1
|
Hu J, Wang J, Yang P, Quan W, Wang X, Ding H, Fu J, Peng Y, Zhang R, Wang H, Xie L, He K, Wang L, Wei W, Zhang L, Liu Z, Zhang Y. Low-Cost Preparation of Wafer-Scale Au(111) Single Crystals for the Epitaxy of Two-Dimensional Layered Materials. ACS NANO 2025; 19:4973-4982. [PMID: 39854646 DOI: 10.1021/acsnano.4c17431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2025]
Abstract
Single-crystal Au(111), renowned for its chemically inert surface, long-range "herringbone" reconstruction, and high electrical conductivity, has long served as an exemplary template in diverse fields, e.g., crystal epitaxy, electronics, and electrocatalysis. However, commercial Au(111) products are high-priced and limited to centimeter sizes, largely restricting their broad applications. Herein, a low-cost, high-reproducible method is developed to produce 4 in. Au(111) single crystals from commercial Au foils, via an abnormal grain growth process. This methodology involves the initial preparation of a (100)-textured Au polycrystalline foil, followed by the evolution and continuous expansion of an Au(111) abnormal grain through one-site stress loading and stress-relief annealing in an Ar/H2 atmosphere. Theoretical simulations indicate that stress/strain and high-temperature treatments in the H2 atmosphere induce an intermediate disordered state, facilitating the evolution from polycrystalline Au(100) foil to single-crystal Au(111) foil. Furthermore, the resulting Au(111) foils have been utilized as model substrates for the oriented growth of two-dimensional transition metal dichalcogenides and their heterostructures with graphene. This work hereby puts forward an effective approach for large-scale, cost-effective production of metal single crystals, potentially revolutionizing their applications across various fields, from materials sciences to electronics and catalysis.
Collapse
Affiliation(s)
- Jingyi Hu
- School of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, People's Republic of China
| | - Jialong Wang
- School of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Pengfei Yang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, People's Republic of China
| | - Wenzhi Quan
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, People's Republic of China
| | - Xuan Wang
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Haoxuan Ding
- School of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Jiatian Fu
- School of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China
| | - You Peng
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, People's Republic of China
| | - Ronghua Zhang
- Beijing Graphene Institute, Beijing 100095, People's Republic of China
| | - Honggang Wang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
| | - Liming Xie
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
| | - Ke He
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, P. R. China
| | - Lili Wang
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, P. R. China
| | - Wei Wei
- Vacuum Interconnected Nanotech Workstation, Suzhou Institute of Nano-Tech and Nano-Bionics, The Chinese Academy of Sciences, Suzhou 215123, P. R. China
| | - Leining Zhang
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Zhongfan Liu
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, People's Republic of China
- Beijing Graphene Institute, Beijing 100095, People's Republic of China
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Yanfeng Zhang
- School of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, People's Republic of China
| |
Collapse
|
2
|
Lu B, Xia Y, Ren Y, Xie M, Zhou L, Vinai G, Morton SA, Wee ATS, van der Wiel WG, Zhang W, Wong PKJ. When Machine Learning Meets 2D Materials: A Review. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305277. [PMID: 38279508 PMCID: PMC10987159 DOI: 10.1002/advs.202305277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/21/2023] [Indexed: 01/28/2024]
Abstract
The availability of an ever-expanding portfolio of 2D materials with rich internal degrees of freedom (spin, excitonic, valley, sublattice, and layer pseudospin) together with the unique ability to tailor heterostructures made layer by layer in a precisely chosen stacking sequence and relative crystallographic alignments, offers an unprecedented platform for realizing materials by design. However, the breadth of multi-dimensional parameter space and massive data sets involved is emblematic of complex, resource-intensive experimentation, which not only challenges the current state of the art but also renders exhaustive sampling untenable. To this end, machine learning, a very powerful data-driven approach and subset of artificial intelligence, is a potential game-changer, enabling a cheaper - yet more efficient - alternative to traditional computational strategies. It is also a new paradigm for autonomous experimentation for accelerated discovery and machine-assisted design of functional 2D materials and heterostructures. Here, the study reviews the recent progress and challenges of such endeavors, and highlight various emerging opportunities in this frontier research area.
Collapse
Affiliation(s)
- Bin Lu
- ARTIST Lab for Artificial Electronic Materials and Technologies, School of MicroelectronicsNorthwestern Polytechnical UniversityXi'an710072P. R. China
- Yangtze River Delta Research Institute of Northwestern Polytechnical UniversityTaicang215400P. R. China
| | - Yuze Xia
- ARTIST Lab for Artificial Electronic Materials and Technologies, School of MicroelectronicsNorthwestern Polytechnical UniversityXi'an710072P. R. China
- Yangtze River Delta Research Institute of Northwestern Polytechnical UniversityTaicang215400P. R. China
| | - Yuqian Ren
- ARTIST Lab for Artificial Electronic Materials and Technologies, School of MicroelectronicsNorthwestern Polytechnical UniversityXi'an710072P. R. China
- Yangtze River Delta Research Institute of Northwestern Polytechnical UniversityTaicang215400P. R. China
| | - Miaomiao Xie
- ARTIST Lab for Artificial Electronic Materials and Technologies, School of MicroelectronicsNorthwestern Polytechnical UniversityXi'an710072P. R. China
- Yangtze River Delta Research Institute of Northwestern Polytechnical UniversityTaicang215400P. R. China
| | - Liguo Zhou
- ARTIST Lab for Artificial Electronic Materials and Technologies, School of MicroelectronicsNorthwestern Polytechnical UniversityXi'an710072P. R. China
- Yangtze River Delta Research Institute of Northwestern Polytechnical UniversityTaicang215400P. R. China
| | - Giovanni Vinai
- Instituto Officina dei Materiali (IOM)‐CNRLaboratorio TASCTriesteI‐34149Italy
| | - Simon A. Morton
- Advanced Light Source (ALS)Lawrence Berkeley National LaboratoryBerkeleyCA94720USA
| | - Andrew T. S. Wee
- Department of Physics and Centre for Advanced 2D Materials (CA2DM) and Graphene Research Centre (GRC)National University of SingaporeSingapore117542Singapore
| | - Wilfred G. van der Wiel
- NanoElectronics Group, MESA+ Institute for Nanotechnology and BRAINS Center for Brain‐Inspired Nano SystemsUniversity of TwenteEnschede7500AEThe Netherlands
- Institute of PhysicsUniversity of Münster48149MünsterGermany
| | - Wen Zhang
- ARTIST Lab for Artificial Electronic Materials and Technologies, School of MicroelectronicsNorthwestern Polytechnical UniversityXi'an710072P. R. China
- Yangtze River Delta Research Institute of Northwestern Polytechnical UniversityTaicang215400P. R. China
- NanoElectronics Group, MESA+ Institute for Nanotechnology and BRAINS Center for Brain‐Inspired Nano SystemsUniversity of TwenteEnschede7500AEThe Netherlands
| | - Ping Kwan Johnny Wong
- ARTIST Lab for Artificial Electronic Materials and Technologies, School of MicroelectronicsNorthwestern Polytechnical UniversityXi'an710072P. R. China
- Yangtze River Delta Research Institute of Northwestern Polytechnical UniversityTaicang215400P. R. China
- NPU Chongqing Technology Innovation CenterChongqing400000P. R. China
| |
Collapse
|
3
|
Tian Q, Bagheri Tagani M, Izadi Vishkayi S, Zhang C, Li B, Zhang L, Yin LJ, Tian Y, Zhang L, Qin Z. Twist-Angle Tuning of Electronic Structure in Two-Dimensional Dirac Nodal Line Semimetal Au 2Ge on Au(111). ACS NANO 2024; 18:9011-9018. [PMID: 38470156 DOI: 10.1021/acsnano.3c12753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Topological semimetals have emerged as quantum materials including Dirac, Weyl, and nodal line semimetals, and so on. Dirac nodal line (DNL) semimetals possess topologically nontrivial bands crossing along a line or a loop and are considered precursor states for other types of semimetals. Here, we combine scanning tunneling microscopy/spectroscopy (STM/S) measurements and density functional theory (DFT) calculations to investigate a twist angle tuning of electronic structure in two-dimensional DNL semimetal Au2Ge. Theoretical calculations show that two bands of Au2Ge touch each other in Γ-M and Γ-K paths, forming a DNL. A significant transition of electronic structure occurs by tuning the twist angle from 30° to 24° between monolayer Au2Ge and Au(111), as confirmed by STS measurements and DFT calculations. The disappearing of DNL state is a direct consequence of symmetry breaking.
Collapse
Affiliation(s)
- Qiwei Tian
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Meysam Bagheri Tagani
- Department of Physics, University of Guilan, P.O. Box 41335-1914, 32504550, Rasht, Iran
| | - Sahar Izadi Vishkayi
- School of Physics, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran, Iran
| | - Chen Zhang
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Bo Li
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Li Zhang
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Long-Jing Yin
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Yuan Tian
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Lijie Zhang
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Zhihui Qin
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, China
| |
Collapse
|
4
|
Dai B, Su Y, Guo Y, Wu C, Xie Y. Recent Strategies for the Synthesis of Phase-Pure Ultrathin 1T/1T' Transition Metal Dichalcogenide Nanosheets. Chem Rev 2024; 124:420-454. [PMID: 38146851 DOI: 10.1021/acs.chemrev.3c00422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
The past few decades have witnessed a notable increase in transition metal dichalcogenide (TMD) related research not only because of the large family of TMD candidates but also because of the various polytypes that arise from the monolayer configuration and layer stacking order. The peculiar physicochemical properties of TMD nanosheets enable an enormous range of applications from fundamental science to industrial technologies based on the preparation of high-quality TMDs. For polymorphic TMDs, the 1T/1T' phase is particularly intriguing because of the enriched density of states, and thus facilitates fruitful chemistry. Herein, we comprehensively discuss the most recent strategies for direct synthesis of phase-pure 1T/1T' TMD nanosheets such as mechanical exfoliation, chemical vapor deposition, wet chemical synthesis, atomic layer deposition, and more. We also review frequently adopted methods for phase engineering in TMD nanosheets ranging from chemical doping and alloying, to charge injection, and irradiation with optical or charged particle beams. Prior to the synthesis methods, we discuss the configuration of TMDs as well as the characterization tools mostly used in experiments. Finally, we discuss the current challenges and opportunities as well as emphasize the promising fields for the future development.
Collapse
Affiliation(s)
- Baohu Dai
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Yueqi Su
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Yuqiao Guo
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Changzheng Wu
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Yi Xie
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
5
|
Picker J, Schaal M, Gan Z, Gruenewald M, Neumann C, George A, Otto F, Forker R, Fritz T, Turchanin A. Structural and electronic properties of MoS 2 and MoSe 2 monolayers grown by chemical vapor deposition on Au(111). NANOSCALE ADVANCES 2023; 6:92-101. [PMID: 38125607 PMCID: PMC10729873 DOI: 10.1039/d3na00475a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/24/2023] [Indexed: 12/23/2023]
Abstract
The exceptional electronic and photonic properties of the monolayers of transition metal dichalcogenides including the spin-orbit splitting of the valence and conduction bands at the K points of the Brillouin zone make them promising for novel applications in electronics, photonics and optoelectronics. Scalable growth of these materials and understanding of their interaction with the substrate is crucial for these applications. Here we report the growth of MoS2 and MoSe2 monolayers on Au(111) by chemical vapor deposition at ambient pressure as well as the analysis of their structural and electronic properties down to the atomic scale. To this aim, we apply ultrahigh vacuum surface sensitive techniques including scanning tunneling microscopy and spectroscopy, low-energy electron diffraction, X-ray and angle-resolved ultraviolet photoelectron spectroscopy in combination with Raman spectroscopy at ambient conditions. We demonstrate the growth of high-quality epitaxial single crystalline MoS2 and MoSe2 monolayers on Au(111) and show the impact of annealing on the monolayer/substrate interaction. Thus, as-grown and moderately annealed (<100 °C) MoSe2 monolayers are decoupled from the substrate by excess Se atoms, whereas annealing at higher temperatures (>250 °C) results in their strong coupling with the substrate caused by desorption of the excess Se. The MoS2 monolayers are strongly coupled to the substrate and the interaction remains almost unchanged even after annealing up to 450 °C.
Collapse
Affiliation(s)
- Julian Picker
- Institute of Physical Chemistry, Friedrich Schiller University Jena Lessingstraße 10 07743 Jena Germany
| | - Maximilian Schaal
- Institute of Solid State Physics, Friedrich Schiller University Jena Helmholtzweg 5 07743 Jena Germany
| | - Ziyang Gan
- Institute of Physical Chemistry, Friedrich Schiller University Jena Lessingstraße 10 07743 Jena Germany
| | - Marco Gruenewald
- Institute of Solid State Physics, Friedrich Schiller University Jena Helmholtzweg 5 07743 Jena Germany
| | - Christof Neumann
- Institute of Physical Chemistry, Friedrich Schiller University Jena Lessingstraße 10 07743 Jena Germany
| | - Antony George
- Institute of Physical Chemistry, Friedrich Schiller University Jena Lessingstraße 10 07743 Jena Germany
| | - Felix Otto
- Institute of Solid State Physics, Friedrich Schiller University Jena Helmholtzweg 5 07743 Jena Germany
| | - Roman Forker
- Institute of Solid State Physics, Friedrich Schiller University Jena Helmholtzweg 5 07743 Jena Germany
| | - Torsten Fritz
- Institute of Solid State Physics, Friedrich Schiller University Jena Helmholtzweg 5 07743 Jena Germany
| | - Andrey Turchanin
- Institute of Physical Chemistry, Friedrich Schiller University Jena Lessingstraße 10 07743 Jena Germany
| |
Collapse
|
6
|
Pushkarna I, Pásztor Á, Renner C. Twist-Angle-Dependent Electronic Properties of Exfoliated Single Layer MoS 2 on Au(111). NANO LETTERS 2023; 23:9406-9412. [PMID: 37844067 PMCID: PMC10603799 DOI: 10.1021/acs.nanolett.3c02804] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/29/2023] [Indexed: 10/18/2023]
Abstract
Synthetic materials and heterostructures obtained by the controlled stacking of exfoliated monolayers are emerging as attractive functional materials owing to their highly tunable properties. We present a detailed scanning tunneling microscopy and spectroscopy study of single layer MoS2-on-gold heterostructures as a function of the twist angle. We find that their electronic properties are determined by the hybridization of the constituent layers and are modulated at the moiré period. The hybridization depends on the layer alignment, and the modulation amplitude vanishes with increasing twist angle. We explain our observations in terms of a hybridization between the nearest sulfur and gold atoms, which becomes spatially more homogeneous and weaker as the moiré periodicity decreases with increasing twist angle, unveiling the possibility of tunable hybridization of electronic states via twist angle engineering.
Collapse
Affiliation(s)
| | | | - Christoph Renner
- Department of Quantum Matter
Physics, Université de Genève, 24 Quai Ernest Ansermet, CH-1211 Geneva, Switzerland
| |
Collapse
|
7
|
Reidy K, Majchrzak PE, Haas B, Thomsen JD, Konečná A, Park E, Klein J, Jones AJH, Volckaert K, Biswas D, Watson MD, Cacho C, Narang P, Koch CT, Ulstrup S, Ross FM, Idrobo JC. Direct Visualization of Subnanometer Variations in the Excitonic Spectra of 2D/3D Semiconductor/Metal Heterostructures. NANO LETTERS 2023; 23:1068-1076. [PMID: 36637381 DOI: 10.1021/acs.nanolett.2c04749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The integration of metallic contacts with two-dimensional (2D) semiconductors is routinely required for the fabrication of nanoscale devices. However, nanometer-scale variations in the 2D/metal interface can drastically alter the local optoelectronic properties. Here, we map local excitonic changes of the 2D semiconductor MoS2 in contact with Au. We utilize a suspended and epitaxially grown 2D/metal platform that allows correlated electron energy-loss spectroscopy (EELS) and angle resolved photoelectron spectroscopy (nanoARPES) mapping. Spatial localization of MoS2 excitons uncovers an additional EELS peak related to the MoS2/Au interface. NanoARPES measurements indicate that Au-S hybridization decreases substantially with distance from the 2D/metal interface, suggesting that the observed EELS peak arises due to dielectric screening of the excitonic Coulomb interaction. Our results suggest that increasing the van der Waals distance could optimize excitonic spectra of mixed-dimensional 2D/3D interfaces and highlight opportunities for Coulomb engineering of exciton energies by the local dielectric environment or moiré engineering.
Collapse
Affiliation(s)
- Kate Reidy
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | | | - Benedikt Haas
- Department of Physics & IRIS Adlershof, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
| | - Joachim Dahl Thomsen
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Andrea Konečná
- Central European Institute of Technology, Brno University of Technology, 61200 Brno, Czech Republic
| | - Eugene Park
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Julian Klein
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Alfred J H Jones
- Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark
| | - Klara Volckaert
- Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark
| | - Deepnarayan Biswas
- Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark
| | - Matthew D Watson
- Diamond Light Source, Harwell Campus, Didcot OX11 0DE, United Kingdom
| | - Cephise Cacho
- Diamond Light Source, Harwell Campus, Didcot OX11 0DE, United Kingdom
| | - Prineha Narang
- College of Letters and Science, Physical Sciences, UCLA, Los Angeles, California 90095, United States
| | - Christoph T Koch
- Department of Physics & IRIS Adlershof, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
| | - Søren Ulstrup
- Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark
| | - Frances M Ross
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Juan Carlos Idrobo
- Materials Science and Engineering Department, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
8
|
Lee Y, Chang Y, Ryu H, Kim JH, Watanabe K, Taniguchi T, Kim M, Lee GH. Quasi-van der Waals Epitaxial Recrystallization of a Gold Thin Film into Crystallographically Aligned Single Crystals. ACS APPLIED MATERIALS & INTERFACES 2023; 15:6092-6097. [PMID: 36577086 DOI: 10.1021/acsami.2c18514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Heterointerfaces between two-dimensional (2D) materials and bulk metals determine the electrical and optical properties of their heterostructures. Although deposition of various metals on 2D materials has been studied, there is still a lack of studies on the interaction at the van der Waals (vdW) heterointerface between 2D materials and metals. Here, we report quasi-van der Waals (qvdW) epitaxial recrystallization of a gold thin film into crystallographically aligned single crystals by encapsulation annealing of a gold thin film with hexagonal boron nitride (hBN). When a polycrystalline gold thin film passivated with hBN was annealed, it was recrystallized into single gold crystals with a planar shape and crystallographic alignment with hBN due to a strong interaction between the gold film and hBN at the heterointerface. This reflects that a weak vdW force at the heterointerface is sufficiently strong to induce epitaxial recrystallization. Using this method, we fabricated a gold nanocrystal array with the same crystalline orientation and smooth top surface. Our work demonstrates a new method for epitaxial recrystallization of bulk crystals and provides a deep understanding of the interaction at the vdW heterointerface of 2D materials and metals.
Collapse
Affiliation(s)
- Yuna Lee
- Materials Science and Engineering, Seoul National University, Seoul 08826, Korea
| | - Yunyeong Chang
- Materials Science and Engineering, Seoul National University, Seoul 08826, Korea
| | - Huije Ryu
- Materials Science and Engineering, Seoul National University, Seoul 08826, Korea
| | - Jong Hun Kim
- Materials Science and Engineering, Seoul National University, Seoul 08826, Korea
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute of Materials Science, Tsukuba, Ibaraki 305-0044, Japan
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan
| | - Miyoung Kim
- Materials Science and Engineering, Seoul National University, Seoul 08826, Korea
| | - Gwan-Hyoung Lee
- Materials Science and Engineering, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
9
|
Zhu B, Wu Y, Zhou Z, Zheng W, Hu Y, Ji Y, Kong L, Zhang R. Visualizing Large Facet-Dependent Electronic Tuning in Monolayer WSe 2 on Au Surfaces. NANO LETTERS 2022; 22:9630-9637. [PMID: 36383028 DOI: 10.1021/acs.nanolett.2c03785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Two-dimensional transition metal dichalcogenides (TMDs) have shown great importance in the development of novel ultrathin optoelectronic devices owing to their exceptional electronic and photonic properties. Effectively tuning their electronic band structures is not only desired in electronics applications but also can facilitate more novel properties. In this work, we demonstrate that large electronic tuning on a WSe2 monolayer can be realized by different facets of a Au-foil substrate, forming in-plane p-n junctions with remarkable built-in electric fields. This facet-dependent tuning effect is directly visualized by using scanning tunneling microscopy and differential conductance (dI/dV) spectroscopy. First-principles calculations reveal that the atomic arrangement of the Au facet effectively changes the interfacial coupling and charge transfer, leading to different magnitudes of charge doping in WSe2. Our study would be beneficial for future customized fabrication of TMD-junction devices via facet-specific construction on the substrate.
Collapse
Affiliation(s)
- Bo Zhu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Optoelectronic Information Acquisition and Manipulation, Ministry of Education, School of Physics and Optoelectronics Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Yanwei Wu
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| | - Zeyi Zhou
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Optoelectronic Information Acquisition and Manipulation, Ministry of Education, School of Physics and Optoelectronics Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Wenjie Zheng
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Optoelectronic Information Acquisition and Manipulation, Ministry of Education, School of Physics and Optoelectronics Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Yuchen Hu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Optoelectronic Information Acquisition and Manipulation, Ministry of Education, School of Physics and Optoelectronics Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Yongfei Ji
- School of Chemistry and Chemical Engineering, Guangzhou University, 510006 Guangzhou, China
| | - Lingyao Kong
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Optoelectronic Information Acquisition and Manipulation, Ministry of Education, School of Physics and Optoelectronics Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Rui Zhang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Optoelectronic Information Acquisition and Manipulation, Ministry of Education, School of Physics and Optoelectronics Engineering, Anhui University, Hefei, Anhui 230601, China
| |
Collapse
|