1
|
Khamkar PP, Wagh KS, Nangare SN, Mali SS, Patil GS. Development of mesalamine loaded-fenugreek gum decorated pectin microspheres for colonic drug delivery: Ex-vivo and in-vitro characterizations. ANNALES PHARMACEUTIQUES FRANÇAISES 2025; 83:514-528. [PMID: 39617337 DOI: 10.1016/j.pharma.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/23/2024] [Accepted: 11/27/2024] [Indexed: 12/21/2024]
Abstract
Mesalamine (MES) is a preferred therapeutic agent for managing various colon disorders, including inflammatory bowel diseases (IBD). However, conventional oral dosage forms of MES face significant limitations, which reduce their effectiveness in managing these conditions. To overcome these challenges, advanced dosage forms of MES are essential. Fenugreek gum (FG), a natural polysaccharide with non-toxicity, ease of synthesis, biodegradability, and biocompatibility, was selected as a key component for developing a novel delivery system. Calcium ion crosslinked MES-incorporated FG-decorated pectin microspheres (FG@MES/PM) were successfully designed for colon-specific drug delivery using an ionotropic gelation technique. The microspheres exhibited favorable physicochemical characteristics, including a particle size of 586nm, a polydispersity index of 0.348, an entrapment efficiency of 85.20±1.02%, and a drug content of 98.52±0.96%. Ex vivo mucoadhesion tests demonstrated strong mucoadhesive properties, highlighting the potential of FG@MES/PM to adhere effectively to the colonic mucosa. In vitro drug release studies showed a modified release profile, with 99.02±1.80% MES released over 24h. Release kinetics analysis confirmed that FG@MES/PM followed the Higuchi matrix model (R2=0.9867), indicating diffusion-controlled release. The drug release mechanism was characterized as anomalous (non-Fickian) transport, with a release exponent (n) of 0.563. Overall, FG@MES/PM demonstrated promising potential for colon-specific drug delivery, offering sustained release and enhanced mucoadhesion. This study underscores the utility of FG for developing advanced drug delivery systems targeting the colon. Future research should explore the broader application of FG and similar natural polysaccharides in designing efficient and biocompatible colon-targeted formulations to improve therapeutic outcomes for IBD and related conditions.
Collapse
Affiliation(s)
- Pruthvi P Khamkar
- Department of Pharmaceutics, KVPS's, Institute of Pharmaceutical Education, 425428 Boradi, Maharashtra, India
| | - Kalpeshkumar S Wagh
- Department of Pharmaceutics, KVPS's, Institute of Pharmaceutical Education, 425428 Boradi, Maharashtra, India
| | - Sopan N Nangare
- Department of Pharmaceutics, Krishna Institute of Pharmacy, Krishna Vishwa Vidyapeeth, 415539 Karad, Maharashtra, India
| | - Sachin S Mali
- Department of Pharmaceutics, Ashokrao Mane College of Pharmacy, Peth Vadgaon, 416112 Maharashtra, India
| | - Gaurav S Patil
- Department of Pharmaceutics, KVPS's, Institute of Pharmaceutical Education, 425428 Boradi, Maharashtra, India.
| |
Collapse
|
2
|
Zhao X, Wang L, Fu YJ, Yu F, Li K, Wang YQ, Guo Y, Zhou S, Yang W. Inflammatory Microenvironment-Responsive Microsphere Vehicles Modulating Gut Microbiota and Intestinal Inflammation for Intestinal Stem Cell Niche Remodeling in Inflammatory Bowel Disease. ACS NANO 2025; 19:12063-12079. [PMID: 40125581 DOI: 10.1021/acsnano.4c17999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Intestinal stem cells (ISCs) engage in proliferation to maintain a stable stem cell population and differentiate into functional epithelial subpopulations. This intricate process is upheld by various signals derived from the host and gut microbiota, establishing an ISC niche. However, during inflammatory bowel disease (IBD), this signaling niche undergoes dramatic changes, leading to impaired ISC and hindered restoration of the damaged intestinal epithelial barrier. This study introduces intestinal inflammatory microenvironment-responsive microsphere vehicles designed to remodel the ISC niche, offering an approach to treat IBD. Using an advanced emulsion technique, these microsphere vehicles specifically target colonic inflammation sites, delivering a responsive release of MXene and l-arginine. This delivery system is formulated to modulate intestinal flora and immune responses effectively. l-arginine is converted into nitric oxide to regulate the gut microbiome, while MXene serves as a nanoimmunomodulator to stabilize immune homeostasis. Our findings demonstrate that the anti-inflammatory properties of the microspheres are key to promoting epithelial repair and remodeling of the ISC niche. This study highlights the role of antioxidant microspheres as anti-inflammatory agents that indirectly support ISC function and gut regeneration.
Collapse
Affiliation(s)
- Xing Zhao
- Department of Nephrology, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu 610041, China
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| | - Liya Wang
- Department of Nephrology, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Ya-Jun Fu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Fei Yu
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610032, China
| | - Kai Li
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041 , China
| | - Yu-Qiang Wang
- Department of Cardiovascular Surgery and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Yingqiang Guo
- Department of Cardiovascular Surgery and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Shaobing Zhou
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| | - Wei Yang
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
3
|
Xu M, Xin W, Xu J, Wang A, Ma S, Dai D, Wang Y, Yang D, Zhao L, Li H. Biosilicification-mimicking chiral nanostructures for targeted treatment of inflammatory bowel disease. Nat Commun 2025; 16:2551. [PMID: 40089457 PMCID: PMC11910640 DOI: 10.1038/s41467-025-57890-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 03/04/2025] [Indexed: 03/17/2025] Open
Abstract
The cascade reaction of lipopolysaccharides (LPS), cell-free DNA (cfDNA), and reactive oxygen species (ROS), drives the development of inflammatory bowel disease (IBD). Herein, we construct polyethylenimide (PEI)-L/D-tartaric acid (L/D-TA) complexes templated mesoporous organosilica nanoparticles (MON) (PEI-L/D-TA@MON) by mimicking biosilicification under ambient conditions within seconds. The chiral nanomedicines include four functional moieties, wherein PEI electrostatically attracts cfDNA, tetrathulfide bonds reductively react with ROS, silanol groups adsorb LPS, and L/D-TA enables chiral recognition and inflammatory localization. Following oral administration, PEI-L-TA@MON exhibiting preferential conformation stereoscopically matches with mucosa and anchors onto inflammatory intestine for lesion targeting. PEI-L-TA@MON eliminates LPS, ROS, and cfDNA, alleviating oxidative stress, inhibiting inflammatory cascade, and maintaining immune homeostasis to achieve IBD therapy. In addition, the rapid synthesis, low cost, energy-free preparation, negligible toxicity, satisfactory therapeutic effect, and facile conversion on therapeutic modes of PEI-L-TA@MON will bring changes for IBD treatment, providing research values and translational clinical prospects.
Collapse
Affiliation(s)
- Miao Xu
- School of Pharmacy, China Medical University, Shenyang, China
| | - Wei Xin
- The First Hospital of China Medical University, Shenyang, China
| | - Jiabin Xu
- School of Pharmacy, China Medical University, Shenyang, China
| | - Anya Wang
- School of Pharmacy, China Medical University, Shenyang, China
| | - Shuai Ma
- School of Pharmacy, China Medical University, Shenyang, China
| | - Di Dai
- The First Hospital of China Medical University, Shenyang, China
| | - Yidan Wang
- School of Pharmacy, China Medical University, Shenyang, China
| | - Dongmei Yang
- School of Pharmacy, China Medical University, Shenyang, China
| | - Lin Zhao
- School of Pharmacy, China Medical University, Shenyang, China.
| | - Heran Li
- School of Pharmacy, China Medical University, Shenyang, China.
| |
Collapse
|
4
|
Baik S, Kim H, Lee Y, Kang T, Shin K, Song C, Park OK, Kang B, Lee N, Kim D, Choi SH, Kim SH, Soh M, Hyeon T, Kim CK. Orally Deliverable Iron-Ceria Nanotablets for Treatment of Inflammatory Bowel Disease. Adv Healthc Mater 2025; 14:e2401994. [PMID: 39235381 DOI: 10.1002/adhm.202401994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/20/2024] [Indexed: 09/06/2024]
Abstract
Ceria-based nanoparticles are versatile in treating various inflammatory diseases, but their feasibility in clinical translation is undermined by safety concerns and a limited delivery system. Meanwhile, the idiopathic nature of inflammatory bowel disease (IBD) calls for a wider variety of therapeutics via moderation of the intestinal immune system. In this regard, the synthesis and oral formulation of iron-ceria nanoparticles (CF NPs) with enhanced nanozymic activity and lower toxicity risk than conventional ceria-based nanoparticles are reported. CF NPs are clustered in calcium phosphate (CaP) and coated with a pH-responsive polymer to provide the enteric formulation of iron-ceria nanotablets (CFNT). CFNT exhibits a marked alleviative efficacy in the dextran sodium sulfate (DSS)-induced enterocolitis model in vivo by modulating the pro-inflammatory behavior of innate immune cells including macrophages and neutrophils, promoting anti-inflammatory cytokine profiles, and downregulating key transcription factors of inflammatory pathways.
Collapse
Affiliation(s)
- Seungmin Baik
- School of Chemical and Biological Engineering and Institute of Chemical Process, Seoul National University, Seoul, 08826, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
| | - Hyunmin Kim
- Department of Neurology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, 08308, Republic of Korea
- Department of Medical Science, BK21 Plus KUMS Graduate Program, Korea University College of Medicine, Seoul, 08308, Republic of Korea
| | - Yunjung Lee
- School of Chemical and Biological Engineering and Institute of Chemical Process, Seoul National University, Seoul, 08826, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
| | - Taegyu Kang
- School of Chemical and Biological Engineering and Institute of Chemical Process, Seoul National University, Seoul, 08826, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
| | - Kwangsoo Shin
- School of Chemical and Biological Engineering and Institute of Chemical Process, Seoul National University, Seoul, 08826, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
| | - Changyeong Song
- School of Chemical and Biological Engineering and Institute of Chemical Process, Seoul National University, Seoul, 08826, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
| | - Ok Kyu Park
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- Department of Radiology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Byeonggeun Kang
- Bio-MAX Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Nohyun Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Advanced Materials Engineering, Kookmin University, Seoul, 02707, Republic of Korea
| | - Dokyoon Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- Department of Bionano Engineering and Bionanotechnology, Hanyang University, Ansan, 15558, Republic of Korea
| | - Seung Hong Choi
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- Department of Radiology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Center for Advanced Pharmaceutical Technology, HyeonTechNBio Inc., Seoul, 08826, Republic of Korea
| | - Seung Han Kim
- Department of Gastroenterology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, 08308, Republic of Korea
| | - Min Soh
- School of Chemical and Biological Engineering and Institute of Chemical Process, Seoul National University, Seoul, 08826, Republic of Korea
- Center for Advanced Pharmaceutical Technology, HyeonTechNBio Inc., Seoul, 08826, Republic of Korea
| | - Taeghwan Hyeon
- School of Chemical and Biological Engineering and Institute of Chemical Process, Seoul National University, Seoul, 08826, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
| | - Chi Kyung Kim
- Department of Neurology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, 08308, Republic of Korea
- Department of Medical Science, BK21 Plus KUMS Graduate Program, Korea University College of Medicine, Seoul, 08308, Republic of Korea
| |
Collapse
|
5
|
Liu H, Wang D, Feng X, Liu L, Liu B, Zhu L, Sun J, Zuo X, Chen S, Xian J, Zhang C, Yang W. Sishen Pill & Tongxieyaofang ameliorated ulcerative colitis through the activation of HIF-1α acetylation by gut microbiota-derived propionate and butyrate. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:156264. [PMID: 39612887 DOI: 10.1016/j.phymed.2024.156264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/31/2024] [Accepted: 11/05/2024] [Indexed: 12/01/2024]
Abstract
BACKGROUND Ulcerative colitis (UC) is a chronic inflammatory bowel disease closely related to gut microbiota dysbiosis and intestinal homeostasis imbalance. Sishen Pill&Tongxieyaofang (SSP-TXYF) has a long history of application in traditional Chinese medicine and is widely used in UC clinics. However, its mechanism of action is still unclear. PURPOSE This study aimed to explore the potential regulatory role of SSP-TXYF in protecting against UC through metabolites produced by the intestinal microbiota, and elucidate its underlying molecular mechanism. STUDY DESIGN AND METHODS 16S rRNA and UPLC-QE-Orbitrap-MS were used to assess the microbiota and short-chain fatty acids (SCFAs). A rat model of 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced gut microbiota dysbiosis was used to study the effects of SSP-TXYF on UC in vivo. Intestinal epithelial cells-6 (IEC-6) were treated with lipopolysaccharide (LPS). The intestinal mucosal barrier (IMB) functions were investigated by alcian blue staining and western blot analysis. The mechanism of SSP-TXYF influenced the HIF-1α acetylation pathway was examined by real-time fluorescence quantitative PCR (qPCR), Western blotting, and Co-immunoprecipitation. RESULTS Using 16S rRNA gene-based microbiota analysis, we found that SSP-TXYF ameliorated TNBS-induced gut microbiota dysbiosis. We found that SSP-TXYF significantly inhibited the decreased abundance of Firmicutes in UC rats, in addition, the abundance of Actinobacteria was also improved. The mechanism of SSP-TXYF-treated TNBS-induced UC resulted from improved IMB functions via the activation of hypoxia-inducible factor-1 (HIF-1α) acetylation. Notably, SSP-TXYF Enriched microbiota-derived metabolites propionate and butyrate, which could activate HIF-1α acetylation in IEC. Furthermore, exogenous treatment of propionate and butyrate reproduced similar protective effects as SSP-TXYF to UC through improving HIF-1α-dependent IMB functions. CONCLUSIONS Overall, our findings suggest that the gut microbiota-propionate/butyrate-HIF-1α-IMB axis plays an important role in SSP-TXYF-maintaining intestinal homeostasis, which may represent a novel approach for UC prevention via the intervention of any link in this axis.
Collapse
Affiliation(s)
- Haifan Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dunfang Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xue Feng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bin Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lin Zhu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jingwei Sun
- Beijing University of Chinese Medicine, Beijing, China
| | - Xingbo Zuo
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Siyuan Chen
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Junying Xian
- Nanning Hospital of Traditional Chinese Medicine, Nanning, China
| | - Caijuan Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Weipeng Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
6
|
Zhu K, Liu X, Fu L, Cao J, Wu Y, Mo C, Mu J, Song J. NIR-II Ratiometric Optical Theranostic Capsule for In Situ Diagnosis and Precise Therapy of Intestinal Inflammation. ACS NANO 2024; 18:34912-34923. [PMID: 39661927 DOI: 10.1021/acsnano.4c12894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Capsules were widely used in clinical settings for the oral delivery of various drugs, although it remains challenging to trace real-time drug release behavior and adjust dosages based on the therapeutic effect. To address these issues, we developed theranostic capsules that loaded two kinds of fluorescence nanoparticles, H2O2-responsive Janus Ag/Ag2S nanoparticles (Ag/Ag2S JNPs) and the downconversion nanoparticles (DCNPs), and the dexamethasone (Dex) drug. The Ag/Ag2S JNPs exhibit a highly sensitive fluorescence (FL) signal at 1250 nm in response to H2O2, while the FL signal from the DCNPs at 1550 nm remains stable under physiological conditions. The ratio of these two FL signals formed the ratiometric FL signal, which shows correlation with the H2O2 concentration with a detection limit of 1.7 μM. Moreover, the capsules can be precisely delivered into the intestine, where they release the JNPs and DCNPs simultaneously. The H2O2-triggered ratiometric FL signals and images can diagnose inflammation and indicate its location. Meanwhile, the encapsulated Dex is released in the disease region, with ratiometric imaging allowing for real-time tracking of therapeutic efficacy and providing guidance for ongoing treatment. The theranostic capsule system provides an approach for quantitative detection of disease biomarkers and further localized release of therapeutics, thereby avoiding overdose and reducing side effects.
Collapse
Affiliation(s)
- Kang Zhu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xing Liu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Liping Fu
- Department of Nuclear Medicine, China-Japan Friendship Hospital, Beijing 100029, China
| | - Jingjing Cao
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ying Wu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chunxiang Mo
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jing Mu
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen 518036, P. R. China
| | - Jibin Song
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
7
|
Zhang J, Zhao L, Liang A, Geng X, Hou M, Cheng H, Zhang S, Yang B, Li J, Chen J. Resistant starch grafted cerium-sulfasalazine infinite coordination polymers synergistically remold intestinal metabolic microenvironment for inflammatory bowel disease therapy. J Nanobiotechnology 2024; 22:785. [PMID: 39707422 DOI: 10.1186/s12951-024-03043-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 11/29/2024] [Indexed: 12/23/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic gastrointestinal disease which is closely related with the overproduced reactive oxygen species (ROS), increased pro-inflammatory cytokines and disordered intestinal microbes. However, current therapeutic methods usually ignored the interrelation among the pathogenesis, and mainly focused on a single factor, inducing clinical outcomes unsatisfied. Herein, biocompatible infinite coordination polymers of drugs (Ce-SASP-RS ICPs) composed of Ce ions, FDA-approved drug sulfasalazine (SASP) and natural ingredient resistant starch (RS) were developed for synergistic treatment of IBD. The proper Ce3+/Ce4+ ratio in Ce-SASP-RS ICPs can endow them with SOD-like activities, POD-like activities and •OH scavenging ability, which guarantee Ce-SASP-RS ICPs to simultaneously kill bacteria and maintain ROS balance through cascade reactions. Owing to the recovered redox balance microenvironment, SASP in Ce-SASP-RS ICPs can better play their anti-inflammatory function. Moreover, benefitting from the recovered metabolic balance of ROS and inflammatory cytokines in colon, resistant starch can also function better in modifying gut microbiota through generating short-chain fatty acids. Collectively, Ce-SASP-RS ICPs can synergistically restore intestinal metabolic microenvironment through modulating redox balance, attenuating inflammation and modifying intestinal flora. Hence, in view of the mutual influences among IBD pathogenesis, this work presents a synergistic intervention approach for effectively treating IBD.
Collapse
Affiliation(s)
- Jing Zhang
- School of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Liyuan Zhao
- School of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Along Liang
- Henan Key Laboratory of Nanocomposite and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou, 450006, Henan, China
| | - Xueyan Geng
- Henan Key Laboratory of Nanocomposite and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou, 450006, Henan, China
| | - Mengmeng Hou
- Henan Key Laboratory of Nanocomposite and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou, 450006, Henan, China
| | - Haojie Cheng
- Henan Key Laboratory of Nanocomposite and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou, 450006, Henan, China
| | - Shouren Zhang
- Henan Key Laboratory of Nanocomposite and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou, 450006, Henan, China
| | - Baocheng Yang
- Henan Key Laboratory of Nanocomposite and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou, 450006, Henan, China.
| | - Junbo Li
- School of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang, 471023, China.
| | - Jian Chen
- Henan Key Laboratory of Nanocomposite and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou, 450006, Henan, China.
| |
Collapse
|
8
|
Yang W, Lin P, Gao R, Fang Z, Wang Z, Ma Z, Shi J, Yu W. Cell-derived biomimetic drug delivery system for inflammatory bowel disease therapy. Mater Today Bio 2024; 29:101332. [PMID: 39606424 PMCID: PMC11600033 DOI: 10.1016/j.mtbio.2024.101332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/24/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic recurrent disease with an increasing incidence year by year. At present, no safe and effective treatment for IBD exists. Thus, there is an urgent need to create new therapeutic options that have decreased adverse effects and positive clinical efficacy. A range of nanomaterials have fueled the advancement of nanomedicine in recent years, which is establishing more appealing and prospective treatment approaches for IBD. However, traditional synthetic nanomaterials still have some problems in the IBD drug delivery process, such as weak targeting ability of vectors, difficulty escaping immune surveillance, and poor biosecurity. Natural sources of biological nanomaterials have been identified to solve the above problems. A drug delivery system based on bionic technology is expected to achieve a new breakthrough in the targeted therapy of IBD by nanotechnology due to its organic integration of low immunogenicity and natural targeting of biological materials and the controllability and versatility of synthetic nanocarrier design. We begin this review by outlining the fundamental traits of both inflammatory and healthy intestinal microenvironments. Subsequently, we review the latest application of a cell-derived bionic drug delivery system in IBD therapy. Finally, we discuss the development prospects of this delivery system and challenges to its clinical translation. Biomimetic nanotherapy is believed to offer a new strategy for the treatment of IBD.
Collapse
Affiliation(s)
- Wenjing Yang
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 310013, China
| | - Peihong Lin
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 310013, China
| | - Rui Gao
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 310013, China
| | - Zhengyu Fang
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 310013, China
| | - Zhouru Wang
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 310013, China
| | - Zhen Ma
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 310013, China
| | - Jing Shi
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 310013, China
| | - Wenying Yu
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 310013, China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, 310013, China
| |
Collapse
|
9
|
Li S, Chen L, Wu T, Wu J, Yang H, Ju Q, Liu Z, Chen W, Zhang D, Hao Y. Cell Membrane-Coated Nanotherapeutics for the Targeted Treatment of Acute and Chronic Colitis. Biomater Res 2024; 28:0102. [PMID: 39512421 PMCID: PMC11542430 DOI: 10.34133/bmr.0102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/28/2024] [Accepted: 10/14/2024] [Indexed: 11/15/2024] Open
Abstract
Integrin α4β1 and α4β7 are overexpressed in macrophages and leukocytes and play important roles in mediating cell homing and recruitment to inflammatory tissues. Herein, to enhance the targeting ability of nanotherapeutics for inflammatory bowel disease (IBD) treatment, cyclosporine A-loaded nanoparticles (CsA NPs) were coated with macrophage membranes (MM-CsA NPs) or leukocyte membranes (LM-CsA NPs). In vitro experiments demonstrated that the physicochemical properties of the nanotherapeutics (e.g., size, zeta potential, polymer dispersity index, and drug release profiles) did not obviously change after cell membrane coating. However, integrin α4β1 and α4β7 were expressed in MM-CsA NPs and LM-CsA NPs, respectively, which significantly inhibited normal macrophage phagocytosis and obviously increased uptake by proinflammatory macrophages and endothelial cells. In vivo experiments verified that cell membrane-coated nanotherapeutics have longer retention times in inflammatory intestinal tissues. Importantly, LM-CsA NPs significantly mitigated weight loss, alleviated colon shortening, decreased disease activity indices (DAIs), and promoted colon tissue repair in acute and chronic colitis model mice. Furthermore, LM-CsA NPs significantly decreased the expression of inflammatory factors such as TNF-α and IL-6 and increased the expression of gut barrier-related proteins such as E-cadherin, ZO-1, and occludin protein in colitis mice.
Collapse
Affiliation(s)
- Shan Li
- Army 953 Hospital, Shigatse Branch of Xinqiao Hospital, Army Medical University (Third Military Medical University), Shigatse, Tibet Autonomous Region 857000, China
- Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
- Department of Gastroenterology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Lei Chen
- Department of Gastroenterology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Tianyu Wu
- Department of Gastroenterology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Jingfeng Wu
- Department of Gastroenterology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Hong Yang
- Department of Gastroenterology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Qian Ju
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Zhicheng Liu
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Wensheng Chen
- Department of Gastroenterology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Dinglin Zhang
- Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Yingxue Hao
- Department of Vascular Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| |
Collapse
|
10
|
Tan H, Shen Z, Wang X, Shu S, Deng J, Lu L, Fan Z, Hu D, Cheng P, Cao X, Huang Q. Endoplasmic reticulum-targeted biomimetic nanoparticles induce apoptosis and ferroptosis by regulating endoplasmic reticulum function in colon cancer. J Control Release 2024; 375:422-437. [PMID: 39278355 DOI: 10.1016/j.jconrel.2024.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/18/2024]
Abstract
Colorectal cancer (CRC) is a major threat to human health, as it is one of the most common malignancies with a high incidence and mortality rate. The cancer cell membrane (CCM) has significant potential in targeted tumor drug delivery due to its membrane antigen-mediated homologous targeting ability. The endoplasmic reticulum (ER) in cancer cells plays a crucial role in apoptosis and ferroptosis. In this study, we developed an ER-targeted peptide-modified CCM-biomimetic nanoparticle-delivered lovastatin (LOV) nanomedicine delivery system (EMPP-LOV) for cancer treatment. Both in vitro and in vivo experiments demonstrated that EMPP could effectively target cancer cells and localize within the ER. EMPP-LOV modulated ER function to promote apoptosis and ferroptosis in tumor cells. Furthermore, synergistic antitumor efficacy was observed in both in vitro and in vivo models. EMPP-LOV induced apoptosis in CRC cells by over-activating endoplasmic reticulum stress and promoted ferroptosis by inhibiting the mevalonate pathway, leading to synergistic tumor growth inhibition with minimal toxicity to major organs. Overall, the EMPP-LOV delivery system, with its subcellular targeting capability within tumor cells, presents a promising therapeutic platform for CRC treatment.
Collapse
Affiliation(s)
- Hongxin Tan
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ziqi Shen
- School of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
| | - Xiaohua Wang
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Sicheng Shu
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jie Deng
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Li Lu
- School of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
| | - Ziyan Fan
- School of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
| | - Danni Hu
- School of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
| | - Pu Cheng
- Department of Gynaecology, The Second Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Xi Cao
- School of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China; Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
| | - Qi Huang
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
11
|
Li Q, Liu W, Liu K, Dong Z, Kong W, Lu X, Wei Y, Wu W, Yang J, Qi J. The Role of Nanoparticle Morphology on Enhancing Delivery of Budesonide for Treatment of Inflammatory Bowel Disease. ACS APPLIED MATERIALS & INTERFACES 2024; 16:33081-33092. [PMID: 38888094 DOI: 10.1021/acsami.4c05214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Inflammatory bowel disease (IBD) is a chronic and recurrent inflammatory disease that affects the gastrointestinal tract. The major hurdles impeding IBD treatment are the low targeting efficiency and short retention time of drugs in IBD sites. Nanoparticles with specific shapes have demonstrated the ability to improve mucus retention and cellular uptake. Herein, mesoporous silica nanoparticles (MSNs) with various morphologies were used to deliver budesonide (BUD) for the treatment of IBD. The therapeutic efficacy is strongly dependent on their shapes. The system comprises different shapes of MSNs as carriers for budesonide (BUD), along with Eudragit S100 as the enteric release shell. The encapsulation of Eudragit S100 not only improved the stability of MSNs-BUD in the gastrointestinal tract but also conferred pH-responsive drug release properties. Then, MSNs efficiently deliver BUD to the colon site, and the special shape of MSNs plays a critical role in enhancing their permeability and retention in the mucus layer. Among them, dendritic MSNs (MSND) effectively reduced myeloperoxidase (MPO) activity and levels of inflammatory cytokines in the colon due to long retention time and rapid release in IBD sites, thereby enhancing the therapeutic efficacy against colitis. Given the special shapes of MSNs and pH-responsivity of Eudragit S100, BUD loaded in the voids of MSND (E@MSNs-BUD) could penetrate the mucous layer and be accurately delivered to the colon with minor side effects. This system is expected to complement current treatment strategies for the IBD.
Collapse
Affiliation(s)
- Qiuyu Li
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Wenjuan Liu
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Kaiheng Liu
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Zirong Dong
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Weiwen Kong
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Xinrui Lu
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yuning Wei
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Wei Wu
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jinlong Yang
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China
| | - Jianping Qi
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| |
Collapse
|
12
|
Luo R, Liu J, Cheng Q, Shionoya M, Gao C, Wang R. Oral microsphere formulation of M2 macrophage-mimetic Janus nanomotor for targeted therapy of ulcerative colitis. SCIENCE ADVANCES 2024; 10:eado6798. [PMID: 38941458 PMCID: PMC11212727 DOI: 10.1126/sciadv.ado6798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/23/2024] [Indexed: 06/30/2024]
Abstract
Oral medication for ulcerative colitis (UC) is often hindered by challenges such as inadequate accumulation, limited penetration of mucus barriers, and the intricate task of mitigating excessive ROS and inflammatory cytokines. Here, we present a strategy involving sodium alginate microspheres (SAMs) incorporating M2 macrophage membrane (M2M)-coated Janus nanomotors (denominated as Motor@M2M) for targeted treatment of UC. SAM provides a protective barrier, ensuring that Motor@M2M withstands the harsh gastric milieu and exhibits controlled release. M2M enhances the targeting precision of nanomotors to inflammatory tissues and acts as a decoy for the neutralization of inflammatory cytokines. Catalytic decomposition of H2O2 by MnO2 in the oxidative microenvironment generates O2 bubbles, propelling Motor@M2M across the mucus barrier into inflamed colon tissues. Upon oral administration, Motor@M2M@SAM notably ameliorated UC severity, including inflammation mitigation, ROS scavenging, macrophage reprogramming, and restoration of the intestinal barrier and microbiota. Consequently, our investigation introduces a promising oral microsphere formulation of macrophage-biomimetic nanorobots, providing a promising approach for UC treatment.
Collapse
Affiliation(s)
- Ruifeng Luo
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR 999078, China
| | - Jinwei Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR 999078, China
| | - Qian Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
| | - Mitsuhiko Shionoya
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Cheng Gao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR 999078, China
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR 999078, China
| |
Collapse
|
13
|
Liu Y, Gao C, Li G, Niu Z, Liu X, Shen H, Sun J, Zhang R. Melanin Nanoparticle-Modified Probiotics for Targeted Synergistic Therapy of Ulcerative Colitis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:31950-31965. [PMID: 38861025 DOI: 10.1021/acsami.4c02914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Ulcerative colitis (UC) is a recurrent chronic mucosal inflammation disease whose most significant pathological characteristics are intestinal inflammation and damaged mucosal barrier induced by reactive oxygen/nitrogen species, abnormal immune microenvironment, and intestinal microecological imbalance. Oral probiotics are a living therapy for intestinal diseases, but their clinical application is hindered by poor bacterial biological activity and insufficient intestinal retention. Here, we developed a targeted oral formulation, functionalized probiotic Lf@MPB, with Lactobacillus fermentum (Lf) as the core and modified melanin nanoparticles (MNPs) on its surface through a click reaction of tricarboxyphenylboronic acid for synergistic therapy of UC. In vitro experiments showed that Lf@MPB not only possessed strong free radical scavenging ability, reduced cellular mitochondrial polarization, and inhibited apoptosis but also significantly enhanced the viability of Lf probiotics in simulated gastrointestinal fluid. Fluorescence imaging in vivo revealed the high accumulation of Lf@MPB at the site of intestinal inflammation in dextran sulfate sodium-induced UC mice. Moreover, in vivo results demonstrated that Lf@MPB effectively alleviated oxidative stress and inflammatory response and restored the intestinal barrier. In addition, 16S rRNA gene sequencing verified that Lf@MPB could increase the abundance and diversity of intestinal microbial communities and optimize microbial composition to inhibit the progression of UC. This work combines effective antioxidant and anti-inflammatory strategies with the oral administration of functionalized probiotics to provide a promising alternative for UC treatment.
Collapse
Affiliation(s)
- Yuqin Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Shanxi Medical University, Taiyuan 030001, China
| | - Caifang Gao
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
| | - Gang Li
- Shanxi Medical University, Taiyuan 030001, China
| | | | - Xiaoli Liu
- Shanxi Medical University, Taiyuan 030001, China
| | - Hao Shen
- Shanxi Medical University, Taiyuan 030001, China
| | - Jinghua Sun
- First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Ruiping Zhang
- The Radiology Department of Shanxi Provincial People's Hospital, Five Hospital of Shanxi Medical University, Taiyuan 030001, China
| |
Collapse
|
14
|
Liao J, Gong L, Xu Q, Wang J, Yang Y, Zhang S, Dong J, Lin K, Liang Z, Sun Y, Mu Y, Chen Z, Lu Y, Zhang Q, Lin Z. Revolutionizing Neurocare: Biomimetic Nanodelivery Via Cell Membranes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402445. [PMID: 38583077 DOI: 10.1002/adma.202402445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/01/2024] [Indexed: 04/08/2024]
Abstract
Brain disorders represent a significant challenge in medical science due to the formidable blood-brain barrier (BBB), which severely limits the penetration of conventional therapeutics, hindering effective treatment strategies. This review delves into the innovative realm of biomimetic nanodelivery systems, including stem cell-derived nanoghosts, tumor cell membrane-coated nanoparticles, and erythrocyte membrane-based carriers, highlighting their potential to circumvent the BBB's restrictions. By mimicking native cell properties, these nanocarriers emerge as a promising solution for enhancing drug delivery to the brain, offering a strategic advantage in overcoming the barrier's selective permeability. The unique benefits of leveraging cell membranes from various sources is evaluated and advanced technologies for fabricating cell membrane-encapsulated nanoparticles capable of masquerading as endogenous cells are examined. This enables the targeted delivery of a broad spectrum of therapeutic agents, ranging from small molecule drugs to proteins, thereby providing an innovative approach to neurocare. Further, the review contrasts the capabilities and limitations of these biomimetic nanocarriers with traditional delivery methods, underlining their potential to enable targeted, sustained, and minimally invasive treatment modalities. This review is concluded with a perspective on the clinical translation of these biomimetic systems, underscoring their transformative impact on the therapeutic landscape for intractable brain diseases.
Collapse
Affiliation(s)
- Jun Liao
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Lidong Gong
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Qingqiang Xu
- Department of Pharmaceutics, School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Jingya Wang
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Yuanyuan Yang
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Shiming Zhang
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Junwei Dong
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Kerui Lin
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Zichao Liang
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Yuhan Sun
- Department of Pharmaceutics, School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Yongxu Mu
- The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, 014040, China
| | - Zhengju Chen
- Pooling Medical Research Institutes of 100Biotech, Beijing, 100006, China
| | - Ying Lu
- Department of Pharmaceutics, School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Qiang Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Zhiqiang Lin
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| |
Collapse
|
15
|
Song M, Tian J, Wang L, Dong S, Fu K, Chen S, Liu C. Efficient Delivery of Lomitapide using Hybrid Membrane-Coated Tetrahedral DNA Nanostructures for Glioblastoma Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311760. [PMID: 38569065 DOI: 10.1002/adma.202311760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/21/2024] [Indexed: 04/05/2024]
Abstract
Glioblastoma (GBM) is the most aggressive and prevalent primary malignant tumor of the central nervous system. Traditional chemotherapy has poor therapeutic effects and significant side effects due to drug resistance, the natural blood-brain barrier (BBB), and nonspecific distribution, leading to a lack of clinically effective therapeutic drugs. Here, 1430 small molecule compounds are screened based on a high-throughput drug screening platform and a novel anti-GBM drug, lomitapide (LMP) is obtained. Furthermore, a bionic nanodrug delivery system (RFA NPs) actively targeting GBM is constructed, which mainly consists of tetrahedral DNA nanocages (tFNA NPs) loaded with LMP as the core and a folate-modified erythrocyte-cancer cell-macrophage hybrid membrane (FRUR) as the shell. FRUR camouflage conferred unique features on tFNA NPs, including excellent biocompatibility, improved pharmacokinetic profile, efficient BBB permeability, and tumor targeting ability. The results show that the LMP RFA NPs exhibited superior and specific anti-GBM activities, reduced off-target drug delivery, prolonged lifespan, and has negligible side effects in tumor-bearing mice. This study combines high-throughput drug screening with biomimetic nanodrug delivery system technology to provide a theoretical and practical basis for drug development and the optimization of clinical treatment strategies for GBM treatment.
Collapse
Affiliation(s)
- Mingming Song
- Department of Endocrinology, Nanjing Drum Tower Hospital, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, China
| | - Jiameng Tian
- Department of Endocrinology, Nanjing Drum Tower Hospital, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, China
- Jiangsu Provincial University Key Laboratory of Drug Discovery for Metabolic Inflammatory Diseases, China Pharmaceutical University, Nanjing, 211198, China
| | - Li Wang
- Department of Endocrinology, Nanjing Drum Tower Hospital, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, China
- Jiangsu Provincial University Key Laboratory of Drug Discovery for Metabolic Inflammatory Diseases, China Pharmaceutical University, Nanjing, 211198, China
| | - Shuqi Dong
- Department of Endocrinology, Nanjing Drum Tower Hospital, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, China
- Jiangsu Provincial University Key Laboratory of Drug Discovery for Metabolic Inflammatory Diseases, China Pharmaceutical University, Nanjing, 211198, China
| | - Kun Fu
- Department of Endocrinology, Nanjing Drum Tower Hospital, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, China
- Jiangsu Provincial University Key Laboratory of Drug Discovery for Metabolic Inflammatory Diseases, China Pharmaceutical University, Nanjing, 211198, China
| | - Siyu Chen
- Department of Endocrinology, Nanjing Drum Tower Hospital, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, China
- Jiangsu Provincial University Key Laboratory of Drug Discovery for Metabolic Inflammatory Diseases, China Pharmaceutical University, Nanjing, 211198, China
| | - Chang Liu
- Department of Endocrinology, Nanjing Drum Tower Hospital, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, China
- Jiangsu Provincial University Key Laboratory of Drug Discovery for Metabolic Inflammatory Diseases, China Pharmaceutical University, Nanjing, 211198, China
| |
Collapse
|
16
|
Xu C, Xu M, Hu Y, Liu J, Cheng P, Zeng Z, Pu K. Ingestible Artificial Urinary Biomarker Probes for Urine Test of Gastrointestinal Cancer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2314084. [PMID: 38446383 DOI: 10.1002/adma.202314084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/05/2024] [Indexed: 03/07/2024]
Abstract
Although colorectal cancer diagnosed at an early stage shows high curability, methods simultaneously possessing point-of-care testing ability and high sensitivity are limited. Here, an orally deliverable biomarker-activatable probe (termed as HATS) for early detection of orthotopic tumors via remote urinalysis is presented. To enable its oral delivery to the colon, HATS is designed to have remarkable resistance to acidity and digestive enzymes in the stomach and small intestine and negligible intestinal absorption. Upon reaction with a cancer biomarker in the colon segment, HATS releases a small fragment of tetrazine that can transverse the intestinal barrier, enter blood circulation, and ultimately undergo renal clearance to urine. Subsequently, the urinary tetrazine fragment is detected by bioorthogonal reaction with trans-cyclooctene-caged resorufin (TCO-Reso) to afford a rapid and specific fluorescence enhancement of TCO-Reso. Such signal readout is correlated with the urinary tetrazine concentration and thus measures the level of cancer biomarkers in the colon. HATS-based optical urinalysis detects orthotopic colon tumors two weeks earlier than clinical serological tests and can be developed to a point-of-care paper test. Thereby, HATS-based urinalysis provides a non-invasive and sensitive approach to cancer screening at low-resource settings.
Collapse
Affiliation(s)
- Cheng Xu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Mengke Xu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Yuxuan Hu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Jing Liu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Penghui Cheng
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Ziling Zeng
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Kanyi Pu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
| |
Collapse
|
17
|
Chen T, Meng W, Li Y, Li X, Yu X, Qi J, Ding D, Li W. Probiotics Armed with In Situ Mineralized Nanocatalysts and Targeted Biocoatings for Multipronged Treatment of Inflammatory Bowel Disease. NANO LETTERS 2024. [PMID: 38787330 DOI: 10.1021/acs.nanolett.4c01143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
While oral probiotics show promise in treating inflammatory bowel disease, the primary challenge lies in sustaining their activity and retention within the inflamed gastrointestinal environment. In this work, we develop an engineered probiotic platform that is armed with biocatalytic and inflamed colon-targeting nanocoatings for multipronged management of IBD. Notably, we achieve the in situ growth of artificial nanocatalysts on probiotics through a bioinspired mineralization strategy. The resulting ferrihydrite nanostructures anchored on bacteria exhibit robust catalase-like activity across a broad pH range, effectively scavenging ROS to alleviate inflammation. The further envelopment with fucoidan-based shields confers probiotics with additional inflamed colon-targeting functions. Upon oral administration, the engineered probiotics display markedly improved viability and colonization within the inflamed intestine, and they further elicit boosted prophylactic and therapeutic efficacy against colitis through the synergistic interplay of nanocatalysis-based immunomodulation and probiotics-mediated microbiota reshaping. The robust and multifunctional probiotic platforms offer great potential for the comprehensive management of gastrointestinal disorders.
Collapse
Affiliation(s)
- Ting Chen
- Tianjin Key Laboratory of Biomedical Materials and Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Wen Meng
- Tianjin Key Laboratory of Biomedical Materials and Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Yi Li
- Tianjin Key Laboratory of Biomedical Materials and Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Xueping Li
- Tianjin Key Laboratory of Biomedical Materials and Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Xuya Yu
- Tianjin Key Laboratory of Biomedical Materials and Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Ji Qi
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Frontiers Science Center for Cell Responses, and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Dan Ding
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Frontiers Science Center for Cell Responses, and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Wen Li
- Tianjin Key Laboratory of Biomedical Materials and Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| |
Collapse
|
18
|
Pan H, Yang S, Gao L, Zhou J, Cheng W, Chen G, Shuhang W, Li N, Veranič P, Musiol R, Cai Q, Shubhra QT. At the crossroad of nanotechnology and cancer cell membrane coating: Expanding horizons with engineered nanoplatforms for advanced cancer therapy harnessing homologous tumor targeting. Coord Chem Rev 2024; 506:215712. [DOI: 10.1016/j.ccr.2024.215712] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
19
|
Zhu X, Zhao L, Lei L, Zhu Y, Xu J, Liu L. Fecal microbiota transplantation ameliorates abdominal obesity through inhibiting microbiota-mediated intestinal barrier damage and inflammation in mice. Microbiol Res 2024; 282:127654. [PMID: 38417203 DOI: 10.1016/j.micres.2024.127654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/13/2024] [Accepted: 02/17/2024] [Indexed: 03/01/2024]
Abstract
Abdominal obesity (AO), characterized by the excessive abdominal fat accumulation, has emerged as a significant public health concern due to its metabolic complications and escalating prevalence worldwide, posing a more pronounced threat to human health than general obesity. While certain studies have indicated that intestinal flora contributed to diet-induced general obesity, the precise involvement of gut microbiota in the development of AO, specifically the accumulation of abdominal fat, remains inadequately explored. In this study, the 16 S rDNA sequencing was employed to analyze gut flora alterations, and the intestinal microbiota dysbiosis characterized by a vanishing decline of Akkermansia was found in the AO group. Along with notable gut microbiota changes, the intestinal mucosal barrier damage and metabolic inflammation were detected, which collectively promoted metabolic dysregulation in AO. Furthermore, the metabolic inflammation and AO were ameliorated after the intestinal microbiota depletion with antibiotics (ABX) drinking, underscoring a significant involvement of gut microbiota dysbiosis in the progression of AO. More importantly, our findings demonstrated that the transplantation of healthy intestinal flora successfully reversed the gut microbiota dysbiosis, particularly the decline of Akkermansia in the AO group. The gut flora reshaping has led to the repair of gut barrier damage and mitigation of metabolic inflammation, which ultimately ameliorated abdominal fat deposition. Our study established the role of interactions between gut flora, mucus barrier, and metabolic inflammation in the development of AO, thereby offering a theoretical foundation for the clinical application of fecal microbiota transplantation (FMT) as a treatment for AO.
Collapse
Affiliation(s)
- Xiaoqiang Zhu
- Central Laboratory, Wuhan Fourth Hospital, Wuhan, China; Department of Pharmacy, Wuhan Fourth Hospital, Wuhan, China; National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
| | - Lijun Zhao
- Hubei Jiangxia Laboratory, Wuhan, China; National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Lei
- Central Laboratory, Wuhan Fourth Hospital, Wuhan, China; Department of Pharmacy, Wuhan Fourth Hospital, Wuhan, China
| | - Yanhong Zhu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Xu
- Department of Pharmacy, Wuhan Fourth Hospital, Wuhan, China
| | - Li Liu
- Department of Pharmacy, Wuhan Fourth Hospital, Wuhan, China.
| |
Collapse
|
20
|
Zhang L, Ye P, Zhu H, Zhu L, Ren Y, Lei J. Bioinspired and biomimetic strategies for inflammatory bowel disease therapy. J Mater Chem B 2024; 12:3614-3635. [PMID: 38511264 DOI: 10.1039/d3tb02995f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Inflammatory bowel disease (IBD) is an idiopathic chronic inflammatory bowel disease with high morbidity and an increased risk of cancer or death, resulting in a heavy societal medical burden. While current treatment modalities have been successful in achieving long-term remission and reducing the risk of complications, IBD remains incurable. Nanomedicine has the potential to address the high toxic side effects and low efficacy in IBD treatment. However, synthesized nanomedicines typically exhibit some degree of immune rejection, off-target effects, and a poor ability to cross biological barriers, limiting the development of clinical applications. The emergence of bionic materials and bionic technologies has reshaped the landscape in novel pharmaceutical fields. Biomimetic drug-delivery systems can effectively improve biocompatibility and reduce immunogenicity. Some bioinspired strategies can mimic specific components, targets or immune mechanisms in pathological processes to produce targeting effects for precise disease control. This article highlights recent research on bioinspired and biomimetic strategies for the treatment of IBD and discusses the challenges and future directions in the field to advance the treatment of IBD.
Collapse
Affiliation(s)
- Limei Zhang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China.
| | - Peng Ye
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China.
| | - Huatai Zhu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China.
| | - Liyu Zhu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China.
| | - Yuting Ren
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China.
| | - Jiandu Lei
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China.
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, P. R. China
| |
Collapse
|