1
|
Rasoulianboroujeni M, Kang RH, Klukas M, Kwon GS. Crystallization of supersaturated PEG-b-PLA for the production of drug-loaded polymeric micelles. J Control Release 2025; 380:457-468. [PMID: 39921034 PMCID: PMC11908913 DOI: 10.1016/j.jconrel.2025.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/19/2024] [Accepted: 02/04/2025] [Indexed: 02/10/2025]
Abstract
In this study, we propose the "crystallization from supersaturated solution" method for producing drug-loaded polymeric micelles. This method involves the formation of solid drug-encapsulating crystals of a diblock copolymer through isothermal crystallization from a supersaturated solution of the copolymer in low molecular weight PEGs containing the drug, followed by dissolution of the crystals to obtain drug-loaded micelles. We fabricated and characterized micelles loaded with several model drugs (paclitaxel, rapamycin, and docetaxel) and their oligo(lactic acid)8-prodrugs using PEG4kDa-b-PLA2.2kDa as the micelle-forming copolymer and PEGs of varying molecular weights (200, 400, and 600 Da) as solvents. Our findings indicate that the molecular weight of the solvent PEG and the target drug loading significantly influence the physicochemical properties of the resulting micelles, including loading efficiency and particle size distribution. Micelles produced with PEG200 as the solvent exhibited the highest loading efficiency, followed by those made with PEG600 and PEG400 for all the drugs and prodrugs tested. Increasing the target drug loading enhanced both the loading efficiency and average particle size across all formulations. Furthermore, prodrug-loaded micelles showed higher loading efficiency and improved stability in aqueous solutions compared to their parent drug counterparts. Crystals encapsulating both parent drugs and prodrugs could be stored at room temperature for extended periods, producing micelles with no significant differences in loading efficiency and particle size distribution compared to freshly prepared micelles. Additionally, the crystals demonstrated a rapid dissolution rate, forming uniform micelles after just 5 s of hydration and agitation. Cytotoxicity studies against 4 T1 and MDA-MB-231 breast cancer cell lines revealed that the molecular weight of the PEG used as the solvent impacts the cytotoxicity of the resulting micelles, with those produced using PEG200 displaying the highest cytotoxicity, followed by PEG400 and PEG600. Overall, the crystallization from supersaturated solution method proves to be an effective platform for prolonged storage and rapid formation of stable, drug-loaded polymeric micelles. It has the potential to eliminate the need for freeze-drying in the formulation and storage of drug-loaded polymeric micelles. These findings highlight the method's potential for advancing drug delivery systems, particularly for the solubilization of hydrophobic drugs using micellar formulations.
Collapse
Affiliation(s)
- Morteza Rasoulianboroujeni
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, 777 Highland Avenue, Madison, WI 53705, United States
| | - Rae Hyung Kang
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, 777 Highland Avenue, Madison, WI 53705, United States; Department of Pharmaceutical Engineering, Dankook University, Cheonan 31116, Republic of Korea
| | - Maraya Klukas
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, 777 Highland Avenue, Madison, WI 53705, United States
| | - Glen S Kwon
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, 777 Highland Avenue, Madison, WI 53705, United States.
| |
Collapse
|
2
|
Wang H, Su S, An X, Xu Y, Sun J, Zhen M, Wang C, Bai C. A charge reversal nano-assembly prevents hepatic steatosis by resolving inflammation and improving lipid metabolism. Bioact Mater 2025; 45:496-508. [PMID: 39717365 PMCID: PMC11664292 DOI: 10.1016/j.bioactmat.2024.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 11/11/2024] [Accepted: 11/18/2024] [Indexed: 12/25/2024] Open
Abstract
Lipid metabolism imbalance combined with over-activated inflammation are two key factors for hepatic stestosis. However, on-demand anchoring inflammation and lipid metabolism disorder for hepatic stestosis treatment has yet to be realized. Here we propose a charge reversal fullerene based nano-assembly to migrate hepatic steatosis via inhibiting macrophage-mediated inflammation and normalizing hepatocellular lipid metabolism in obesity mice. Our nano-assembly (abbreviated as FPPD) is comprised of electropositive polyetherimide (PEI), charge-shielded dimethylmaleic anhydride (DMA), and poly(lactic-co-glycolic acid) (PLGA), which provides hydrophobic chains for self-assembly with anti-oxidative dicarboxy fullerene poly(ethylene glycol) molecule (FP). The obtained FPPD nano-assembly owns a charge reversal ability that switches to a positive charge in an acidic environment that targets the electronegative mitochondria both in pro-inflammatory macrophages and steatosis hepatocytes. We demonstrate that the anti-oxidative and mitochondria-targeting FPPD notably reduces inflammation in macrophages and lipid accumulation in hepatocytes by quenching excessive reactive oxygen species (ROS) and improving mitochondrial function in vitro. Importantly, FPPD nano-assembly reveals a superior anti-hepatic steatosis effect via migrating inflammation and facilitating lipid transport in obesity mice. Overall, the charge reversal nano-assembly reduces over-activated inflammation and promotes lipid metabolism that provides an effectiveness of a multi-target strategy for hepatic steatosis treatment.
Collapse
Affiliation(s)
- Haoyu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sheng'e Su
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin An
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuan Xu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiacheng Sun
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mingming Zhen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunru Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunli Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
3
|
Dong TR, Li YJ, Jin SY, Yang FL, Xiong RX, Dai YQ, Song XZ, Guan CP. Progress on mitochondria and hair follicle development in androgenetic alopecia: relationships and therapeutic perspectives. Stem Cell Res Ther 2025; 16:44. [PMID: 39901201 PMCID: PMC11792644 DOI: 10.1186/s13287-025-04182-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/23/2025] [Indexed: 02/05/2025] Open
Abstract
Hair loss has long been a significant concern for many individuals. Recent studies have indicated that mitochondria play a more crucial role in hair loss than previously recognized. This review summarizes the connection between mitochondrial dysfunction and hair follicle development, outlines the links between diseases related to mitochondrial disorders and hair issues, and highlights the influence of mitochondrial dysfunction on androgenetic alopecia. We discuss the cellular and signaling mechanisms associated with hair loss and examine how mitochondrial dysfunction, such as insufficient energy supply, signaling irregularities, protein/gene abnormalities, and programmed cell death, can hinder the normal proliferation, differentiation, and growth of hair follicle cells. Furthermore, we discuss current treatment approaches and potential innovative therapies, including mitochondrion-targeting drugs and advanced techniques that directly target hair follicle cells, providing fresh insights into the crucial role of mitochondria in maintaining hair follicle health and managing hair disorders. Furthermore, this review explores future therapeutic strategies and proposes that mitochondrial research could lead to groundbreaking treatments for hair loss, thus providing optimism and new avenues for the treatment of individuals experiencing hair loss. This review not only underscores the central importance of mitochondria in hair health but also emphasizes the importance of advancing research and treatment in this field.
Collapse
Affiliation(s)
- Ting-Ru Dong
- Department of Dermatology, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310009, China
| | - Yu-Jie Li
- Department of Dermatology, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310009, China
| | - Shi-Yu Jin
- Department of Dermatology, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310009, China
| | - Feng-Lan Yang
- Department of Dermatology, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310009, China
| | - Ren-Xue Xiong
- Department of Dermatology, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310009, China
- Department of Dermatology, Hangzhou Third People's Hospital, No 38 Xihu Rd, Hangzhou, 310009, China
| | - Ye-Qin Dai
- Department of Dermatology, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310009, China
- Department of Dermatology, Hangzhou Third People's Hospital, No 38 Xihu Rd, Hangzhou, 310009, China
| | - Xiu-Zu Song
- Department of Dermatology, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310009, China
- Department of Dermatology, Hangzhou Third People's Hospital, No 38 Xihu Rd, Hangzhou, 310009, China
| | - Cui-Ping Guan
- Department of Dermatology, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310009, China.
- Department of Dermatology, Hangzhou Third People's Hospital, No 38 Xihu Rd, Hangzhou, 310009, China.
| |
Collapse
|
4
|
Pegoraro C, Karpova E, Qutbuddin Y, Sanchis EM, Dimitrijevs P, Huck‐Iriart C, Gavrilović S, Arsenyan P, Schwille P, Felip‐León C, Duro‐Castano A, Conejos‐Sanchez I, Vicent MJ. Polyproline-Polyornithine Diblock Copolymers with Inherent Mitochondria Tropism. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2411595. [PMID: 39797465 PMCID: PMC11854869 DOI: 10.1002/adma.202411595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/25/2024] [Indexed: 01/13/2025]
Abstract
Mitochondria play critical roles in regulating cell fate, with dysfunction correlating with the development of multiple diseases, emphasizing the need for engineered nanomedicines that cross biological barriers. Said nanomedicines often target fluctuating mitochondrial properties and/or present inefficient/insufficient cytosolic delivery (resulting in poor overall activity), while many require complex synthetic procedures involving targeting residues (hindering clinical translation). The synthesis/characterization of polypeptide-based cell penetrating diblock copolymers of poly-L-ornithine (PLO) and polyproline (PLP) (PLOn-PLPm, n:m ratio 1:3) are described as mitochondria-targeting nanocarriers. Synthesis involves a simple two-step methodology based on N-carboxyanhydride ring-opening polymerization, with the scale-up optimization using a "design of experiments" approach. The molecular mechanisms behind targetability and therapeutic activity are investigated through physical/biological processes for diblock copolymers themselves or as targeting moieties in a poly-L-glutamic (PGA)-based conjugate. Diblock copolymers prompt rapid cell entry via energy-independent mechanisms and recognize mitochondria through the mitochondria-specific phospholipid cardiolipin (CL). Stimuli-driven conditions and mitochondria polarization dynamics, which decrease efficacy depending on disease type/stage, do not compromise diblock copolymer uptake/targetability. Diblock copolymers exhibit inherent concentration-dependent anti-tumorigenic activity at the mitochondrial level. The diblock copolymer conjugate possesses improved safety, significant cell penetration, and mitochondrial accumulation via cardiolipin recognition. These findings may support the development of efficient and safe mitochondrial-targeting nanomedicines.
Collapse
Affiliation(s)
- Camilla Pegoraro
- Príncipe Felipe Research CenterPolymer Therapeutics Lab.Valencia46012Spain
| | | | - Yusuf Qutbuddin
- Max Planck Institute of BiochemistryAm Klopferspitz 1882152MartinsriedGermany
| | - Esther Masiá Sanchis
- Príncipe Felipe Research CenterPolymer Therapeutics Lab.Valencia46012Spain
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC)Instituto de Salud Carlos IIIMadrid28029Spain
- Príncipe Felipe Research CenterScreening PlatformValencia46012Spain
| | - Pavels Dimitrijevs
- Latvian Institute of Organic SynthesisAizkraukles Street 21RigaLV‐1006Latvia
| | - Cristián Huck‐Iriart
- Experiments DivisionALBA Synchrotron Light SourceCerdanyola del Vallès08209Spain
| | - Svetozar Gavrilović
- Max Planck Institute of BiochemistryAm Klopferspitz 1882152MartinsriedGermany
| | - Pavel Arsenyan
- Latvian Institute of Organic SynthesisAizkraukles Street 21RigaLV‐1006Latvia
| | - Petra Schwille
- Max Planck Institute of BiochemistryAm Klopferspitz 1882152MartinsriedGermany
| | | | | | - Inmaculada Conejos‐Sanchez
- Príncipe Felipe Research CenterPolymer Therapeutics Lab.Valencia46012Spain
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC)Instituto de Salud Carlos IIIMadrid28029Spain
| | - María J. Vicent
- Príncipe Felipe Research CenterPolymer Therapeutics Lab.Valencia46012Spain
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC)Instituto de Salud Carlos IIIMadrid28029Spain
- Príncipe Felipe Research CenterScreening PlatformValencia46012Spain
| |
Collapse
|
5
|
Zhang S, Yang N, Sun S, Zhao H, Wang W, Nie J, Pei Z, He W, Zhang L, Cheng L, Cheng Z. Dually fluorinated unimolecular micelles for stable oxygen-carrying and enhanced photosensitive efficiency to boost photodynamic therapy against hypoxic tumors. Acta Biomater 2025; 193:406-416. [PMID: 39798639 DOI: 10.1016/j.actbio.2025.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/29/2024] [Accepted: 01/09/2025] [Indexed: 01/15/2025]
Abstract
Tumor hypoxia is one of key challenges in deep tumor photodynamic therapy (PDT), and how to fix this issue is attracting ongoing concerns worldwide. This work demonstrates dually fluorinated unimolecular micelles with desirable and stable oxygen-carrying capacity, high cellular penetration, and integrative type I & II PDT for deep hypoxic tumors. Dually fluorinated star copolymers with fluorinated phthalocyanines as the core are prepared through photoinitiated electron/energy transfer-reversible addition-fragmentation chain transfer (PET-RAFT) polymerization under irradiation with NIR LED light at room temperature, followed by assembly into unimolecular micelles. Perfluorocarbons (PFCs) are also introduced into the star polymers during the polymerization to further enhance and stabilize oxygen-carrying capacity, which is slightly affected by concentration-induced size transformation. PFCs assist unimolecular micelles with repelling mucin adsorption, which results in superior cellular uptake within 1 h and high effective accumulation rates in tumors of CT26 tumor-bearing mice within 24 h after systemic administration, and showing effective anti-tumor effects under the irradiation of NIR LED light. This work provides a new type of nano-photosensitizers for highly efficient hypoxic PDT. STATEMENT OF SIGNIFICANCE: One of the major challenges in improving the efficiency of photodynamic therapy (PDT) for deep tumors is how to address tumor hypoxia, which is receiving continued attention worldwide. However, most of the reported oxygen carriers combine with photosensitizers by physical means and the carriers have the risk of dissociating easily, which is not conducive to long-term and efficient PDT, resulting in poor therapeutic effect. This work demonstrates dually fluorinated unimolecular micelles with desirable and stable oxygen-carrying capacity, high cellular penetration, and integrative type I & II PDT for enhanced deep hypoxic tumors, overcoming the key challenges of tumor hypoxia and low photosensitizer efficiency.
Collapse
Affiliation(s)
- Shunhu Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; Suzhou key Laboratory of Macromolecular Deign and Precision Synthesis; College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Nailin Yang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, PR China
| | - Shumin Sun
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, PR China
| | - Haitao Zhao
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; Suzhou key Laboratory of Macromolecular Deign and Precision Synthesis; College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Wenxuan Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; Suzhou key Laboratory of Macromolecular Deign and Precision Synthesis; College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Jihu Nie
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, PR China
| | - Zifan Pei
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, PR China
| | - Weiwei He
- State Key Laboratory of Radiation Medicine and Protection, School of Radiological and Interdisciplinary Sciences (RADX), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, PR China.
| | - Lifen Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; Suzhou key Laboratory of Macromolecular Deign and Precision Synthesis; College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China.
| | - Liang Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, PR China.
| | - Zhenping Cheng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; Suzhou key Laboratory of Macromolecular Deign and Precision Synthesis; College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China.
| |
Collapse
|
6
|
Zou T, Huang Y, Zhou Z, He S, Liu J, Chen Y, Liu H, Luo Z, Liu M, Wei H, Yu C. A minimalist multifunctional nano-prodrug for drug resistance reverse and integration with PD-L1 mAb for enhanced immunotherapy of hepatocellular carcinoma. J Nanobiotechnology 2024; 22:750. [PMID: 39627819 PMCID: PMC11613529 DOI: 10.1186/s12951-024-03027-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/19/2024] [Indexed: 12/08/2024] Open
Abstract
Clinical treatment of hepatocellular carcinoma (HCC) with 5-fluorouracil (5-FU), the primary anticancer agent, remains unsatisfactory due to the glutathione (GSH)-associated drug resistance and immunosuppressive microenvironment of HCC. To develop a facile yet robust strategy to overcome 5-FU resistance for enhanced immunotherapy treatment of HCC via all dimensional GSH exhaustion, we report in this study construction of a minimalist prodrug consisting of 5-FU linked to an indoleamine-(2,3)-dioxygenase (IDO) inhibitor (IND) via a disulfide bridge, FU-SS-IND that can further self-assemble into stabilized nanoparticles, FU-SS-IND NPs. Specifically, besides the disulfide linker-induced GSH exhaustion, IND inhibits GSH biosynthesis and enhances the effector function of T cells for turning a "cold" tumor to a "hot" one, which synergistically achieving a tumor inhibition rate (TIR) of 92.5% in a 5-FU resistant mice model. Most importantly, FU-SS-IND NPs could upregulate programmed death ligand 1 (PD-L1) expression on the surface of tumor cells, which enables facile combination with immune checkpoint blockade (ICB) for a ultimate prolonged survival lifetime of 5-FU-resistant tumors-bearing mice. Overall, the minimalist bioreducible nano-prodrug developed herein demonstrates great translatable potential for efficiently reversing drug resistance and enhancing immunotherapy of HCC.
Collapse
Affiliation(s)
- Ting Zou
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science & MOE Key Lab of Rare Pediatric Disease, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Yun Huang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science & MOE Key Lab of Rare Pediatric Disease, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Zongtao Zhou
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science & MOE Key Lab of Rare Pediatric Disease, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Shuangyan He
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science & MOE Key Lab of Rare Pediatric Disease, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Jia Liu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science & MOE Key Lab of Rare Pediatric Disease, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Yalan Chen
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science & MOE Key Lab of Rare Pediatric Disease, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Hongdu Liu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science & MOE Key Lab of Rare Pediatric Disease, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Zhonghui Luo
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science & MOE Key Lab of Rare Pediatric Disease, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Miaoxin Liu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science & MOE Key Lab of Rare Pediatric Disease, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Hua Wei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science & MOE Key Lab of Rare Pediatric Disease, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - CuiYun Yu
- Affiliated Hospital of Hunan Academy of Chinese Medicine, Hunan Academy of Chinese Medicine, Changsha, 410013, China.
| |
Collapse
|
7
|
Zheng C, Chen F, Yang F, Li Z, Yi W, Chen G, Li T, Yu X, Chen X. Myocardial cell mitochondria-targeted mesoporous polydopamine nanoparticles eliminate inflammatory damage in cardiovascular disease. Int J Biol Macromol 2024; 282:137141. [PMID: 39510474 DOI: 10.1016/j.ijbiomac.2024.137141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/23/2024] [Accepted: 10/30/2024] [Indexed: 11/15/2024]
Abstract
Excess reactive oxide species (ROS) is a direct factor in myocardial injury death, thus anti-oxidant therapy is a necessary measure to prevent rapid death of cardiomyocyte cell. Cysteine (Cys) is a potent antioxidant but easily become instability because of the hyperactivity. Therefore, in order to protect the the stability of Cys, we according to the mitochondria are the main sites of ROS production, utilized the loading and ROS scavenging capacity of mesoporous polydopamine (mPDA) constructed a nanosystem targeting mitochondria with effectively ROS elimination capability by loading cysteine (Cys-mPDA@TPP). The mesoporous structure of mPDA effectively inhibited the advance reaction and hyperactivity of Cys, thus effectively improving its stability that reached the double-collaborative treatment excess ROS. In particular, Cys-mPDA@TPP achieved directly reacting with ROS in mitochondria under the targeting of triphenylphosphine (TPP), not only enhancing the elimination efficiency of ROS, but also preventing mitochondrial dysfunction of monocyte-macrophage. Furthermore, with double-collaborative ROS elimination, Cys-mPDA@TPP effectively prevent the damage of cardiomyocyte cell through inhibiting macrophage inflammatory response. Therefore, this study provides a new therapeutic strategy for myocardial inflammatory injury.
Collapse
Affiliation(s)
- Chuping Zheng
- Guangdong Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease Pharmacology Group, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Fajiang Chen
- Guangdong Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease Pharmacology Group, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Fangwen Yang
- Guangdong Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease Pharmacology Group, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Zhan Li
- Guangdong Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease Pharmacology Group, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Wei Yi
- Guangdong Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease Pharmacology Group, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Gengjia Chen
- Department of Radiology, Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, PR China.
| | - Tianwang Li
- Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, Guangzhou 510317, PR China; Department of Rheumatology and Immunology, Zhaoqing Central People's Hospital, Zhaoqing 526000, PR China.
| | - Xiyong Yu
- Guangdong Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease Pharmacology Group, Guangzhou Medical University, Guangzhou 511436, PR China.
| | - Xu Chen
- Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, Guangzhou 510317, PR China.
| |
Collapse
|
8
|
Song Z, Deng X, Jiang L, Tian R, Zhu Y, Lan Z, Chen H, Ma M. Copper-Consuming Nanoplatform for Alleviating Hypoxia and Overcoming Resistance to Sonodynamic Therapy of Breast Cancer. ACS APPLIED MATERIALS & INTERFACES 2024; 16:58357-58369. [PMID: 39413005 DOI: 10.1021/acsami.4c13687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Sonodynamic therapy (SDT) is a promising treatment modality for breast cancer; however, its effectiveness is often impeded by the hypoxic tumor microenvironment owing to an insufficient oxygen supply in the solid tumors. To overcome this challenge, we elaborately developed a 4T1 tumor-targeted multifunctional nanoagent by integrating both dendrimer-structured copper chelating agents and organic sonosensitizers (IR820) into a biotin-modified nanoliposome via a microfluidic-assisted self-assembly. In particular, the aforementioned copper chelating agent was constructed by introducing multiple xanthate groups into a dendrimer polymer, which showed a significant selectivity for the consumption of the intracellular copper levels. Based on this, the nanoliposome-based therapeutic not only disrupted the activity of the mitochondrial complex IV to directly inhibit the tumor cell proliferation but also suppressed the resistance to the SDT via inhibition of the oxygen consumption for cellular respiration. Both in vitro and in vivo studies confirmed that the designed nanoagents exhibit a synergistic tumor inhibition effect of copper consumption and IR820-mediated SDT. Taken together, this approach establishes a proof-of-concept for the construction of a copper-ion-modulated nanomedicine to significantly enhance the efficiency of oxygen-dependent cancer treatments.
Collapse
Affiliation(s)
- Ze Song
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xi Deng
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Liping Jiang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, P. R. China
| | - Ruizhi Tian
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yutong Zhu
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhengyi Lan
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
| | - Hangrong Chen
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, P. R. China
| | - Ming Ma
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, P. R. China
| |
Collapse
|
9
|
Li Y, Li XM, Wei LS, Ye JF. Advancements in mitochondrial-targeted nanotherapeutics: overcoming biological obstacles and optimizing drug delivery. Front Immunol 2024; 15:1451989. [PMID: 39483479 PMCID: PMC11524880 DOI: 10.3389/fimmu.2024.1451989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/19/2024] [Indexed: 11/03/2024] Open
Abstract
In recent decades, nanotechnology has significantly advanced drug delivery systems, particularly in targeting subcellular organelles, thus opening new avenues for disease treatment. Mitochondria, critical for cellular energy and health, when dysfunctional, contribute to cancer, neurodegenerative diseases, and metabolic disorders. This has propelled the development of nanomedicines aimed at precise mitochondrial targeting to modulate their function, marking a research hotspot. This review delves into the recent advancements in mitochondrial-targeted nanotherapeutics, with a comprehensive focus on targeting strategies, nanocarrier designs, and their therapeutic applications. It emphasizes nanotechnology's role in enhancing drug delivery by overcoming biological barriers and optimizing drug design for specific mitochondrial targeting. Strategies exploiting mitochondrial membrane potential differences and specific targeting ligands improve the delivery and mitochondrial accumulation of nanomedicines. The use of diverse nanocarriers, including liposomes, polymer nanoparticles, and inorganic nanoparticles, tailored for effective mitochondrial targeting, shows promise in anti-tumor and neurodegenerative treatments. The review addresses the challenges and future directions in mitochondrial targeting nanotherapy, highlighting the need for precision, reduced toxicity, and clinical validation. Mitochondrial targeting nanotherapy stands at the forefront of therapeutic strategies, offering innovative treatment perspectives. Ongoing innovation and research are crucial for developing more precise and effective treatment modalities.
Collapse
Affiliation(s)
- Yang Li
- General Surgery Center, First Hospital of Jilin University, Changchun, China
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, China
| | - Xiao-meng Li
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, China
| | - Li-si Wei
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, China
| | - Jun-feng Ye
- General Surgery Center, First Hospital of Jilin University, Changchun, China
| |
Collapse
|
10
|
Zheng Q, Liu H, Gao Y, Cao G, Wang Y, Li Z. Ameliorating Mitochondrial Dysfunction for the Therapy of Parkinson's Disease. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311571. [PMID: 38385823 DOI: 10.1002/smll.202311571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/27/2024] [Indexed: 02/23/2024]
Abstract
Parkinson's disease (PD) is currently the second most incurable central neurodegenerative disease resulting from various pathogenesis. As the "energy factory" of cells, mitochondria play an extremely important role in supporting neuronal signal transmission and other physiological activities. Mitochondrial dysfunction can cause and accelerate the occurrence and progression of PD. How to effectively prevent and suppress mitochondrial disorders is a key strategy for the treatment of PD from the root. Therefore, the emerging mitochondria-targeted therapy has attracted considerable interest. Herein, the relationship between mitochondrial dysfunction and PD, the causes and results of mitochondrial dysfunction, and major strategies for ameliorating mitochondrial dysfunction to treat PD are systematically reviewed. The study also prospects the main challenges for the treatment of PD.
Collapse
Affiliation(s)
- Qing Zheng
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Suzhou Medical College, Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China
| | - Hanghang Liu
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Suzhou Medical College, Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China
- Hubei Key Laboratory of Natural Products Research and Development and College of Biological and Pharmaceutical Science, China Three Gorges University, Yichang, 443002, China
| | - Yifan Gao
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Suzhou Medical College, Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China
| | - Guozhi Cao
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Suzhou Medical College, Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China
| | - Yusong Wang
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Suzhou Medical College, Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China
| | - Zhen Li
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Suzhou Medical College, Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China
| |
Collapse
|
11
|
Wang R, Zhang L, Li X, Zhu L, Xiang Z, Xu J, Xue D, Deng Z, Su X, Zou M. High-Performance Aluminum Fuels Induced by Monolayer Self-Assembly of Nano-Sized Energetic Fluoride Vesicles on the Surface. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401564. [PMID: 38704734 PMCID: PMC11234408 DOI: 10.1002/advs.202401564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/17/2024] [Indexed: 05/07/2024]
Abstract
Surface modification is frequently used to solve the problems of low combustion properties and agglomeration for aluminum-based fuels. However, due to the intrinsic incompatibility between the aluminum powder and the organic modifiers, the surface coating is usually uneven and disordered, which significantly deteriorates the uniformity and performances of the Al-based fuels. Herein, a new approach of monolayer nano-vesicular self-assembly is proposed to prepare high-performance Al fuels. Triblock copolymer G-F-G is produced by glycidyl azide polymer (GAP) and 2,2'-(2,2,3,3,4,5,5-Octafluorohexane-1,6-diyl) bis (oxirane) (fluoride) ring-open addition reaction. By utilizing G-F-G vesicular self-assembly in a special solvent, the nano-sized vesicles are firmly adhered to the surface of Al powder through the long-range attraction between the fluorine segments and Al. Meanwhile, the electrostatic repulsion between vesicles ensures an extremely thin coating thickness (≈15 nm), maintaining the monolayer coating structure. Nice ignition, combustion, anti-agglomeration, and water-proof properties of Al@G-F-G(DMF) are achieved, which are superior among the existing Al-based fuels. The derived Al-based fuel has excellent comprehensive properties, which can not only inspire the development of new-generation energetic materials but also provide facile but exquisite strategies for exquisite surface nanostructure construction via ordered self-assembly for many other applications.
Collapse
Affiliation(s)
- Ruibin Wang
- School of Materials Science and EngineeringBeijing Institute of TechnologyNo. 5 South Zhongguancun Street, HaidianBeijing100081China
| | - Lichen Zhang
- School of Materials Science and EngineeringBeijing Institute of TechnologyNo. 5 South Zhongguancun Street, HaidianBeijing100081China
| | - Xiaodong Li
- School of Materials Science and EngineeringBeijing Institute of TechnologyNo. 5 South Zhongguancun Street, HaidianBeijing100081China
| | - Lixiang Zhu
- School of Materials Science and EngineeringBeijing Institute of TechnologyNo. 5 South Zhongguancun Street, HaidianBeijing100081China
| | - Zilong Xiang
- School of Materials Science and EngineeringBeijing Institute of TechnologyNo. 5 South Zhongguancun Street, HaidianBeijing100081China
| | - Jin Xu
- School of Materials Science and EngineeringBeijing Institute of TechnologyNo. 5 South Zhongguancun Street, HaidianBeijing100081China
| | - Dichang Xue
- School of Materials Science and EngineeringBeijing Institute of TechnologyNo. 5 South Zhongguancun Street, HaidianBeijing100081China
| | - Zitong Deng
- School of Materials Science and EngineeringBeijing Institute of TechnologyNo. 5 South Zhongguancun Street, HaidianBeijing100081China
| | - Xing Su
- School of Materials Science and EngineeringBeijing Institute of TechnologyNo. 5 South Zhongguancun Street, HaidianBeijing100081China
| | - Meishuai Zou
- School of Materials Science and EngineeringBeijing Institute of TechnologyNo. 5 South Zhongguancun Street, HaidianBeijing100081China
| |
Collapse
|
12
|
Xin J, Lu X, Cao J, Wu W, Liu Q, Wang D, Zhou X, Ding D. Fluorinated Organic Polymers for Cancer Drug Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404645. [PMID: 38678386 DOI: 10.1002/adma.202404645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/22/2024] [Indexed: 04/30/2024]
Abstract
In the realm of cancer therapy, the spotlight is on nanoscale pharmaceutical delivery systems, especially polymer-based nanoparticles, for their enhanced drug dissolution, extended presence in the bloodstream, and precision targeting achieved via surface engineering. Leveraging the amplified permeation and retention phenomenon, these systems concentrate therapeutic agents within tumor tissues. Nonetheless, the hurdles of systemic toxicity, biological barriers, and compatibility with living systems persist. Fluorinated polymers, distinguished by their chemical idiosyncrasies, are poised for extensive biomedical applications, notably in stabilizing drug metabolism, augmenting lipophilicity, and optimizing bioavailability. Material science heralds the advent of fluorinated polymers that, by integrating fluorine atoms, unveil a suite of drug delivery merits: the hydrophobic traits of fluorinated alkyl chains ward off lipid or protein disruption, the carbon-fluorine bond's stability extends the drug's lifecycle in the system, and a lower alkalinity coupled with a diminished ionic charge bolsters the drug's ability to traverse cellular membranes. This comprehensive review delves into the utilization of fluorinated polymers for oncological pharmacotherapy, elucidating their molecular architecture, synthetic pathways, and functional attributes, alongside an exploration of their empirical strengths and the quandaries they encounter in both experimental and clinical settings.
Collapse
Affiliation(s)
- Jingrui Xin
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xue Lu
- Frontiers Science Center for New Organic Matter, Nankai International Advanced Research Institute (Shenzhen, Futian), and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jimin Cao
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and First Clinical Medical College, Shanxi Medical University, Taiyuan, 030001, China
| | - Weihui Wu
- Frontiers Science Center for New Organic Matter, Nankai International Advanced Research Institute (Shenzhen, Futian), and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Qian Liu
- Department of Urology, Tianjin First Central Hospital, Tianjin, 300192, China
| | - Deping Wang
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and First Clinical Medical College, Shanxi Medical University, Taiyuan, 030001, China
| | - Xin Zhou
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and First Clinical Medical College, Shanxi Medical University, Taiyuan, 030001, China
| | - Dan Ding
- Frontiers Science Center for New Organic Matter, Nankai International Advanced Research Institute (Shenzhen, Futian), and College of Life Sciences, Nankai University, Tianjin, 300071, China
| |
Collapse
|
13
|
Zhang Z, Wang L, Guo Z, Sun Y, Yan J. A pH-sensitive imidazole grafted polymeric micelles nanoplatform based on ROS amplification for ferroptosis-enhanced chemodynamic therapy. Colloids Surf B Biointerfaces 2024; 237:113871. [PMID: 38547796 DOI: 10.1016/j.colsurfb.2024.113871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/16/2024] [Accepted: 03/20/2024] [Indexed: 04/08/2024]
Abstract
Highly toxic reactive oxygen species (ROS), crucial in inducing apoptosis and ferroptosis, are pivotal for cell death pathways in cancer therapy. However, the effectiveness of ROS-related tumor therapy is impeded by the limited intracellular ROS and substrates, coupled with the presence of abundant ROS scavengers like glutathione (GSH). In this research, we developed acid-responsive, iron-coordinated polymer nanoparticles (PPA/TF) encapsulating a mitochondrial-targeting drug alpha-tocopheryl succinate (α-TOS) for enhanced synergistic tumor treatment. The imidazole grafted micelles exhibit prolonged blood circulation and improve the delivery efficiency of the hydrophobic drug α-TOS. Additionally, PPA's design aids in delivering Fe3+, supplying ample iron ions for chemodynamic therapy (CDT) and ferroptosis through the attachment of imidazole groups to Fe3+. In the tumor's weakly acidic intracellular environment, PPA/TF facilitates pH-responsive drug release. α-TOS specifically targets mitochondria, generating ROS and replenishing those depleted by the Fenton reaction. Moreover, the presence of Fe3+ in PPA/TF amplifies ROS upregulation, promotes GSH depletion, and induces oxidative damage and ferroptosis, effectively inhibiting tumor growth. This research presents an innovative ROS-triggered amplification platform that optimizes CDT and ferroptosis for effective cancer treatment.
Collapse
Affiliation(s)
- Zhuangzhuang Zhang
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China; Ningbo Baoting Bioscience & Technology Co., Ltd, Ningbo 315100, China
| | - Lingyang Wang
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China
| | - Zhaoyuan Guo
- Ningbo Baoting Bioscience & Technology Co., Ltd, Ningbo 315100, China
| | - Yong Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China
| | - Jianqin Yan
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China.
| |
Collapse
|
14
|
Pegoraro C, Domingo-Ortí I, Conejos-Sánchez I, Vicent MJ. Unlocking the Mitochondria for Nanomedicine-based Treatments: Overcoming Biological Barriers, Improving Designs, and Selecting Verification Techniques. Adv Drug Deliv Rev 2024; 207:115195. [PMID: 38325562 DOI: 10.1016/j.addr.2024.115195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/13/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
Enhanced targeting approaches will support the treatment of diseases associated with dysfunctional mitochondria, which play critical roles in energy generation and cell survival. Obstacles to mitochondria-specific targeting include the presence of distinct biological barriers and the need to pass through (or avoid) various cell internalization mechanisms. A range of studies have reported the design of mitochondrially-targeted nanomedicines that navigate the complex routes required to influence mitochondrial function; nonetheless, a significant journey lies ahead before mitochondrially-targeted nanomedicines become suitable for clinical use. Moving swiftly forward will require safety studies, in vivo assays confirming effectiveness, and methodologies to validate mitochondria-targeted nanomedicines' subcellular location/activity. From a nanomedicine standpoint, we describe the biological routes involved (from administration to arrival within the mitochondria), the features influencing rational design, and the techniques used to identify/validate successful targeting. Overall, rationally-designed mitochondria-targeted-based nanomedicines hold great promise for precise subcellular therapeutic delivery.
Collapse
Affiliation(s)
- Camilla Pegoraro
- Polymer Therapeutics Laboratory and CIBERONC, Príncipe Felipe Research Center, Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain.
| | - Inés Domingo-Ortí
- Polymer Therapeutics Laboratory and CIBERONC, Príncipe Felipe Research Center, Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain.
| | - Inmaculada Conejos-Sánchez
- Polymer Therapeutics Laboratory and CIBERONC, Príncipe Felipe Research Center, Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain.
| | - María J Vicent
- Polymer Therapeutics Laboratory and CIBERONC, Príncipe Felipe Research Center, Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain.
| |
Collapse
|
15
|
Nene LC, Abrahamse H. Design consideration of phthalocyanines as sensitizers for enhanced sono-photodynamic combinatorial therapy of cancer. Acta Pharm Sin B 2024; 14:1077-1097. [PMID: 38486981 PMCID: PMC10935510 DOI: 10.1016/j.apsb.2023.11.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/08/2023] [Accepted: 11/25/2023] [Indexed: 03/17/2024] Open
Abstract
Cancer remains one of the diseases with the highest incidence and mortality globally. Conventional treatment modalities have demonstrated threatening drawbacks including invasiveness, non-controllability, and development of resistance for some, including chemotherapy, radiation, and surgery. Sono-photodynamic combinatorial therapy (SPDT) has been developed as an alternative treatment modality which offers a non-invasive and controllable therapeutic approach. SPDT combines the mechanism of action of sonodynamic therapy (SDT), which uses ultrasound, and photodynamic therapy (PDT), which uses light, to activate a sensitizer and initiate cancer eradication. The use of phthalocyanines (Pcs) as sensitizers for SPDT is gaining interest owing to their ability to induce intracellular oxidative stress and initiate toxicity under SDT and PDT. This review discusses some of the structural prerequisites of Pcs which may influence their overall SPDT activities in cancer therapy.
Collapse
Affiliation(s)
- Lindokuhle Cindy Nene
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein 2028, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein 2028, South Africa
| |
Collapse
|
16
|
Liu J, Jiang X, Li Y, Yang K, Weichselbaum RR, Lin W. Immunogenic Bifunctional Nanoparticle Suppresses Programmed Cell Death-Ligand 1 in Cancer and Dendritic Cells to Enhance Adaptive Immunity and Chemo-Immunotherapy. ACS NANO 2024; 18:5152-5166. [PMID: 38286035 PMCID: PMC11776391 DOI: 10.1021/acsnano.3c12678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Blockade of programmed cell death-1/programmed cell death-ligand 1 (PD-L1) immune checkpoints with monoclonal antibodies has shown great promise for cancer treatment, but these antibodies can cause immune-related adverse events in normal organs. Here we report a dual-cell targeted chemo-immunotherapeutic nanoscale coordination polymer (NCP), OxPt/BP, comprising oxaliplatin (OxPt) and 2-bromopalmitic acid (BP), for effective downregulation of PD-L1 expression in both cancer cells and dendritic cells (DCs) by inhibiting palmitoyl acyltransferase DHHC3. OxPt/BP efficiently promotes DC maturation by increasing intracellular oxidative stress and enhancing OxPt-induced immunostimulatory immunogenic cancer cell death. Systemic administration of OxPt/BP reduces the growth of subcutaneous and orthotopic colorectal carcinoma by facilitating the infiltration and activation of cytotoxic T lymphocytes together with reducing the population of immunosuppressive regulatory T cells. As a result, OxPt/BP significantly extends mouse survival without causing side effects. This work highlights the potential of NCPs in simultaneously reprogramming cancer cells and DCs for potent cancer treatment.
Collapse
Affiliation(s)
- Jing Liu
- Department of Chemistry, University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, University of Chicago, 5758 South Maryland Avenue, Chicago, Illinois 60637, United States
| | - Xiaomin Jiang
- Department of Chemistry, University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Youyou Li
- Department of Chemistry, University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Kaiting Yang
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, University of Chicago, 5758 South Maryland Avenue, Chicago, Illinois 60637, United States
| | - Ralph R. Weichselbaum
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, University of Chicago, 5758 South Maryland Avenue, Chicago, Illinois 60637, United States
| | - Wenbin Lin
- Department of Chemistry, University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, University of Chicago, 5758 South Maryland Avenue, Chicago, Illinois 60637, United States
| |
Collapse
|
17
|
Zhao HY, Chen YQ, Luo XY, Cai MJ, Li JY, Lin XY, Zhang H, Ding HM, Jiang GL, Hu Y. Ligand Phase Separation-Promoted, "Squeezing-Out" Mode Explaining the Mechanism and Implications of Neutral Nanoparticles That Escaped from Lysosomes. ACS NANO 2024; 18:2162-2183. [PMID: 38198577 DOI: 10.1021/acsnano.3c09452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Neutral nanomaterials functionalized with PEG or similar molecules have been popularly employed as nanomedicines. Compared to positive counterparts that are capable of harnessing the well-known proton sponge effect to facilitate their escape from lysosomes, it is yet unclear how neutral substances got their entry into the cytosol. In this study, by taking PEGylated, neutral Au nanospheres as an example, we systematically investigated their time-dependent translocation postuptake. Specifically, we harnessed dissipative particle dynamics simulations to uncover how nanospheres bypass lysosomal entrapment, wherein a mechanism termed as "squeezing-out" mode was discovered. We next conducted a comprehensive investigation on how nanomaterials implicate lysosomes in terms of integrity and functionality. By using single-molecule imaging, specific preservation of PEG-terminated with targeting moieties in lysosomes supports the "squeezing-out" mode as the mechanism underlying the lysosomal escape of nanomaterials. All evidence points out that such a process is benign to lysosomes, wherein the escape of nanomaterials proceeds at the expense of targeting moieties loss. Furthermore, we proved that by fine-tuning of the efficacy of nanomaterials escaping from lysosomes, modulation of distinct pathways and metabolic machinery can be achieved readily, thereby offering us a simple and robust tool to implicate cells.
Collapse
Affiliation(s)
- Hui-Yue Zhao
- College of Engineering and Applied Sciences, MOE Key Laboratory of High Performance Polymer Materials & Technology, Nanjing University, Nanjing, 210033, China
| | - Yuan-Qiang Chen
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou, 215031, China
| | - Xing-Yu Luo
- College of Engineering and Applied Sciences, MOE Key Laboratory of High Performance Polymer Materials & Technology, Nanjing University, Nanjing, 210033, China
| | - Ming-Jie Cai
- College of Engineering and Applied Sciences, MOE Key Laboratory of High Performance Polymer Materials & Technology, Nanjing University, Nanjing, 210033, China
| | - Jia-Yi Li
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Xin-Yu Lin
- School of Stomatology, Nanjing Medical University, Nanjing, 211166, China
| | - Hao Zhang
- Department of Oncology, the First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China
| | - Hong-Ming Ding
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou, 215031, China
| | - Guang-Liang Jiang
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yong Hu
- College of Engineering and Applied Sciences, MOE Key Laboratory of High Performance Polymer Materials & Technology, Nanjing University, Nanjing, 210033, China
| |
Collapse
|
18
|
Wu C, Zhang F, Li B, Li Z, Xie X, Huang Y, Yao Z, Chen Y, Ping Y, Pan W. A Self-Assembly Nano-Prodrug for Combination Therapy in Triple-Negative Breast Cancer Stem Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301600. [PMID: 37328445 DOI: 10.1002/smll.202301600] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/23/2023] [Indexed: 06/18/2023]
Abstract
Triple-negative breast cancer (TNBC) displays a highly aggressive nature that originates from a small subpopulation of TNBC stem cells (TNBCSCs), and these TNBCSCs give rise to chemoresistance, tumor metastasis, and recurrence. Unfortunately, traditional chemotherapy eradicates normal TNBC cells but fails to kill quiescent TNBCSCs. To explore a new strategy for eradicating TNBCSCs, a disulfide-mediated self-assembly nano-prodrug that can achieve the co-delivery of ferroptosis drug, differentiation-inducing agent, and chemotherapeutics for simultaneous TNBCSCs and TNBC treatment, is reported. In this nano-prodrug, the disulfide bond not only induces self-assembly behavior of different small molecular drug but also serves as a glutathione (GSH)-responsive trigger in controlled drug release. More importantly, the differentiation-inducing agent can transform TNBCSCs into normal TNBC cells, and this differentiation with chemotherapeutics provides an effective approach to indirectly eradicate TNBCSCs. In addition, ferroptosis therapy is essentially different from the apoptosis-induced cell death of differentiation or chemotherapeutic, which causes cell death to both TNBCSCs and normal TNBC cells. In different TNBC mouse models, this nano-prodrug significantly improves anti-tumor efficacy and effectively inhibits the tumor metastasis. This all-in-one strategy enables controlled drug release and reduces stemness-related drug resistance, enhancing the chemotherapeutic sensitivity in TNBC treatment.
Collapse
Affiliation(s)
- Chongzhi Wu
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, P. R. China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, P. R. China
| | - Fu Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Bowen Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Zhiyao Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, P. R. China
| | - Xin Xie
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Yong Huang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Zhuo Yao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Yuan Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Yuan Ping
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, P. R. China
| | - Weidong Pan
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, P. R. China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, P. R. China
| |
Collapse
|
19
|
Shao X, Meng C, Song W, Zhang T, Chen Q. Subcellular visualization: Organelle-specific targeted drug delivery and discovery. Adv Drug Deliv Rev 2023; 199:114977. [PMID: 37391014 DOI: 10.1016/j.addr.2023.114977] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/02/2023]
Abstract
Organelles perform critical biological functions due to their distinct molecular composition and internal environment. Disorders in organelles or their interacting networks have been linked to the incidence of numerous diseases, and the research of pharmacological actions at the organelle level has sparked pharmacists' interest. Currently, cell imaging has evolved into a critical tool for drug delivery, drug discovery, and pharmacological research. The introduction of advanced imaging techniques in recent years has provided researchers with richer biological information for viewing and studying the ultrastructure of organelles, protein interactions, and gene transcription activities, leading to the design and delivery of precision-targeted drugs. Therefore, this reviews the research on organelles-targeted drugs based upon imaging technologies and development of fluorescent molecules for medicinal purposes. We also give a thorough analysis of a number of subcellular-level elements of drug development, including subcellular research instruments and methods, organelle biological event investigation, subcellular target and drug identification, and design of subcellular delivery systems. This review will make it possible to promote drug research from the individual/cellular level to the subcellular level, as well as give a new focus based on newly found organelle activities.
Collapse
Affiliation(s)
- Xintian Shao
- School of Life Sciences, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, PR China
| | - Caicai Meng
- School of Life Sciences, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, PR China
| | - Wenjing Song
- School of Life Sciences, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, PR China; School of Pharmaceutical Sciences & Institute of Materia Medica, National Key Laboratory of Advanced Drug Delivery System, Medical Science and Technology Innovation Center, Key Laboratory for Biotechnology Drugs of National Health Commission, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, PR China
| | - Tao Zhang
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong Province 250014, PR China
| | - Qixin Chen
- School of Pharmaceutical Sciences & Institute of Materia Medica, National Key Laboratory of Advanced Drug Delivery System, Medical Science and Technology Innovation Center, Key Laboratory for Biotechnology Drugs of National Health Commission, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, PR China.
| |
Collapse
|
20
|
Zou Y, Sun Y, Wang Y, Zhang D, Yang H, Wang X, Zheng M, Shi B. Cancer cell-mitochondria hybrid membrane coated Gboxin loaded nanomedicines for glioblastoma treatment. Nat Commun 2023; 14:4557. [PMID: 37507371 PMCID: PMC10382535 DOI: 10.1038/s41467-023-40280-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Glioblastoma (GBM) remains the most lethal malignant tumours. Gboxin, an oxidative phosphorylation inhibitor, specifically restrains GBM growth by inhibiting the activity of F0F1 ATPase complex V. However, its anti-GBM effect is seriously limited by poor blood circulation, the blood brain barrier (BBB) and non-specific GBM tissue/cell uptake, leading to insufficient Gboxin accumulation at GBM sites, which limits its further clinical application. Here we present a biomimetic nanomedicine (HM-NPs@G) by coating cancer cell-mitochondria hybrid membrane (HM) on the surface of Gboxin-loaded nanoparticles. An additional design element uses a reactive oxygen species responsive polymer to facilitate at-site Gboxin release. The HM camouflaging endows HM-NPs@G with unique features including good biocompatibility, improved pharmacokinetic profile, efficient BBB permeability and homotypic dual tumour cell and mitochondria targeting. The results suggest that HM-NPs@G achieve improved blood circulation (4.90 h versus 0.47 h of free Gboxin) and tumour accumulation (7.73% ID/g versus 1.06% ID/g shown by free Gboxin). Effective tumour inhibition in orthotopic U87MG GBM and patient derived X01 GBM stem cell xenografts in female mice with extended survival time and negligible side effects are also noted. We believe that the biomimetic Gboxin nanomedicine represents a promising treatment for brain tumours with clinical potential.
Collapse
Affiliation(s)
- Yan Zou
- Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Human Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Yajing Sun
- Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yibin Wang
- Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Dongya Zhang
- Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Huiqing Yang
- Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Xin Wang
- Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Meng Zheng
- Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Bingyang Shi
- Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China.
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Human Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia.
| |
Collapse
|
21
|
Han Y, Liu D, Cheng Y, Ji Q, Liu M, Zhang B, Zhou S. Maintenance of mitochondrial homeostasis for Alzheimer's disease: Strategies and challenges. Redox Biol 2023; 63:102734. [PMID: 37159984 PMCID: PMC10189488 DOI: 10.1016/j.redox.2023.102734] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/28/2023] [Accepted: 05/05/2023] [Indexed: 05/11/2023] Open
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative diseases, and its early onset is closely related to mitochondrial energy metabolism. The brain is only 2% of body weight, but consumes 20% of total energy needs. Mitochondria are responsible for providing energy in cells, and maintaining their homeostasis ensures an adequate supply of energy to the brain. Mitochondrial homeostasis is constituted by mitochondrial quantity and quality control, which is dynamically regulated by mitochondrial energy metabolism, mitochondrial dynamics and mitochondrial quality control. Impaired energy metabolism of brain cells occurs early in AD, and maintaining mitochondrial homeostasis is a promising therapeutic target in the future. We summarized the mechanism of mitochondrial homeostasis in AD, its influence on the pathogenesis of early AD, strategies for maintaining mitochondrial homeostasis, and mitochondrial targeting strategies. This review concludes with the authors' opinions on future research and development for mitochondrial homeostasis of early AD.
Collapse
Affiliation(s)
- Ying Han
- Department of Pharmaceutics, School of Pharmacy, Air Force Medical University, Changle West Road 169, Xi'an, 710032, Shaanxi, China
| | - Daozhou Liu
- Department of Pharmaceutics, School of Pharmacy, Air Force Medical University, Changle West Road 169, Xi'an, 710032, Shaanxi, China
| | - Ying Cheng
- Department of Pharmaceutics, School of Pharmacy, Air Force Medical University, Changle West Road 169, Xi'an, 710032, Shaanxi, China
| | - Qifeng Ji
- Department of Pharmaceutics, School of Pharmacy, Air Force Medical University, Changle West Road 169, Xi'an, 710032, Shaanxi, China
| | - Miao Liu
- Department of Pharmaceutics, School of Pharmacy, Air Force Medical University, Changle West Road 169, Xi'an, 710032, Shaanxi, China
| | - Bangle Zhang
- Department of Pharmaceutics, School of Pharmacy, Air Force Medical University, Changle West Road 169, Xi'an, 710032, Shaanxi, China
| | - Siyuan Zhou
- Department of Pharmaceutics, School of Pharmacy, Air Force Medical University, Changle West Road 169, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
22
|
Tian M, Zhu Y, Guan W, Lu C. Quantitative Measurement of Drug Release Dynamics within Targeted Organelles Using Förster Resonance Energy Transfer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2206866. [PMID: 37026420 DOI: 10.1002/smll.202206866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/01/2023] [Indexed: 06/19/2023]
Abstract
Measuring the release dynamics of drug molecules after their delivery to the target organelle is critical to improve therapeutic efficacy and reduce side effects. However, it remains challenging to quantitatively monitor subcellular drug release in real time. To address the knowledge gap, a novel gemini fluorescent surfactant capable of forming mitochondria-targeted and redox-responsive nanocarriers is designed. A quantitative Förster resonance energy transfer (FRET) platform is fabricated using this mitochondria-anchored fluorescent nanocarrier as a FRET donor and fluorescent drugs as a FRET acceptor. The FRET platform enables real-time measurement of drug release from organelle-targeted nanocarriers. Moreover, the obtained drug release dynamics can evaluate the duration of drug release at the subcellular level, which established a new quantitative method for organelle-targeted drug release. This quantitative FRET platform can compensate for the absent assessment of the targeted release performances of nanocarriers, offering in-depth understanding of the drug release behaviors at the subcellular targets.
Collapse
Affiliation(s)
- Mingce Tian
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yaping Zhu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Weijiang Guan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Chao Lu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
23
|
Kang L, Liu S, Huang X, Zhang D, Zhao H, Zhao Y. Cyclopentylmalononitrile dye as an efficient photosensitizer for combined photodynamic and water-dependent reversible photoacidity therapy. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
24
|
Zhang J, Gao B, Ye B, Sun Z, Qian Z, Yu L, Bi Y, Ma L, Ding Y, Du Y, Wang W, Mao Z. Mitochondrial-Targeted Delivery of Polyphenol-Mediated Antioxidases Complexes against Pyroptosis and Inflammatory Diseases. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208571. [PMID: 36648306 DOI: 10.1002/adma.202208571] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Excess accumulation of mitochondrial reactive oxygen species (mtROS) is a key target for inhibiting pyroptosis-induced inflammation and tissue damage. However, targeted delivery of drugs to mitochondria and efficient clearance of mtROS remain challenging. In current study, it is discovered that polyphenols such as tannic acid (TA) can mediate the targeting of polyphenol/antioxidases complexes to mitochondria. This affinity does not depend on mitochondrial membrane potential but stems from the strong binding of TA to mitochondrial outer membrane proteins. Taking advantage of the feasibility of self-assembly between TA and proteins, superoxide dismutase, catalase, and TA are assembled into complexes (referred to as TSC) for efficient enzymatic activity maintenance. In vitro fluorescence confocal imaging shows that TSC not only promoted the uptake of biological enzymes in hepatocytes but also highly overlapped with mitochondria after lysosomal escape. The results from an in vitro model of hepatocyte oxidative stress demonstrate that TSC efficiently scavenges excess mtROS and reverses mitochondrial depolarization, thereby inhibiting inflammasome-mediated pyroptosis. More interestingly, TSC maintain superior efficacy compared with the clinical gold standard drug N-acetylcysteine in both acetaminophen- and D-galactosamine/lipopolysaccharide-induced pyroptosis-related hepatitis mouse models. In conclusion, this study opens a new paradigm for targeting mitochondrial oxidative stress to inhibit pyroptosis and treat inflammatory diseases.
Collapse
Affiliation(s)
- Jiaojiao Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, P. R. China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, P. R. China
| | - Bingqiang Gao
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, 310009, P. R. China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, Zhejiang, 310009, P. R. China
- National Innovation Center for Fundamental Research on Cancer Medicine, Hangzhou, Zhejiang, 310009, P. R. China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, P. R. China
- ZJU-Pujian Research & Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, 310058, P. R. China
| | - Binglin Ye
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, 310009, P. R. China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, Zhejiang, 310009, P. R. China
- National Innovation Center for Fundamental Research on Cancer Medicine, Hangzhou, Zhejiang, 310009, P. R. China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, P. R. China
- ZJU-Pujian Research & Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, 310058, P. R. China
| | - Zhongquan Sun
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, 310009, P. R. China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, Zhejiang, 310009, P. R. China
- National Innovation Center for Fundamental Research on Cancer Medicine, Hangzhou, Zhejiang, 310009, P. R. China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, P. R. China
- ZJU-Pujian Research & Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, 310058, P. R. China
| | - Zhefeng Qian
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, P. R. China
| | - Lisha Yu
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, 310009, P. R. China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, Zhejiang, 310009, P. R. China
- National Innovation Center for Fundamental Research on Cancer Medicine, Hangzhou, Zhejiang, 310009, P. R. China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, P. R. China
- ZJU-Pujian Research & Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, 310058, P. R. China
| | - Yanli Bi
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, 310009, P. R. China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, Zhejiang, 310009, P. R. China
- National Innovation Center for Fundamental Research on Cancer Medicine, Hangzhou, Zhejiang, 310009, P. R. China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, P. R. China
- ZJU-Pujian Research & Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, 310058, P. R. China
| | - Lie Ma
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, P. R. China
| | - Yuan Ding
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, 310009, P. R. China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, Zhejiang, 310009, P. R. China
- National Innovation Center for Fundamental Research on Cancer Medicine, Hangzhou, Zhejiang, 310009, P. R. China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, P. R. China
- ZJU-Pujian Research & Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, 310058, P. R. China
| | - Yang Du
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, 310009, P. R. China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, Zhejiang, 310009, P. R. China
- National Innovation Center for Fundamental Research on Cancer Medicine, Hangzhou, Zhejiang, 310009, P. R. China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, P. R. China
- ZJU-Pujian Research & Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, 310058, P. R. China
| | - Weilin Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, 310009, P. R. China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, Zhejiang, 310009, P. R. China
- National Innovation Center for Fundamental Research on Cancer Medicine, Hangzhou, Zhejiang, 310009, P. R. China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, P. R. China
- ZJU-Pujian Research & Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, 310058, P. R. China
| | - Zhengwei Mao
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, P. R. China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, 310009, P. R. China
| |
Collapse
|
25
|
Shi L, Jin Y, Bai L, Shang X, Li Y, Zhou R. Ultrasensitive
redox‐responsive ditelluride‐containing
fluorinated Gemini micelles for controlled drug release. J Appl Polym Sci 2023. [DOI: 10.1002/app.53719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- Liangjie Shi
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, National Engineering Research Center of Clean Technology in Leather Industry Sichuan University Chengdu People's Republic of China
| | - Yong Jin
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, National Engineering Research Center of Clean Technology in Leather Industry Sichuan University Chengdu People's Republic of China
| | - Long Bai
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, National Engineering Research Center of Clean Technology in Leather Industry Sichuan University Chengdu People's Republic of China
| | - Xiang Shang
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, National Engineering Research Center of Clean Technology in Leather Industry Sichuan University Chengdu People's Republic of China
| | - Yupeng Li
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, National Engineering Research Center of Clean Technology in Leather Industry Sichuan University Chengdu People's Republic of China
| | - Rong Zhou
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, National Engineering Research Center of Clean Technology in Leather Industry Sichuan University Chengdu People's Republic of China
| |
Collapse
|
26
|
Duan C, Hu JJ, Liu R, Dai J, Yuan L, Xia F, Lou X. Regulating the Membrane Affinity of Multi-module Probes to Address the Trade-off between Anchoring and Internalization. Anal Chem 2023; 95:2513-2522. [PMID: 36683262 DOI: 10.1021/acs.analchem.2c04872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Cell membrane transport is the first and crucial step for bioprobes to realize the diagnosis, imaging, and therapy in cells. However, during this transport, there is a trade-off between anchoring and internalization steps, which will seriously affect the membrane transport efficiency. In the past, because the interaction between probes and cell membrane is constant, this challenge is hard to solve. Here, we proposed a strategy to regulate the membrane affinity of multi-module probes that enabled probe to have strong affinity during cell membrane anchoring and weak affinity during internalization. Specifically, a multi-module probe defined as LK-M-NA was constructed, which consisted of three main parts, membrane-anchoring α-helix peptide (LK), anchoring regulator (M), and therapeutic module (NA). With the α-helix module, LK-M-NA was able to rapidly anchor on the cell membrane and the binding energy was -1450.90 kcal/mol. However, after pericellular cleavage by the highly active matrix metalloproteinase-2 , LK could be removed due to the breakage of M and the binding energy reduced to -869.95 kcal/mol. Thus, the internalization restriction caused by high affinity was relieved. Owing to the alterable affinity, the membrane transport efficiency of LK-M-NA increased to 14.58%, well addressing the trade-off problem.
Collapse
Affiliation(s)
- Chong Duan
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Jing-Jing Hu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Rui Liu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Jun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lizhen Yuan
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Xiaoding Lou
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
27
|
Hu X, Sun Y, Zhou X, Zhang B, Guan H, Xia F, Gui S, Kong X, Li F, Ling D. Insight into Drug Loading Regulated Micellar Rigidity by Nuclear Magnetic Resonance. ACS NANO 2022; 16:21407-21416. [PMID: 36375116 DOI: 10.1021/acsnano.2c09785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The rigidity of polymeric micelles plays an important role in their biological behaviors. However, how drug loading affects the rigidity of polymeric micelles remains elusive. Herein, the indomethacin (IMC)-loaded Pluronic F127 micelle is used as a model system to illustrate the impact of drug loading on the rigidity and biological behaviors of polymeric micelles. Against expectations, micelles with moderate drug loading show higher cellular uptake and more severe cytotoxicity as compared to both high and low drug loading counterparts. Extensive one- and two-dimensional nuclear magnetic resonance (NMR) measurements are employed to reveal that the higher drug loading induces stronger interaction between IMC and hydrophilic block to boost the micellar rigidity; consequently, the moderate drug loading imparts micelles with appropriate rigidity for satisfactory cellular uptake and cytotoxicity. In summary, NMR spectroscopy is an important tool to gain insight into drug loading regulated micellar rigidity, which is helpful to understand their biological behaviors.
Collapse
Affiliation(s)
- Xi Hu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei230012, China
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai200240, China
- Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou310058, China
- Department of Clinical Pharmacy, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou310003, China
| | - Yu Sun
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei230012, China
| | - Xiaoqi Zhou
- Department of Chemistry, Zhejiang University, Hangzhou310027, China
| | - Bo Zhang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai200240, China
- WLA Laboratories, Shanghai201203, China
| | - Hanxi Guan
- Department of Chemistry, Zhejiang University, Hangzhou310027, China
| | - Fan Xia
- Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou310058, China
| | - Shuangying Gui
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei230012, China
| | - Xueqian Kong
- Department of Chemistry, Zhejiang University, Hangzhou310027, China
| | - Fangyuan Li
- Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou310058, China
- WLA Laboratories, Shanghai201203, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou310009, China
| | - Daishun Ling
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai200240, China
- Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou310058, China
- WLA Laboratories, Shanghai201203, China
| |
Collapse
|
28
|
Tumor-targeted dual-starvation therapy based on redox-responsive micelle nanosystem with co-loaded LND and BPTES. Mater Today Bio 2022; 16:100449. [PMID: 36238964 PMCID: PMC9552111 DOI: 10.1016/j.mtbio.2022.100449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/24/2022] [Accepted: 10/02/2022] [Indexed: 11/21/2022] Open
Abstract
The starvation therapy mediated by the lonidamine (LND) was limited by the low drug delivery efficiency, off-target effect and compensative glutamine metabolism. Herein, a hyaluronic acid (HA)-modified reduction-responsive micellar nanosystem co-loaded with glycolysis and glutamine metabolism inhibitor (LND and bis-2-(5-phenylacetmido-1,2,4-thiadiazol-2-yl)ethyl sulfide, BPTES) was constructed for tumor-targeted dual-starvation therapy. The in vitro and in vivo results collectively suggested that the fabricated nanosystem could effectively endocytosed by tumor cells via HA receptor-ligand recognition, and rapidly release starvation-inducers LND and BPTES in response to the GSH-rich intratumoral cytoplasm. Furthermore, the released LND and BPTES were capable of inducing glycolysis and glutamine metabolism suppression, and accompanied by significant mitochondrial damage, cell cycle arrest and tumor cells apoptosis, eventually devoting to the blockade of the energy and substance supply and tumor killing with high efficiency. In summary, HPPPH@L@B nanosystem significantly inhibited the compensatory glycolysis and glutamine metabolism via the dual-starvation therapy strategy, blocked the indispensable energy and substance supply of tumors, consequently leading to the desired tumor starvation and effective tumor killing with reliable biosafety.
Collapse
|
29
|
Mahmood S, Bhattarai P, Khan NR, Subhan Z, Razaque G, Albarqi HA, Alqahtani AA, Alasiri A, Zhu L. An Investigation for Skin Tissue Regeneration Enhancement/Augmentation by Curcumin-Loaded Self-Emulsifying Drug Delivery System (SEDDS). Polymers (Basel) 2022; 14:2904. [PMID: 35890680 PMCID: PMC9315559 DOI: 10.3390/polym14142904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 12/15/2022] Open
Abstract
Diabetes, one of the global metabolic disorders, is often associated with delayed wound healing due to the elevated level of free radicals at the wound site, which hampers skin regeneration. This study aimed at developing a curcumin-loaded self-emulsifying drug delivery system (SEDDS) for diabetic wound healing and skin tissue regeneration. For this purpose, various curcumin-loaded SEDDS formulations were prepared and optimized. Then, the SEDDS formulations were characterized by the emulsion droplet size, surface charge, drug content/entrapment efficiency, drug release, and stability. In vitro, the formulations were assessed for the cellular uptake, cytotoxicity, cell migration, and inhibition of the intracellular ROS production in the NIH3T3 fibroblasts. In vivo, the formulations' wound healing and skin regeneration potential were evaluated on the induced diabetic rats. The results indicated that, after being dispersed in the aqueous medium, the optimized SEDDS formulation was readily emulsified and formed a homogenous dispersion with a droplet size of 37.29 ± 3.47 nm, surface charge of -20.75 ± 0.07 mV, and PDI value of less than 0.3. The drug content in the optimized formulation was found to be 70.51% ± 2.31%, with an encapsulation efficiency of 87.36% ± 0.61%. The SEDDS showed a delayed drug release pattern compared to the pure drug solution, and the drug release rate followed the Fickian diffusion kinetically. In the cell culture, the formulations showed lower cytotoxicity, higher cellular uptake, and increased ROS production inhibition, and promoted the cell migration in the scratch assay compared to the pure drug. The in vivo data indicated that the curcumin-loaded SEDDS-treated diabetic rats had significantly faster-wound healing and re-epithelialization compared with the untreated and pure drug-treated groups. Our findings in this work suggest that the curcumin-loaded SEDDS might have great potential in facilitating diabetic wound healing and skin tissue regeneration.
Collapse
Affiliation(s)
- Saima Mahmood
- Department of Pharmaceutics, Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, KPK, Pakistan;
- Gomal Centre for Skin/Regenerative Medicine and Drug Delivery Research, Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, KPK, Pakistan
| | - Prapanna Bhattarai
- Irma Lerma Rangel College of Pharmacy, Texas A&M University, College Station, TX 77843, USA;
| | - Nauman Rahim Khan
- Gomal Centre for Skin/Regenerative Medicine and Drug Delivery Research, Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, KPK, Pakistan
- Department of Pharmacy, Kohat University of Science and Technology, Kohat 26000, KPK, Pakistan
| | - Zakia Subhan
- Institute of Medical Sciences, Khyber Medical University, Kohat 26000, KPK, Pakistan;
| | - Ghulam Razaque
- Faculty of Pharmacy, University of Baluchistan, Quetta 87300, Baluchistan, Pakistan;
| | - Hassan A. Albarqi
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 55461, Saudi Arabia; (H.A.A.); (A.A.A.); (A.A.)
| | - Abdulsalam A. Alqahtani
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 55461, Saudi Arabia; (H.A.A.); (A.A.A.); (A.A.)
| | - Ali Alasiri
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 55461, Saudi Arabia; (H.A.A.); (A.A.A.); (A.A.)
| | - Lin Zhu
- Irma Lerma Rangel College of Pharmacy, Texas A&M University, College Station, TX 77843, USA;
| |
Collapse
|
30
|
Lee J, Kim D, Byun J, Wu Y, Park J, Oh YK. In vivo fate and intracellular trafficking of vaccine delivery systems. Adv Drug Deliv Rev 2022; 186:114325. [PMID: 35550392 PMCID: PMC9085465 DOI: 10.1016/j.addr.2022.114325] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/22/2022] [Accepted: 05/05/2022] [Indexed: 01/12/2023]
Abstract
With the pandemic of severe acute respiratory syndrome coronavirus 2, vaccine delivery systems emerged as a core technology for global public health. Given that antigen processing takes place inside the cell, the intracellular delivery and trafficking of a vaccine antigen will contribute to vaccine efficiency. Investigations focusing on the in vivo behavior and intracellular transport of vaccines have improved our understanding of the mechanisms relevant to vaccine delivery systems and facilitated the design of novel potent vaccine platforms. In this review, we cover the intracellular trafficking and in vivo fate of vaccines administered via various routes and delivery systems. To improve immune responses, researchers have used various strategies to modulate vaccine platforms and intracellular trafficking. In addition to progress in vaccine trafficking studies, the challenges and future perspectives for designing next-generation vaccines are discussed.
Collapse
Affiliation(s)
- Jaiwoo Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Dongyoon Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Junho Byun
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Yina Wu
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jinwon Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Yu-Kyoung Oh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|