Via Morego, 30−16163, Genoa, Italy
| | - Rosalia Bertorelli
- Translational
Pharmacology, Istituto Italiano di Tecnologia, Via Morego, 30−16163, Genoa, Italy
| | - Valerio Voliani
- Center
for Nanotechnology Innovation@ NEST, Istituto
Italiano di Tecnologia, Piazza San Silvestro, 12−56127, Pisa, Italy
| |
Collapse
|
20
|
Sex, gender, and intersectional puzzles in health and biomedicine research. MED 2022; 3:284-287. [DOI: 10.1016/j.medj.2022.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|