1
|
Mahato AK, Paul S, Banerjee R. Synthesis innovations for crystallizing covalent organic framework thin films on biological and non-biological substrates. Chem Soc Rev 2025; 54:3578-3598. [PMID: 40042582 DOI: 10.1039/d4cs01222d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2025]
Abstract
Thin film technology has emerged as a pivotal field with numerous industrial applications. Depending on their properties-such as magnetic characteristics, conductivity, architectural structure, stability, and functional backbones-thin films are widely utilized in optoelectronics, thin-film coatings, solar cells, energy storage devices, semiconductors, and separation applications. However, for all these applications, thin films must be securely attached to specific substrates, and substrate compatibility with both the thin film and the film-growth process is crucial for optimal performance. In this review, we emphasize the significance of growing thin films, particularly covalent organic framework (COF) thin films, on suitable substrates tailored for various applications. For separation technologies, polymer thin films are commonly fabricated on porous polymeric or metal-based membranes. In contrast, thin films of metals and metal oxides are typically deposited on conducting substrates, serving as current collectors for energy storage devices. Semiconductor thin films, on the other hand, are often grown on silicon or glass substrates for transistor applications. Emerging COF thin films, with their tunable properties, well-defined pore channels, and versatile functional backbones, have demonstrated exceptional potential in separation, energy storage, and electronic and optoelectronic applications. However, the interplay between COF thin films and the substrates, as well as the compatibility of growth conditions, remains underexplored. Studies investigating COF thin film growth on substrates such as metals, metal oxides, glass, silicon, polymers, ITO, and FTO have provided insights into substrate properties that promote superior film growth. The quality of the film formed on these substrates significantly influences performance in applications. Additionally, we discuss the stabilization of biological substrates, like peptide-based biomimetic catalysts and enzymes, which often suffer from instability in non-aqueous environments, limiting their industrial use. Growing COF membranes on these biological substrates can enhance their stability under harsh conditions. We also highlight techniques for growing COF membranes on biological substrates, ensuring the preservation of their structural integrity and functional properties.
Collapse
Affiliation(s)
- Ashok Kumar Mahato
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India.
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
| | - Satyadip Paul
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India.
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
| | - Rahul Banerjee
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India.
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
| |
Collapse
|
2
|
Le PH, Liu A, Zasada LB, Geary J, Kamin AA, Rollins DS, Nguyen HA, Hill AM, Liu Y, Xiao DJ. Nitrogen-Rich Conjugated Macrocycles: Synthesis, Conductivity, and Application in Electrochemical CO 2 Capture. Angew Chem Int Ed Engl 2025; 64:e202421822. [PMID: 39637287 DOI: 10.1002/anie.202421822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/03/2024] [Accepted: 12/05/2024] [Indexed: 12/07/2024]
Abstract
Here we report a series of nitrogen-rich conjugated macrocycles that mimic the structure and function of semiconducting 2D metal-organic and covalent organic frameworks while providing greater solution processability and surface tunability. Using a new tetraaminotriphenylene building block that is compatible with both coordination chemistry and dynamic covalent chemistry reactions, we have synthesized two distinct macrocyclic cores containing Ni-N and phenazine-based linkages, respectively. The fully conjugated macrocycle cores support strong interlayer stacking and accessible nanochannels. For the metal-organic macrocycles, good out-of-plane charge transport is preserved, with pressed pellet conductivities of 10-3 S/cm for the nickel variants. Finally, using electrochemically mediated CO2 capture as an example, we illustrate how colloidal phenazine-based organic macrocycles improve electrical contact and active site electrochemical accessibility relative to bulk covalent organic framework powders. Together, these results highlight how simple macrocycles can enable new synthetic directions as well as new applications by combining the properties of crystalline porous frameworks, the processability of nanomaterials, and the precision of molecular synthesis.
Collapse
Affiliation(s)
- Phuong H Le
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Andong Liu
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Leo B Zasada
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Jackson Geary
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Ashlyn A Kamin
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Devin S Rollins
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Hao A Nguyen
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Audrey M Hill
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Yayuan Liu
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Dianne J Xiao
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| |
Collapse
|
3
|
Ahmad I, Singh O, Ahmed J, Priyanka, Alshehri SM, Bharti C, Vidivay. Triazine-Functionalized Nitrogen-Rich Covalent Organic Framework as an Electrode Material for Aqueous Symmetric Supercapacitor. Chem Asian J 2025; 20:e202401149. [PMID: 39715075 DOI: 10.1002/asia.202401149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 11/27/2024] [Accepted: 12/17/2024] [Indexed: 12/25/2024]
Abstract
Covalent triazine frameworks, with their ordered pores and crystalline structure that exhibit heteroatom impacts, demonstrate outstanding chemical stability, making them designable for charge storage applications. In this study, the triazine-based covalent organic frameworks (TPT@BDA-COF) was synthesized using 4',4''',4'''''-(1,3,5-Triazine-2,4,6-triyl) tris (([1,1'-biphenyl]-4-amine)) (TPT) and 4,4'-Oxydibenzaldehyde (BDA) following polycondensation process. Interestingly, these resulted in the fabrication of a well-connected, orderly porous crystalline structure, redox-active moiety, and significantly high doping atomic percentages of N (~13.6 %). The three-electrode electrochemical study, showed a stable electrochemical potential window of 1.8 V (-0.45 to +1.35) in 1 M NaClO4 electrolyte, it exhibited a high specific capacitance of 92.6 mF/cm2 with a high energy density 41.7 Wh/kg respectively. The symmetric supercapacitor designed using TPT@BDA-COF as both anode and cathode exhibited high specific capacitance (F/g) and gravimetric energy density (Wh/kg): 17.8, 36.9, 43.7, 47.7 and 3.5, 16.6, 13.7, 21.6 in 1 M CH3COONa, 1 M Na2SO4, 1 M NaNO3, 1 M NaClO4 electrolyte respectively. It showed excellent cyclic stability (105.2 %), and Coulombic efficiency (97.5 %) even after 10 k GCD cycles in 1 M NaClO4 at 2 A/g. Interestingly, ClO4 - anions exhibited a better chaotropic nature (water structure breaker) as compared to CH3COO-, SO4 -2, and NO3 -. Their energy storage competence is supported by the illumination of 1 white and 1 red LED upon charging a single SSC for 50 sec each. A Quantum Mechanics (QM) calculation and Molecular Dynamics (MD) simulation are performed to investigate and validate the stability of Covalent Organic Frameworks (COFs). DFT calculations were carried out using the SCF approach B3LYP-631G(d) basis set to compute the HOMO and LUMO energies and their respective location in COF.
Collapse
Affiliation(s)
- Ikrar Ahmad
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Omkar Singh
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076
| | - Jahangeer Ahmed
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Priyanka
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Saad M Alshehri
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | | | - Vidivay
- Department of Chemistry, Dharma Samaj College Aligarh, UP, 202001
| |
Collapse
|
4
|
Divya D, Mishra H, Jangir R. Covalent organic frameworks and their composites as enhanced energy storage materials. Chem Commun (Camb) 2025; 61:2403-2423. [PMID: 39807040 DOI: 10.1039/d4cc04688a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
The advancement in materials chemistry promoted the growth of energy storage systems such as capacitors, supercapacitors and batteries. Covalent organic frameworks and nanomaterials have significantly improved the performance of various energy storage systems. Because of the unique properties of these materials, like high surface area, tunable architectures, and enhanced conductivity, researchers have developed effective and durable energy storage solutions for multiple applications. These findings are significant for meeting the demand for reliable and sustainable energy storage materials in order to save energy for a better future of mankind. As the demand for reliable and sustainable energy storage materials is increasing, the scientific community is more focussed towards the development of covalent organic frameworks (COFs). The high surface area, thermal and chemical stability, structural tunability, porosity, and low density of COFs make them appropriate for energy storage applications. Their potential to produce advanced energy storage devices with better performance and durability is further reinforced by their ability to be customized for specific applications and amplified for conductive materials. This review covers the designs and synthetic techniques of COFs and their composites specifically suitable for energy storage uses. It further highlights their use as cathode and anode materials in supercapacitors, COF based electrolytes and batteries. The review further includes the flexibility and efficiency of COFs in energy storage applications. Furthermore, it addresses the challenges and their potential solutions regarding the use of COFs in energy storage devices. By providing a comprehensive understanding of the advantages and limitations of COFs, this review aims to inform and inspire future advancements in energy storage technologies.
Collapse
Affiliation(s)
- Divya Divya
- Sardar Vallabhbhai National Institute of Technology, Ichchanath, Surat-395 007, Gujarat, India.
| | - Harshit Mishra
- Sardar Vallabhbhai National Institute of Technology, Ichchanath, Surat-395 007, Gujarat, India.
| | - Ritambhara Jangir
- Sardar Vallabhbhai National Institute of Technology, Ichchanath, Surat-395 007, Gujarat, India.
| |
Collapse
|
5
|
Yang Y, Wang S, Duan Y, Wang T, Wang F, Zhu H, Wang Z, Zhang K, Cheng P, Zhang Z. Flux Synthesis of Robust Polyimide Covalent Organic Frameworks with High-Density Redox Sites for Efficient Proton Batteries. Angew Chem Int Ed Engl 2025; 64:e202418394. [PMID: 39585117 DOI: 10.1002/anie.202418394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/06/2024] [Accepted: 11/22/2024] [Indexed: 11/26/2024]
Abstract
Aqueous proton batteries are attracting increasing attention in the large-scale next-generation energy storage field. However, the electrode materials for proton batteries often suffer from low specific capacity and unsatisfactory cycle durability. Herein, we synthesize two highly crystalline and robust polyimide covalent organic frameworks (COFs) through a solvent-free flux synthesis approach with benzoic acid as a flux and catalyst. The as-synthesized COFs possess enriched redox-active sites for proton storage and intrinsic Grotthuss proton conduction, rendering them ideal candidates for proton electrode materials. The optimal COF electrodes achieve a high specific capacity of 180 mAh/g at 0.1 A/g, among the highest COF-based proton batteries, and exhibit an outstanding rate capability of up to 100 A/g and long-term cycling stability with capacity retention of 99 % after 5000 cycles at 5 A/g. The assembled full cells deliver a specific capacity of 150 mAh/g at 0.2 A/g with a maximum energy density of 72 Wh/kg and a maximum supercapacitor-level power density of 64 kW/kg, surpassing all reported COF-based systems. This work paves a new avenue for the design of electrode materials for aqueous proton batteries with high energy density, power density, rate capability and long-term cycling stability.
Collapse
Affiliation(s)
- Yi Yang
- College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Sa Wang
- College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yuqing Duan
- College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Ting Wang
- College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Fengdong Wang
- College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Haitao Zhu
- College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zhifang Wang
- College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Kai Zhang
- College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Peng Cheng
- College of Chemistry, Nankai University, Tianjin, 300071, China
- State Key Laboratory of Medicine Chemistry Biology, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin, 300071, China
- Frontiers Science Centre for New Organic Matter, Renewable Energy Conversion and Storage Centre, Nankai University, Tianjin, 300071, China
| | - Zhenjie Zhang
- College of Chemistry, Nankai University, Tianjin, 300071, China
- State Key Laboratory of Medicine Chemistry Biology, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin, 300071, China
- Frontiers Science Centre for New Organic Matter, Renewable Energy Conversion and Storage Centre, Nankai University, Tianjin, 300071, China
- Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin, 300071, China
| |
Collapse
|
6
|
Tasleem M, Ahmad I, Sankar M. Porphyrin-Based Covalent Organic Polymer Wrapped MWCNT Electrodes under Moderate Salt Concentration for Super-Stable Aqueous Sodium-Ion Intercalated Sustainable Supercapacitor. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409580. [PMID: 39744757 DOI: 10.1002/smll.202409580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/06/2024] [Indexed: 02/21/2025]
Abstract
To rival commercial organic electrolytes, it is important to focus on safe, cheap aqueous electrolytes with lower salt concentration (≈5.0 m) and a wider electrochemical stable potential window (ESPW). This study reports the facile synthesis of porphyrin-based covalent organic polymers (PTZ-COP, CBZ-COP, and TPA-COP) through a one-pot aromatic electrophilic polycondensation reaction between pyrrole and monomeric aldehydes (PTZ-CHO, CBZ-CHO and TPA-CHO). To enhance conductivity, these covalent organic polymers (COPs) were noncovalently wrapped on multiwall carbon nanotubes (MWCNTs), forming MWCNT@PTZ-COP, MWCNT@CBZ-COP and MWCNT@TPA-COP. Among all, phenothiazine-based COPs wrapped on MWCNT viz. MWCNT@PTZ-COP stands out, exhibiting notable surface area and redox-active moieties with high heteroatom (N, S) contents in the framework. These properties contribute to its superior performance in the form of an electrochemical double-layer capacitor (EDLC) and pseudocapacitor. In the three-electrode, the MWCNT@PTZ-COP achieves a wider ESPW of 2.2 V, demonstrates a remarkable specific capacitance of 292.7 F g-1 along with an energy density 196.8 Wh kg-1 and power density of 752 W kg-1, at a current density of 0.7 A g-1 in 5 m NaClO4. As-designed symmetric supercapacitor cell of MWCNT@PTZ-COP demonstrates an impressive specific capacitance of 55.5 F g-1 and energy density 37.3 Wh kg-1, respectively. Additionally, it exhibits a high areal capacitance of 46.4 mF cm-2 in 5 m NaClO4. Moreover, it exhibits outstanding 100% capacitance retention after running 20 000 GCD cycles at 3.2 A g-1. This system demonstrates the highest cell voltage for a porphyrin-based COPs aqueous symmetric supercapacitor with a high energy density and stability.
Collapse
Affiliation(s)
- Mohammad Tasleem
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Ikrar Ahmad
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Muniappan Sankar
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, India
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| |
Collapse
|
7
|
Liu M, Kuang J, Han X, Liu Y, Gao W, Shang S, Wang X, Hong J, Guan B, Zhao X, Guo Y, Dong J, Zhao Z, Zhao Y, Liu C, Liu Y, Chen J. Diffusion limited synthesis of wafer-scale covalent organic framework films for adaptative visual device. Nat Commun 2024; 15:10487. [PMID: 39622830 PMCID: PMC11612170 DOI: 10.1038/s41467-024-54844-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 11/21/2024] [Indexed: 12/06/2024] Open
Abstract
Synthesizing high-crystalline covalent organic framework films is highly desired to advance their applications in two-dimensional optoelectronics, but it remains a great challenge. Here, we report a diffusion-limited synthesis strategy for wafer-scale uniform covalent organic framework films, in which pre-deposited 4,4',4″,4‴-(1,3,6,8-Tetrakis(4-aminophenyl) pyrene is encapsulated on substrate surface with a layer of covalent organic framework prepolymer. The polymer not only prevents the dissolution of precursor, but limits the reaction with terephthalaldehyde dissolved in solution, thereby regulating the polymerization process. The size depends on growth substrates, and 4-inch films have been synthesized on silicon chips. Their structure, thickness, patterning and crystallization degree can be controlled by adjusting building blocks and polymerization chemistries, and molybdenum disulfide have been used as substrates to construct vertical heterostructure. The measurements reveal that using covalent organic framework as a photosensitive layer, the heterojunction displays enhanced photoelectric performance, which can be used to simulate the adaptative function of visual system.
Collapse
Affiliation(s)
- Minghui Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Junhua Kuang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiaocang Han
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Youxing Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wenqiang Gao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shengcong Shang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xinyu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jiaxin Hong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Bo Guan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Xiaoxu Zhao
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China.
| | - Yunlong Guo
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.
| | - Jichen Dong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.
| | - Zhiyuan Zhao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yan Zhao
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Chuan Liu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Yunqi Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jianyi Chen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.
| |
Collapse
|
8
|
Blätte D, Ortmann F, Bein T. Photons, Excitons, and Electrons in Covalent Organic Frameworks. J Am Chem Soc 2024; 146:32161-32205. [PMID: 39556616 PMCID: PMC11613328 DOI: 10.1021/jacs.3c14833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 11/20/2024]
Abstract
Covalent organic frameworks (COFs) are created by the condensation of molecular building blocks and nodes to form two-dimensional (2D) or three-dimensional (3D) crystalline frameworks. The diversity of molecular building blocks with different properties and functionalities and the large number of possible framework topologies open a vast space of possible well-defined porous architectures. Besides more classical applications of porous materials such as molecular absorption, separation, and catalytic conversions, interest in the optoelectronic properties of COFs has recently increased considerably. The electronic properties of both the molecular building blocks and their linkage chemistry can be controlled to tune photon absorption and emission, to create excitons and charge carriers, and to use these charge carriers in different applications such as photocatalysis, luminescence, chemical sensing, and photovoltaics. In this Perspective, we will discuss the relationship between the structural features of COFs and their optoelectronic properties, starting with the building blocks and their chemical connectivity, layer stacking in 2D COFs, control over defects and morphology including thin film synthesis, exploring the theoretical modeling of structural, electronic, and dynamic features of COFs, and discussing recent intriguing applications with a focus on photocatalysis and photoelectrochemistry. We conclude with some remarks about present challenges and future prospects of this powerful architectural paradigm.
Collapse
Affiliation(s)
- Dominic Blätte
- Department
of Chemistry and Center for NanoScience, University of Munich (LMU), Butenandtstr. 5-13, 81377 Munich, Germany
| | - Frank Ortmann
- Department
of Chemistry, TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Thomas Bein
- Department
of Chemistry and Center for NanoScience, University of Munich (LMU), Butenandtstr. 5-13, 81377 Munich, Germany
| |
Collapse
|
9
|
Fu GE, Yang H, Zhao W, Samorì P, Zhang T. 2D Conjugated Polymer Thin Films for Organic Electronics: Opportunities and Challenges. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311541. [PMID: 38551322 DOI: 10.1002/adma.202311541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/07/2024] [Indexed: 04/06/2024]
Abstract
2D conjugated polymers (2DCPs) possess extended in-plane π-conjugated lattice and out-of-plane π-π stacking, which results in enhanced electronic performance and potentially unique band structures. These properties, along with predesignability, well-defined channels, easy postmodification, and order structure attract extensive attention from material science to organic electronics. In this review, the recent advance in the interfacial synthesis and conductivity tuning strategies of 2DCP thin films, as well as their application in organic electronics is summarized. Furthermore, it is shown that, by combining topology structure design and targeted conductivity adjustment, researchers have fabricated 2DCP thin films with predesigned active groups, highly ordered structures, and enhanced conductivity. These films exhibit great potential for various thin-film organic electronics, such as organic transistors, memristors, electrochromism, chemiresistors, and photodetectors. Finally, the future research directions and perspectives of 2DCPs are discussed in terms of the interfacial synthetic design and structure engineering for the fabrication of fully conjugated 2DCP thin films, as well as the functional manipulation of conductivity to advance their applications in future organic electronics.
Collapse
Affiliation(s)
- Guang-En Fu
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Haoyong Yang
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Wenkai Zhao
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Paolo Samorì
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 Allée Gaspard Monge, Strasbourg, 67000, France
| | - Tao Zhang
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| |
Collapse
|
10
|
Chakraborty J, Chatterjee A, Molkens K, Nath I, Arenas Esteban D, Bourda L, Watson G, Liu C, Van Thourhout D, Bals S, Geiregat P, Van der Voort P. Decoding Excimer Formation in Covalent-Organic Frameworks Induced by Morphology and Ring Torsion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2314056. [PMID: 38618981 DOI: 10.1002/adma.202314056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/02/2024] [Indexed: 04/16/2024]
Abstract
A thorough and quantitative understanding of the fate of excitons in covalent-organic frameworks (COFs) after photoexcitation is essential for their augmented optoelectronic and photocatalytic applications via precise structure tuning. The synthesis of a library of COFs having identical chemical backbone with impeded conjugation, but varied morphology and surface topography to study the effect of these physical properties on the photophysics of the materials is herein reported. The variation of crystallite size and surface topography substantified different aggregation pattern in the COFs, which leads to disparities in their photoexcitation and relaxation properties. Depending on aggregation, an inverse correlation between bulk luminescence decay time and exciton binding energy of the materials is perceived. Further transient absorption spectroscopic analysis confirms the presence of highly localized, immobile, Frenkel excitons (of diameter 0.3-0.5 nm) via an absence of annihilation at high density, most likely induced by structural torsion of the COF skeletons, which in turn preferentially relaxes via long-lived (nanosecond to microsecond) excimer formation (in femtosecond scale) over direct emission. These insights underpin the importance of structural and topological design of COFs for their targeted use in photocatalysis.
Collapse
Affiliation(s)
- Jeet Chakraborty
- Centre for Ordered Materials, Organometallics and Catalysis (COMOC), Department of Chemistry, Ghent University, Krijgslaan 281-S3, Ghent, 9000, Belgium
| | - Amrita Chatterjee
- Centre for Ordered Materials, Organometallics and Catalysis (COMOC), Department of Chemistry, Ghent University, Krijgslaan 281-S3, Ghent, 9000, Belgium
| | - Korneel Molkens
- Physics and Chemistry of Nanostructures, Department of Chemistry, Ghent University, Krijgslaan 281-S3, Ghent, 9000, Belgium
- NOLIMITS, Center for Non-Linear Microscopy and Spectroscopy, Ghent University, Krijgslaan 281-S3, Ghent, 9000, Belgium
- Photonics Research Group, Department of Information Technology, Ghent University - imec, Technologiepark-Zwijnaarde 126, Ghent, 9052, Belgium
| | - Ipsita Nath
- Centre for Ordered Materials, Organometallics and Catalysis (COMOC), Department of Chemistry, Ghent University, Krijgslaan 281-S3, Ghent, 9000, Belgium
| | - Daniel Arenas Esteban
- EMAT-Electron Microscopy for Materials Science, Department of Physics, University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020, Belgium
| | - Laurens Bourda
- Centre for Ordered Materials, Organometallics and Catalysis (COMOC), Department of Chemistry, Ghent University, Krijgslaan 281-S3, Ghent, 9000, Belgium
- XStruct, Department of Chemistry, Ghent University, Krijgslaan 281-S3, Ghent, 9000, Belgium
| | - Geert Watson
- Centre for Ordered Materials, Organometallics and Catalysis (COMOC), Department of Chemistry, Ghent University, Krijgslaan 281-S3, Ghent, 9000, Belgium
| | - Chunhui Liu
- Centre for Ordered Materials, Organometallics and Catalysis (COMOC), Department of Chemistry, Ghent University, Krijgslaan 281-S3, Ghent, 9000, Belgium
- NanoSensing Group, Department of Chemistry, Ghent University, Krijgslaan 281S3, Ghent, 9000, Belgium
| | - Dries Van Thourhout
- NOLIMITS, Center for Non-Linear Microscopy and Spectroscopy, Ghent University, Krijgslaan 281-S3, Ghent, 9000, Belgium
- Photonics Research Group, Department of Information Technology, Ghent University - imec, Technologiepark-Zwijnaarde 126, Ghent, 9052, Belgium
| | - Sara Bals
- Photonics Research Group, Department of Information Technology, Ghent University - imec, Technologiepark-Zwijnaarde 126, Ghent, 9052, Belgium
| | - Pieter Geiregat
- Physics and Chemistry of Nanostructures, Department of Chemistry, Ghent University, Krijgslaan 281-S3, Ghent, 9000, Belgium
- NOLIMITS, Center for Non-Linear Microscopy and Spectroscopy, Ghent University, Krijgslaan 281-S3, Ghent, 9000, Belgium
| | - Pascal Van der Voort
- Centre for Ordered Materials, Organometallics and Catalysis (COMOC), Department of Chemistry, Ghent University, Krijgslaan 281-S3, Ghent, 9000, Belgium
| |
Collapse
|
11
|
Prieto T, Ponte C, Guntermann R, Medina DD, Salonen LM. Synthetic Strategies to Extended Aromatic Covalent Organic Frameworks. Chemistry 2024:e202401344. [PMID: 38771916 DOI: 10.1002/chem.202401344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 05/23/2024]
Abstract
π-Conjugated materials are highly attractive owing to their unique optical and electronic properties. Covalent organic frameworks (COFs) offer a great opportunity for precise arrangement of building units in a π-conjugated crystalline matrix and tuning of the properties through choice of functionalities or post-synthetic modification. With this review, we aim at summarizing both the most representative as well as emerging strategies for the synthesis of π-conjugated COFs. We give examples of direct synthesis using large, π-extended building blocks. COFs featuring fully conjugated linkages such as vinylene, pyrazine, and azole are discussed. Then, post-synthetic modification methods that result in the extension of the COF π-system are reviewed. Throughout, mechanistic insights are presented when available. In the context of their utilization as film devices, we conduct a concise survey of the prominent COF layer deposition techniques reported and their aptness for the deposition of fused aromatic systems.
Collapse
Affiliation(s)
- Tania Prieto
- CINBIO, Universidade de Vigo, Department of Organic Chemistry, 36310, Vigo, Spain
| | - Clara Ponte
- Nanochemistry Research Group, International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga, 4715-330, Braga, Portugal
- CICECO-Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Roman Guntermann
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig Maximilians University (LMU), Butenandtstraße 11 (E), 81377, Munich, Germany
| | - Dana D Medina
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig Maximilians University (LMU), Butenandtstraße 11 (E), 81377, Munich, Germany
| | - Laura M Salonen
- CINBIO, Universidade de Vigo, Department of Organic Chemistry, 36310, Vigo, Spain
- Nanochemistry Research Group, International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga, 4715-330, Braga, Portugal
| |
Collapse
|
12
|
Bhagwandin DD, Page KA, Tran LD, Yao Y, Reidell A, Muratore C, Fang Q, Ruditskiy A, Hampton CM, Kennedy WJ, Drummy LF, Zhong Y, Marks TJ, Facchetti A, Lou J, Koerner H, Baldwin LA, Glavin NR. Orientation and morphology control in acid-catalyzed covalent organic framework thin films. NANOSCALE 2024; 16:8369-8377. [PMID: 38572999 DOI: 10.1039/d3nr05798d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
As thin films of semiconducting covalent organic frameworks (COFs) are demonstrating utility for ambipolar electronics, channel materials in organic electrochemical transistors (OECTs), and broadband photodetectors, control and modulation of their thin film properties is paramount. In this work, an interfacial growth technique is utilized to synthesize imine TAPB-PDA COF films at both the liquid-liquid interface as well as at the liquid-solid interface on a Si/SiO2 substrate. The concentration of acetic acid catalyst in the aqueous phase is shown to significantly influence the thin film morphology of the liquid-solid growth, with concentrations below 1 M resulting in no film nucleation, concentrations of 1-4 M enabling smooth film formation, and concentrations greater than 4 M resulting in films with a higher density of particulates on the surface. Importantly, while the films grown at the liquid-liquid interface are mixed-orientation, those grown directly at the liquid-solid interface on the Si/SiO2 surface have highly oriented COF layers aligned parallel to the substrate surface. Moreover, this liquid-solid growth process affords TAPB-PDA COF thin films with p-type charge transport having a transconductance of 10 μS at a gate voltage of -0.9 V in an OECT device structure.
Collapse
Affiliation(s)
- Dayanni D Bhagwandin
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, USA.
- UES, Inc., Beavercreek, Ohio 45432, USA
| | - Kirt A Page
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, USA.
- UES, Inc., Beavercreek, Ohio 45432, USA
- Cornell High Energy Synchrotron Source, Cornell University, Ithaca, New York 14853, USA
| | - Ly D Tran
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, USA.
- UES, Inc., Beavercreek, Ohio 45432, USA
| | - Yao Yao
- Department of Chemistry and the Materials Research Center, Northwestern University, Sheridan Road, Evanston, IL 60208, USA
| | - Alexander Reidell
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, USA.
- UES, Inc., Beavercreek, Ohio 45432, USA
| | - Christopher Muratore
- Department of Chemical and Materials Engineering, University of Dayton, Dayton, Ohio 45469, USA
| | - Qiyi Fang
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, USA
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, USA
| | - Aleksey Ruditskiy
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, USA.
- UES, Inc., Beavercreek, Ohio 45432, USA
| | - Cheri M Hampton
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, USA.
- UES, Inc., Beavercreek, Ohio 45432, USA
| | - W Joshua Kennedy
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, USA.
| | - Lawrence F Drummy
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, USA.
| | - Yu Zhong
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, USA
| | - Tobin J Marks
- Department of Chemistry and the Materials Research Center, Northwestern University, Sheridan Road, Evanston, IL 60208, USA
| | - Antonio Facchetti
- Department of Chemistry and the Materials Research Center, Northwestern University, Sheridan Road, Evanston, IL 60208, USA
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Jun Lou
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, USA
| | - Hilmar Koerner
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, USA.
| | - Luke A Baldwin
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, USA.
| | - Nicholas R Glavin
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, USA.
| |
Collapse
|
13
|
Yan M, Hao Q, Diao S, Zhou F, Yichen C, Jiang N, Zhao C, Ren XR, Yu F, Tong J, Wang D, Liu H. Smart Home Sleep Respiratory Monitoring System Based on a Breath-Responsive Covalent Organic Framework. ACS NANO 2024; 18:728-737. [PMID: 38118144 DOI: 10.1021/acsnano.3c09018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
A smart home sleep respiratory monitoring system based on a breath-responsive covalent organic framework (COF) was developed and utilized to monitor the sleep respiratory behavior of real sleep apnea patients in this work. The capacitance of the interdigital electrode chip coated with COFTPDA-TFPy exhibits thousands-level reversible responses to breath humidity gases, with subsecond response time and robustness against environmental humidity. A miniaturized printed circuit board, an open-face-mask-based respiratory sensor, and a smartphone app were constructed for the wearable wireless smart home sleep respiratory monitoring system. Leveraging the sensitive and rapid reversible response of COFs, the COF-based respiratory monitoring system can effectively record normal breath, rapid breath, and breath apnea, enabling over a thousand cycles of hour-level continuous monitoring during daily wear. Next, we took the groundbreaking step of advancing the humidity sensor to the clinical trial stage. In clinical experiments on real sleep apnea patients, the COF-based respiratory monitoring system successfully recorded hour-level sleep respiratory data and differentiated the breathing behavior characteristics and severity of sleep apnea patients and subjects with normal sleep function and primary snoring patients. This work successfully advanced humidity sensors into clinical research for real patients and demonstrated the enormous application potential of COF materials in clinical diagnosis.
Collapse
Affiliation(s)
- Mengwen Yan
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2# Sipailou, Nanjing, Jiangsu 210096, People's Republic of China
| | - Qing Hao
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2# Sipailou, Nanjing, Jiangsu 210096, People's Republic of China
| | - Shanyan Diao
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2# Sipailou, Nanjing, Jiangsu 210096, People's Republic of China
| | - Fan Zhou
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2# Sipailou, Nanjing, Jiangsu 210096, People's Republic of China
| | - Chen Yichen
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2# Sipailou, Nanjing, Jiangsu 210096, People's Republic of China
| | - Nan Jiang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2# Sipailou, Nanjing, Jiangsu 210096, People's Republic of China
| | - Chao Zhao
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2# Sipailou, Nanjing, Jiangsu 210096, People's Republic of China
| | - Xiao-Rui Ren
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Fuchao Yu
- Department of Cardiology, Zhongda Hospital, Nanjing, China Southeast University, Nanjing, Jiangsu 210096, People's Republic of China
| | - Jiayi Tong
- Department of Cardiology, Zhongda Hospital, Nanjing, China Southeast University, Nanjing, Jiangsu 210096, People's Republic of China
| | - Dong Wang
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Hong Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2# Sipailou, Nanjing, Jiangsu 210096, People's Republic of China
| |
Collapse
|
14
|
Shahzad U, Marwani HM, Saeed M, Asiri AM, Repon MR, Althomali RH, Rahman MM. Progress and Perspectives on Promising Covalent-Organic Frameworks (COFs) Materials for Energy Storage Capacity. CHEM REC 2024; 24:e202300285. [PMID: 37986206 DOI: 10.1002/tcr.202300285] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/23/2023] [Indexed: 11/22/2023]
Abstract
In recent years, a new class of highly crystalline advanced permeable materials covalent-organic frameworks (COFs) have garnered a great deal of attention thanks to their remarkable properties, such as their large surface area, highly ordered pores and channels, and controllable crystalline structures. The lower physical stability and electrical conductivity, however, prevent them from being widely used in applications like photocatalytic activities and innovative energy storage and conversion devices. For this reason, many studies have focused on finding ways to improve upon these interesting materials while also minimizing their drawbacks. This review article begins with a brief introduction to the history and major milestones of COFs development before moving on to a comprehensive exploration of the various synthesis methods and recent successes and signposts of their potential applications in carbon dioxide (CO2 ) sequestration, supercapacitors (SCs), lithium-ion batteries (LIBs), and hydrogen production (H2 -energy). In conclusion, the difficulties and potential of future developing with highly efficient COFs ideas for photocatalytic as well as electrochemical energy storage applications are highlighted.
Collapse
Affiliation(s)
- Umer Shahzad
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Hadi M Marwani
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Mohsin Saeed
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Abdullah M Asiri
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Md Reazuddin Repon
- Department of Production Engineering, Faculty of Mechanical Engineering and Design, Kaunas University of Technology, Studentų 56, LT-51424, Kaunas, Lithuania
- Laboratory of Plant Physiology, Nature Research Centre, Akademijos g. 2, 08412, Vilnius, Lithuania
- Department of Textile Engineering, Daffodil International University, Dhaka, 1216, Bangladesh
| | - Raed H Althomali
- Department of Chemistry, College of Art and Science, Prince Sattam bin Abdulaziz University, Wadi Al-Dawasir, 11991, Saudi Arabia
| | - Mohammed M Rahman
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
15
|
Xu S, Wu J, Wang X, Zhang Q. Recent advances in the utilization of covalent organic frameworks (COFs) as electrode materials for supercapacitors. Chem Sci 2023; 14:13601-13628. [PMID: 38075665 PMCID: PMC10699565 DOI: 10.1039/d3sc04571d] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/05/2023] [Indexed: 04/26/2024] Open
Abstract
Due to their excellent stability, ease of modification, high specific surface area, and tunable redox potentials, covalent organic frameworks (COFs) as potential electrodes in supercapacitors (SCs) have raised much research interest because these materials can enable the achievement of high electric double-layer supercapacitance and high pseudocapacitance. Here, the design strategies and SC applications of COF-based electrode materials are summarized. The detailed principles are introduced first, followed by discussions on strategies with diverse examples. The updated advances in design and applications are also discussed. Finally, in the outlook section, we provide some guidelines on the rational design of COF-based electrode materials for high-performance SCs, which we hope will inspire novel concepts for COF-based supercapacitors.
Collapse
Affiliation(s)
- Shen Xu
- Department of Materials Science and Engineering, City University of Hong Kong Hong Kong SAR 999077 P. R. China
| | - Jinghang Wu
- Department of Materials Science and Engineering, City University of Hong Kong Hong Kong SAR 999077 P. R. China
| | - Xiang Wang
- Department of Materials Science and Engineering, City University of Hong Kong Hong Kong SAR 999077 P. R. China
| | - Qichun Zhang
- Department of Materials Science and Engineering, City University of Hong Kong Hong Kong SAR 999077 P. R. China
- Department of Chemistry, Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong Hong Kong SAR 999077 P. R. China
| |
Collapse
|
16
|
Zhang L, Zhang X, Han D, Zhai L, Mi L. Recent Progress in Design Principles of Covalent Organic Frameworks for Rechargeable Metal-Ion Batteries. SMALL METHODS 2023; 7:e2300687. [PMID: 37568245 DOI: 10.1002/smtd.202300687] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/25/2023] [Indexed: 08/13/2023]
Abstract
Covalent organic frameworks (COFs) are acknowledged as a new generation of crystalline organic materials and have garnered tremendous attention owing to their unique advantages of structural tunability, frameworks diversity, functional versatility, and diverse applications in drug delivery, adsorption/separation, catalysis, optoelectronics, and sensing, etc. Recently, COFs is proven to be promising candidates for electrochemical energy storage materials. Their chemical compositions and structures can be precisely tuned and functionalized at the molecular level, allowing a comprehensive understanding of COFs that helps to make full use of their features and addresses the inherent drawback based on the components and functions of the devices. In this review, the working mechanisms and the distinguishing advantages of COFs as electrodes for rechargeable Li-ion batteries are discussed in detail. Especially, principles and strategies for the rational design of COFs as advanced electrode materials in Li-ion batteries are systematically summarized. Finally, this review is structured to cover recent explorations and applications of COF electrode materials in other rechargeable metal-ion batteries.
Collapse
Affiliation(s)
- Lin Zhang
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, P. R. China
| | - Xiaofei Zhang
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, P. R. China
| | - Diandian Han
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, P. R. China
| | - Lipeng Zhai
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, P. R. China
| | - Liwei Mi
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, P. R. China
| |
Collapse
|
17
|
Ding G, Zhao J, Zhou K, Zheng Q, Han ST, Peng X, Zhou Y. Porous crystalline materials for memories and neuromorphic computing systems. Chem Soc Rev 2023; 52:7071-7136. [PMID: 37755573 DOI: 10.1039/d3cs00259d] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Porous crystalline materials usually include metal-organic frameworks (MOFs), covalent organic frameworks (COFs), hydrogen-bonded organic frameworks (HOFs) and zeolites, which exhibit exceptional porosity and structural/composition designability, promoting the increasing attention in memory and neuromorphic computing systems in the last decade. From both the perspective of materials and devices, it is crucial to provide a comprehensive and timely summary of the applications of porous crystalline materials in memory and neuromorphic computing systems to guide future research endeavors. Moreover, the utilization of porous crystalline materials in electronics necessitates a shift from powder synthesis to high-quality film preparation to ensure high device performance. This review highlights the strategies for preparing porous crystalline materials films and discusses their advancements in memory and neuromorphic electronics. It also provides a detailed comparative analysis and presents the existing challenges and future research directions, which can attract the experts from various fields (e.g., materials scientists, chemists, and engineers) with the aim of promoting the applications of porous crystalline materials in memory and neuromorphic computing systems.
Collapse
Affiliation(s)
- Guanglong Ding
- Institute for Advanced Study, Shenzhen University, Shenzhen, China.
| | - JiYu Zhao
- Institute for Advanced Study, Shenzhen University, Shenzhen, China.
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
- State Key Laboratory of Fine Chemicals, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Kui Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen, China.
| | - Qi Zheng
- Institute for Advanced Study, Shenzhen University, Shenzhen, China.
| | - Su-Ting Han
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
- State Key Laboratory of Fine Chemicals, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ye Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen, China.
| |
Collapse
|
18
|
Chen X, Kong L, Mehrez JAA, Fan C, Quan W, Zhang Y, Zeng M, Yang J, Hu N, Su Y, Wei H, Yang Z. Outstanding Humidity Chemiresistors Based on Imine-Linked Covalent Organic Framework Films for Human Respiration Monitoring. NANO-MICRO LETTERS 2023; 15:149. [PMID: 37286913 PMCID: PMC10247948 DOI: 10.1007/s40820-023-01107-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/20/2023] [Indexed: 06/09/2023]
Abstract
Human metabolite moisture detection is important in health monitoring and non-invasive diagnosis. However, ultra-sensitive quantitative extraction of respiration information in real-time remains a great challenge. Herein, chemiresistors based on imine-linked covalent organic framework (COF) films with dual-active sites are fabricated to address this issue, which demonstrates an amplified humidity-sensing signal performance. By regulation of monomers and functional groups, these COF films can be pre-engineered to achieve high response, wide detection range, fast response, and recovery time. Under the condition of relative humidity ranging from 13 to 98%, the COFTAPB-DHTA film-based humidity sensor exhibits outstanding humidity sensing performance with an expanded response value of 390 times. Furthermore, the response values of the COF film-based sensor are highly linear to the relative humidity in the range below 60%, reflecting a quantitative sensing mechanism at the molecular level. Based on the dual-site adsorption of the (-C=N-) and (C-N) stretching vibrations, the reversible tautomerism induced by hydrogen bonding with water molecules is demonstrated to be the main intrinsic mechanism for this effective humidity detection. In addition, the synthesized COF films can be further exploited to effectively detect human nasal and oral breathing as well as fabric permeability, which will inspire novel designs for effective humidity-detection devices.
Collapse
Affiliation(s)
- Xiyu Chen
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Lingwei Kong
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Jaafar Abdul-Aziz Mehrez
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Chao Fan
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Wenjing Quan
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Yongwei Zhang
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Min Zeng
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| | - Jianhua Yang
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Nantao Hu
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Yanjie Su
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Hao Wei
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Zhi Yang
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| |
Collapse
|
19
|
Chen J, Wang Y, Yu Y, Wang J, Liu J, Ihara H, Qiu H. Composite materials based on covalent organic frameworks for multiple advanced applications. EXPLORATION (BEIJING, CHINA) 2023; 3:20220144. [PMID: 37933382 PMCID: PMC10624394 DOI: 10.1002/exp.20220144] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 03/10/2023] [Indexed: 11/08/2023]
Abstract
Covalent organic frameworks (COFs) stand for a class of emerging crystalline porous organic materials, which are ingeniously constructed with organic units through strong covalent bonds. Their excellent design capabilities, and uniform and tunable pore structure make them potential materials for various applications. With the continuous development of synthesis technique and nanoscience, COFs have been successfully combined with a variety of functional materials to form COFs-based composites with superior performance than individual components. This paper offers an overview of the development of different types of COFs-based composites reported so far, with particular focus on the applications of COFs-based composites. Moreover, the challenges and future development prospects of COFs-based composites are presented. We anticipate that the review will provide some inspiration for the further development of COFs-based composites.
Collapse
Affiliation(s)
- Jia Chen
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical PhysicsChinese Academy of SciencesLanzhouChina
| | - Yuting Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of SciencesNortheastern UniversityShenyangChina
| | - Yongliang Yu
- Research Center for Analytical Sciences, Department of Chemistry, College of SciencesNortheastern UniversityShenyangChina
| | - Jianhua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of SciencesNortheastern UniversityShenyangChina
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for NanotechnologyUniversity of WaterlooWaterlooOntarioCanada
| | - Hirotaka Ihara
- Department of Applied Chemistry and BiochemistryKumamoto UniversityChuo‐kuKumamotoJapan
| | - Hongdeng Qiu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical PhysicsChinese Academy of SciencesLanzhouChina
| |
Collapse
|
20
|
Xiong K, Zhang F, Wang Y, Zeng B, Lang X. Selective oxidation of amines powered with green light and oxygen over an anthraquinone covalent organic framework. J Colloid Interface Sci 2023; 643:340-349. [PMID: 37080041 DOI: 10.1016/j.jcis.2023.04.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/30/2023] [Accepted: 04/04/2023] [Indexed: 04/22/2023]
Abstract
The exploration of emerging photocatalysts like covalent organic frameworks (COFs) is an essential but challenging endeavor to find sustainable solutions for selective organic transformations. Anthraquinones are envisaged to construct COFs for visible light photocatalysis because their derivatives are employed industrially as oxidation catalysts or organic dyes. Herein, an anthraquinone COF, TpAQ-COF, is successfully constructed with 1,3,5-triformylphloroglucinol (Tp) and 2,6-diaminoanthraquinone (AQ). Then, the selective oxidation of amines over TpAQ-COF is implemented. Amines can be effectively converted into corresponding imines over TpAQ-COF powered with green light and oxygen, during which superoxide radical anion is discerned as the pivotal reactive oxygen species. This work suggests that COFs could inherit the advantages of molecular building blocks for selective reactions powered with broad visible light.
Collapse
Affiliation(s)
- Kanghui Xiong
- Sauvage Center for Molecular Sciences and Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Fulin Zhang
- Sauvage Center for Molecular Sciences and Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yuexin Wang
- Sauvage Center for Molecular Sciences and Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Bing Zeng
- Sauvage Center for Molecular Sciences and Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xianjun Lang
- Sauvage Center for Molecular Sciences and Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
21
|
Tao R, Yang T, Wang Y, Zhang J, Wu Z, Qiu L. Design strategies of covalent organic framework-based electrodes for supercapacitor application. Chem Commun (Camb) 2023; 59:3175-3192. [PMID: 36810434 DOI: 10.1039/d2cc06573h] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Supercapacitors (SCs) have been recognized as a promising electrochemical energy storage (EES) device, thanks to their high-power density, long lifespan, fast charge-discharge capability, and eco-friendliness. The breakthrough of electrode materials that determine the electrochemical performance of SCs is urgently desired. Covalent organic frameworks (COFs), an emerging and burgeoning class of crystalline porous polymeric materials, have been found to have huge potential for application in EES devices by virtue of their unique properties including atomically adjustable structures, robust and tunable skeletons, well-defined and open channels, high surface areas, etc. In this feature article, we aim at summarizing the design strategies of COF-based electrode materials for SCs based on the representative advances. The current challenges and future perspectives of COFs for SC application are highlighted as well.
Collapse
Affiliation(s)
- Rao Tao
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, P. R. China.
| | - Tianfu Yang
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, P. R. China.
| | - Yan Wang
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, P. R. China.
| | - Jingmin Zhang
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, P. R. China.
| | - Zhengyi Wu
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, P. R. China.
| | - Li Qiu
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, P. R. China.
| |
Collapse
|
22
|
Qi W, Wu Q, Wang W, Feng J, Su Q. Fluorinated covalent organic framework materials for photocatalytically driven benzylamine coupling and azo dyes degradation. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
23
|
Yan X, Zhao Y, Cao G, Li X, Gao C, Liu L, Ahmed S, Altaf F, Tan H, Ma X, Xie Z, Zhang H. 2D Organic Materials: Status and Challenges. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2203889. [PMID: 36683257 PMCID: PMC9982583 DOI: 10.1002/advs.202203889] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/31/2022] [Indexed: 06/17/2023]
Abstract
In the past few decades, 2D layer materials have gradually become a central focus in materials science owing to their uniquely layered structural qualities and good optoelectronic properties. However, in the development of 2D materials, several disadvantages, such as limited types of materials and the inability to synthesize large-scale materials, severely confine their application. Therefore, further exploration of new materials and preparation methods is necessary to meet technological developmental needs. Organic molecular materials have the advantage of being customizable. Therefore, if organic molecular and 2D materials are combined, the resulting 2D organic materials would have excellent optical and electrical properties. In addition, through this combination, the free design and large-scale synthesis of 2D materials can be realized in principle. Furthermore, 2D organic materials exhibit excellent properties and unique functionalities along with great potential for developing sensors, biomedicine, and electronics. In this review, 2D organic materials are divided into five categories. The preparation methods and material properties of each class of materials are also described in detail. Notably, to comprehensively understand each material's advantages, the latest research applications for each material are presented in detail and summarized. Finally, the future development and application prospects of 2D organic materials are briefly discussed.
Collapse
Affiliation(s)
- Xiaobing Yan
- School of Life Sciences, Institute of Life Science and Green Development, Key Laboratory of Brain‐Like Neuromorphic Devices and Systems of Hebei ProvinceCollege of Electronic and Information EngineeringHebei UniversityBaoding071002China
| | - Ying Zhao
- School of Life Sciences, Institute of Life Science and Green Development, Key Laboratory of Brain‐Like Neuromorphic Devices and Systems of Hebei ProvinceCollege of Electronic and Information EngineeringHebei UniversityBaoding071002China
| | - Gang Cao
- School of Life Sciences, Institute of Life Science and Green Development, Key Laboratory of Brain‐Like Neuromorphic Devices and Systems of Hebei ProvinceCollege of Electronic and Information EngineeringHebei UniversityBaoding071002China
| | - Xiaoyu Li
- School of Life Sciences, Institute of Life Science and Green Development, Key Laboratory of Brain‐Like Neuromorphic Devices and Systems of Hebei ProvinceCollege of Electronic and Information EngineeringHebei UniversityBaoding071002China
| | - Chao Gao
- School of Life Sciences, Institute of Life Science and Green Development, Key Laboratory of Brain‐Like Neuromorphic Devices and Systems of Hebei ProvinceCollege of Electronic and Information EngineeringHebei UniversityBaoding071002China
| | - Luan Liu
- School of Life Sciences, Institute of Life Science and Green Development, Key Laboratory of Brain‐Like Neuromorphic Devices and Systems of Hebei ProvinceCollege of Electronic and Information EngineeringHebei UniversityBaoding071002China
| | - Shakeel Ahmed
- Collaborative Innovation Center for Optoelectronic Science and TechnologyInternational Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of EducationInstitute of Microscale OptoelectronicsCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060P. R. China
| | - Faizah Altaf
- Department of ChemistryWomen University Bagh Azad KashmirBagh Azad KashmirBagh12500Pakistan
- School of Materials Science and EngineeringGeorgia Institute of Technology North AvenueAtlantaGA30332USA
| | - Hui Tan
- Department of RespiratoryShenzhen Children's HospitalShenzhen518036P. R. China
| | - Xiaopeng Ma
- Department of RespiratoryShenzhen Children's HospitalShenzhen518036P. R. China
| | - Zhongjian Xie
- Institute of PediatricsShenzhen Children's HospitalShenzhenGuangdong518038P. R. China
- Shenzhen International Institute for Biomedical ResearchShenzhenGuangdong518116China
| | - Han Zhang
- Collaborative Innovation Center for Optoelectronic Science and TechnologyInternational Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of EducationInstitute of Microscale OptoelectronicsCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060P. R. China
| |
Collapse
|
24
|
Hao Q, Ren XR, Chen Y, Zhao C, Xu J, Wang D, Liu H. A sweat-responsive covalent organic framework film for material-based liveness detection and sweat pore analysis. Nat Commun 2023; 14:578. [PMID: 36732512 PMCID: PMC9894872 DOI: 10.1038/s41467-023-36291-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 01/25/2023] [Indexed: 02/04/2023] Open
Abstract
Covalent organic frameworks have shown considerable application potential and exceptional properties in the construction of stimulus-responsive materials. Here, we designed a sweat-responsive covalent organic framework film for material-based fingerprint liveness detection. When exposed to human sweat, the COFTPDA-TFPy film can transform from yellow to red. The COFTPDA-TFPy film, when touched by living fingers, can produce the naked-eye-identified fingerprint pattern through the sweat-induced color change, while artificial fake fingerprints cannot. This technique, which we named material-based liveness detection, can thus intuitively discern living fingers from fake fingerprints with a 100% accuracy rate. Additionally, the distribution of sweat pores on human skin can also be collected and analyzed by shortening the contact time. By merely washing them with ethanol, all the samples can be utilized again. This work inventively accomplished material-based liveness detection and naked-eye-identified sweat pore analysis and highlighted their potential for use in clinical research and personal identification.
Collapse
Affiliation(s)
- Qing Hao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2# Sipailou, Nanjing, Jiangsu, 210096, China.
| | - Xiao-Rui Ren
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Yichen Chen
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2# Sipailou, Nanjing, Jiangsu, 210096, China
| | - Chao Zhao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2# Sipailou, Nanjing, Jiangsu, 210096, China
| | - Jingyi Xu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2# Sipailou, Nanjing, Jiangsu, 210096, China
| | - Dong Wang
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China.
| | - Hong Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2# Sipailou, Nanjing, Jiangsu, 210096, China.
| |
Collapse
|
25
|
Shah R, Ali S, Raziq F, Ali S, Ismail PM, Shah S, Iqbal R, Wu X, He W, Zu X, Zada A, Adnan, Mabood F, Vinu A, Jhung SH, Yi J, Qiao L. Exploration of metal organic frameworks and covalent organic frameworks for energy-related applications. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
26
|
Huang T, Jiang H, Douglin JC, Chen Y, Yin S, Zhang J, Deng X, Wu H, Yin Y, Dekel DR, Guiver MD, Jiang Z. Single Solution-Phase Synthesis of Charged Covalent Organic Framework Nanosheets with High Volume Yield. Angew Chem Int Ed Engl 2023; 62:e202209306. [PMID: 36395246 DOI: 10.1002/anie.202209306] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/22/2022] [Accepted: 11/17/2022] [Indexed: 11/19/2022]
Abstract
Covalent organic framework nanosheets (COF-NSs) are emerging building blocks for functional materials, and their scalable fabrication is highly desirable. Current synthetic methods suffer from low volume yields resulting from confined on-surface/at-interface growth space and complex multiple-phase synthesis systems. Herein, we report the synthesis of charged COF-NSs in open space using a single-phase organic solution system, achieving magnitudes higher volume yields of up to 18.7 mg mL-1 . Charge-induced electrostatic repulsion forces enable in-plane anisotropic secondary growth from initial discrete and disordered polymers into large and crystalline COF-NSs. The charged COF-NS colloidal suspensions are cast into thin and compact proton exchange membranes (PEMs) with lamellar morphology and oriented crystallinity, displaying outstanding proton conductivity, negligible dimensional swelling, and good H2 /O2 fuel cell performance.
Collapse
Affiliation(s)
- Tong Huang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.,State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin, 300072, China.,State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 210009, China
| | - Haifei Jiang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.,State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin, 300072, China
| | - John C Douglin
- The Wolfson Department of Chemical Engineering, Technion, Israel Institute of Technology, Haifa, 3200003, Israel
| | - Yu Chen
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Shuoyao Yin
- State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin, 300072, China
| | - Junfeng Zhang
- State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin, 300072, China.,National Industry-Education Platform of Energy Storage, Tianjin University, Tianjin, 300072, China
| | - Xiaojuan Deng
- Analysis and Testing Center, Tianjin University, Tianjin, 300072, China
| | - Hong Wu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Yan Yin
- State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin, 300072, China.,National Industry-Education Platform of Energy Storage, Tianjin University, Tianjin, 300072, China
| | - Dario R Dekel
- The Wolfson Department of Chemical Engineering, Technion, Israel Institute of Technology, Haifa, 3200003, Israel.,The Nancy & Stephen Grand Technion Energy Program (GTEP), Technion, Israel Institute of Technology, Haifa, 3200003, Israel
| | - Michael D Guiver
- State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin, 300072, China.,National Industry-Education Platform of Energy Storage, Tianjin University, Tianjin, 300072, China
| | - Zhongyi Jiang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
27
|
Yang D, Wu X, He L, Sun Z, Zhao H, Wang M, Wang Y, Wei Y. Physicochemical Synergistic Separator Coating Induces Uniform and Rapid Deposition of Li and Zn Ions. NANO LETTERS 2023; 23:336-343. [PMID: 36546719 DOI: 10.1021/acs.nanolett.2c04613] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Li and Zn metal batteries are the most promising candidates to replace conventional Li-ion batteries. However, a series of issues, especially dendrites caused by uneven deposition of cations during charge-discharge cycles, hinder their practical application. Here, we proposed a facile separator modification method which combines physical and chemical forces to regulate uniform and rapid deposition of both Li+ and Zn2+. Physically, the electronegativity of modified separators drives rapid transport of metal ions via a surface diffusion mode. Chemically, the polar surface functional groups on coated separators induce uniform deposition of metal ions so that the dendrite growth is effectively inhibited. As a result, the Li and Zn metal anodes employing modified separators can cycle stably for over 1000 h under a large current density of 10 mA cm-2.
Collapse
Affiliation(s)
- Di Yang
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Xiaoyu Wu
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, China
| | - Li He
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, China
| | - Zhihui Sun
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, China
| | - Hainan Zhao
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, China
| | - Meiling Wang
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, China
| | - Yizhan Wang
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, China
| | - Yingjin Wei
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, China
- State Key Laboratory of Inorganic Synthesis & Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
28
|
Heravifard Z, Akbarzadeh AR, Tayebi L, Rahimi R. Structural Properties Covalent Organic Frameworks (COFs): From Dynamic Covalent Bonds to their Applications. ChemistrySelect 2022. [DOI: 10.1002/slct.202202005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Zahra Heravifard
- Department of Chemistry Iran University of Science and Technology, P.O. Box 16846-13114 Tehran Islamic Republic of Iran
| | - Ali Reza Akbarzadeh
- Department of Chemistry Iran University of Science and Technology, P.O. Box 16846-13114 Tehran Islamic Republic of Iran
| | - Leila Tayebi
- Department of Chemistry Iran University of Science and Technology, P.O. Box 16846-13114 Tehran Islamic Republic of Iran
| | - Rahmatollah Rahimi
- Department of Chemistry Iran University of Science and Technology, P.O. Box 16846-13114 Tehran Islamic Republic of Iran
| |
Collapse
|
29
|
Karak S, Dey K, Banerjee R. Maneuvering Applications of Covalent Organic Frameworks via Framework-Morphology Modulation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202751. [PMID: 35760553 DOI: 10.1002/adma.202202751] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Translating the performance of covalent organic frameworks (COFs) from laboratory to macroscopic reality demands specific morphologies. Thus, the advancement in morphological modulation has recently gained some momentum. A clear understanding of nano- to macroscopic architecture is critical to determine, optimize, and improve performances of this atomically precise porous material. Along with their chemical compositions and molecular frameworks, the prospect of morphology in various applications should be discussed and highlighted. A thorough insight into morphology versus application will help produce better-engineered COFs for practical implications. 2D and 3D frameworks can be transformed into various solids such as nanospheres, thin films, membranes, monoliths, foams, etc., for numerous applications in adsorption, separation photocatalysis, the carbon dioxide reduction, supercapacitors, and fuel cells. However, the research on COF chemistry mainly focuses on correlating structure to property, structure to morphology, and structure to applications. Here, critical insights on various morphological evolution and associated applications are provided. In each case, the underlying role of morphology is unveiled. Toward the end, a correlation between morphology and application is provided for the future development of COFs.
Collapse
Affiliation(s)
- Suvendu Karak
- Institut für Organische Chemie, Julius-Maximilians-Universität Würzburg, 97074, Würzburg, Germany
| | - Kaushik Dey
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, India
| | - Rahul Banerjee
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, India
| |
Collapse
|
30
|
Jang M, Cho Y, Kim Y, Hahn M, Jung D, Park SY, Lee W, Piao Y. Redox-active conjugated microporous anthraquinonylamine-based polymer network grafted with activated graphene toward high-performance flexible asymmetric supercapacitor electrodes. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
31
|
Natraj A, Ji W, Xin J, Castano I, Burke DW, Evans AM, Strauss MJ, Ateia M, Hamachi LS, Gianneschi NC, ALOthman ZA, Sun J, Yusuf K, Dichtel WR. Single-Crystalline Imine-Linked Two-Dimensional Covalent Organic Frameworks Separate Benzene and Cyclohexane Efficiently. J Am Chem Soc 2022; 144:19813-19824. [PMID: 36265086 DOI: 10.1021/jacs.2c07166] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Two-dimensional (2D) covalent organic frameworks (COFs) are composed of structurally precise, permanently porous, layered macromolecular sheets, which are traditionally synthesized as polycrystalline solids with crystalline domain lengths smaller than 100 nm. Here, we polymerize imine-linked 2D COFs as suspensions of faceted single crystals in as little as 5 min at moderate temperature and ambient pressure. Single crystals of two imine-linked 2D COFs were prepared, consisting of a rhombic 2D COF (TAPPy-PDA) and a hexagonal 2D COF (TAPB-DMPDA). The sizes of TAPPy-PDA and TAPB-DMPDA crystals were tuned from 720 nm to 4 μm and 450 nm to 20 μm in width, respectively. High-resolution transmission electron microscopy revealed that the COF crystals consist of layered, 2D polymers comprising single-crystalline domains. Continuous rotation electron diffraction resolved the unit cell and crystal structure of both COFs, which are single-crystalline in the a-b plane but disordered in the stacking c dimension. Single crystals of both COFs were incorporated into gas chromatography separation columns and exhibited unusual selective retention of cyclohexane over benzene, with single-crystalline TAPPy-PDA significantly outperforming single-crystalline TAPB-DMPDA. Polycrystalline TAPPy-PDA exhibited no separation, while polycrystalline TAPB-DMPDA exhibited poor separation and the opposite order of elution, retaining benzene more than cyclohexane, indicating the importance of improved material quality for COFs to exhibit properties that derive from their precise, crystalline structures. This work represents the first example of synthesizing imine-linked 2D COF single crystals at ambient pressure and short reaction times and demonstrates the promise of high-quality COFs for molecular separations.
Collapse
Affiliation(s)
- Anusree Natraj
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Woojung Ji
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Junjie Xin
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Ioannina Castano
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - David W Burke
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Austin M Evans
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Michael J Strauss
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Mohamed Ateia
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Leslie S Hamachi
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Nathan C Gianneschi
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Department of Materials Science and Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Zeid A ALOthman
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Junliang Sun
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Kareem Yusuf
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - William R Dichtel
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
32
|
Li Y, Liu M, Wu J, Li J, Yu X, Zhang Q. Highly stable β-ketoenamine-based covalent organic frameworks (COFs): synthesis and optoelectrical applications. FRONTIERS OF OPTOELECTRONICS 2022; 15:38. [PMID: 36637691 PMCID: PMC9756274 DOI: 10.1007/s12200-022-00032-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/09/2022] [Indexed: 05/15/2023]
Abstract
Covalent organic frameworks (COFs) are one class of porous materials with permanent porosity and regular channels, and have a covalent bond structure. Due to their interesting characteristics, COFs have exhibited diverse potential applications in many fields. However, some applications require the frameworks to possess high structural stability, excellent crystallinity, and suitable pore size. COFs based on β-ketoenamine and imines are prepared through the irreversible enol-to-keto tautomerization. These materials have high crystallinity and exhibit high stability in boiling water, with strong resistance to acids and bases, resulting in various possible applications. In this review, we first summarize the preparation methods for COFs based on β-ketoenamine, in the form of powders, films and foams. Then, the effects of different synthetic methods on the crystallinity and pore structure of COFs based on β-ketoenamine are analyzed and compared. The relationship between structures and different applications including fluorescence sensors, energy storage, photocatalysis, electrocatalysis, batteries and proton conduction are carefully summarized. Finally, the potential applications, large-scale industrial preparation and challenges in the future are presented.
Collapse
Affiliation(s)
- Yaqin Li
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430074, China
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430074, China
| | - Maosong Liu
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430074, China
| | - Jinjun Wu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430074, China
| | - Junbo Li
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430074, China
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430074, China
| | - Xianglin Yu
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430074, China.
| | - Qichun Zhang
- Department of Materials Science and Engineering, City University of Hongkong, Hong Kong SAR, 999077, China.
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hongkong, Hong Kong SAR, 999077, China.
| |
Collapse
|
33
|
Yan X, Li H, Yin T, Jie G, Zhou H. Photoelectrochemical biosensing platform based on in situ generated ultrathin covalent organic framework film and AgInS 2 QDs for dual target detection of HIV and CEA. Biosens Bioelectron 2022; 217:114694. [PMID: 36113299 DOI: 10.1016/j.bios.2022.114694] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/27/2022] [Accepted: 09/02/2022] [Indexed: 11/02/2022]
Abstract
In this work, a new photoelectrochemical (PEC) biosensing platform based on an ordered two-dimensional (2D) ultrathin covalent organic framework (COF) film and AgInS2 quantum dots (QDs) has been developed to enable dual-target detection of HIV and CEA. The porous COF film was firstly in situ generated on ITO, displaying super-stable and intense photocurrent with excellent repeatability. Moreover, an effective PEC quenching probe was specifically designed by loading large number of AgInS2 QDs on Au nanoparticles (NPs). After target HIV-induced cyclic amplification process to generate abundant DNA S0, the Au NPs-AgInS2 QDs probe was binded to the COF film through DNA hybridization, enabling PEC signal of the COF film to turn "off" for ultra-sensitive detection of HIV. Furthermore, when CEA as the second target specifically binded to its aptamer, the Au NPs-AgInS2 QDs quenching probe was released, achieving PEC signal "on" of the T-DA COF film for ultra-sensitive detection of CEA. This work opened a unique 2-D COF film-based PEC biosensing platform with excellent signal for rapid detection of dual targets, which can effectively avoid false positives and negatives and shows promising application for early prevention and detection of cancer diseases.
Collapse
Affiliation(s)
- Xiaoshi Yan
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Hongkun Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Tengyue Yin
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Guifen Jie
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Hong Zhou
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| |
Collapse
|
34
|
Hydroxyl-Functionalized Covalent Organic Frameworks as High-Performance Supercapacitors. Polymers (Basel) 2022; 14:polym14163428. [PMID: 36015687 PMCID: PMC9413307 DOI: 10.3390/polym14163428] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/12/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022] Open
Abstract
Covalent organic frameworks (COFs) have attracted significant interest because of their heteroatom-containing architectures, high porous networks, large surface areas, and capacity to include redox-active units, which can provide good electrochemical efficiency in energy applications. In this research, we synthesized two novel hydroxy-functionalized COFs-TAPT-2,3-NA(OH)2, TAPT-2,6-NA(OH)2 COFs-through Schiff-base [3 + 2] polycondensations of 1,3,5-tris-(4-aminophenyl)triazine (TAPT-3NH2) with 2,3-dihydroxynaphthalene-1,4-dicarbaldehyde (2,3-NADC) and 2,6-dihydroxynaphthalene-1,5-dicarbaldehyde (2,6-NADC), respectively. The resultant hydroxy-functionalized COFs featured high BET-specific surface areas up to 1089 m2 g-1, excellent crystallinity, and superior thermal stability up to 60.44% char yield. When used as supercapacitor electrodes, the hydroxy-functionalized COFs exhibited electrochemical redox activity due to the presence of redox-active 2,3-dihydroxynaphthalene and 2,6-dihydroxynaphthalene in their COF skeletons. The hydroxy-functionalized COFs showed specific capacitance of 271 F g-1 at a current density of 0.5 A g-1 with excellent stability after 2000 cycles of 86.5% capacitance retention. Well-known pore features and high surface areas of such COFs, together with their superior supercapacitor performance, make them suitable electrode materials for use in practical applications.
Collapse
|
35
|
Geng Q, Wang H, Wu Y, Lv LP, Chen S, Sun W, Wang Y. Covalent‐Induced Heterostructure of Covalent‐Organic Frameworks and MXene as Advanced Electrodes with Motivated Pseudocapacitance Performance. ChemElectroChem 2022. [DOI: 10.1002/celc.202200340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Qianhao Geng
- Shanghai University Department of Chemical Engineering CHINA
| | - Haichao Wang
- Shanghai University Department of Chemical Engineering CHINA
| | - Yang Wu
- Shanghai University Department of Chemical Engineering CHINA
| | - Li-Ping Lv
- Shanghai University Department of Chemical Engineering CHINA
| | | | - Weiwei Sun
- Shanghai University Department of Chemical Engineering CHINA
| | - Yong Wang
- Shanghai University Department of Chemical Engineering 99 Shangda Road 200444 Shanghai CHINA
| |
Collapse
|
36
|
Zhang S, Xu X, Liu X, Yang Q, Shang N, Zhao X, Zang X, Wang C, Wang Z, Shapter JG, Yamauchi Y. Heterointerface optimization in a covalent organic framework-on-MXene for high-performance capacitive deionization of oxygenated saline water. MATERIALS HORIZONS 2022; 9:1708-1716. [PMID: 35446328 DOI: 10.1039/d1mh01882e] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Capacitive deionization (CDI) provides a promising option for affordable freshwater while simultaneously storing energy, but its large-scale application is usually limited owing to the poor performance of conventional materials in natural (oxygenated) saline water. Herein, we report heterointerface optimization in a covalent organic framework (COF)-on-MXene heterostructure achieving a high CDI performance for desalination of oxygenated saline water. The 2D heterostructure with the optimal core-shell architecture inherits the high conductivity and reversible ion intercalation/deintercalation ability of MXene, and the hierarchical porous structure, large porosity, and extraordinary redox capacity of COFs. Thanks to the heterointerface optimization, the MXene@COF heterostructure exhibits a very stable cycling performance over 100 CDI cycles with a maximum NaCl adsorption capacity of 53.1 mg g-1 in oxygenated saline water, among the state-of-the-art values for CDI electrodes and also exceeding those of most MXene-based or 2D materials. This study highlights the importance of heterointerface optimization in MXene-organic 2D heterostructures to promote CDI of natural (oxygenated) saline water.
Collapse
Affiliation(s)
- Shuaihua Zhang
- Department of Chemistry, Hebei Agricultural University, Baoding 071001, Hebei, China
- JST-ERATO Yamauchi Materials Space-Tectonics Project, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
| | - Xingtao Xu
- JST-ERATO Yamauchi Materials Space-Tectonics Project, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
| | - Xiaohong Liu
- JST-ERATO Yamauchi Materials Space-Tectonics Project, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
| | - Qian Yang
- College of Public Health, Hebei University, Baoding 071002, Hebei, China
| | - Ningzhao Shang
- Department of Chemistry, Hebei Agricultural University, Baoding 071001, Hebei, China
| | - Xiaoxian Zhao
- Department of Chemistry, Hebei Agricultural University, Baoding 071001, Hebei, China
| | - Xiaohuan Zang
- Department of Chemistry, Hebei Agricultural University, Baoding 071001, Hebei, China
| | - Chun Wang
- Department of Chemistry, Hebei Agricultural University, Baoding 071001, Hebei, China
| | - Zhi Wang
- Department of Chemistry, Hebei Agricultural University, Baoding 071001, Hebei, China
| | - Joseph G Shapter
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Yusuke Yamauchi
- JST-ERATO Yamauchi Materials Space-Tectonics Project, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
37
|
She P, Qin Y, Wang X, Zhang Q. Recent Progress in External-Stimulus-Responsive 2D Covalent Organic Frameworks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2101175. [PMID: 34240479 DOI: 10.1002/adma.202101175] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/19/2021] [Indexed: 05/26/2023]
Abstract
Recently, smart 2D covalent organic frameworks (COFs), combining the advantages of both inherent structure features and functional building blocks, have been demonstrated to show reversible changes in conformation, color, and luminescence in response to external stimuli. This review provides a summary on the recent progress of 2D COFs that are responsive to external stimuli such as metal ions, gas molecules, pH values, temperature, electricity, light, etc. Moreover, the responsive mechanisms and design strategies, along with the applications of these stimulus-responsive 2D COFs in chemical sensors and photoelectronic devices are also discussed. It is believed that this review would provide some guidelines for designing novel single-/multistimulus-responsive 2D COFs with controllable responsive behaviors for advanced photoelectronic applications.
Collapse
Affiliation(s)
- Pengfei She
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Yanyan Qin
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, P. R. China
| | - Xiang Wang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Qichun Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, P. R. China
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, P. R. China
| |
Collapse
|
38
|
Two-dimensional covalent organic framework nanosheets: Synthesis and energy-related applications. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.10.060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
39
|
Rahman MA, Dionne CJ, Giri A. Pore Size Dictates Anisotropic Thermal Conductivity of Two-Dimensional Covalent Organic Frameworks with Adsorbed Gases. ACS APPLIED MATERIALS & INTERFACES 2022; 14:21687-21695. [PMID: 35482844 DOI: 10.1021/acsami.2c03019] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Two-dimensional covalent organic frameworks (2D COFs) are a class of modular polymeric crystals with high porosities and large surface areas, which position them as ideal candidates for applications in gas storage and separation technologies. In this work, we study the influence of pore geometry on the anisotropic heat transfer mechanisms in 2D COFs through systematic atomistic simulations. More specifically, by studying COFs with varying pore sizes and gas densities, we demonstrate that the cross-plane thermal conductivity along the direction of the laminar pores can either be decreased due to solid-gas scattering (for COFs with relatively smaller pores that are ≲2 nm) or increased due to additional heat transfer pathways introduced by the gas adsorbates (for COFs with relatively larger pores). Our simulations on COF/methane systems reveal the intricate relationship among gas diffusivities, pore geometries, and solid-gas interactions dictating the modular thermal conductivities in these materials. Along with the understanding of the fundamental nature of gas diffusion and heat conduction in the porous framework crystals, our results can also help guide the design of efficient 2D polymeric crystals for applications with improved gas storage, catalysis, and separation capabilities.
Collapse
Affiliation(s)
- Muhammad A Rahman
- Department of Mechanical, Industrial and Systems Engineering, University of Rhode Island, Kingston, Rhode Island02881, United States
| | - Connor Jaymes Dionne
- Department of Mechanical, Industrial and Systems Engineering, University of Rhode Island, Kingston, Rhode Island02881, United States
| | - Ashutosh Giri
- Department of Mechanical, Industrial and Systems Engineering, University of Rhode Island, Kingston, Rhode Island02881, United States
| |
Collapse
|
40
|
|
41
|
Wang C, Zhang Z, Zhu Y, Yang C, Wu J, Hu W. 2D Covalent Organic Frameworks: From Synthetic Strategies to Advanced Optical-Electrical-Magnetic Functionalities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2102290. [PMID: 35052010 DOI: 10.1002/adma.202102290] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 10/19/2021] [Indexed: 06/14/2023]
Abstract
Covalent organic frameworks (COFs), an emerging class of organic crystalline polymers with highly oriented structures and permanent porosity, can adopt 2D or 3D architectures depending on the different topological diagrams of the monomers. Notably, 2D COFs have particularly gained much attention due to the extraordinary merits of their extended in-plane π-conjugation and topologically ordered columnar π-arrays. These properties together with high crystallinity, large surface area, and tunable porosity distinguish 2D COFs as an ideal candidate for the fabrication of functional materials. Herein, this review surveys the recent research advances in 2D COFs with special emphasis on the preparation of 2D COF powders, single crystals, and thin films, as well as their advanced optical, electrical, and magnetic functionalities. Some challenging issues and potential research outlook for 2D COFs are also provided for promoting their development in terms of structure, synthesis, and functionalities.
Collapse
Affiliation(s)
- Congyong Wang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Zhicheng Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Yating Zhu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Chenhuai Yang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Jishan Wu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Wenping Hu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| |
Collapse
|
42
|
Liu X, Liu CF, Xu S, Cheng T, Wang S, Lai WY, Huang W. Porous organic polymers for high-performance supercapacitors. Chem Soc Rev 2022; 51:3181-3225. [PMID: 35348147 DOI: 10.1039/d2cs00065b] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
With the aim of addressing the global warming issue and fossil energy shortage, eco-friendly and sustainable renewable energy technologies are urgently needed. In comparison to energy conversion, studies on energy storage fall behind and remain largely to be explored. By storing energy from electrochemical processes at the electrode surface, supercapacitors (SCs) bridge the performance gap between electrostatic double-layer capacitors and batteries. Organic electrode materials have drawn extensive attention because of their special power density, good round trip efficiency and excellent cycle stability. Porous organic polymers (POPs) have drawn extensive attention as attractive electrode materials in SCs. In this review, we present and discuss recent advancements and design principles of POPs as efficient electrode materials for SCs from the perspectives of synthetic strategies and the structure-performance relationships of POPs. Finally, we put forward the outlook and prospects of POPs for SCs.
Collapse
Affiliation(s)
- Xu Liu
- State Key Laboratory of Organic Electronics and Information Displays (SKLOEID), Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Cheng-Fang Liu
- State Key Laboratory of Organic Electronics and Information Displays (SKLOEID), Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Shihao Xu
- State Key Laboratory of Organic Electronics and Information Displays (SKLOEID), Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Tao Cheng
- State Key Laboratory of Organic Electronics and Information Displays (SKLOEID), Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Shi Wang
- State Key Laboratory of Organic Electronics and Information Displays (SKLOEID), Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Wen-Yong Lai
- State Key Laboratory of Organic Electronics and Information Displays (SKLOEID), Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China. .,Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an 710072, China
| | - Wei Huang
- State Key Laboratory of Organic Electronics and Information Displays (SKLOEID), Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China. .,Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
43
|
Liang H, Luo Y, Li Y, Song Y, Wang L. An Immunosensor Using Electroactive COF as Signal Probe for Electrochemical Detection of Carcinoembryonic Antigen. Anal Chem 2022; 94:5352-5358. [PMID: 35311249 DOI: 10.1021/acs.analchem.1c05426] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Two kinds of two-dimensional (2D) covalent-organic frameworks (COF) were used to construct a sandwich-type electrochemical immunosensor for a proof-of-concept study. Vinyl-functionalized COFTab-Dva could be linked with Ab1 by the thiol-ene "click" reaction. Electroactive COFTFPB-Thi was modified with gold nanoparticles (AuNPs) to ensure the successful connection with Ab2 through Au-S bond. Meanwhile, electroactive COFTFPB-Thi was used to as signal probe to realize both the detection of carcinoembryonic antigen (CEA) and the amplification of detection signal. In detection process of the sandwich-type electrochemical immunosensor, glassy carbon electrode (GCE) was modified with 2D COFTab-Dva first then connected with Ab1 by the thiol-ene "click" reaction, next quantitative CEA was captured, followed by specificially capturing signal probe of Ab2/AuNPs/COFTFPB-Thi where AuNPs acted as nanocarriers of Ab2 and COFTFPB-Thi served as the signal producers. As the amount of CEA was increased, the amount of signal probe captured to the electrode was also increased, and the peak signal intensity of the redox reaction of COFTFPB-Thi was enhanced accordingly. Thus, the quantitative detection of CEA could be realized according to the peak signal intensity of electroactive COFTFPB-Thi. The electrochemical immunosensor owned wide detection range of 0.11 ng/mL-80 ng/mL, low detection limit of 0.034 ng/mL and good practicability. This study opens up a new revelation for quantitative detection of CEA using electroactive COF as enhanced signal probe.
Collapse
Affiliation(s)
- Huihui Liang
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Ying Luo
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Yanyan Li
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Yonghai Song
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Li Wang
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| |
Collapse
|
44
|
Ding H, Mal A, Wang C. Energy Storage in Covalent Organic Frameworks: From Design Principles to Device Integration. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-1494-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
45
|
Wang S, Xin Y, Hu H, Su X, Wu J, Yan Q, Qian J, Xiao S, Gao Y. Adsorption of sulfur into an alkynyl-based covalent organic framework for mercury removal. RSC Adv 2022; 12:35445-35451. [DOI: 10.1039/d2ra06838a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 12/04/2022] [Indexed: 12/14/2022] Open
Abstract
A simple mercury removal strategy was developed that used a stable alkyl based covalent organic framework to adsorb sulfur first and then served as an adsorbent to remove Hg(ii) effectively.
Collapse
Affiliation(s)
- Shenglin Wang
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, No 58, Renmin Avenue, Haikou, 570228, China
| | - Yingxiang Xin
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P. R. China
| | - Hui Hu
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, No 58, Renmin Avenue, Haikou, 570228, China
| | - Xiaofang Su
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, No 58, Renmin Avenue, Haikou, 570228, China
| | - Jifeng Wu
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, No 58, Renmin Avenue, Haikou, 570228, China
| | - Qianqian Yan
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, No 58, Renmin Avenue, Haikou, 570228, China
| | - Jiaying Qian
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, No 58, Renmin Avenue, Haikou, 570228, China
| | - Songtao Xiao
- China Institute of Atomic Energy, Beijing, 102413, P. R. China
| | - Yanan Gao
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, No 58, Renmin Avenue, Haikou, 570228, China
| |
Collapse
|
46
|
Huang YY, Pang YH, Shen XF, Jiang R, Wang YY. Covalent organic framework DQTP modified pencil graphite electrode for simultaneous determination of bisphenol A and bisphenol S. Talanta 2022; 236:122859. [PMID: 34635243 DOI: 10.1016/j.talanta.2021.122859] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 05/07/2021] [Accepted: 09/05/2021] [Indexed: 02/07/2023]
Abstract
The sensitivity and selectivity of electrochemical analysis are challenging due to the materials used for electrode modification as well as electrical conductivity, catalytic activity and recognition ability of the working electrode. In this work, a portable 3D-printed electrochemical electrode clamp was designed and applied in combination with the developed covalent organic framework (COF DQTP)-modified pencil graphite electrode (DQTP/PGE). The β-ketoenamine-linked COF DQTP synthesized by 1,3,5-triformylphloroglucinol (TP) and 2,6-diaminoanthraquinone (DQ) through solvothermal method is a porous crystalline with excellent conductivity and large periodic π-arrays, coupled with commercial available pencil graphite electrode to fabricate a disposable sensor for simultaneous determination of environmental endocrine disruptors bisphenol A and bisphenol S. The DQTP/PGE sensor exhibited high electrical conductivity and catalytic activity, and a good linearity was obtained in a range of 0.5-30 μM for two bisphenols with a detection limit of 0.15 μM (S/N = 3). Moreover, the sensor showed a reproducible and stable response over one month with negligible interference, and an accepted recovery with real food packaging samples.
Collapse
Affiliation(s)
- Yu-Ying Huang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Yue-Hong Pang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
| | - Xiao-Fang Shen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Rui Jiang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Yi-Ying Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
47
|
Meng Z, Mirica KA. Covalent organic frameworks as multifunctional materials for chemical detection. Chem Soc Rev 2021; 50:13498-13558. [PMID: 34787136 PMCID: PMC9264329 DOI: 10.1039/d1cs00600b] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Indexed: 12/17/2022]
Abstract
Sensitive and selective detection of chemical and biological analytes is critical in various scientific and technological fields. As an emerging class of multifunctional materials, covalent organic frameworks (COFs) with their unique properties of chemical modularity, large surface area, high stability, low density, and tunable pore sizes and functionalities, which together define their programmable properties, show promise in advancing chemical detection. This review demonstrates the recent progress in chemical detection where COFs constitute an integral component of the achieved function. This review highlights how the unique properties of COFs can be harnessed to develop different types of chemical detection systems based on the principles of chromism, luminescence, electrical transduction, chromatography, spectrometry, and others to achieve highly sensitive and selective detection of various analytes, ranging from gases, volatiles, ions, to biomolecules. The key parameters of detection performance for target analytes are summarized, compared, and analyzed from the perspective of the detection mechanism and structure-property-performance correlations of COFs. Conclusions summarize the current accomplishments and analyze the challenges and limitations that exist for chemical detection under different mechanisms. Perspectives on how future directions of research can advance the COF-based chemical detection through innovation in novel COF design and synthesis, progress in device fabrication, and exploration of novel modes of detection are also discussed.
Collapse
Affiliation(s)
- Zheng Meng
- Department of Chemistry, Burke Laboratory, 41 College Street, Dartmouth College, Hanover, NH 03755, USA.
| | - Katherine A Mirica
- Department of Chemistry, Burke Laboratory, 41 College Street, Dartmouth College, Hanover, NH 03755, USA.
| |
Collapse
|
48
|
Troschke E, Oschatz M, Ilic IK. Schiff-bases for sustainable battery and supercapacitor electrodes. EXPLORATION (BEIJING, CHINA) 2021; 1:20210128. [PMID: 37323689 PMCID: PMC10190993 DOI: 10.1002/exp.20210128] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/02/2021] [Indexed: 06/15/2023]
Abstract
The quest for more efficient ways to store electrical energy prompted the development of different storage devices over the last decades. This includes but is not limited to different battery concepts and supercapacitors. However, modern batteries rely on electrochemical principles that often involve transition metals which can for instance suffer from toxicity or limited availability. More sustainable alternatives are needed. This sparked the search for organic electrode materials. Nevertheless, compared to their inorganic counterparts, organic electrode materials remain less intensely investigated. Besides the often more complicated electrochemical principles, one likely reason for that are the complex synthetic skills required to develop novel organic materials. Here we review materials synthesized by an old and comparably simple reaction from the field of organic chemistry, namely Schiff-base formation. This reaction can often yield materials under relatively mild conditions, making them especially interesting for the formation of sustainable electrodes. The main weakness of Schiff-base materials, susceptibility to hydrolysis, is of limited concern in most of the battery systems as they mostly anyways require water-free conditions. This review gives an overview of some selected nanomaterials obtained from Schiff-base formation as well as their carbonized derivatives which are of interest for energy storage. Firstly, the general chemistry of Schiff-bases is introduced, followed by an in-depth survey of the most important breakthroughs in the formation of organic battery electrodes that involve materials based on Schiff-base reaction. Lastly, an outlook considering the main hurdles as well as future perspectives of this research area is given.
Collapse
Affiliation(s)
- Erik Troschke
- Center for Energy and Environmental Chemistry Jena (CEEC Jena)Institute for Technical Chemistry and Environmental Chemistry, Friedrich‐Schiller‐University JenaJenaGermany
| | - Martin Oschatz
- Center for Energy and Environmental Chemistry Jena (CEEC Jena)Institute for Technical Chemistry and Environmental Chemistry, Friedrich‐Schiller‐University JenaJenaGermany
| | - Ivan K. Ilic
- Center for Nano Science and Technology@PoliMiIstituto Italiano di TecnologiaMilanItaly
| |
Collapse
|
49
|
Evans AM, Strauss MJ, Corcos AR, Hirani Z, Ji W, Hamachi LS, Aguilar-Enriquez X, Chavez AD, Smith BJ, Dichtel WR. Two-Dimensional Polymers and Polymerizations. Chem Rev 2021; 122:442-564. [PMID: 34852192 DOI: 10.1021/acs.chemrev.0c01184] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Synthetic chemists have developed robust methods to synthesize discrete molecules, linear and branched polymers, and disordered cross-linked networks. However, two-dimensional polymers (2DPs) prepared from designed monomers have been long missing from these capabilities, both as objects of chemical synthesis and in nature. Recently, new polymerization strategies and characterization methods have enabled the unambiguous realization of covalently linked macromolecular sheets. Here we review 2DPs and 2D polymerization methods. Three predominant 2D polymerization strategies have emerged to date, which produce 2DPs either as monolayers or multilayer assemblies. We discuss the fundamental understanding and scope of each of these approaches, including: the bond-forming reactions used, the synthetic diversity of 2DPs prepared, their multilayer stacking behaviors, nanoscale and mesoscale structures, and macroscale morphologies. Additionally, we describe the analytical tools currently available to characterize 2DPs in their various isolated forms. Finally, we review emergent 2DP properties and the potential applications of planar macromolecules. Throughout, we highlight achievements in 2D polymerization and identify opportunities for continued study.
Collapse
Affiliation(s)
- Austin M Evans
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States
| | - Michael J Strauss
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States
| | - Amanda R Corcos
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States
| | - Zoheb Hirani
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States
| | - Woojung Ji
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States
| | - Leslie S Hamachi
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States.,Department of Chemistry and Biochemistry, California Polytechnic State University, San Luis Obispo, California 93407, United States
| | - Xavier Aguilar-Enriquez
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States
| | - Anton D Chavez
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States
| | - Brian J Smith
- Department of Chemistry, Bucknell University,1 Dent Drive, Lewisburg, Pennsylvania 17837, United States
| | - William R Dichtel
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
50
|
Kumar S, Kulkarni VV, Jangir R. Covalent‐Organic Framework Composites: A Review Report on Synthesis Methods. ChemistrySelect 2021. [DOI: 10.1002/slct.202102435] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Shubham Kumar
- Department of Chemistry Sardar Vallabhbhai National Institute of Technology, Ichchanath Surat 395 007 Gujarat INDIA
| | - Vihangraj V. Kulkarni
- Faculty of Environmental Engineering Department of Civil Engineering National Institute of Technology Silchar Silchar 788010 Assam INDIA
| | - Ritambhara Jangir
- Department of Chemistry Sardar Vallabhbhai National Institute of Technology, Ichchanath Surat 395 007 Gujarat, INDIA
| |
Collapse
|