1
|
Khan S, Do CW, Ho EA. Recent updates on drug delivery approaches for improved ocular delivery with an insight into nanostructured drug delivery carriers for anterior and posterior segment disorders. Drug Deliv Transl Res 2025; 15:1828-1876. [PMID: 39674854 DOI: 10.1007/s13346-024-01756-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2024] [Indexed: 12/16/2024]
Abstract
Ocular diseases have a major impact on patient's vision and quality of life, with approximately 2.2 billion people have visual impairment worldwide according to the findings from the World Health Organization (WHO). The eye is a complex organ with unique morphology and physiology consisting of numerous ocular barriers which hinders the entry of exogenous substances and impedes drug absorption. This in turn has a substantial impact on effective drug delivery to treat ocular diseases, especially intraocular disorders which has consistently presented a challenge to eye care professionals. The most common method of delivering medications to the eye is topical instillation of eye drops. Although this approach is a viable option for treating many ocular diseases remains a major challenge for the effective treatment of posterior ocular conditions. Up till now, incessant efforts have been committed to design innovative drug delivery systems with the hopes of potential clinical application. Modern developments in nanocarrier's technology present a potential chance to overcome these obstacles by enabling targeted delivery of the loaded medication to the eyes with improved solubility, delayed release, higher penetration and increased retention. This review covers the anatomy of eye with associated ocular barriers, ocular diseases and administration routes. In addition it primarily focuses on the latest progress and contemporary applications of ophthalmic formulations providing specific insight on nanostructured drug delivery carriers reported over the past 5 years highlighting their values in achieving efficient ocular drug delivery to both anterior and posterior segments. Most importantly, we outlined in this review the macro and nanotechnology based ophthalmic drug formulations that are being patented or marketed so far for treating ocular diseases. Finally, based on current trends and therapeutic concepts, we highlighted the challenges faced by novel ocular drug delivery systems and provided prospective future developments for further research in these directions. We hope that this review will serve as a source of motivation and ideas for formulation scientists in improving the design of innovative ophthalmic formulations.
Collapse
Affiliation(s)
- Samiullah Khan
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong, Hong Kong
| | - Chi-Wai Do
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong, Hong Kong.
- School of Optometry, The Hong Kong Polytechnic University, Hung Hom, Hong Kong.
| | - Emmanuel A Ho
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong, Hong Kong.
- School of Pharmacy, University of Waterloo, Waterloo, Canada.
- Waterloo Institute for Nanotechnology, Waterloo, Canada.
| |
Collapse
|
2
|
Wong K, Wong M, Liu J. Nanozymes for Treating Ocular Diseases. Adv Healthc Mater 2025; 14:e2401309. [PMID: 38738646 PMCID: PMC11937874 DOI: 10.1002/adhm.202401309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/01/2024] [Indexed: 05/14/2024]
Abstract
Nanozymes, characterized by their nanoscale size and enzyme-like catalytic activities, exhibit diverse therapeutic potentials, including anti-oxidative, anti-inflammatory, anti-microbial, and anti-angiogenic effects. These properties make them highly valuable in nanomedicine, particularly ocular therapy, bypassing the need for systemic delivery. Nanozymes show significant promise in tackling multi-factored ocular diseases, particularly those influenced by oxidation and inflammation, like dry eye disease, and age-related macular degeneration. Their small size, coupled with their ease of modification and integration into soft materials, facilitates the effective penetration of ocular barriers, thereby enabling targeted or prolonged therapy within the eye. This review is dedicated to exploring ocular diseases that are intricately linked to oxidation and inflammation, shedding light on the role of nanozymes in managing these conditions. Additionally, recent studies elucidating advanced applications of nanozymes in ocular therapeutics, along with their integration with soft materials for disease management, are discussed. Finally, this review outlines directions for future investigations aimed at bridging the gap between nanozyme research and clinical applications.
Collapse
Affiliation(s)
- Ka‐Ying Wong
- Department of ChemistryWaterloo Institute for NanotechnologyUniversity of WaterlooWaterlooONN2L 3G1Canada
- Centre for Eye and Vision Research (CEVR)17 W Hong Kong Science ParkHong Kong
| | - Man‐Sau Wong
- Centre for Eye and Vision Research (CEVR)17 W Hong Kong Science ParkHong Kong
- Department of Food Science and NutritionThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong
- Research Center for Chinese Medicine InnovationThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong
| | - Juewen Liu
- Department of ChemistryWaterloo Institute for NanotechnologyUniversity of WaterlooWaterlooONN2L 3G1Canada
- Centre for Eye and Vision Research (CEVR)17 W Hong Kong Science ParkHong Kong
| |
Collapse
|
3
|
Zhang H, Zhang M, Zhu K, Feng Y, Yang L, Ding W. Unraveling the mechanism: How does β-phosphoglucomutase from the haloacid dehalogenase superfamily catalyze the interconversion of β-d-glucose 1-phosphate and β-d-glucose 6-phosphate? A chemical perspective. J Inorg Biochem 2025; 264:112794. [PMID: 39667067 DOI: 10.1016/j.jinorgbio.2024.112794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/30/2024] [Accepted: 12/02/2024] [Indexed: 12/14/2024]
Abstract
The catalytic mechanisms of enzymes can be phylogenetically mapped corresponding to their catalytic structures. This mapping effectively elucidates the diversity of enzyme catalytic mechanisms and the emergence of new enzymatic activities within enzyme superfamilies. The haloacid dehalogenase (HAD) superfamily serves as an exemplary model system for comprehending the co-evolution of catalytic structures and mechanisms. This study delves into the mechanism underlying the functional divergence of β-phosphoglucomutase (β-PGM) from the phosphatase branch of the HAD superfamily, employing a chemical perspective. Through the construction and calculation of three models of varying scales using the Density Functional Theory method with B3LYP function, we aim to investigate the chemical mechanism driving this functional divergence of β-PGM from the HAD family. The computational results indicate that residues His20 and Lys76 in the second shell stabilize substrates and enhance the acid-base catalytic ability of Asp10. Additionally, residues Arg49, Ser116 and Asn118 facilitate substrate binding by engaging in close hydrogen bonding interactions with the substrates. Through cooperative action, these residues enable β-PGM to function as an efficient phosphoglucomutase. Through computational modeling and a chemical perspective, we unravel the mechanisms enabling β-PGM to convert β-d-glucose 1-phosphate to β-d-glucose 6-phosphate. Finally, based on the analysis of the evolutionary tree, we discussed and summarized the evolutionary relationships among different forms of metal cores of hydrolases.
Collapse
Affiliation(s)
- Hao Zhang
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou 730030, PR China
| | - Mingming Zhang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, PR China
| | - Kangning Zhu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, PR China
| | - Yulan Feng
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou 730030, PR China
| | - Ling Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, PR China; Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Ministry of Industry and Information Technology, HIT Zhengzhou Research Institute, Zhengzhou 450000, PR China.
| | - Wanjian Ding
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, PR China.
| |
Collapse
|
4
|
Tang Z, Ye F, Ni N, Fan X, Lu L, Gu P. Frontier applications of retinal nanomedicine: progress, challenges and perspectives. J Nanobiotechnology 2025; 23:143. [PMID: 40001147 PMCID: PMC11863789 DOI: 10.1186/s12951-025-03095-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 01/04/2025] [Indexed: 02/27/2025] Open
Abstract
The human retina is a fragile and sophisticated light-sensitive tissue in the central nervous system. Unhealthy retinas can cause irreversible visual deterioration and permanent vision loss. Effective therapeutic strategies are restricted to the treatment or reversal of these conditions. In recent years, nanoscience and nanotechnology have revolutionized targeted management of retinal diseases. Pharmaceuticals, theranostics, regenerative medicine, gene therapy, and retinal prostheses are indispensable for retinal interventions and have been significantly advanced by nanomedical innovations. Hence, this review presents novel insights into the use of versatile nanomaterial-based nanocomposites for frontier retinal applications, including non-invasive drug delivery, theranostic contrast agents, therapeutic nanoagents, gene therapy, stem cell-based therapy, retinal optogenetics and retinal prostheses, which have mainly been reported within the last 5 years. Furthermore, recent progress, potential challenges, and future perspectives in this field are highlighted and discussed in detail, which may shed light on future clinical translations and ultimately, benefit patients with retinal disorders.
Collapse
Affiliation(s)
- Zhimin Tang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China
| | - Fuxiang Ye
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China
| | - Ni Ni
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China
| | - Xianqun Fan
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China.
| | - Linna Lu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China.
| | - Ping Gu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China.
| |
Collapse
|
5
|
Liu G, Liu L, Rong H, Li L, Liu X, Jia Z, Zhang H, Wang B, Song D, Hu J, Shi X, Du B, Wei R. Axial Shortening Effects of Repeated Low-level Red-light Therapy in Children With High Myopia: A Multicenter Randomized Controlled Trial. Am J Ophthalmol 2025; 270:203-215. [PMID: 39424029 DOI: 10.1016/j.ajo.2024.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/26/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024]
Abstract
PURPOSE To evaluate the effectiveness and safety of repeated low-level red-light (RLRL) in delaying the progression of high myopes with -6.00 diopters (D) or worse. DESIGN Multicenter, randomized, parallel-group, single-blind clinical trial. A total of 202 high myopic children aged 7 to 12 years with cycloplegia spherical equivalent (SE) refraction ≤-6.00 D, astigmatism less than 2.50 D, and anisometropia of 1.50 D or less were enrolled from March 2022 to December 2022. Follow-up was completed in December 2023. METHODS Eligible participants were randomly allocated to the intervention (RLRL + single vision spectacle) or the control group (single vision spectacle). The RLRL treatment was administered every day for 3 minutes, twice a day, with an interval of at least 4 hours. The primary outcome was the change in axial length (AL) at 12 months compared with baseline. Secondary outcomes included changes in SE, changes in choroidal thickness (ChT), and changes in retinal thickness (RT) in different circle sectors. Outcomes were analyzed by means of intention-to-treat and per-protocol methods. RESULTS After 12 months of treatment, AL and SE changes were -0.11 ± 0.25 mm and 0.18 ± 0.63 D for the RLRL group and 0.32 ± 0.09 mm and -0.80 ± 0.42 D for the control group, respectively. Axial shortening >0.05 mm was 59% in the RLRL and 0% in the control group at 12 months. ChT and RT from a single center were analyzed. In the RLRL group, ChT was thickened in all sectors at 12 months. RT was increased in parafoveal and perifoveal circles. In the control group, all sectors of ChT and only perifoveal RT were significantly thinner at 12 months. The multivariate linear regression model revealed significant correlations between changes in the ChT central foveal circle and RT perifoveal circle at 1 month and AL changes at 12 months. No fundus structure changes, afterimage exceeding 6 minutes, or best-corrected visual acuity decrease were reported. CONCLUSIONS RLRL could effectively shorten the AL and inhibit the progression of myopia in high myopic patients with -6.00 D or worse. AL shortening is sustained over 12 months of treatment. These observed changes appeared to be associated with increases in ChT and RT.
Collapse
Affiliation(s)
- Guihua Liu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China (G.L., Lin L., H.R., B.W., D.S., J.H., X.S., B.D., R.W.)
| | - Lin Liu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China (G.L., Lin L., H.R., B.W., D.S., J.H., X.S., B.D., R.W.)
| | - Hua Rong
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China (G.L., Lin L., H.R., B.W., D.S., J.H., X.S., B.D., R.W.)
| | - Li Li
- Department of Ophthalmology, Beijing Children's Hospital, Capital Medical University, Beijing, China (Li L.)
| | - Xuan Liu
- Department of Ophthalmology, Beijing Tsinghua Chang Gung Hospital, Tsinghua University, Beijing, China (X.L.)
| | - Zhiyang Jia
- Department of Ophthalmology, Hebei Provincial People's Hospital, Shijiazhuang, Hebei, China (Z.J.)
| | - Hua Zhang
- Department of Ophthalmology, Shijiazhuang People's Hospital, Shijiazhuang, Hebei, China (H.Z.)
| | - Biying Wang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China (G.L., Lin L., H.R., B.W., D.S., J.H., X.S., B.D., R.W.)
| | - Desheng Song
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China (G.L., Lin L., H.R., B.W., D.S., J.H., X.S., B.D., R.W.)
| | - Jiamei Hu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China (G.L., Lin L., H.R., B.W., D.S., J.H., X.S., B.D., R.W.)
| | - Xinrui Shi
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China (G.L., Lin L., H.R., B.W., D.S., J.H., X.S., B.D., R.W.)
| | - Bei Du
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China (G.L., Lin L., H.R., B.W., D.S., J.H., X.S., B.D., R.W.).
| | - Ruihua Wei
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China (G.L., Lin L., H.R., B.W., D.S., J.H., X.S., B.D., R.W.).
| |
Collapse
|
6
|
Jiang X, Liu C, Zhang Q, Lv Y, Lu C, Su W, Zhou J, Zhang H, Gong H, Liu Y, Yuan S, Chen Y, Qu D. Strategic delivery of rapamycin and ranibizumab with intravitreal hydrogel depot disrupts multipathway-driven angiogenesis loop for boosted wAMD therapy. J Control Release 2025; 377:239-255. [PMID: 39528095 DOI: 10.1016/j.jconrel.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 10/31/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Autophagic dysfunction-induced deterioration of the retinal microenvironment drives the progression of wet age-related macular degeneration (wAMD). The efficacy of single-target anti-VEGF antibodies in treating wAMD has long been suboptimal due to the intricate interplay between autophagy dysfunction, oxidative stress, and angiogenesis. Here, we introduce an intravitreal hydrogel depot, named Rab&Rapa-M@G, consisting of rapamycin-loaded microemulsion (Rapa-M, an mTOR inhibitor), ranibizumab (anti-VEGF antibody), and a thermosensitive hydrogel matrix. A single intravitreal injection of Rab&Rapa-M@G can sustainably deliver Rapa-M and ranibizumab to the retinal pigment epithelium for at least 14 days. This formulation significantly improves retinal autophagic flux homeostasis and reduces oxidative stress injury in wAMD mice by modulating the AMPK/mTOR/HIF-1α/VEGF and AMPK/ROS/HO-1/VEGF pathways. Consequently, it synergistically disrupts the "autophagic dysfunction-oxidative stress-angiogenesis" loop, leading to a remarkable reduction in choroidal neovascularization area and retinal damage compared to ranibizumab alone. Notably, the sequential administration of ranibizumab and Rab&Rapa-M@G further enhances the overall anti-wAMD efficacy, achieved through sequential delivery of Rab and Rapa, allowing for a more precise grasp of the treatment window. In conclusion, this hydrogel depot design, with its sequential and sustained delivery of mTOR inhibitors and anti-VEGF antibodies, offers a promising strategy for multi-target synergistic therapy in wAMD.
Collapse
Affiliation(s)
- Xi Jiang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Congyan Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Qun Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Yanli Lv
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Chen Lu
- The first affiliated hospital of Nanjing medical university, Nanjing 210000, China
| | - Wenting Su
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Jing Zhou
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Huangqin Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Huiling Gong
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Yuping Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Songtao Yuan
- The first affiliated hospital of Nanjing medical university, Nanjing 210000, China.
| | - Yan Chen
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China.
| | - Ding Qu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China.
| |
Collapse
|
7
|
Dias MF, Cruz-Cazarim ELC, Pittella F, Baião A, Pacheco AC, Sarmento B, Fialho SL. Co-delivery of antioxidants and siRNA-VEGF: promising treatment for age-related macular degeneration. Drug Deliv Transl Res 2025:10.1007/s13346-024-01772-x. [PMID: 39751765 DOI: 10.1007/s13346-024-01772-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2024] [Indexed: 01/04/2025]
Abstract
Current treatments for retinal disorders are anti-angiogenic agents, laser photocoagulation, and photodynamic therapies. These conventional treatments focus on reducing abnormal blood vessel formation in the retina, which, in a low-oxygen environment, can lead to harmful proliferation of endothelial cells. This results in dysfunctional, leaky blood vessels that cause retinal edema, hemorrhage, and vision loss. Age-related Macular Degeneration is a primary cause of vision loss and blindness in the elderly, impacting around 20% of those over 50 years old. This complex disease is also closely related to oxidative stress in retina. In this review, we explore the challenge of treating retinal diseases, alternatives and possibilities of enhancing the effectiveness of therapies using co-delivery systems containing both antiangiogenic and antioxidant therapeutic agents. Despite recent proposals potential, the lack of extensive clinical studies on the long-term outcomes and optimal combinations of therapies means that the full risk profile and effectiveness of combined therapy are not yet completely understood. These factors must be carefully considered and managed by healthcare providers to optimize treatment outcomes and ensure patient safety.
Collapse
Affiliation(s)
- Marina F Dias
- Pharmaceutical Research and Development, Ezequiel Dias Foundation, Rua Conde Pereira Carneiro 80, Gameleira, Belo Horizonte, CEP 30510-010, Minas Gerais, Brazil
| | - Estael L C Cruz-Cazarim
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Juiz de Fora, Juiz de Fora, CEP 36036-900, Minas Gerais, Brazil
| | - Frederico Pittella
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Juiz de Fora, Juiz de Fora, CEP 36036-900, Minas Gerais, Brazil
| | - Ana Baião
- i3S - Instituto Nacional de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- Instituto de Engenharia Biomédica, INEB, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, ICBAS, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, Porto, 4050-313, Portugal
| | - Ana Catarina Pacheco
- i3S - Instituto Nacional de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- Instituto de Engenharia Biomédica, INEB, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- CESPU-IUCS, Rua Central de Gandra 1317, Gandra, 4585-116, Portugal
| | - Bruno Sarmento
- i3S - Instituto Nacional de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- Instituto de Engenharia Biomédica, INEB, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- CESPU-IUCS, Rua Central de Gandra 1317, Gandra, 4585-116, Portugal
| | - Silvia L Fialho
- Pharmaceutical Research and Development, Ezequiel Dias Foundation, Rua Conde Pereira Carneiro 80, Gameleira, Belo Horizonte, CEP 30510-010, Minas Gerais, Brazil.
| |
Collapse
|
8
|
He SB, Shi LY, Yang ZQ, Zheng QH, Huang PX, Ji W, Wang XL, Lin MT, Zhuang HH, Chen XY, Zhang Y, Chen W, Zeng YM. Platinum nanozyme embedded in hyaluronate with multifunctional attributes synergistically promoting tracheal fistula healing. Int J Biol Macromol 2025; 287:138337. [PMID: 39645122 DOI: 10.1016/j.ijbiomac.2024.138337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/04/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
Respiratory tract fistulas, including tracheal and bronchial fistulas, usually cause prolonged hospitalization with developed complications and even death, while respiratory tract fistula healing remains challenging. Exploring effectiveness and mechanism in animal systems using well-designed bio-nanomaterials will improve our understanding of fistula management. Hyaluronate (hyaluronan or hyaluronic acid) has been widely studied as a promising coating material for bio-nanomaterials in treatment applications. Herein, by combining the intrinsic bioactivities of sodium hyaluronate (SHA) and the enzyme-like activities of platinum (Pt) nanoparticles (NPs), obtained SHA-PtNPs defined as nanozymes (Enzyme-like nanomaterials) have been proposed to treat tracheal fistulas. Results reveal that introducing SHA endows the fabrication of PtNPs with dispersibility, small particle size (3.7 nm), stability, etc. On the other hand, SHA-PtNPs present high catalase-like (3320 U/g), superoxide dismutase-like activities (129,000 U/g), and hydroxyl radicals elimination capacity, thereby exerting excellent reactive oxide species scavenging ability. We have systematically verified the above properties of SHA-PtNPs in vitro. SHA-PtNPs show outstanding biocompatibility, promote cell proliferation and migration, and have considerable hemocompatibility and hemostasis. Afterward, rabbit tracheal fistula models that were treated with SHA-PtNPs in vivo showed a significant improvement in the closure of the fistulas and an increase in quality. This was evident through a substantial decrease in inflammation, increased angiogenesis, stimulation of re-epithelialization, and highly ordered alignment of collagen fibers. No significant side effects were observed. In summary, this work initiates an in vivo treatment for tracheal fistula models by taking advantage of both naturally sourced polysaccharides and nanozymes.
Collapse
Affiliation(s)
- Shao-Bin He
- Department of Pulmonary and Critical Care Medicine, Fujian Key Laboratory of Lung Stem Cell, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China.; Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China; Laboratory of Clinical Pharmacy, Department of Pharmacy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China
| | - Li-Yong Shi
- Department of Pulmonary and Critical Care Medicine, Fujian Key Laboratory of Lung Stem Cell, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China
| | - Zhi-Qiang Yang
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China
| | - Qiong-Hua Zheng
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China
| | - Peng-Xiang Huang
- Department of Pulmonary and Critical Care Medicine, Fujian Key Laboratory of Lung Stem Cell, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China
| | - Wei Ji
- Department of Pulmonary and Critical Care Medicine, Fujian Key Laboratory of Lung Stem Cell, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China
| | - Xia-Li Wang
- Department of Clinical Medicine, Quanzhou Medical College, Quanzhou 362000, China
| | - Meng-Ting Lin
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China
| | - Hao-Han Zhuang
- Laboratory Animal Center, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China
| | - Xiao-Yang Chen
- Department of Pulmonary and Critical Care Medicine, Fujian Key Laboratory of Lung Stem Cell, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China
| | - Yin Zhang
- Laboratory of Clinical Pharmacy, Department of Pharmacy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China
| | - Wei Chen
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China.
| | - Yi-Ming Zeng
- Department of Pulmonary and Critical Care Medicine, Fujian Key Laboratory of Lung Stem Cell, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China..
| |
Collapse
|
9
|
Kaur G, Bisen S, Singh NK. Nanotechnology in retinal diseases: From disease diagnosis to therapeutic applications. BIOPHYSICS REVIEWS 2024; 5:041305. [PMID: 39512331 PMCID: PMC11540445 DOI: 10.1063/5.0214899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 10/17/2024] [Indexed: 11/15/2024]
Abstract
Nanotechnology has demonstrated tremendous promise in the realm of ocular illnesses, with applications for disease detection and therapeutic interventions. The nanoscale features of nanoparticles enable their precise interactions with retinal tissues, allowing for more efficient and effective treatments. Because biological organs are compatible with diverse nanomaterials, such as nanoparticles, nanowires, nanoscaffolds, and hybrid nanostructures, their usage in biomedical applications, particularly in retinal illnesses, has increased. The use of nanotechnology in medicine is advancing rapidly, and recent advances in nanomedicine-based diagnosis and therapy techniques may provide considerable benefits in addressing the primary causes of blindness related to retinal illnesses. The current state, prospects, and challenges of nanotechnology in monitoring nanostructures or cells in the eye and their application to regenerative ophthalmology have been discussed and thoroughly reviewed. In this review, we build on our previously published review article in 2021, where we discussed the impact of nano-biomaterials in retinal regeneration. However, in this review, we extended our focus to incorporate and discuss the application of nano-biomaterials on all retinal diseases, with a highlight on nanomedicine-based diagnostic and therapeutic research studies.
Collapse
|
10
|
Oudeng G, Banerjee S, Wang Q, Jiang D, Fan Y, Wu H, Pan F, Yang M. Photoreceptor-Mimetic Microflowers for Restoring Light Responses in Degenerative Retina through a 2D Nanopetal/Cell Biointerface. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400300. [PMID: 38923683 DOI: 10.1002/smll.202400300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/30/2024] [Indexed: 06/28/2024]
Abstract
Retinitis pigmentosa is the main cause of inherited human blindness and is associated with dysfunctional photoreceptors (PRs). Compared with traditional methods, optoelectronic stimulation can better preserve the structural integrity and genetic content of the retina. However, enhancing the spatiotemporal accuracy of stimulation is challenging. Quantum dot-doped ZnIn2S4 microflowers (MF) are utilized to construct a biomimetic photoelectric interface with a 0D/3D heterostructure, aiming to restore the light response in PR-degenerative mice. The MF bio interface has dimensions similar to those of natural PRs and can be distributed within the curved spatial region of the retina, mimicking cellular dispersion. The soft 2D nano petals of the MF provide a large specific surface area for photoelectric activation and simulate the flexibility interfacing between cells. This bio interface can selectively restore the light responses of seven types of retina ganglion cells that encode brightness. The distribution of responsive cells forms a pattern similar to that of normal mice, which may reflect the generation of the initial "neural code" in the degenerative retina. Patch-clamp recordings indicate that the bio interface can induce spiking and postsynaptic currents at the single-neuron level. The results will shed light on the development of a potential bionic subretinal prosthetic toolkit for visual function restoration.
Collapse
Affiliation(s)
- Gerile Oudeng
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077, P. R. China
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, 518033, P. R. China
| | - Seema Banerjee
- School of Optometry, Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077, P. R. China
- Department of Ophthalmology and Genetics Medicine, Wilmer Eye Institute, Johns Hopkins University, Baltimore, 22203, USA
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong, China
| | - Qin Wang
- School of Optometry, Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077, P. R. China
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong, China
- University of Health and Rehabilitation Sciences, o. 369, Qingdao National High-Tech Industrial Development Zone, Shandong Province, China
| | - Ding Jiang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077, P. R. China
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213159, P. R. China
| | - Yadi Fan
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Honglian Wu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Feng Pan
- School of Optometry, Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077, P. R. China
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong, China
- Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| | - Mo Yang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077, P. R. China
- Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| |
Collapse
|
11
|
De Luca E, Pedone D, Scarsi A, Marotta R, Catalano F, Debellis D, Cursi L, Grimaldi B, Moglianetti M, Pompa PP. Platinum Nanozyme Probes for Cellular Imaging by Electron Microscopy. SMALL SCIENCE 2024; 4:2400085. [PMID: 40212083 PMCID: PMC11935043 DOI: 10.1002/smsc.202400085] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/20/2024] [Indexed: 04/13/2025] Open
Abstract
The highly efficient peroxidase-like activity of platinum nanozymes (3-20 nm size) is exploited within the complex cellular environment to catalyze the oxidation of the DAB substrate, producing an electron-dense signal around the nanozyme surface, upon osmium staining. It is proved that such nanozyme amplification can achieve a catalytic signal enhancement up to 10-fold, enabling the quick detection of the Pt particles (even of 3 nm size) by transmission electron microscopy (TEM) also at low magnification and across wide fields of view in the intricate intracellular milieu. The developed procedure is ideally suited to overcome standard amplification strategies currently used in TEM analysis, such as gold or silver enhancements. Furthermore, the wide versatility of the Pt-nanozyme probes in TEM imaging is demonstrated in immuno-EM and protein trafficking studies, showing their potential to track the subcellular localization of target biomolecules at both low and high magnifications. These results suggest that the use of nanozymes might represent a paradigm shift in the conventional amplification systems currently employed in electron microscopy for cellular analyses, offering enhanced imaging capabilities.
Collapse
Affiliation(s)
- Elisa De Luca
- Nanobiointeractions&NanodiagnosticsIstituto Italiano di Tecnologiavia Morego 3016163GenovaItaly
- Institute of Nanotechnology (NANOTEC)National Research CouncilVia Monteroni73100LecceItaly
- Istituto Italiano di TecnologiaCenter for Biomolecular NanotechnologiesVia Barsanti73010Arnesano, LecceItaly
| | - Deborah Pedone
- Nanobiointeractions&NanodiagnosticsIstituto Italiano di Tecnologiavia Morego 3016163GenovaItaly
| | - Anna Scarsi
- Nanobiointeractions&NanodiagnosticsIstituto Italiano di Tecnologiavia Morego 3016163GenovaItaly
| | - Roberto Marotta
- Electron Microscopy LaboratoryNanochemistry DepartmentIstituto Italiano di TecnologiaVia Morego 3016163GenovaItaly
| | - Federico Catalano
- Electron Microscopy LaboratoryNanochemistry DepartmentIstituto Italiano di TecnologiaVia Morego 3016163GenovaItaly
| | - Doriana Debellis
- Electron Microscopy LaboratoryNanochemistry DepartmentIstituto Italiano di TecnologiaVia Morego 3016163GenovaItaly
| | - Lorenzo Cursi
- Nanobiointeractions&NanodiagnosticsIstituto Italiano di Tecnologiavia Morego 3016163GenovaItaly
| | - Benedetto Grimaldi
- Molecular Medicine Research LineIstituto Italiano di Tecnologia (IIT)16163GenoaItaly
| | - Mauro Moglianetti
- Nanobiointeractions&NanodiagnosticsIstituto Italiano di Tecnologiavia Morego 3016163GenovaItaly
- Center for Cultural Heritage Technology (CCHT)Istituto Italiano di Tecnologia (IIT)Via Torino 15530172VeneziaItaly
| | - Pier Paolo Pompa
- Nanobiointeractions&NanodiagnosticsIstituto Italiano di Tecnologiavia Morego 3016163GenovaItaly
| |
Collapse
|
12
|
Kulbay M, Wu KY, Nirwal GK, Bélanger P, Tran SD. The Role of Reactive Oxygen Species in Age-Related Macular Degeneration: A Comprehensive Review of Antioxidant Therapies. Biomedicines 2024; 12:1579. [PMID: 39062152 PMCID: PMC11274723 DOI: 10.3390/biomedicines12071579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/26/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
This review article delves into the intricate roles of reactive oxygen species (ROS) in the pathogenesis of age-related macular degeneration (AMD). It presents a detailed analysis of the oxidative stress mechanisms that contribute to the development and progression of these diseases. The review systematically explores the dual nature of ROS in ocular physiology and pathology, underscoring their essential roles in cellular signaling and detrimental effects when in excess. In the context of AMD, the focus is on the oxidative impairment in the retinal pigment epithelium and Bruch's membrane, culminating in the deterioration of macular health. Central to this review is the evaluation of various antioxidant strategies in the prevention and management of AMD. It encompasses a wide spectrum of antioxidants, ranging from dietary nutrients like vitamins C and E, lutein, and zeaxanthin to pharmacological agents with antioxidative properties. The review also addresses novel therapeutic approaches, including gene therapy and nanotechnology-based delivery systems, aiming to enhance antioxidant defense mechanisms in ocular tissues. The article concludes by synthesizing current research findings, clinical trial data, and meta-analyses to provide evidence-based recommendations. It underscores the need for further research to optimize antioxidant therapies, considering individual patient factors and disease stages. This comprehensive review thus serves as a valuable resource for clinicians, researchers, and healthcare professionals in ophthalmology, offering insights into the potential of antioxidants in mitigating the burden of AMD.
Collapse
Affiliation(s)
- Merve Kulbay
- Department of Ophthalmology & Visual Sciences, McGill University, Montréal, QC H4A 3S5, Canada;
| | - Kevin Y. Wu
- Division of Ophthalmology, Department of Surgery, University of Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (K.Y.W.)
| | - Gurleen K. Nirwal
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Paul Bélanger
- Division of Ophthalmology, Department of Surgery, University of Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (K.Y.W.)
| | - Simon D. Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
13
|
Zhou Y, Xu M, Shen W, Xu Y, Shao A, Xu P, Yao K, Han H, Ye J. Recent Advances in Nanomedicine for Ocular Fundus Neovascularization Disease Management. Adv Healthc Mater 2024; 13:e2304626. [PMID: 38406994 PMCID: PMC11468720 DOI: 10.1002/adhm.202304626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/22/2024] [Indexed: 02/27/2024]
Abstract
As an indispensable part of the human sensory system, visual acuity may be impaired and even develop into irreversible blindness due to various ocular pathologies. Among ocular diseases, fundus neovascularization diseases (FNDs) are prominent etiologies of visual impairment worldwide. Intravitreal injection of anti-vascular endothelial growth factor drugs remains the primary therapy but is hurdled by common complications and incomplete potency. To renovate the current therapeutic modalities, nanomedicine emerged as the times required, which is endowed with advanced capabilities, able to fulfill the effective ocular fundus drug delivery and achieve precise drug release control, thus further improving the therapeutic effect. This review provides a comprehensive summary of advances in nanomedicine for FND management from state-of-the-art studies. First, the current therapeutic modalities for FNDs are thoroughly introduced, focusing on the key challenges of ocular fundus drug delivery. Second, nanocarriers are comprehensively reviewed for ocular posterior drug delivery based on the nanostructures: polymer-based nanocarriers, lipid-based nanocarriers, and inorganic nanoparticles. Thirdly, the characteristics of the fundus microenvironment, their pathological changes during FNDs, and corresponding strategies for constructing smart nanocarriers are elaborated. Furthermore, the challenges and prospects of nanomedicine for FND management are thoroughly discussed.
Collapse
Affiliation(s)
- Yifan Zhou
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| | - Mingyu Xu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| | - Wenyue Shen
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| | - Yufeng Xu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| | - An Shao
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| | - Peifang Xu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| | - Ke Yao
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| | - Haijie Han
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| | - Juan Ye
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| |
Collapse
|
14
|
Li Q, Zhan S, Yang X, Zhang Z, Sun N, Wang X, Kang J, Du R, Hong X, Yue M, Li X, Tang Y, Liu G, Liu Y, Liu D. Choline Phosphate-Grafted Nanozymes as Universal Extracellular Vesicle Probes for Bladder Cancer Detection. ACS NANO 2024; 18:16113-16125. [PMID: 38857428 DOI: 10.1021/acsnano.4c00280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Urinary extracellular vesicles (uEVs) are regarded as highly promising liquid-biopsy biomarkers for the early diagnosis and prognosis of bladder cancer (BC). However, detection of uEVs remains technically challenging owing to their huge heterogeneity and ultralow abundance in real samples. We herein present a choline phosphate-grafted platinum nanozyme (Pt@CP) that acts as a universal EV probe for the construction of a high-throughput and high-sensitivity immunoassay, which allowed multiplex profiling of uEV protein markers for BC detection. With the Pt@CP-based immunoassays, three uEV protein markers (MUC-1, CCDC25, and GLUT1) were identified for BC, by which the BC cases (n = 48), cystitis patients (n = 27), and healthy donors (n = 24) were discriminated with high clinical sensitivity and specificity (area under curve = 98.3%). For the BC cases (n = 9) after surgery, the Pt@CP-based immunoassay could report the postoperative residual tumor that cannot be observed by cystoscopy, which is clinically significant for assessing BC recurrence. This work provides generally high sensitivity for EV detection, facilitating the discovery and clinical use of EV-based biomarkers.
Collapse
Affiliation(s)
- Qiang Li
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Recognition and Biosensing, Frontiers Science Centers for Cell Responses and New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Saisong Zhan
- Key Laboratory of Inorganic-Organic Hybrid Functional Materials Chemistry, Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Xiaoqing Yang
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Zhaowei Zhang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Recognition and Biosensing, Frontiers Science Centers for Cell Responses and New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Ning Sun
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Recognition and Biosensing, Frontiers Science Centers for Cell Responses and New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiang Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Recognition and Biosensing, Frontiers Science Centers for Cell Responses and New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jingjing Kang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Recognition and Biosensing, Frontiers Science Centers for Cell Responses and New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Rui Du
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Recognition and Biosensing, Frontiers Science Centers for Cell Responses and New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiaoqin Hong
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Recognition and Biosensing, Frontiers Science Centers for Cell Responses and New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Minghao Yue
- Department of Urology, Tianjin First Central Hospital, Nankai University, Tianjin 300192, China
| | - Xiaomin Li
- Medical and Hygienic Materials Research Institute, SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., Beijing 100013, China
| | - Yujing Tang
- Medical and Hygienic Materials Research Institute, SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., Beijing 100013, China
| | - Guangming Liu
- Department of Urology, Tianjin First Central Hospital, Nankai University, Tianjin 300192, China
| | - Yue Liu
- Key Laboratory of Inorganic-Organic Hybrid Functional Materials Chemistry, Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Dingbin Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Recognition and Biosensing, Frontiers Science Centers for Cell Responses and New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
15
|
Xiang J, Yang X, Tan M, Guo J, Ye Y, Deng J, Huang Z, Wang H, Su W, Cheng J, Zheng L, Liu S, Zhong J, Zhao J. NIR-enhanced Pt single atom/g-C 3N 4 nanozymes as SOD/CAT mimics to rescue ATP energy crisis by regulating oxidative phosphorylation pathway for delaying osteoarthritis progression. Bioact Mater 2024; 36:1-13. [PMID: 38425744 PMCID: PMC10900248 DOI: 10.1016/j.bioactmat.2024.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 03/02/2024] Open
Abstract
Osteoarthritis (OA) progresses due to the excessive generation of reactive oxygen and nitrogen species (ROS/RNS) and abnormal ATP energy metabolism related to the oxidative phosphorylation pathway in the mitochondria. Highly active single-atom nanozymes (SAzymes) can help regulate the redox balance and have shown their potential in the treatment of inflammatory diseases. In this study, we innovatively utilised ligand-mediated strategies to chelate Pt4+ with modified g-C3N4 by π-π interaction to prepare g-C3N4-loaded Pt single-atom (Pt SA/C3N4) nanozymes that serve as superoxide dismutase (SOD)/catalase (CAT) mimics to scavenge ROS/RNS and regulate mitochondrial ATP production, ultimately delaying the progression of OA. Pt SA/C3N4 exhibited a high loading of Pt single atoms (2.45 wt%), with an excellent photothermal conversion efficiency (54.71%), resulting in tunable catalytic activities under near-infrared light (NIR) irradiation. Interestingly, the Pt-N6 active centres in Pt SA/C3N4 formed electron capture sites for electron holes, in which g-C3N4 regulated the d-band centre of Pt, and the N-rich sites transferred electrons to Pt, leading to the enhanced adsorption of free radicals and thus higher SOD- and CAT-like activities compared with pure g-C3N4 and g-C3N4-loaded Pt nanoparticles (Pt NPs/C3N4). Based on the use of H2O2-induced chondrocytes to simulate ROS-injured cartilage invitro and an OA joint model invivo, the results showed that Pt SA/C3N4 could reduce oxidative stress-induced damage, protect mitochondrial function, inhibit inflammation progression, and rebuild the OA microenvironment, thereby delaying the progression of OA. In particular, under NIR light irradiation, Pt SA/C3N4 could help reverse the oxidative stress-induced joint cartilage damage, bringing it closer to the state of the normal cartilage. Mechanistically, Pt SA/C3N4 regulated the expression of mitochondrial respiratory chain complexes, mainly NDUFV2 of complex 1 and MT-ATP6 of ATP synthase, to reduce ROS/RNS and promote ATP production. This study provides novel insights into the design of artificial nanozymes for treating oxidative stress-induced inflammatory diseases.
Collapse
Affiliation(s)
- Jianhui Xiang
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi 530021, PR China
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi, 530021, PR China
| | - Xin Yang
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi 530021, PR China
| | - Manli Tan
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi 530021, PR China
| | - Jianfeng Guo
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi 530021, PR China
| | - Yuting Ye
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi 530021, PR China
| | - Jiejia Deng
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi 530021, PR China
| | - Zhangrui Huang
- Life Sciences Institute, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, Guangxi, 530021, PR China
| | - Hanjie Wang
- Life Sciences Institute, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, Guangxi, 530021, PR China
| | - Wei Su
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi 530021, PR China
| | - Jianwen Cheng
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi, 530021, PR China
| | - Li Zheng
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi 530021, PR China
| | - Sijia Liu
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi 530021, PR China
| | - Jingping Zhong
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi 530021, PR China
| | - Jinmin Zhao
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi 530021, PR China
- Life Sciences Institute, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, Guangxi, 530021, PR China
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi, 530021, PR China
| |
Collapse
|