1
|
Mossburg KJ, Barragan D, O NH, Kian AC, Maidment ADA, Cormode DP. Emerging nanoparticle-based x-ray imaging contrast agents for breast cancer screening. Nanomedicine (Lond) 2025:1-18. [PMID: 40261216 DOI: 10.1080/17435889.2025.2496129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 04/17/2025] [Indexed: 04/24/2025] Open
Abstract
Breast cancer is one of the most common types of cancer, however, preventive screening has contributed to a significant reduction in mortality over the past four decades. The first-line screening methods for breast cancer, such as mammography and tomosynthesis, are x-ray-based modalities. Unfortunately, their cancer detection rates are low in patients with dense breasts. These, and other high-risk women, are now encouraged to receive supplemental screening. The supplemental imaging methods are diverse, including ultrasound, MRI, nuclear imaging, and X-ray-based modalities such as breast CT and contrast-enhanced mammography/tomosynthesis. Due to their low cost and wide availability, x-ray-based modalities see significant clinical use worldwide. These techniques benefit from the use of contrast agents, which are currently iodinated small molecules designed for other purposes. Consequently, developing new contrast agents that are specifically for breast cancer screening is of interest. This review describes these modalities and the nanoparticle-based contrast agents being researched for their enhanced performance. The relevant parameters for nanoparticle-based contrast agent design are evaluated, including contrast generation and potential biointeractions. Iodinated agents are discussed for comparison. Nanoparticles covered include silver sulfide, silver telluride, gold, and bismuth sulfide-based agents, among others. Finally, perspectives on future developments in this field are offered.
Collapse
Affiliation(s)
- Katherine J Mossburg
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Diego Barragan
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Nathaniel H O
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pharmaceutical Sciences, St. Joseph's University, Philadelphia, PA, USA
- Department of Physics, St. Joseph's University, Philadelphia, PA, USA
| | - Andrea C Kian
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrew D A Maidment
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - David P Cormode
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
2
|
Belyaev IB, Griaznova OY, Yaremenko AV, Deyev SM, Zelepukin IV. Beyond the EPR effect: Intravital microscopy analysis of nanoparticle drug delivery to tumors. Adv Drug Deliv Rev 2025:115550. [PMID: 40021012 DOI: 10.1016/j.addr.2025.115550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/18/2025] [Accepted: 02/18/2025] [Indexed: 03/03/2025]
Abstract
Delivery of nanoparticles (NPs) to solid tumors has long relied on enhanced permeability and retention (EPR) effect, involving permeation of NPs through a leaky vasculature with prolonged retention by reduced lymphatic drainage in tumor. Recent research studies and clinical data challenge EPR concept, revealing alternative pathways and approaches of NP delivery. The area was significantly impacted by the implementation of intravital optical microscopy, unraveling delivery mechanisms at cellular level in vivo. This review presents analysis of the reasons for EPR heterogeneity in tumors and describes non-EPR based concepts for drug delivery, which can supplement the current paradigm. One of the approaches is targeting tumor endothelium by NPs with subsequent intravascular drug release and gradient-driven drug transport to tumor interstitium. Others exploit various immune cells for tumor infiltration and breaking endothelial barriers. Finally, we discuss the involvement of active transcytosis through endothelial cells in NP delivery. This review aims to inspire further understanding of the process of NP extravasation in tumors and provide insights for developing next-generation nanomedicines with improved delivery.
Collapse
Affiliation(s)
- Iaroslav B Belyaev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia; Eindhoven University of Technology, Eindhoven 5600 MB, the Netherlands
| | - Olga Yu Griaznova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | | | - Sergey M Deyev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - Ivan V Zelepukin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia; Department of Immunology, Genetics and Pathology, Uppsala University 75123 Uppsala, Sweden.
| |
Collapse
|
3
|
López-Estévez AM, Carrascal-Miniño A, Torres D, Alonso MJ, de Rosales RTM, Pellico J. Biodistribution of 89Zr-Radiolabeled Nanoassemblies for Monoclonal Antibody Delivery Revealed through In Vivo PET Imaging. ACS OMEGA 2025; 10:4763-4773. [PMID: 39959112 PMCID: PMC11822718 DOI: 10.1021/acsomega.4c09823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/08/2025] [Accepted: 01/16/2025] [Indexed: 02/18/2025]
Abstract
Despite the outstanding performance of monoclonal antibodies (mAbs) in the clinic, their full potential has been hindered due to their inability to cross cell membranes and therefore reach intracellular targets. The use of nanotechnology to deliver mAbs to intracellular domains has been highlighted as a strategy with high potential. Working toward this goal, we have recently developed and validated palmitoyl hyaluronate (HAC16)-based nanoassemblies (HANAs), a novel technology for the intracellular delivery of mAbs in Kirsten Rat Sarcoma Virus (KRAS)-mutated tumors, one of the most prevalent and a challenging intracellular oncoprotein. Despite their success, the pharmacokinetics and biodistribution of these delivery vehicles are still unknown due to their chemical complexity, a challenge common to a large proportion of drug delivery nanomedicines. To support further development and clinical translation, we present an efficient radiolabeling approach with the positron emitter zirconium-89 (89Zr) for the in vivo evaluation of HANAs by whole-body PET imaging. Additionally, we assessed the impact of PEGylation and size modulation on the biodistribution profile of mAbs using 89Zr-radiolabeled PEGylated and non-PEGylated HANAs. Our PET imaging results demonstrated that HANAs significantly modify the pharmacokinetics and biodistribution of the 89Zr-mAb. Furthermore, we established that the biodistribution of HANAs can be conveniently modulated by introducing PEG polymers on the surface, facilitating customization for cancer applications. This versatile radiolabeling strategy provides a facile approach for the in vivo evaluation of complex nanoformulations loaded with mAbs, in a quantitative manner with high sensitivity.
Collapse
Affiliation(s)
- Ana M. López-Estévez
- Center
for Research in Molecular Medicine and Chronic Diseases (CiMUS), Health
Research Institute of Santiago de Compostela, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Department
of Pharmacology, Pharmacy and Pharmaceutical Technology, School of
Pharmacy, University of Santiago de Compostela, 15782 Santiago
de Compostela, Spain
| | - Amaia Carrascal-Miniño
- School
of Biomedical Engineering & Imaging Sciences, King’s College
London, St. Thomas’ Hospital, London SE1 7EH, U.K.
| | - Dolores Torres
- Department
of Pharmacology, Pharmacy and Pharmaceutical Technology, School of
Pharmacy, University of Santiago de Compostela, 15782 Santiago
de Compostela, Spain
| | - María José Alonso
- Center
for Research in Molecular Medicine and Chronic Diseases (CiMUS), Health
Research Institute of Santiago de Compostela, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Department
of Pharmacology, Pharmacy and Pharmaceutical Technology, School of
Pharmacy, University of Santiago de Compostela, 15782 Santiago
de Compostela, Spain
| | - Rafael T. M. de Rosales
- School
of Biomedical Engineering & Imaging Sciences, King’s College
London, St. Thomas’ Hospital, London SE1 7EH, U.K.
| | - Juan Pellico
- School
of Biomedical Engineering & Imaging Sciences, King’s College
London, St. Thomas’ Hospital, London SE1 7EH, U.K.
| |
Collapse
|
4
|
Einen C, Snipstad S, Wesche HF, Nordlund V, Devold EJ, Amini N, Hansen R, Sulheim E, Davies CDL. Impact of the tumor microenvironment on delivery of nanomedicine in tumors treated with ultrasound and microbubbles. J Control Release 2025; 378:656-670. [PMID: 39701458 DOI: 10.1016/j.jconrel.2024.12.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/08/2024] [Accepted: 12/15/2024] [Indexed: 12/21/2024]
Abstract
The delivery of nanoparticles to tumors has been shown preclinically to be improved by microbubble-mediated ultrasound. However, the mechanisms and biological effects are not fully understood. In this study, we explored the influence of the tumor microenvironment on nanoparticle uptake and microdistribution both with and without ultrasound and microbubble treatment. Three murine tumor models, KPC (pancreatic ductal adenocarcinoma), 4T1 (triple negative mammary carcinoma) and CT26 (colon carcinoma), were characterized with respect to extracellular matrix composition, tumor stiffness and perfusion. KPC and 4T1 tumors presented higher levels of collagen and hyaluronic acid and were stiffer compared to CT26, whereas all three tumors had similar levels of sulfated glycosaminoglycans. Furthermore, the 4T1 tumors appeared poorly vascularized with a lower cell density compared to KPC and CT26. All three tumors presented similar nanoparticle uptake, but extravasated nanoparticles traveled significantly shorter in KPC tumors compared to 4T1 and CT26. The effect of ultrasound and microbubble treatment on the tumor uptake and penetration of polymer nanoparticles into the extracellular matrix were evaluated using a treatment protocol previously shown to increase nanoparticle delivery to tumors. Interestingly, we found a significant increase in nanoparticle uptake in the soft CT26 tumor, but no effect of the ultrasound treatment in the stiff KPC and 4T1 tumors, suggesting that tumor stiffness is an important parameter for treatment with ultrasound and microbubbles. Ultrasound treatment resulted in a modest but not statistically significant improvement in nanoparticle penetration through the extracellular matrix. In tumors demonstrating increased uptake of nanoparticles following ultrasound treatment, the uptake correlated positively with blood volume. These findings emphasize the importance of taking the tumor microenvironment into consideration when optimizing ultrasound parameters for delivery of nanomedicine.
Collapse
Affiliation(s)
- Caroline Einen
- Porelab and Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway.
| | - Sofie Snipstad
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway; Cancer Clinic, St. Olav's Hospital, Trondheim, Norway
| | - Håkon F Wesche
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Veronica Nordlund
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ella J Devold
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Rune Hansen
- Department of Health Research, SINTEF Digital, Trondheim, Norway; Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - Einar Sulheim
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway; Institute for Research in Biomedicine, Bellinzona, Switzerland
| | | |
Collapse
|
5
|
Rossmeisl JH. Novel Treatments for Brain Tumors. Vet Clin North Am Small Anim Pract 2025; 55:81-94. [PMID: 39393932 DOI: 10.1016/j.cvsm.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
The blood-brain barrier and knowledge gaps in tumor biology remain significant obstacles to the development of effective treatments for brain tumors. The identification of shared molecular and genetic pathways that contribute to tumorigenesis in both dogs and people has been key to the discovery and translation of targeted pharmacologic and biologic therapies. Treatment approaches often utilize targeted or multifunctional antitumor agents, such as nanocarriers, molecularly targeted agents, immunotherapeutics, and oncolytic viruses in combination with alternative therapeutic delivery strategies. The article discusses about various treatments albeit none of the treatments discussed here are widely available or approved for clinical use.
Collapse
Affiliation(s)
- John H Rossmeisl
- Department of Small Animal Clinical Sciences, Veterinary and Comparative Neuro-oncology Laboratory, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, 205 Duckpond Drive, Blacksburg, VA 24061, USA.
| |
Collapse
|
6
|
Cooley M, Wegierak D, Perera R, Abenojar E, Nittayacharn P, Berg FM, Kim Y, Kolios MC, Exner AA. Assessing Therapeutic Nanoparticle Accumulation in Tumors Using Nanobubble-Based Contrast-Enhanced Ultrasound Imaging. ACS NANO 2024; 18:33181-33196. [PMID: 39566912 PMCID: PMC11619768 DOI: 10.1021/acsnano.4c11805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/21/2024] [Accepted: 10/25/2024] [Indexed: 11/22/2024]
Abstract
This study explores the challenges associated with nanoparticle-based drug delivery to the tumor parenchyma, focusing on the widely utilized enhanced permeability and retention effect (EPR). While EPR has been a key strategy, its inconsistent clinical success lacks clear mechanistic understanding and is hindered by limited tools for studying relevant phenomena. This work introduces an approach that employs multiparametric dynamic contrast-enhanced ultrasound (CEUS) with a nanoscale contrast agent for noninvasive, real-time examination of tumor microenvironment characteristics. We demonstrate that CEUS imaging can: (1) evaluate tumor microenvironment features, (2) be used to help predict the distribution of doxorubicin-loaded liposomes in the tumor parenchyma, and (3) be used to predict nanotherapeutic efficacy. CEUS using nanobubbles (NBs) was carried out in two tumor types of high (LS174T) and low (U87) vascular permeability. LS174T tumors consistently showed significantly different time intensity curve (TIC) parameters, including area under the rising curve (AUCR, 2.7×) and time to peak intensity (TTP, 1.9×) compared to U87 tumors. Crucially, a recently developed decorrelation time (DT) parameter specific to NB CEUS dynamics successfully predicted the distribution of doxorubicin-loaded liposomes within the tumor parenchyma (r = 0.86 ± 0.13). AUCR, TTP, and DT were used to correlate imaging findings to nanotherapeutic response with 100% accuracy in SKOV-3 tumors. These findings suggest that NB-CEUS parameters can effectively discern tumor vascular permeability, serving as a biomarker for identifying tumor characteristics and predicting the responsiveness to nanoparticle-based therapies. The observed differences between LS174T and U87 tumors and the accurate prediction of nanotherapeutic efficacy in SKOV-3 tumors indicate the potential utility of this method in predicting treatment efficacy and evaluating EPR in diseases characterized by pathologically permeable vasculature. Ultimately, this research contributes valuable insights into refining drug delivery strategies and assessing the broader applicability of EPR-based approaches.
Collapse
Affiliation(s)
- Michaela
B. Cooley
- Department
of Biomedical Engineering, Case Western
Reserve University, Cleveland, Ohio 44106, United States
| | - Dana Wegierak
- Department
of Biomedical Engineering, Case Western
Reserve University, Cleveland, Ohio 44106, United States
| | - Reshani Perera
- Department
of Radiology, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Eric Abenojar
- Department
of Radiology, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Pinunta Nittayacharn
- Department
of Radiology, Case Western Reserve University, Cleveland, Ohio 44106, United States
- Department
of Biomedical Engineering, Faculty of Engineering, Mahidol University, Phutthamonthon, Nakhon Pathom 73170, Thailand
| | - Felipe M. Berg
- Department
of Biomedical Engineering, Case Western
Reserve University, Cleveland, Ohio 44106, United States
- Hospital
Israelita Albert Einstein, São
Paulo, São Paulo 05652-900, Brazil
| | - Youjoung Kim
- Department
of Biomedical Engineering, Case Western
Reserve University, Cleveland, Ohio 44106, United States
| | - Michael C. Kolios
- Department
of Physics, Toronto Metropolitan University, Toronto, Ontario M5B 2K3, Canada
- Institute
for Biomedical Engineering, Science and Technology (iBEST), A Partnership
between St. Michael’s Hospital, A
Site of Unity Health Toronto and Toronto Metropolitan University, Toronto, Ontario M5B 2K3, Canada
| | - Agata A. Exner
- Department
of Biomedical Engineering, Case Western
Reserve University, Cleveland, Ohio 44106, United States
- Department
of Radiology, Case Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|
7
|
Cao Z, Liu J, Yang X. Deformable nanocarriers for enhanced drug delivery and cancer therapy. EXPLORATION (BEIJING, CHINA) 2024; 4:20230037. [PMID: 39439489 PMCID: PMC11491306 DOI: 10.1002/exp.20230037] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 01/28/2024] [Indexed: 10/25/2024]
Abstract
Recently, the field of nanomedicine has witnessed substantial advancements in the development of nanocarriers for targeted drug delivery, emerges as promising platforms to enhance therapeutic efficacy and minimize adverse effects associated with conventional chemotherapy. Notably, deformable nanocarriers have garnered considerable attention due to their unique capabilities of size changeable, tumor-specific aggregation, stimuli-triggered disintegration, and morphological transformations. These deformable nanocarriers present significant opportunities for revolutionizing drug delivery strategies, by responding to specific stimuli or environmental cues, enabling achieved various functions at the tumor site, including size-shrinkage nanocarriers enhance drug penetration, aggregative nanocarriers enhance retention effect, disintegrating nanocarriers enable controlled drug release, and shape-changing nanocarriers improve cellular uptake, allowing for personalized treatment approaches and combination therapies. This review provides an overview of recent developments and applications of deformable nanocarriers for enhancing tumor therapy, underscores the diverse design strategies employed to create deformable nanocarriers and elucidates their remarkable potential in targeted tumor therapy.
Collapse
Affiliation(s)
- Ziyang Cao
- Department of General SurgeryGuangzhou First People's Hospitalthe Second Affiliated HospitalSouth China University of TechnologyGuangzhouPeople's Republic of China
- Center for Medical Research on Innovation and TranslationInstitute of Clinical MedicineSchool of MedicineGuangzhou First People's HospitalSouth China University of TechnologyGuangzhouPeople's Republic of China
| | - Jing Liu
- School of ChemistryChemical Engineering and Biotechnology Nanyang Technological UniversitySingaporeSingapore
| | - Xianzhu Yang
- School of Biomedical Sciences and EngineeringSouth China University of TechnologyGuangzhou International CampusGuangzhouGuangdongPeople's Republic of China
| |
Collapse
|
8
|
Kalra J, Baker J, Sun X, Kyle A, Minchinton A, Bally MB. Accumulation of liposomes in metastatic tumor sites is not necessary for anti-cancer drug efficacy. J Transl Med 2024; 22:621. [PMID: 38961395 PMCID: PMC11223361 DOI: 10.1186/s12967-024-05428-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/21/2024] [Indexed: 07/05/2024] Open
Abstract
BACKGROUND The tumor microenvironment is profoundly heterogeneous particularly when comparing sites of metastases. Establishing the extent of this heterogeneity may provide guidance on how best to design lipid-based drug delivery systems to treat metastatic disease. Building on our previous research, the current study employs a murine model of metastatic cancer to explore the distribution of ~ 100 nm liposomes. METHODS Female NCr nude mice were inoculated with a fluorescently labeled, Her2/neu-positive, trastuzumab-resistant breast cancer cell line, JIMT-1mkate, either in the mammary fat pad to create an orthotopic tumor (OT), or via intracardiac injection (IC) to establish tumors throughout the body. Animals were dosed with fluorescent and radio-labeled liposomes. In vivo and ex vivo fluorescent imaging was used to track liposome distribution over a period of 48 h. Liposome distribution in orthotopic tumors was compared to sites of tumor growth that arose following IC injection. RESULTS A significant amount of inter-vessel heterogeneity for DiR distribution was observed, with most tumor blood vessels showing little to no presence of the DiR-labelled liposomes. Further, there was limited extravascular distribution of DiR liposomes in the perivascular regions around DiR-positive vessels. While all OT tumors contained at least some DiR-positive vessels, many metastases had very little or none. Despite the apparent limited distribution of liposomes within metastases, two liposomal drug formulations, Irinophore C and Doxil, showed similar efficacy for both the OT and IC JIMT-1mkate models. CONCLUSION These findings suggest that liposomal formulations achieve therapeutic benefits through mechanisms that extend beyond the enhanced permeability and retention effect.
Collapse
Affiliation(s)
- Jessica Kalra
- Experimental Therapeutics, BC Cancer Research Institute, Vancouver, BC, Canada.
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada.
| | - Jennifer Baker
- Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
| | - XuXin Sun
- Experimental Therapeutics, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Alastair Kyle
- Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Andrew Minchinton
- Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Marcel B Bally
- Experimental Therapeutics, BC Cancer Research Institute, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
- NanoMedicine Innovation Network, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
9
|
Meher N, Ashley GW, Bobba KN, Wadhwa A, Bidkar AP, Dasari C, Mu C, Sankaranarayanan RA, Serrano JAC, Raveendran A, Bulkley DP, Aggarwal R, Greenland NY, Oskowitz A, Wilson DM, Seo Y, Santi DV, VanBrocklin HF, Flavell RR. Prostate-Specific Membrane Antigen Targeted StarPEG Nanocarrier for Imaging and Therapy of Prostate Cancer. Adv Healthc Mater 2024; 13:e2304618. [PMID: 38700450 PMCID: PMC11281871 DOI: 10.1002/adhm.202304618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 04/29/2024] [Indexed: 05/05/2024]
Abstract
The tumor uptake of large non-targeted nanocarriers primarily occurs through passive extravasation, known as the enhanced permeability and retention (EPR) effect. Prior studies demonstrated improved tumor uptake and retention of 4-arm 40 kDa star polyethylene glycol (StarPEG) polymers for cancer imaging by adding prostate-specific membrane antigen (PSMA) targeting small molecule ligands. To test PSMA-targeted delivery and therapeutic efficacy, StarPEG nanodrugs with/without three copies of PSMA-targeting ligands, ACUPA, are designed and synthesized. For single-photon emission computed tomography (SPECT) imaging and therapy, each nanocarrier is labeled with 177Lu using DOTA radiometal chelator. The radiolabeled nanodrugs, [177Lu]PEG-(DOTA)1 and [177Lu]PEG-(DOTA)1(ACUPA)3, are evaluated in vitro and in vivo using PSMA+ PC3-Pip and/or PSMA- PC3-Flu cell lines, subcutaneous xenografts and disseminated metastatic models. The nanocarriers are efficiently radiolabeled with 177Lu with molar activities 10.8-15.8 MBq/nmol. Besides excellent in vitro PSMA binding affinity (kD = 51.7 nM), the targeted nanocarrier, [177Lu]PEG-(DOTA)1(ACUPA)3, demonstrated excellent in vivo SPECT imaging contrast with 21.3% ID/g PC3-Pip tumors uptake at 192 h. Single doses of 18.5 MBq [177Lu]PEG-(DOTA)1(ACUPA)3 showed complete resolution of the PC3-Pip xenografts observed up to 138 days. Along with PSMA-targeted excellent imaging contrast, these results demonstrated high treatment efficacy of [177Lu]PEG-(DOTA)1(ACUPA)3 for prostate cancer, with potential for clinical translation.
Collapse
Affiliation(s)
- Niranjan Meher
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94143, United States
- National Institute of Pharmaceutical Education and Research, Raebareli, Lucknow, UP 226002, India
| | | | - Kondapa Naidu Bobba
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94143, United States
| | - Anju Wadhwa
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94143, United States
| | - Anil P. Bidkar
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94143, United States
| | - Chandrashekhar Dasari
- Division of Vascular and Endovascular Surgery, University of California, San Francisco, CA 94143-0957, United States
| | - Changhua Mu
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94143, United States
| | - Ramya Ambur Sankaranarayanan
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94143, United States
| | - Juan A. Camara Serrano
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143-0981, United States
| | - Athira Raveendran
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94143, United States
| | - David P. Bulkley
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, United States
| | - Rahul Aggarwal
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143-0981, United States
| | - Nancy Y. Greenland
- Department of Pathology, University of California, San Francisco, CA 94143, United States
| | - Adam Oskowitz
- Division of Vascular and Endovascular Surgery, University of California, San Francisco, CA 94143-0957, United States
| | - David M. Wilson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94143, United States
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143-0981, United States
| | - Youngho Seo
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94143, United States
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143-0981, United States
| | | | - Henry F. VanBrocklin
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94143, United States
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143-0981, United States
| | - Robert R. Flavell
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94143, United States
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143-0981, United States
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158-2517, United States
| |
Collapse
|
10
|
Saadh MJ, Mustafa MA, Kumar A, Alamir HTA, Kumar A, Khudair SA, Faisal A, Alubiady MHS, Jalal SS, Shafik SS, Ahmad I, Khry FAF, Abosaoda MK. Stealth Nanocarriers in Cancer Therapy: a Comprehensive Review of Design, Functionality, and Clinical Applications. AAPS PharmSciTech 2024; 25:140. [PMID: 38890191 DOI: 10.1208/s12249-024-02843-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 05/13/2024] [Indexed: 06/20/2024] Open
Abstract
Nanotechnology has significantly transformed cancer treatment by introducing innovative methods for delivering drugs effectively. This literature review provided an in-depth analysis of the role of nanocarriers in cancer therapy, with a particular focus on the critical concept of the 'stealth effect.' The stealth effect refers to the ability of nanocarriers to evade the immune system and overcome physiological barriers. The review investigated the design and composition of various nanocarriers, such as liposomes, micelles, and inorganic nanoparticles, highlighting the importance of surface modifications and functionalization. The complex interaction between the immune system, opsonization, phagocytosis, and the protein corona was examined to understand the stealth effect. The review carefully evaluated strategies to enhance the stealth effect, including surface coating with polymers, biomimetic camouflage, and targeting ligands. The in vivo behavior of stealth nanocarriers and their impact on pharmacokinetics, biodistribution, and toxicity were also systematically examined. Additionally, the review presented clinical applications, case studies of approved nanocarrier-based cancer therapies, and emerging formulations in clinical trials. Future directions and obstacles in the field, such as advancements in nanocarrier engineering, personalized nanomedicine, regulatory considerations, and ethical implications, were discussed in detail. The review concluded by summarizing key findings and emphasizing the transformative potential of stealth nanocarriers in revolutionizing cancer therapy. This review enhanced the comprehension of nanocarrier-based cancer therapies and their potential impact by providing insights into advanced studies, clinical applications, and regulatory considerations.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan.
| | - Mohammed Ahmed Mustafa
- Department of Medical Laboratory Technology, University of Imam Jaafar AL-Sadiq, Baghdad, Iraq
| | - Ashwani Kumar
- Department of Life Sciences, School of Sciences, Jain (Deemed-to-be) University, Bengaluru, Karnataka, India
- Department of Pharmacy, Vivekananda Global University, Jaipur, Rajasthan, India
| | | | - Abhishek Kumar
- School of Pharmacy-Adarsh Vijendra Institute of Pharmaceutical Sciences, Shobhit University, Gangoh, 247341, Uttar Pradesh, India
- Department of Pharmacy, Arka Jain University, Jamshedpur, Jharkhand, 831001, India
| | | | - Ahmed Faisal
- Department of Pharmacy, Al-Noor University College, Nineveh, Iraq
| | | | - Sarah Salah Jalal
- College of Pharmacy, National University of Science and Technology, Nasiriyah, Dhi Qar, Iraq
| | - Shafik Shaker Shafik
- Experimental Nuclear Radiation Group, Scientific Research Center, Al-Ayen University, Thi-Qar, Iraq
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Faeza A F Khry
- Faculty of pharmacy, department of pharmaceutics, Al-Esraa University, Baghdad, Iraq
| | - Munther Kadhim Abosaoda
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- College of Technical Engineering, The Islamic University of Al Diwaniyah, Qadisiyyah, Iraq
- College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
11
|
Jiang Z, Fu Y, Shen H. Development of Intratumoral Drug Delivery Based Strategies for Antitumor Therapy. Drug Des Devel Ther 2024; 18:2189-2202. [PMID: 38882051 PMCID: PMC11179649 DOI: 10.2147/dddt.s467835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/23/2024] [Indexed: 06/18/2024] Open
Abstract
Research for tumor treatment with significant therapy effects and minimal side-effects has been widely carried over the past few decades. Different drug forms have received a lot of attention. However, systemic biodistribution induces efficacy and safety issues. Intratumoral delivery of agents might overcome these problems because of its abundant tumor accumulation and retention, thereby reducing side effects. Delivering hydrogels, nanoparticles, microneedles, and microspheres drug carriers directly to tumors can realize not only targeted tumor therapy but also low side-effects. Furthermore, intratumoral administration has been integrated with treatment strategies such as chemotherapy, enhancing radiotherapy, immunotherapy, phototherapy, magnetic fluid hyperthermia, and multimodal therapy. Some of these strategies are ongoing clinical trials or applied clinically. However, many barriers hinder it from being an ideal and widely used option, such as decreased drug penetration impeded by collagen fibers of a tumor, drug squeezed out by high density and high pressure, mature intratumoral injection technique. In this review, we systematically discuss intratumoral delivery of different drug carriers and current development of intratumoral therapy strategies.
Collapse
Affiliation(s)
- Zhimei Jiang
- Department of Pharmacy, West China Second University Hospital of Sichuan University, Chengdu, People’s Republic of China
- Evidence-Based Pharmacy Center, West China Second University Hospital of Sichuan University, Chengdu, People’s Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, People’s Republic of China
| | - Yuzhi Fu
- Department of Pharmacy, West China Second University Hospital of Sichuan University, Chengdu, People’s Republic of China
- Evidence-Based Pharmacy Center, West China Second University Hospital of Sichuan University, Chengdu, People’s Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, People’s Republic of China
| | - Hongxin Shen
- Department of Pharmacy, West China Second University Hospital of Sichuan University, Chengdu, People’s Republic of China
- Evidence-Based Pharmacy Center, West China Second University Hospital of Sichuan University, Chengdu, People’s Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, People’s Republic of China
| |
Collapse
|
12
|
Maitz CA, Bryan JN. The role of companion animal models in radiopharmaceutical development and translation. Vet Comp Oncol 2024; 22:165-173. [PMID: 38439693 DOI: 10.1111/vco.12969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/29/2024] [Accepted: 02/14/2024] [Indexed: 03/06/2024]
Abstract
Advancements in molecular imaging and drug targeting have created a renaissance in the development of radiopharmaceuticals for therapy and theranostics. While some radiopharmaceuticals, such as Na[131I]I, have been used clinically for decades, new agents are being approved using small-molecules, peptides, and antibodies for targeting. As these agents are being developed, the need to understand dosimetry and biologic effects of the systemically delivered radiotherapy becomes more important, particularly as highly potent radiopharmaceuticals using targeted alpha therapy become clinically utilized. As the processes being targeted become more complex, and the radiobiology of different particulate radiation becomes more diverse, models that better recapitulate human cancer and geometry are necessary. Companion animals develop many of the same types of cancer, carrying many of the same genetic drivers as those seen in people, and the scale and geometry of tumours in dogs more closely mimics those in humans than murine tumour models. Key translational challenges in oncology, such as alterations in tumour microenvironment, hypoxia, heterogeneity, and geometry are addressed by companion animal models. This review paper will provide background on radiopharmaceutical targeting techniques, review the use of radiopharmaceuticals in companion animal oncology, and explore the translational value of treating these patients in terms of dosimetry, treatment outcomes, and normal tissue complication rates.
Collapse
Affiliation(s)
- Charles A Maitz
- Comparative Oncology Radiobiology and Epigenetics Laboratory, Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, Missouri, USA
| | - Jeffrey N Bryan
- Comparative Oncology Radiobiology and Epigenetics Laboratory, Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
13
|
Zygmunt A, Gubernator J. Metabolism and structure of PDA as the target for new therapies: possibilities and limitations for nanotechnology. Expert Opin Drug Deliv 2024; 21:845-865. [PMID: 38899424 DOI: 10.1080/17425247.2024.2370492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/17/2024] [Indexed: 06/21/2024]
Abstract
INTRODUCTION Certainly, pancreatic ductal adenocarcinoma poses one of the greatest challenges in current oncology. The dense extracellular matrix and low vessel density in PDA tumor impede the effective delivery of drugs, primarily due to the short pharmacokinetics of most drugs and potential electrostatic interactions with stroma components. AREA COVERED Owing to the distinctive metabolism of PDA and challenges in accessing nutrients, there is a growing interest in cell metabolism inhibitors as a potential means to inhibit cancer development. However, even if suitable combinations of inhibitors are identified, the question about their administration remains, as the same hindrances that impede effective treatment with conventional drugs will also hinder the delivery of inhibitors. Methods including nanotechnology to increase drugs in PDA penetrations are reviewed and discussed. EXPERT OPINION Pancreatic cancer is one of the most difficult tumors to treat due to the small number of blood vessels, high content of extracellular matrix, and specialized resistance mechanisms of tumor cells. One possible method of treating this tumor is the use of metabolic inhibitors in combinations that show synergy. Despite promising results in in vitro tests, their effect is uncertain due to the tumor's structure. In the case of pancreatic cancer, priming of the tumor tissue is required through the sequential administration of drugs that generate blood vessels, increase blood flow, and enhance vascular permeability and extracellular matrix. The use of drug carriers with a size of 10-30 nm may be crucial in the therapy of this cancer.
Collapse
Affiliation(s)
- Adrianna Zygmunt
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Jerzy Gubernator
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| |
Collapse
|
14
|
Abstract
The recent emergence of nanomedicine has revolutionized the therapeutic landscape and necessitated the creation of more sophisticated drug delivery systems. Polymeric nanoparticles sit at the forefront of numerous promising drug delivery designs, due to their unmatched control over physiochemical properties such as size, shape, architecture, charge, and surface functionality. Furthermore, polymeric nanoparticles have the ability to navigate various biological barriers to precisely target specific sites within the body, encapsulate a diverse range of therapeutic cargo and efficiently release this cargo in response to internal and external stimuli. However, despite these remarkable advantages, the presence of polymeric nanoparticles in wider clinical application is minimal. This review will provide a comprehensive understanding of polymeric nanoparticles as drug delivery vehicles. The biological barriers affecting drug delivery will be outlined first, followed by a comprehensive description of the various nanoparticle designs and preparation methods, beginning with the polymers on which they are based. The review will meticulously explore the current performance of polymeric nanoparticles against a myriad of diseases including cancer, viral and bacterial infections, before finally evaluating the advantages and crucial challenges that will determine their wider clinical potential in the decades to come.
Collapse
Affiliation(s)
- Maximilian
A. Beach
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Umeka Nayanathara
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yanting Gao
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Changhe Zhang
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yijun Xiong
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yufu Wang
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Georgina K. Such
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
15
|
Fang X, Feng J, Zhu X, Feng D, Zheng L. Plant-derived vesicle-like nanoparticles: A new tool for inflammatory bowel disease and colitis-associated cancer treatment. Mol Ther 2024; 32:890-909. [PMID: 38369751 PMCID: PMC11163223 DOI: 10.1016/j.ymthe.2024.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/03/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024] Open
Abstract
Long-term use of conventional drugs to treat inflammatory bowel diseases (IBD) and colitis-associated cancer (CAC) has an adverse impact on the human immune system and easily leads to drug resistance, highlighting the urgent need to develop novel biotherapeutic tools with improved activity and limited side effects. Numerous products derived from plant sources have been shown to exert antibacterial, anti-inflammatory and antioxidative stress effects. Plant-derived vesicle-like nanoparticles (PDVLNs) are natural nanocarriers containing lipids, protein, DNA and microRNA (miRNA) with the ability to enter mammalian cells and regulate cellular activity. PDVLNs have significant potential in immunomodulation of macrophages, along with regulation of intestinal microorganisms and friendly antioxidant activity, as well as overcoming drug resistance. PDVLNs have utility as effective drug carriers and potential modification, with improved drug stability. Since immune function, intestinal microorganisms, and antioxidative stress are commonly targeted key phenomena in the treatment of IBD and CAC, PDVLNs offer a novel therapeutic tool. This review provides a summary of the latest advances in research on the sources and extraction methods, applications and mechanisms in IBD and CAC therapy, overcoming drug resistance, safety, stability, and clinical application of PDVLNs. Furthermore, the challenges and prospects of PDVLN-based treatment of IBD and CAC are systematically discussed.
Collapse
Affiliation(s)
- Xuechun Fang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Junjie Feng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xingcheng Zhu
- Medical Laboratory Department, Second People's Hospital, Qujing 655000, China
| | - Dan Feng
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510182, China
| | - Lei Zheng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
16
|
Meng Y, Gao J, Zhou P, Qin X, Tian M, Wang X, Zhou C, Li K, Huang F, Cao Y. NIR-II Conjugated Electrolytes as Biomimetics of Lipid Bilayers for In Vivo Liposome Tracking. Angew Chem Int Ed Engl 2024; 63:e202318632. [PMID: 38327029 DOI: 10.1002/anie.202318632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/09/2024]
Abstract
Liposomes serve as promising and versatile vehicles for drug delivery. Tracking these nanosized vesicles, particularly in vivo, is crucial for understanding their pharmacokinetics. This study introduces the design and synthesis of three new conjugated electrolyte (CE) molecules, which emit in the second near-infrared window (NIR-II), facilitating deeper tissue penetration. Additionally, these CEs, acting as biomimetics of lipid bilayers, demonstrate superior compatibility with lipid membranes compared to commonly used carbocyanine dyes like DiR. To counteract the aggregation-caused quenching effect, CEs employ a twisted backbone, as such their fluorescence intensities can effectively enhance after a fluorophore multimerization strategy. Notably, a "passive" method was employed to integrate CEs into liposomes during the liposome formation, and membrane incorporation efficiency was significantly promoted to nearly 100%. To validate the in vivo tracking capability, the CE-containing liposomes were functionalized with cyclic arginine-glycine-aspartic acid (cRGD) peptides, serving as tumor-targeting ligands. Clear fluorescent images visualizing tumor site in living mice were captured by collecting the NIR-II emission. Uniquely, these CEs exhibit additional emission peak in visible region, enabling in vitro subcellular analysis using routine confocal microscopy. These results underscore the potential of CEs as a new-generation of membrane-targeting probes to facilitate the liposome-based medicine research.
Collapse
Affiliation(s)
- Yingying Meng
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, 510640, Guangzhou, P. R. China
| | - Ji Gao
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Peirong Zhou
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, 510640, Guangzhou, P. R. China
| | - Xudong Qin
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, 510640, Guangzhou, P. R. China
| | - Miao Tian
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 510640, Guangzhou, China
| | - Xiaohui Wang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 510640, Guangzhou, China
| | - Cheng Zhou
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, 510640, Guangzhou, P. R. China
| | - Kai Li
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Fei Huang
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, 510640, Guangzhou, P. R. China
| | - Yong Cao
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, 510640, Guangzhou, P. R. China
| |
Collapse
|
17
|
Dixit T, Dave N, Basu K, Sonawane P, Gawas T, Ravindran S. Nano-radiopharmaceuticals as therapeutic agents. Front Med (Lausanne) 2024; 11:1355058. [PMID: 38560384 PMCID: PMC10978739 DOI: 10.3389/fmed.2024.1355058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/26/2024] [Indexed: 04/04/2024] Open
Abstract
In recent years, there has been an increased interest in exploring the potential synergy between nanotechnology and nuclear medicine. The application of radioactive isotopes, commonly referred to as radiopharmaceuticals, is recognized in nuclear medicine for diagnosing and treating various diseases. Unlike conventional pharmaceutical agents, radiopharmaceuticals are designed to work without any pharmacological impact on the body. Nevertheless, the radiation dosage employed in radiopharmaceuticals is often sufficiently high to elicit adverse effects associated with radiation exposure. Exploiting their capacity for selective accumulation on specific organ targets, radiopharmaceuticals have utility in treating diverse disorders. The incorporation of nanosystems may additionally augment the targeting capability of radiopharmaceuticals, leveraging their distinct pharmacokinetic characteristics. Conversely, radionuclides could be used in research to assess nanosystems pharmacologically. However, more investigation is needed to verify the safety and effectiveness of radiopharmaceutical applications mediated by nanosystems. The use of nano-radiopharmaceuticals as therapeutic agents to treat various illnesses and disorders is majorly covered in this review. The targeted approach to cancer therapy and various types of nanotools for nano-radiopharmaceutical delivery, is also covered in this article.
Collapse
Affiliation(s)
| | | | | | | | | | - Selvan Ravindran
- Symbiosis School of Biological Sciences, Faculty of Medical and Health Sciences, Symbiosis International (Deemed University), Lavale, Pune, India
| |
Collapse
|
18
|
Cooley MB, Wegierak D, Exner AA. Using imaging modalities to predict nanoparticle distribution and treatment efficacy in solid tumors: The growing role of ultrasound. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1957. [PMID: 38558290 PMCID: PMC11006412 DOI: 10.1002/wnan.1957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 12/22/2023] [Accepted: 02/27/2024] [Indexed: 04/04/2024]
Abstract
Nanomedicine in oncology has not had the success in clinical impact that was anticipated in the early stages of the field's development. Ideally, nanomedicines selectively accumulate in tumor tissue and reduce systemic side effects compared to traditional chemotherapeutics. However, this has been more successful in preclinical animal models than in humans. The causes of this failure to translate may be related to the intra- and inter-patient heterogeneity of the tumor microenvironment. Predicting whether a patient will respond positively to treatment prior to its initiation, through evaluation of characteristics like nanoparticle extravasation and retention potential in the tumor, may be a way to improve nanomedicine success rate. While there are many potential strategies to accomplish this, prediction and patient stratification via noninvasive medical imaging may be the most efficient and specific strategy. There have been some preclinical and clinical advances in this area using MRI, CT, PET, and other modalities. An alternative approach that has not been studied as extensively is biomedical ultrasound, including techniques such as multiparametric contrast-enhanced ultrasound (mpCEUS), doppler, elastography, and super-resolution processing. Ultrasound is safe, inexpensive, noninvasive, and capable of imaging the entire tumor with high temporal and spatial resolution. In this work, we summarize the in vivo imaging tools that have been used to predict nanoparticle distribution and treatment efficacy in oncology. We emphasize ultrasound imaging and the recent developments in the field concerning CEUS. The successful implementation of an imaging strategy for prediction of nanoparticle accumulation in tumors could lead to increased clinical translation of nanomedicines, and subsequently, improved patient outcomes. This article is categorized under: Diagnostic Tools In Vivo Nanodiagnostics and Imaging Therapeutic Approaches and Drug Discovery Nanomedicine for Oncologic Disease Therapeutic Approaches and Drug Discovery Emerging Technologies.
Collapse
Affiliation(s)
- Michaela B Cooley
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Dana Wegierak
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Agata A Exner
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Radiology, Case Western Reserve University and University Hospitals of Cleveland, Cleveland, Ohio, USA
| |
Collapse
|
19
|
Nair R, Paul P, Maji I, Gupta U, Mahajan S, Aalhate M, Guru SK, Singh PK. Exploring the current landscape of chitosan-based hybrid nanoplatforms as cancer theragnostic. Carbohydr Polym 2024; 326:121644. [PMID: 38142105 DOI: 10.1016/j.carbpol.2023.121644] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 11/24/2023] [Indexed: 12/25/2023]
Abstract
In the last decade, investigators have put significant efforts to develop several diagnostic and therapeutic strategies against cancer. Many novel nanoplatforms, including lipidic, metallic, and inorganic nanocarriers, have shown massive potential at preclinical and clinical stages for cancer diagnosis and treatment. Each of these nano-systems is distinct with its own benefits and limitations. The need to overcome the limitations of single-component nano-systems, improve their morphological and biological features, and achieve multiple functionalities has resulted in the emergence of hybrid nanoparticles (HNPs). These HNPs integrate multicomponent nano-systems with diagnostic and therapeutic functions into a single nano-system serving as promising nanotools for cancer theragnostic applications. Chitosan (CS) being a mucoadhesive, biodegradable, and biocompatible biopolymer, has emerged as an essential element for the development of HNPs offering several advantages over conventional nanoparticles including pH-dependent drug delivery, sustained drug release, and enhanced nanoparticle stability. In addition, the free protonable amino groups in the CS backbone offer flexibility to its structure, making it easy for the modification and functionalization of CS, resulting in better drug targetability and cell uptake. This review discusses in detail the existing different oncology-directed CS-based HNPs including their morphological characteristics, in-vitro/in-vivo outcomes, toxicity concerns, hurdles in clinical translation, and future prospects.
Collapse
Affiliation(s)
- Rahul Nair
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Priti Paul
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Indrani Maji
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Ujala Gupta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Srushti Mahajan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Mayur Aalhate
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Santosh Kumar Guru
- Department of Biological Science, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India.
| |
Collapse
|
20
|
Zalatan JG, Petrini L, Geiger R. Engineering bacteria for cancer immunotherapy. Curr Opin Biotechnol 2024; 85:103061. [PMID: 38219524 PMCID: PMC10922846 DOI: 10.1016/j.copbio.2023.103061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/30/2023] [Accepted: 12/16/2023] [Indexed: 01/16/2024]
Abstract
Bacterial therapeutics have emerged as promising delivery systems to target tumors. These engineered live therapeutics can be harnessed to modulate the tumor microenvironment or to deliver and selectively release therapeutic payloads to tumors. A major challenge is to deliver bacteria systemically without causing widespread inflammation, which is critical for the many tumors that are not accessible to direct intratumoral injection. We describe potential strategies to address this challenge, along with approaches for specific payload delivery and biocontainment to ensure safety. These strategies will pave the way for the development of cost-effective, widely applicable next-generation cancer therapeutics.
Collapse
Affiliation(s)
- Jesse G Zalatan
- Department of Chemistry, University of Washington, Seattle, WA, United States.
| | - Lorenzo Petrini
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Roger Geiger
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland; Institute of Oncology Research, Università della Svizzera italiana, Bellinzona, Switzerland.
| |
Collapse
|
21
|
Liu Q, Tian X, Gong K, Qian R, Shen S. Size Switchable Self-Assembled Iron Oxide Aggregations Loaded with Doxorubicin for Deep Penetration and Enhanced Chemotherapy of Cancer. ACS APPLIED BIO MATERIALS 2024; 7:297-305. [PMID: 38103174 DOI: 10.1021/acsabm.3c00889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Iron oxide nanoparticles (Fe3O4 NPs) have been reported to be a promising agent for cancer therapy due to their outstanding ability in catalyzing the Fenton reaction and causing peroxidation. Generally, particles with size of hundreds of nanometers exhibit enhanced accumulation in tumor due to the enhanced permeation and retention effect. However, the large size hinders penetration within the dense collagen matrix. Here, we propose a multistage system to realize pH-responsive size switch for efficient drug delivery. In this system, ultrasmall Fe3O4 (∼4 nm) NPs are simultaneously modified with hydrophilic mPEG and hydrophobic N,N-dibutylethylenediamine (DBE) to form pH-responsive self-assembled iron oxide aggregations (SIOA). In the acidic tumor microenvironment, the protonation of DBE makes it transit from the hydrophobic to hydrophilic state, causing the disassembly of the SIOA and the release of loaded doxorubicin. The multistage Fe3O4 NPs demonstrate enhanced accumulation and efficient diffusion within the tumor, holding a promise for drug delivery and cancer therapy.
Collapse
Affiliation(s)
- Qian Liu
- Department of Formulation Preparation, Yinchuan Hospital of Traditional Chinese Medicine, Yinchuan, Ningxia 750010, China
| | - Xiangrong Tian
- College of Pharmaceutical Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Kaimin Gong
- Department of Formulation Preparation, Yinchuan Hospital of Traditional Chinese Medicine, Yinchuan, Ningxia 750010, China
| | - Rui Qian
- College of Pharmaceutical Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Song Shen
- College of Pharmaceutical Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
22
|
Buttiens K, Maksoudian C, Perez Gilabert I, Rios Luci C, Manshian BB, Soenen SJ. Inorganic Nanoparticles Change Cancer-Cell-Derived Extracellular Vesicle Secretion Levels and Cargo Composition, Resulting in Secondary Biological Effects. ACS APPLIED MATERIALS & INTERFACES 2024; 16:66-83. [PMID: 38163254 DOI: 10.1021/acsami.3c12680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Over the past decades, the medical exploitation of nanotechnology has been largely increasing and finding its way into translational research and clinical applications. Despite their biomedical potential, uncertainties persist regarding the intricate role that nanomaterials may play on altering physiology in healthy and diseased tissues. Extracellular vesicles (EVs) are recognized as an important pathway for intercellular communication and known to be mediators of cellular stress. EVs are currently explored for targeted delivery of therapeutic agents, including nanoformulations, to treat and diagnose cancer or other diseases. Here, we aimed to investigate whether nanomaterials could have a possible impact on EV functionality, their safety, and whether EVs can play a role in nanomaterial toxicity profiles. To evaluate this, the impact of inorganic nanomaterial administration on EVs derived from murine melanoma and human breast cancer cells was tested. Cells were incubated with subtoxic concentrations of 4 different biomedically relevant inorganic nanoparticles (NPs): gold, silver, silicon dioxide, or iron oxide. The results displayed a clear NP and cell-type-dependent effect on increasing or decreasing EV secretion. Furthermore, the expression pattern of several EV-derived miRNAs was significantly changed upon NP exposure, compared to nontreated cells. Detailed pathway analysis and additional studies confirmed that EVs obtained from NP-exposed cells could influence immunological responses and cellular physiology. Together, these data reveal that NPs can have wide-ranging effects which can result in toxicity concerns or enhanced therapeutic potential as a secondary enhanced effect mediated and enhanced by EVs.
Collapse
Affiliation(s)
- Kiana Buttiens
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KULeuven, Herestraat 49, B3000 Leuven, Belgium
| | - Christy Maksoudian
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KULeuven, Herestraat 49, B3000 Leuven, Belgium
| | - Irati Perez Gilabert
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KULeuven, Herestraat 49, B3000 Leuven, Belgium
| | - Carla Rios Luci
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KULeuven, Herestraat 49, B3000 Leuven, Belgium
| | - Bella B Manshian
- Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KULeuven, Herestraat 49, B3000 Leuven, Belgium
- Leuven Cancer Institute, KULeuven, Herestraat 49, B3000 Leuven, Belgium
| | - Stefaan J Soenen
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KULeuven, Herestraat 49, B3000 Leuven, Belgium
- Leuven Cancer Institute, KULeuven, Herestraat 49, B3000 Leuven, Belgium
| |
Collapse
|
23
|
Cooley MB, Wegierak D, Perera R, Abenojar EC, Nittayacharn PA, Berg FM, Kim Y, Kolios MC, Exner AA. Assessing Tumor Microenvironment Characteristics and Stratifying EPR with a Nanobubble Companion Nanoparticle via Contrast-Enhanced Ultrasound Imaging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.20.567934. [PMID: 38045236 PMCID: PMC10690218 DOI: 10.1101/2023.11.20.567934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
The tumor microenvironment is characterized by dysfunctional endothelial cells, resulting in heightened vascular permeability. Many nanoparticle-based drug delivery systems attempt to use this enhanced permeability combined with impaired lymphatic drainage (a concept known as the 'enhanced permeability and retention effect' or EPR effect) as the primary strategy for drug delivery, but this has not proven to be as clinically effective as anticipated. The specific mechanisms behind the inconsistent clinical outcomes of nanotherapeutics have not been clearly articulated, and the field has been hampered by a lack of accessible tools to study EPR-associated phenomena in clinically relevant scenarios. While medical imaging has tremendous potential to contribute to this area, it has not been broadly explored. This work examines, for the first time, the use of multiparametric dynamic contrast-enhanced ultrasound (CEUS) with a novel nanoscale contrast agent to examine tumor microenvironment characteristics noninvasively and in real-time. We demonstrate that CEUS imaging can: (1) evaluate tumor microenvironment features and (2) be used to help predict the distribution of doxorubicin-loaded liposomes in the tumor parenchyma. CEUS using nanobubbles (NBs) was carried out in two tumor types of high (LS174T) and low (U87) vascular permeability, and time-intensity curve (TIC) parameters were evaluated in both models prior to injection of doxorubicin liposomes. Consistently, LS174T tumors showed significantly different TIC parameters, including area under the rising curve (2.7x), time to peak intensity (1.9x) and decorrelation time (DT, 1.9x) compared to U87 tumors. Importantly, the DT parameter successfully predicted tumoral nanoparticle distribution (r = 0.86 ± 0.13). Ultimately, substantial differences in NB-CEUS generated parameters between LS174T and U87 tumors suggest that this method may be useful in determining tumor vascular permeability and could be used as a biomarker for identifying tumor characteristics and predicting sensitivity to nanoparticle-based therapies. These findings could ultimately be applied to predicting treatment efficacy and to evaluating EPR in other diseases with pathologically permeable vasculature.
Collapse
|
24
|
Dogbey DM, Torres VES, Fajemisin E, Mpondo L, Ngwenya T, Akinrinmade OA, Perriman AW, Barth S. Technological advances in the use of viral and non-viral vectors for delivering genetic and non-genetic cargos for cancer therapy. Drug Deliv Transl Res 2023; 13:2719-2738. [PMID: 37301780 PMCID: PMC10257536 DOI: 10.1007/s13346-023-01362-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2023] [Indexed: 06/12/2023]
Abstract
The burden of cancer is increasing globally. Several challenges facing its mainstream treatment approaches have formed the basis for the development of targeted delivery systems to carry and distribute anti-cancer payloads to their defined targets. This site-specific delivery of drug molecules and gene payloads to selectively target druggable biomarkers aimed at inducing cell death while sparing normal cells is the principal goal for cancer therapy. An important advantage of a delivery vector either viral or non-viral is the cumulative ability to penetrate the haphazardly arranged and immunosuppressive tumour microenvironment of solid tumours and or withstand antibody-mediated immune response. Biotechnological approaches incorporating rational protein engineering for the development of targeted delivery systems which may serve as vehicles for packaging and distribution of anti-cancer agents to selectively target and kill cancer cells are highly desired. Over the years, these chemically and genetically modified delivery systems have aimed at distribution and selective accumulation of drug molecules at receptor sites resulting in constant maintenance of high drug bioavailability for effective anti-tumour activity. In this review, we highlighted the state-of-the art viral and non-viral drug and gene delivery systems and those under developments focusing on cancer therapy.
Collapse
Affiliation(s)
- Dennis Makafui Dogbey
- South African Research Chair in Cancer Biotechnology, Division of Chemical and Systems Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| | | | - Emmanuel Fajemisin
- South African Research Chair in Cancer Biotechnology, Division of Chemical and Systems Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| | - Liyabona Mpondo
- South African Research Chair in Cancer Biotechnology, Division of Chemical and Systems Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| | - Takunda Ngwenya
- South African Research Chair in Cancer Biotechnology, Division of Chemical and Systems Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| | - Olusiji Alex Akinrinmade
- South African Research Chair in Cancer Biotechnology, Division of Chemical and Systems Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| | - Adam W Perriman
- School of Cellular and Molecular Medicine, University of Bristol, BS8 1TD, Bristol, UK
| | - Stefan Barth
- South African Research Chair in Cancer Biotechnology, Division of Chemical and Systems Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa.
- Medical Biotechnology and Immunotherapy Research Unit, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
25
|
Shestovskaya MV, Luss AL, Bezborodova OA, Makarov VV, Keskinov AA. Iron Oxide Nanoparticles in Cancer Treatment: Cell Responses and the Potency to Improve Radiosensitivity. Pharmaceutics 2023; 15:2406. [PMID: 37896166 PMCID: PMC10610190 DOI: 10.3390/pharmaceutics15102406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/14/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
The main concept of radiosensitization is making the tumor tissue more responsive to ionizing radiation, which leads to an increase in the potency of radiation therapy and allows for decreasing radiation dose and the concomitant side effects. Radiosensitization by metal oxide nanoparticles is widely discussed, but the range of mechanisms studied is not sufficiently codified and often does not reflect the ability of nanocarriers to have a specific impact on cells. This review is focused on the magnetic iron oxide nanoparticles while they occupied a special niche among the prospective radiosensitizers due to unique physicochemical characteristics and reactivity. We collected data about the possible molecular mechanisms underlying the radiosensitizing effects of iron oxide nanoparticles (IONPs) and the main approaches to increase their therapeutic efficacy by variable modifications.
Collapse
Affiliation(s)
- Maria V. Shestovskaya
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency, Schukinskaya st. 5/1, Moscow 119435, Russia; (A.L.L.)
| | - Anna L. Luss
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency, Schukinskaya st. 5/1, Moscow 119435, Russia; (A.L.L.)
- The Department of Technology of Chemical, Pharmaceutical and Cosmetic Products Mendeleev of University of Chemical Technology of Russia, Miusskaya sq. 9, Moscow 125047, Russia
| | - Olga A. Bezborodova
- P. Hertsen Moscow Oncology Research Institute of the National Medical Research Radiological Centre, Ministry of Health of the Russian Federation, 2nd Botkinskiy p. 3, Moscow 125284, Russia;
| | - Valentin V. Makarov
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency, Schukinskaya st. 5/1, Moscow 119435, Russia; (A.L.L.)
| | - Anton A. Keskinov
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency, Schukinskaya st. 5/1, Moscow 119435, Russia; (A.L.L.)
| |
Collapse
|
26
|
Zhou Q, Xiang J, Qiu N, Wang Y, Piao Y, Shao S, Tang J, Zhou Z, Shen Y. Tumor Abnormality-Oriented Nanomedicine Design. Chem Rev 2023; 123:10920-10989. [PMID: 37713432 DOI: 10.1021/acs.chemrev.3c00062] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
Anticancer nanomedicines have been proven effective in mitigating the side effects of chemotherapeutic drugs. However, challenges remain in augmenting their therapeutic efficacy. Nanomedicines responsive to the pathological abnormalities in the tumor microenvironment (TME) are expected to overcome the biological limitations of conventional nanomedicines, enhance the therapeutic efficacies, and further reduce the side effects. This Review aims to quantitate the various pathological abnormalities in the TME, which may serve as unique endogenous stimuli for the design of stimuli-responsive nanomedicines, and to provide a broad and objective perspective on the current understanding of stimuli-responsive nanomedicines for cancer treatment. We dissect the typical transport process and barriers of cancer drug delivery, highlight the key design principles of stimuli-responsive nanomedicines designed to tackle the series of barriers in the typical drug delivery process, and discuss the "all-into-one" and "one-for-all" strategies for integrating the needed properties for nanomedicines. Ultimately, we provide insight into the challenges and future perspectives toward the clinical translation of stimuli-responsive nanomedicines.
Collapse
Affiliation(s)
- Quan Zhou
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Department of Cell Biology, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jiajia Xiang
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Department of Cell Biology, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Nasha Qiu
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Yechun Wang
- Department of Cell Biology, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Ying Piao
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Shiqun Shao
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Jianbin Tang
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Zhuxian Zhou
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Youqing Shen
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- State Key Laboratory of Chemical Engineering, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
27
|
Lu Q, Liu T, Han Z, Zhao J, Fan X, Wang H, Song J, Ye H, Sun J. Revolutionizing cancer treatment: The power of cell-based drug delivery systems. J Control Release 2023; 361:604-620. [PMID: 37579974 DOI: 10.1016/j.jconrel.2023.08.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/30/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
Intravenous administration of drugs is a widely used cancer therapy approach. However, the efficacy of these drugs is often hindered by various biological barriers, including circulation, accumulation, and penetration, resulting in poor delivery to solid tumors. Recently, cell-based drug delivery platforms have emerged as promising solutions to overcome these limitations. These platforms offer several advantages, including prolonged circulation time, active targeting, controlled release, and excellent biocompatibility. Cell-based delivery systems encompass cell membrane coating, intracellular loading, and extracellular backpacking. These innovative platforms hold the potential to revolutionize cancer diagnosis, monitoring, and treatment, presenting a plethora of opportunities for the advancement and integration of pharmaceuticals, medicine, and materials science. Nevertheless, several technological, ethical, and financial barriers must be addressed to facilitate the translation of these platforms into clinical practice. In this review, we explore the emerging strategies to overcome these challenges, focusing specifically on the functions and advantages of cell-mediated drug delivery in cancer treatment.
Collapse
Affiliation(s)
- Qi Lu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Tian Liu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Zeyu Han
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Jian Zhao
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Xiaoyuan Fan
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Helin Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Jiaxuan Song
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Hao Ye
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China; Multi-Scale Robotics Lab (MSRL), Institute of Robotics & Intelligent Systems (IRIS), ETH Zurich, Zurich 8092, Switzerland.
| | - Jin Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China.
| |
Collapse
|
28
|
Su Y, Gao J, Dong X, Wheeler KA, Wang Z. Neutrophil-Mediated Delivery of Nanocrystal Drugs via Photoinduced Inflammation Enhances Cancer Therapy. ACS NANO 2023; 17:15542-15555. [PMID: 37577982 PMCID: PMC10480050 DOI: 10.1021/acsnano.3c02013] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
The efficient delivery of anticancer agents into tumor microenvironments is critical for the success of cancer therapies, but it is a prerequisite that drug carriers should overcome tumor vasculature and possess high drug contents. Here, we found that photoinduced inflammation response caused the migration of neutrophils into tumor microenvironments and neutrophils transported neutrophil-targeted nanoparticles (NPs) across the tumor blood barrier. The results showed that tumor delivery efficiencies of NPs were 5% ID/g, and they were independent of particle sizes (30-200 nm) and their doses (108-1011 NPs). To efficiently deliver anticancer agents into tumors via neutrophils, we fabricated carrier-free paclitaxel nanocrystals (PTX NC). The results showed that neutrophil uptake of PTX NC did not impair neutrophil tumor infiltration, and the sustainable release of PTX from PTX NC in tumors was regulated by paclitaxel protein complexes, thus improving the mouse survival in two preclinical models. Our studies demonstrate that delivery of nanocrystal drugs via neutrophils is a promising method to effectively treat a wide range of cancers, and we have also identified a mechanism of drug release from neutrophils in tumors.
Collapse
Affiliation(s)
- Yujie Su
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington 99202, United States
| | - Jin Gao
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington 99202, United States
| | - Xinyue Dong
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington 99202, United States
| | - Kraig A Wheeler
- Department of Chemistry, Whitworth University, Spokane, Washington 99251, United States
| | - Zhenjia Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington 99202, United States
| |
Collapse
|
29
|
Kommineni N, Chaudhari R, Conde J, Tamburaci S, Cecen B, Chandra P, Prasad R. Engineered Liposomes in Interventional Theranostics of Solid Tumors. ACS Biomater Sci Eng 2023; 9:4527-4557. [PMID: 37450683 DOI: 10.1021/acsbiomaterials.3c00510] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Engineered liposomal nanoparticles have unique characteristics as cargo carriers in cancer care and therapeutics. Liposomal theranostics have shown significant progress in preclinical and clinical cancer models in the past few years. Liposomal hybrid systems have not only been approved by the FDA but have also reached the market level. Nanosized liposomes are clinically proven systems for delivering multiple therapeutic as well as imaging agents to the target sites in (i) cancer theranostics of solid tumors, (ii) image-guided therapeutics, and (iii) combination therapeutic applications. The choice of diagnostics and therapeutics can intervene in the theranostics property of the engineered system. However, integrating imaging and therapeutics probes within lipid self-assembly "liposome" may compromise their overall theranostics performance. On the other hand, liposomal systems suffer from their fragile nature, site-selective tumor targeting, specific biodistribution and premature leakage of loaded cargo molecules before reaching the target site. Various engineering approaches, viz., grafting, conjugation, encapsulations, etc., have been investigated to overcome the aforementioned issues. It has been studied that surface-engineered liposomes demonstrate better tumor selectivity and improved therapeutic activity and retention in cells/or solid tumors. It should be noted that several other parameters like reproducibility, stability, smooth circulation, toxicity of vital organs, patient compliance, etc. must be addressed before using liposomal theranostics agents in solid tumors or clinical models. Herein, we have reviewed the importance and challenges of liposomal medicines in targeted cancer theranostics with their preclinical and clinical progress and a translational overview.
Collapse
Affiliation(s)
- Nagavendra Kommineni
- Center for Biomedical Research, Population Council, New York, New York 10065, United States
| | - Ruchita Chaudhari
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - João Conde
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa; Lisboa 1169-056, Portugal
| | - Sedef Tamburaci
- Department of Chemical Engineering, Izmir Institute of Technology, Gulbahce Campus, Izmir 35430, Turkey
| | - Berivan Cecen
- Department of Biomedical Engineering, Rowan University, Glassboro, New Jersey 08028, United States
- Department of Mechanical Engineering, Rowan University, Glassboro, New Jersey 08028, United States
| | - Pranjal Chandra
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Rajendra Prasad
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| |
Collapse
|
30
|
Kim J, Cho H, Lim DK, Joo MK, Kim K. Perspectives for Improving the Tumor Targeting of Nanomedicine via the EPR Effect in Clinical Tumors. Int J Mol Sci 2023; 24:10082. [PMID: 37373227 DOI: 10.3390/ijms241210082] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Over the past few decades, the enhanced permeability and retention (EPR) effect of nanomedicine has been a crucial phenomenon in targeted cancer therapy. Specifically, understanding the EPR effect has been a significant aspect of delivering anticancer agents efficiently to targeted tumors. Although the therapeutic effect has been demonstrated in experimental models using mouse xenografts, the clinical translation of the EPR effect of nanomedicine faces several challenges due to dense extracellular matrix (ECM), high interstitial fluid pressure (IFP) levels, and other factors that arise from tumor heterogeneity and complexity. Therefore, understanding the mechanism of the EPR effect of nanomedicine in clinics is essential to overcome the hurdles of the clinical translation of nanomedicine. This paper introduces the basic mechanism of the EPR effect of nanomedicine, the recently discussed challenges of the EPR effect of nanomedicine, and various strategies of recent nanomedicine to overcome the limitations expected from the patients' tumor microenvironments.
Collapse
Affiliation(s)
- Jinseong Kim
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Woman's University, Seoul 03760, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Hanhee Cho
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Woman's University, Seoul 03760, Republic of Korea
| | - Dong-Kwon Lim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Min Kyung Joo
- Noxpharm Co., Ltd., #518, 150, Bugahyeon-ro, Seodaemun-gu, Seoul 03759, Republic of Korea
| | - Kwangmeyung Kim
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Woman's University, Seoul 03760, Republic of Korea
| |
Collapse
|
31
|
Sivasubramanian M, Chu CH, Hsia Y, Chen NT, Cai MT, Tew LS, Chuang YC, Chen CT, Aydogan B, Liao LD, Lo LW. Illuminating and Radiosensitizing Tumors with 2DG-Bound Gold-Based Nanomedicine for Targeted CT Imaging and Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13111790. [PMID: 37299694 DOI: 10.3390/nano13111790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023]
Abstract
Although radiotherapy is one of the most important curative treatments for cancer, its clinical application is associated with undesired therapeutic effects on normal or healthy tissues. The use of targeted agents that can simultaneously achieve therapeutic and imaging functions could constitute a potential solution. Herein, we developed 2-deoxy-d-glucose (2DG)-labeled poly(ethylene glycol) (PEG) gold nanodots (2DG-PEG-AuD) as a tumor-targeted computed tomography (CT) contrast agent and radiosensitizer. The key advantages of the design are its biocompatibility and targeted AuD with excellent sensitivity in tumor detection via avid glucose metabolism. As a consequence, CT imaging with enhanced sensitivity and remarkable radiotherapeutic efficacy could be attained. Our synthesized AuD displayed linear enhancement of CT contrast as a function of its concentration. In addition, 2DG-PEG-AuD successfully demonstrated significant augmentation of CT contrast in both in vitro cell studies and in vivo tumor-bearing mouse models. In tumor-bearing mice, 2DG-PEG-AuD showed excellent radiosensitizing functions after intravenous injection. Results from this work indicate that 2DG-PEG-AuD could greatly potentiate theranostic capabilities by providing high-resolution anatomical and functional images in a single CT scan and therapeutic capability.
Collapse
Affiliation(s)
- Maharajan Sivasubramanian
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Chia-Hui Chu
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Yu Hsia
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Nai-Tzu Chen
- Department of Biological Science and Technology, China Medical University, Taichung 406040, Taiwan
- Department of Cosmoceutics, China Medical University, Taichung 40402, Taiwan
| | - Meng-Ting Cai
- Department of Biological Science and Technology, China Medical University, Taichung 406040, Taiwan
- Department of Cosmoceutics, China Medical University, Taichung 40402, Taiwan
| | - Lih Shin Tew
- Department of Biological Science and Technology, China Medical University, Taichung 406040, Taiwan
- Department of Cosmoceutics, China Medical University, Taichung 40402, Taiwan
| | - Yao-Chen Chuang
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei 110301, Taiwan
| | - Chin-Tu Chen
- Department of Radiology, The University of Chicago, Chicago, IL 60637, USA
| | - Bulent Aydogan
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, IL 60637, USA
| | - Lun-De Liao
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Leu-Wei Lo
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan 35053, Taiwan
- Department of Radiology, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
32
|
Penninckx S, Thariat J, Mirjolet C. Radiation therapy-activated nanoparticle and immunotherapy: The next milestone in oncology? INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 378:157-200. [PMID: 37438017 DOI: 10.1016/bs.ircmb.2023.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Radiotherapy (RT) is a fundamental treatment at the locoregional or oligometastatic stages of cancer. In various tumors, RT effects may be optimized using synergistic combinations that enhance tumor response. Innovative strategies have been designed that explore the radiation mechanisms, at the physical, chemical and biological levels, to propose precision RT approaches. They consist in combining RT with immunotherapy to revert radiation immunosuppressive effects or to enhance radiation-induced immune defenses against the tumor to favor immunogenic cell death. Radiotherapy-activated nanoparticles are another innovation. By increasing radiation response in situ, nanoparticles improve tumor control locally, and can trigger systemic immune reactions that may be exploited to improve the systemic efficacy of RT. Strong clinical evidence of improved outcomes is now available for combinations of RT and immunotherapy on one hand and RT and nanoparticles on the other hand. The triple combination of RT, immunotherapy and nanoparticles is promising in terms of tolerance, local and systemic anti-tumor control. Yet, significant challenges remain to unravel the complexity of the multiscale mechanisms underlying response to this combination and their associated parameters. Such parameters include patient characteristics, tumor bulk and histology, radiation technique, energy, dose, fractionation, immunotherapy targets and predictive biomarkers, nanoparticle type, size, delivery (intratumoral/intravenous), distribution. The temporal combination is another critical parameter. The mechanisms of response of the combinatorial approaches are reviewed, with a focus on underlying mechanisms based on preclinical, translational and clinical studies. Opportunities for translation of current understanding into precision RT trials combined with immunotherapy and nanoparticles are also discussed.
Collapse
Affiliation(s)
- Sébastien Penninckx
- Medical Physics Department, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium.
| | - Juliette Thariat
- Laboratoire de physique Corpusculaire IN2P3/ENSICAEN/CNRS UMR 6534, Normandie Université Centre François Baclesse, Caen, France
| | - Céline Mirjolet
- Radiation Oncology Department, Preclinical Radiation Therapy and Radiobiology Unit, Centre Georges-François Leclerc, Unicancer, Dijon, France; TIReCS Team, UMR INSERM 1231, Dijon, France
| |
Collapse
|
33
|
Hsu JC, Tang Z, Eremina OE, Sofias AM, Lammers T, Lovell JF, Zavaleta C, Cai W, Cormode DP. Nanomaterial-based contrast agents. NATURE REVIEWS. METHODS PRIMERS 2023; 3:30. [PMID: 38130699 PMCID: PMC10732545 DOI: 10.1038/s43586-023-00211-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/20/2023] [Indexed: 12/23/2023]
Abstract
Medical imaging, which empowers the detection of physiological and pathological processes within living subjects, has a vital role in both preclinical and clinical diagnostics. Contrast agents are often needed to accompany anatomical data with functional information or to provide phenotyping of the disease in question. Many newly emerging contrast agents are based on nanomaterials as their high payloads, unique physicochemical properties, improved sensitivity and multimodality capacity are highly desired for many advanced forms of bioimaging techniques and applications. Here, we review the developments in the field of nanomaterial-based contrast agents. We outline important nanomaterial design considerations and discuss the effect on their physicochemical attributes, contrast properties and biological behaviour. We also describe commonly used approaches for formulating, functionalizing and characterizing these nanomaterials. Key applications are highlighted by categorizing nanomaterials on the basis of their X-ray, magnetic, nuclear, optical and/or photoacoustic contrast properties. Finally, we offer our perspectives on current challenges and emerging research topics as well as expectations for future advancements in the field.
Collapse
Affiliation(s)
- Jessica C. Hsu
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Zhongmin Tang
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Olga E. Eremina
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Alexandros Marios Sofias
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Jonathan F. Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Cristina Zavaleta
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - David P. Cormode
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
34
|
Chan WCW. Principles of Nanoparticle Delivery to Solid Tumors. BME FRONTIERS 2023; 4:0016. [PMID: 37849661 PMCID: PMC10085247 DOI: 10.34133/bmef.0016] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/08/2023] [Indexed: 10/19/2023] Open
Abstract
The effective treatment of patients with cancer hinges on the delivery of therapeutics to a tumor site. Nanoparticles provide an essential transport system. We present 5 principles to consider when designing nanoparticles for cancer targeting: (a) Nanoparticles acquire biological identity in vivo, (b) organs compete for nanoparticles in circulation, (c) nanoparticles must enter solid tumors to target tumor components, (d) nanoparticles must navigate the tumor microenvironment for cellular or organelle targeting, and (e) size, shape, surface chemistry, and other physicochemical properties of nanoparticles influence their transport process to the target. This review article describes these principles and their application for engineering nanoparticle delivery systems to carry therapeutics to tumors or other disease targets.
Collapse
Affiliation(s)
- Warren C W Chan
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Terrence Donnelly Center for Cellular & Biomolecular Research, University of Toronto, Toronto, ON M5 3E1, Canada
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| |
Collapse
|
35
|
Sanjanwala D, Patravale V. Aptamers and nanobodies as alternatives to antibodies for ligand-targeted drug delivery in cancer. Drug Discov Today 2023; 28:103550. [PMID: 36906220 DOI: 10.1016/j.drudis.2023.103550] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 02/18/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023]
Abstract
Targeted drug delivery (TDD) is the selective delivery of a therapeutic agent specifically to the site of action to avoid adverse effects and systemic toxicity and to reduce the dose required. Ligand TDD or active TDD involves using a ligand-drug conjugate comprising a targeting ligand linked to an active drug moiety that can either be free or encapsulated within a nanocarrier (NC). Aptamers are single-stranded oligonucleotides that bind to specific biomacromolecules because of their 3D conformation. Nanobodies are the variable domains of unique heavy chain-only antibodies (HcAbs) produced by animals of the Camelidae family. Both these types of ligand are smaller than antibodies and have been used to efficiently target drugs to particular tissues or cells. In this review, we describe the applications of aptamers and nanobodies as ligands for TDD, their advantages and disadvantages compared with antibodies, and the various modalities for targeting cancers using these ligands. Teaser: Aptamers and nanobodies are macromolecular ligands that can actively chaperone drug molecules to particular cancerous cells or tissues in the body to target their pharmacological effects and improve their therapeutic index and safety.
Collapse
Affiliation(s)
- Dhruv Sanjanwala
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga (E), Mumbai 400 019, Maharashtra, India
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga (E), Mumbai 400 019, Maharashtra, India.
| |
Collapse
|
36
|
Goel M, Mackeyev Y, Krishnan S. Radiolabeled nanomaterial for cancer diagnostics and therapeutics: principles and concepts. Cancer Nanotechnol 2023; 14:15. [PMID: 36865684 PMCID: PMC9968708 DOI: 10.1186/s12645-023-00165-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/13/2023] [Indexed: 03/01/2023] Open
Abstract
In the last three decades, radiopharmaceuticals have proven their effectiveness for cancer diagnosis and therapy. In parallel, the advances in nanotechnology have fueled a plethora of applications in biology and medicine. A convergence of these disciplines has emerged more recently with the advent of nanotechnology-aided radiopharmaceuticals. Capitalizing on the unique physical and functional properties of nanoparticles, radiolabeled nanomaterials or nano-radiopharmaceuticals have the potential to enhance imaging and therapy of human diseases. This article provides an overview of various radionuclides used in diagnostic, therapeutic, and theranostic applications, radionuclide production through different techniques, conventional radionuclide delivery systems, and advancements in the delivery systems for nanomaterials. The review also provides insights into fundamental concepts necessary to improve currently available radionuclide agents and formulate new nano-radiopharmaceuticals.
Collapse
Affiliation(s)
- Muskan Goel
- Amity School of Applied Sciences, Amity University, Gurugram, Haryana 122413 India
| | - Yuri Mackeyev
- Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center, Houston, TX 77030 USA
| | - Sunil Krishnan
- Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center, Houston, TX 77030 USA
| |
Collapse
|
37
|
Xu H, Chang J, Wu H, Wang H, Xie W, Li Y, Li X, Zhang Y, Fan L. Carbon Dots with Guanidinium and Amino Acid Functional Groups for Targeted Small Interfering RNA Delivery toward Tumor Gene Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2207204. [PMID: 36840641 DOI: 10.1002/smll.202207204] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/07/2023] [Indexed: 06/18/2023]
Abstract
Small interfering RNA (siRNA)-based gene therapy represents a promising strategy for tumor treatment. Novel gene vectors that can achieve targeted delivery of siRNA to the tumor cells without causing any side effects are urgently needed. To this end, the large amino acid mimicking carbon dots with guanidinium functionalization (LAAM GUA-CDs) are designed and synthesized by choosing arginine and dopamine hydrochloride as precursors. LAAM GUA-CDs can load siRNA through the multiple hydrogen bonds between their guanidinium groups and phosphate groups in siRNA. Meanwhile, the amino acid groups at the edges of LAAM GUA-CDs endow them the capacity to target tumors. After loading siBcl-2 as a therapeutic agent, LAAM GUA-CDs/siBcl-2 has a high tumor inhibition rate of up to 68%, which is twice more than that of commercial Lipofectamine 2000. Furthermore, LAAM GUA-CDs do not cause side effect during antitumor treatment owing to their high tumor-targeting ability, thus providing a versatile strategy for tumor-targeted siRNA delivery and cancer therapy.
Collapse
Affiliation(s)
- Huimin Xu
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry and Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing, 100875, P. R. China
| | - Jianqiao Chang
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry and Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing, 100875, P. R. China
| | - Hao Wu
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry and Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing, 100875, P. R. China
- School of Chemistry, Chemical Engineer and Materials, Jining University, Qufu, Shandong, 273155, P. R. China
| | - Haoyu Wang
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry and Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing, 100875, P. R. China
| | - Wenjing Xie
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry and Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing, 100875, P. R. China
| | - Yunchao Li
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry and Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing, 100875, P. R. China
| | - Xiaohong Li
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry and Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing, 100875, P. R. China
| | - Yang Zhang
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry and Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing, 100875, P. R. China
| | - Louzhen Fan
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry and Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing, 100875, P. R. China
| |
Collapse
|
38
|
Subhan MA, Parveen F, Filipczak N, Yalamarty SSK, Torchilin VP. Approaches to Improve EPR-Based Drug Delivery for Cancer Therapy and Diagnosis. J Pers Med 2023; 13:jpm13030389. [PMID: 36983571 PMCID: PMC10051487 DOI: 10.3390/jpm13030389] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/19/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
The innovative development of nanomedicine has promised effective treatment options compared to the standard therapeutics for cancer therapy. However, the efficiency of EPR-targeted nanodrugs is not always pleasing as it is strongly prejudiced by the heterogeneity of the enhanced permeability and retention effect (EPR). Targeting the dynamics of the EPR effect and improvement of the therapeutic effects of nanotherapeutics by using EPR enhancers is a vital approach to developing cancer therapy. Inadequate data on the efficacy of EPR in humans hampers the clinical translation of cancer drugs. Molecular targeting, physical amendment, or physiological renovation of the tumor microenvironment (TME) are crucial approaches for improving the EPR effect. Advanced imaging technologies for the visualization of EPR-induced nanomedicine distribution in tumors, and the use of better animal models, are necessary to enhance the EPR effect. This review discusses strategies to enhance EPR effect-based drug delivery approaches for cancer therapy and imaging technologies for the diagnosis of EPR effects. The effort of studying the EPR effect is beneficial, as some of the advanced nanomedicine-based EPR-enhancing approaches are currently undergoing clinical trials, which may be helpful to improve EPR-induced drug delivery and translation to clinics.
Collapse
Affiliation(s)
- Md Abdus Subhan
- Department of Chemistry, ShahJalal University of Science and Technology, Sylhet 3114, Bangladesh
- Correspondence: (M.A.S.); (V.P.T.)
| | - Farzana Parveen
- CPBN, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Punjab 63100, Pakistan
- Department of Pharmacy Services, DHQ Hospital Jhang 35200, Primary and Secondary Healthcare Department, Government of Punjab, Lahore, Punjab 54000, Pakistan
| | - Nina Filipczak
- CPBN, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | | | - Vladimir P. Torchilin
- CPBN, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
- Correspondence: (M.A.S.); (V.P.T.)
| |
Collapse
|
39
|
Singh AK, Awasthi R, Malviya R. Bioinspired microrobots: Opportunities and challenges in targeted cancer therapy. J Control Release 2023; 354:439-452. [PMID: 36669531 DOI: 10.1016/j.jconrel.2023.01.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/15/2023] [Accepted: 01/15/2023] [Indexed: 01/21/2023]
Abstract
Chemotherapy is still the most effective technique to treat many forms of cancer. However, it also carries a high risk of side effects. Numerous nanomedicines have been developed to avoid unintended consequences and significant negative effects of conventional therapies. Achieving targeted drug delivery also has several challenges. In this context, the development of microrobots is receiving considerable attention of formulation scientists and clinicians to overcome such challenges. Due to their mobility, microrobots can infiltrate tissues and reach tumor sites more quickly. Different types of microrobots, like custom-made moving bacteria, microengines powered by small bubbles, and hybrid spermbots, can be designed with complex features that are best for precise targeting of a wide range of cancers. In this review, we mainly focus on the idea of how microrobots can quickly target cancer cells and discuss specific advantages of microrobots. A brief summary of the microrobots' drug loading and release behavior is provided in this manuscript. This manuscript will assist clinicians and other medical professionals in diagnosing and treating cancer without surgery.
Collapse
Affiliation(s)
- Arun Kumar Singh
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Rajendra Awasthi
- Department of Pharmaceutical Sciences, School of Health Sciences & Technology, University of Petroleum and Energy Studies (UPES), Energy Acres, P.O. Bidholi, Via-Prem Nagar, Dehradun 248 007, Uttarakhand, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India.
| |
Collapse
|
40
|
António JPM, Gandioso A, Nemati F, Soliman N, Vinck R, Sun F, Robert C, Burckel P, Decaudin D, Thomas CM, Gasser G. Polymeric encapsulation of a ruthenium(ii) polypyridyl complex: from synthesis to in vivo studies against high-grade epithelial ovarian cancer. Chem Sci 2023; 14:362-371. [PMID: 36687351 PMCID: PMC9811505 DOI: 10.1039/d2sc05693c] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
The in vitro to in vivo translation of metal-based cytotoxic drugs has proven to be a significant hurdle in their establishment as effective anti-cancer alternatives. Various nano-delivery systems, such as polymeric nanoparticles, have been explored to address the pharmacokinetic limitations associated with the use of these complexes. However, these systems often suffer from poor stability or involve complex synthetic procedures. To circumvent these problems, we report here a simple, one-pot procedure for the preparation of covalently-attached Ru-polylactide nanoparticles. This methodology relies on the ring-opening polymerization of lactide initiated by a calcium alkoxide derivative formed from calcium bis(trimethylsilyl amide) and a hydroxyl-bearing ruthenium complex. This procedure proceeds with high efficiency (near-quantitative incorporation of Ru in the polymer) and enables the preparation of polymers with varying molecular weights (2000-11000 Da) and high drug loadings (up to 68% w/w). These polymers were formulated as narrowly dispersed nanoparticles (110 nm) that exhibited a slow and predictable release of the ruthenium payload. Unlike standard encapsulation methods routinely used, the release kinetics of these nanoparticles is controlled and may be adjusted on demand, by tuning the size of the polymer chain. In terms of cytotoxicity, the nanoparticles were assessed in the ovarian cancer cell line A2780 and displayed potency comparable to cisplatin and the free drug, in the low micromolar range. Interestingly, the activity was maintained when tested in a cisplatin-resistant cell line, suggesting a possible orthogonal mechanism of action. Additionally, the internalization in tumour cells was found to be significantly higher than the free ruthenium complex (>200 times in some cases), clearly showcasing the added benefit in the drug's cellular permeation and accumulation of the drug. Finally, the in vivo performance was evaluated for the first time in mice. The experiments showed that the intravenously injected nanoparticles were well tolerated and were able to significantly improve the pharmacokinetics and biodistribution of the parent drug. Not only was the nanosystem able to promote an 18-fold increase in tumour accumulation, but it also allowed a considerable reduction of drug accumulation in vital organs, achieving, for example, reduction levels of 90% and 97% in the brain and lungs respectively. In summary, this simple and efficient one-pot procedure enables the generation of stable and predictable nanoparticles capable of improving the cellular penetration and systemic accumulation of the Ru drug in the tumour. Altogether, these results showcase the potential of covalently-loaded ruthenium polylactide nanoparticles and pave the way for its exploitation and application as a viable tool in the treatment of ovarian cancer.
Collapse
Affiliation(s)
- João P. M. António
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology75005 ParisFrancehttps://www.gassergroup.com,Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris75005 ParisFrancehttps://www.ircp.cnrs.fr/la-recherche/equipe-cocp/
| | - Albert Gandioso
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology75005 ParisFrancehttps://www.gassergroup.com
| | - Fariba Nemati
- Translational Research Department, Laboratory of Preclinical Investigation, PSL University, Institut Curie26 rue d'UlmParis 75248France
| | - Nancy Soliman
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology75005 ParisFrancehttps://www.gassergroup.com,Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris75005 ParisFrancehttps://www.ircp.cnrs.fr/la-recherche/equipe-cocp/
| | - Robin Vinck
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology75005 ParisFrancehttps://www.gassergroup.com
| | - Fan Sun
- Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris75005 ParisFrance
| | - Carine Robert
- Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris75005 ParisFrancehttps://www.ircp.cnrs.fr/la-recherche/equipe-cocp/
| | - Pierre Burckel
- Université de Paris, Institut de physique du globe de Paris, CNRSF-75005 ParisFrance
| | - Didier Decaudin
- Translational Research Department, Laboratory of Preclinical Investigation, PSL University, Institut Curie26 rue d'UlmParis 75248France,Department of Medical Oncology, Institut Curie26 rue d'UlmParis 75248France
| | - Christophe M. Thomas
- Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris75005 ParisFrancehttps://www.ircp.cnrs.fr/la-recherche/equipe-cocp/
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology75005 ParisFrancehttps://www.gassergroup.com
| |
Collapse
|
41
|
Yang Y, Huang J, Liu M, Qiu Y, Chen Q, Zhao T, Xiao Z, Yang Y, Jiang Y, Huang Q, Ai K. Emerging Sonodynamic Therapy-Based Nanomedicines for Cancer Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204365. [PMID: 36437106 PMCID: PMC9839863 DOI: 10.1002/advs.202204365] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/25/2022] [Indexed: 05/08/2023]
Abstract
Cancer immunotherapy effect can be greatly enhanced by other methods to induce immunogenic cell death (ICD), which has profoundly affected immunotherapy as a highly efficient paradigm. However, these treatments have significant limitations, either by causing damage of the immune system or limited to superficial tumors. Sonodynamic therapy (SDT) can induce ICD to promote immunotherapy without affecting the immune system because of its excellent spatiotemporal selectivity and low side effects. Nevertheless, SDT is still limited by low reactive oxygen species yield and the complex tumor microenvironment. Recently, some emerging SDT-based nanomedicines have made numerous attractive and encouraging achievements in the field of cancer immunotherapy due to high immunotherapeutic efficiency. However, this cross-cutting field of research is still far from being widely explored due to huge professional barriers. Herein, the characteristics of the tumor immune microenvironment and the mechanisms of ICD are firstly systematically summarized. Subsequently, the therapeutic mechanism of SDT is fully summarized, and the advantages and limitations of SDT are discussed. The representative advances of SDT-based nanomedicines for cancer immunotherapy are further highlighted. Finally, the application prospects and challenges of SDT-based immunotherapy in future clinical translation are discussed.
Collapse
Affiliation(s)
- Yunrong Yang
- Department of PharmacyXiangya HospitalCentral South UniversityChangshaHunan410008P. R. China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunan410008P. R. China
| | - Jia Huang
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular ResearchXiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
| | - Min Liu
- Department of PharmacyXiangya HospitalCentral South UniversityChangshaHunan410008P. R. China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunan410008P. R. China
| | - Yige Qiu
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular ResearchXiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
| | - Qiaohui Chen
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular ResearchXiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
| | - Tianjiao Zhao
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular ResearchXiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
| | - Zuoxiu Xiao
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular ResearchXiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
| | - Yuqi Yang
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular ResearchXiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
| | - Yitian Jiang
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular ResearchXiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
| | - Qiong Huang
- Department of PharmacyXiangya HospitalCentral South UniversityChangshaHunan410008P. R. China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunan410008P. R. China
| | - Kelong Ai
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular ResearchXiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
| |
Collapse
|
42
|
Multimodal imaging distribution assessment of a liposomal antibiotic in an infectious disease model. J Control Release 2022; 352:199-210. [PMID: 36084816 DOI: 10.1016/j.jconrel.2022.08.061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/09/2022] [Accepted: 08/31/2022] [Indexed: 11/08/2022]
Abstract
Liposomes are promising targeted drug delivery systems with the potential to improve the efficacy and safety profile of certain classes of drugs. Though attractive, there are unique analytical challenges associated with the development of liposomal drugs including human dose prediction given these are multi-component drug delivery systems. In this study, we developed a multimodal imaging approach to provide a comprehensive distribution assessment for an antibacterial drug, GSK2485680, delivered as a liposomal formulation (Lipo680) in a mouse thigh model of bacterial infection to support human dose prediction. Positron emission tomography (PET) imaging was used to track the in vivo biodistribution of Lipo680 over 48 h post-injection providing a clear assessment of the uptake in various tissues and, importantly, the selective accumulation at the site of infection. In addition, a pharmacokinetic model was created to evaluate the kinetics of Lipo680 in different tissues. Matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS) was then used to quantify the distribution of GSK2485680 and to qualitatively assess the distribution of a liposomal lipid throughout sections of infected and non-infected hindlimb tissues at high spatial resolution. Through the combination of both PET and MALDI IMS, we observed excellent correlation between the Lipo680-radionuclide signal detected by PET with the GSK2485680 and lipid component signals detected by MALDI IMS. This multimodal translational method can reduce drug attrition by generating comprehensive biodistribution profiles of drug delivery systems to provide mechanistic insight and elucidate safety concerns. Liposomal formulations have potential to deliver therapeutics across a broad array of different indications, and this work serves as a template to aid in delivering future liposomal drugs to the clinic.
Collapse
|
43
|
Youden B, Jiang R, Carrier AJ, Servos MR, Zhang X. A Nanomedicine Structure-Activity Framework for Research, Development, and Regulation of Future Cancer Therapies. ACS NANO 2022; 16:17497-17551. [PMID: 36322785 DOI: 10.1021/acsnano.2c06337] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Despite their clinical success in drug delivery applications, the potential of theranostic nanomedicines is hampered by mechanistic uncertainty and a lack of science-informed regulatory guidance. Both the therapeutic efficacy and the toxicity of nanoformulations are tightly controlled by the complex interplay of the nanoparticle's physicochemical properties and the individual patient/tumor biology; however, it can be difficult to correlate such information with observed outcomes. Additionally, as nanomedicine research attempts to gradually move away from large-scale animal testing, the need for computer-assisted solutions for evaluation will increase. Such models will depend on a clear understanding of structure-activity relationships. This review provides a comprehensive overview of the field of cancer nanomedicine and provides a knowledge framework and foundational interaction maps that can facilitate future research, assessments, and regulation. By forming three complementary maps profiling nanobio interactions and pathways at different levels of biological complexity, a clear picture of a nanoparticle's journey through the body and the therapeutic and adverse consequences of each potential interaction are presented.
Collapse
Affiliation(s)
- Brian Youden
- Department of Biology, University of Waterloo, 200 University Ave. W, Waterloo, Ontario N2L 3G1, Canada
| | - Runqing Jiang
- Department of Biology, University of Waterloo, 200 University Ave. W, Waterloo, Ontario N2L 3G1, Canada
- Department of Medical Physics, Grand River Regional Cancer Centre, Kitchener, Ontario N2G 1G3, Canada
| | - Andrew J Carrier
- Department of Chemistry, Cape Breton University, 1250 Grand Lake Road, Sydney, Nova Scotia B1P 6L2, Canada
| | - Mark R Servos
- Department of Biology, University of Waterloo, 200 University Ave. W, Waterloo, Ontario N2L 3G1, Canada
| | - Xu Zhang
- Department of Biology, University of Waterloo, 200 University Ave. W, Waterloo, Ontario N2L 3G1, Canada
- Department of Chemistry, Cape Breton University, 1250 Grand Lake Road, Sydney, Nova Scotia B1P 6L2, Canada
| |
Collapse
|
44
|
Zhou Q, Li J, Xiang J, Shao S, Zhou Z, Tang J, Shen Y. Transcytosis-enabled active extravasation of tumor nanomedicine. Adv Drug Deliv Rev 2022; 189:114480. [PMID: 35952830 DOI: 10.1016/j.addr.2022.114480] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/11/2022] [Accepted: 08/01/2022] [Indexed: 01/24/2023]
Abstract
Extravasation is the first step for nanomedicines in circulation to reach targeted solid tumors. Traditional nanomedicines have been designed to extravasate into tumor interstitium through the interendothelial gaps previously assumed rich in tumor blood vessels, i.e., the enhanced permeability and retention (EPR) effect. While the EPR effect has been validated in animal xenograft tumor models, accumulating evidence implies that the EPR effect is very limited and highly heterogeneous in human tumors, leading to highly unpredictable and inefficient extravasation and thus limited therapeutic efficacy of nanomedicines, including those approved in clinics. Enabling EPR-independent extravasation is the key to develop new generation of nanomedicine with enhanced efficacy. Transcytosis of tumor endothelial cells can confer nanomedicines to actively extravasate into solid tumors without relying on the EPR effect. Here, we review and prospectthe development of transcytosis-inducing nanomedicines, in hope of providing instructive insights for design of nanomedicines that can undergo selective transcellular transport across tumor endothelial cells, and thus inspiring the development of next-generation nanomedicines for clinical translation.
Collapse
Affiliation(s)
- Quan Zhou
- Key Laboratory of Smart Biomaterials of Zhejiang Province and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; Department of Cell Biology, School of Basic Medical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Junjun Li
- Department of Cell Biology, School of Basic Medical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiajia Xiang
- Key Laboratory of Smart Biomaterials of Zhejiang Province and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
| | - Shiqun Shao
- Key Laboratory of Smart Biomaterials of Zhejiang Province and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
| | - Zhuxian Zhou
- Key Laboratory of Smart Biomaterials of Zhejiang Province and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jianbin Tang
- Key Laboratory of Smart Biomaterials of Zhejiang Province and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China.
| | - Youqing Shen
- Key Laboratory of Smart Biomaterials of Zhejiang Province and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
45
|
Clausen AS, Christensen C, Christensen E, Cold S, Kristensen LK, Hansen AE, Kjaer A. Development of a 64Cu-labeled CD4+ T cell targeting PET tracer: evaluation of CD4 specificity and its potential use in collagen-induced arthritis. EJNMMI Res 2022; 12:62. [PMID: 36114433 PMCID: PMC9481863 DOI: 10.1186/s13550-022-00934-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/03/2022] [Indexed: 11/17/2022] Open
Abstract
Background CD4+ T cells are central inflammatory mediators in the pathogenesis of autoimmune rheumatoid arthritis (RA), as they are one of the dominating cell types in synovial inflammation. Molecular imaging of CD4+ T cells has potential role for early detection and monitoring of RA. Here, we developed a new radiotracer for in vivo immunoPET imaging of murine CD4+ T cells and tested it in the collagen-induced arthritis (CIA) mouse model of human RA. Results The tracer, [64Cu]Cu-NOTA-CD4-F(ab)’2 ([64Cu]Cu-NOTA-CD4), was generated from F(ab)’2 fragments of R-anti-mouse CD4 antibodies conjugated to the 2-S-(isothiocyanatbenzyl)-1,4,7-triazacyclononane-1,4,7-triacetic acid (p-SCN-Bn-NOTA) chelator and radiolabeled with copper-64. Accumulation of the tracer and isotype control was evaluated in the CIA model and mice receiving whole-body irradiation (WBI) (5 Gy). The potential of [64Cu]Cu-NOTA-CD4 for response assessment was evaluated in CIA induced mice treated with dexamethasone (DXM). Imaging data were compared with flow cytometry and immunohistochemistry (IHC) of inflammatory cells including CD4+ T cells. [64Cu]Cu-NOTA-CD4 showed increased accumulation in T cell-rich tissues compared with isotype control (p < 0.0001). In addition, reduced accumulation of [64Cu]Cu-NOTA-CD4 was observed in T cell-depleted tissue (p < 0.0001). Flow cytometry and IHC confirmed the increased infiltration of CD4+ T cells in CIA mice. Conclusions We developed and evaluated a new radiotracer, [64Cu]Cu-NOTA-CD4, for immunoPET imaging of murine CD4+ T cells. [64Cu]Cu-NOTA-CD4 was successfully synthesized by F(ab)’2 fragments of R-anti-mouse CD4 antibodies conjugated to a chelator and radiolabeled with copper-64. We found that our novel CD4 PET tracer can be used for noninvasive visualization of murine CD4+ T cells. Supplementary Information The online version contains supplementary material available at 10.1186/s13550-022-00934-7.
Collapse
|
46
|
Li X, Xie S, Shen J, Chen S, Yan J. Construction of functionalized ruthenium-modified selenium coated with pH-responsive silk fibroin nanomaterials enhanced anticancer efficacy in hepatocellular cancer. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.08.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
47
|
Wang Z, Li J, Lin G, He Z, Wang Y. Metal complex-based liposomes: Applications and prospects in cancer diagnostics and therapeutics. J Control Release 2022; 348:1066-1088. [PMID: 35718211 DOI: 10.1016/j.jconrel.2022.06.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 06/09/2022] [Indexed: 12/17/2022]
Abstract
Metal complexes are of increasing interest as pharmaceutical agents in cancer diagnostics and therapeutics, while some of them suffer from issues such as limited water solubility and severe systemic toxicity. These drawbacks severely hampered their efficacy and clinical applications. Liposomes hold promise as delivery vehicles for constructing metal complex-based liposomes to maximize the therapeutic efficacy and minimize the side effects of metal complexes. This review provides an overview on the latest advances of metal complex-based liposomal delivery systems. First, the development of metal complex-mediated liposomal encapsulation is briefly introduced. Next, applications of metal complex-based liposomes in a variety of fields are overviewed, where drug delivery, cancer imaging (single photon emission computed tomography (SPECT), positron emission tomography (PET), and magnetic resonance imaging (MRI)), and cancer therapy (chemotherapy, phototherapy, and radiotherapy) were involved. Moreover, the potential toxicity, action of toxic mechanisms, immunological effects of metal complexes as well as the advantages of metal complex-liposomes in this content are also discussed. In the end, the future expectations and challenges of metal complex-based liposomes in clinical cancer therapy are tentatively proposed.
Collapse
Affiliation(s)
- Zhaomeng Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Jinbo Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Guimei Lin
- School of Pharmacy, Shandong University, Jinan 250000, PR China
| | - Zhonggui He
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China.
| | - Yongjun Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China.
| |
Collapse
|
48
|
Tu Y, Yao Z, Yang W, Tao S, Li B, Wang Y, Su Z, Li S. Application of Nanoparticles in Tumour Targeted Drug Delivery and Vaccine. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.948705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cancer is a major cause of death worldwide, and nearly 1 in 6 deaths each year is caused by cancer. Traditional cancer treatment strategies cannot completely solve cancer recurrence and metastasis. With the development of nanotechnology, the study of nanoparticles (NPs) has gradually become a hotspot of medical research. NPs have various advantages. NPs exploit the enhanced permeability and retention (EPR) of tumour cells to achieve targeted drug delivery and can be retained in tumours long-term. NPs can be used as a powerful design platform for vaccines as well as immunization enhancers. Liposomes, as organic nanomaterials, are widely used in the preparation of nanodrugs and vaccines. Currently, most of the anticancer drugs that have been approved and entered clinical practice are prepared from lipid materials. However, the current clinical conversion rate of NPs is still extremely low, and the transition of NPs from the laboratory to clinical practice is still a substantial challenge. In this paper, we review the in vivo targeted delivery methods, material characteristics of NPs and the application of NPs in vaccine preparation. The application of nanoliposomes is also emphasized. Furthermore, the challenges and limitations of NPs are briefly discussed.
Collapse
|
49
|
Mesenchymal stem cells: A living carrier for active tumor-targeted delivery. Adv Drug Deliv Rev 2022; 185:114300. [PMID: 35447165 DOI: 10.1016/j.addr.2022.114300] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 03/22/2022] [Accepted: 04/12/2022] [Indexed: 12/16/2022]
Abstract
The strategy of using mesenchymal stem cells (MSCs) as a living carrier for active delivery of therapeutic agents targeting tumor sites has been attempted in a wide range of studies to validate the feasibility and efficacy for tumor treatment. This approach reveals powerful tumor targeting and tumor penetration. In addition, MSCs have been confirmed to actively participate in immunomodulation of the tumor microenvironment. Thus, MSCs are not inert delivery vehicles but have a strong impact on the fate of tumor cells. In this review, these active properties of MSCs are addressed to highlight the advantages and challenges of using MSCs for tumor-targeted delivery. In addition, some of the latest examples of using MSCs to carry a variety of anti-tumor agents for tumor-targeted therapy are summarized. Recent technologies to improve the performance and safety of this delivery strategy will be introduced. The advances, applications, and challenges summarized in this review will provide a general understanding of this promising strategy for actively delivering drugs to tumor tissues.
Collapse
|
50
|
Changeable net charge on nanoparticles facilitates intratumor accumulation and penetration. J Control Release 2022; 346:392-404. [PMID: 35461967 DOI: 10.1016/j.jconrel.2022.04.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 04/05/2022] [Accepted: 04/15/2022] [Indexed: 12/24/2022]
Abstract
The Enhanced Permeability and Retention (EPR) effect is a golden strategy for the nanoparticle (NP)-based targeting of solid tumors, and the surface property of NPs might be a determinant on their targeting efficiency. Poly(ethylene glycol) (PEG) is commonly used as a shell material; however, it has been pointed out that PEG-coated NPs may exhibit accumulation near tumor vasculature rather than having homogenous intratumor distribution. The PEG shell plays a pivotal role on prolonged blood circulation of NPs but potentially impairs the intratumor retention of NPs. In this study, we report on a shell material to enhance tumor-targeted delivery of NPs by maximizing the EPR effect: polyzwitterion based on ethylenediamine-based carboxybetaine [PGlu(DET-Car)], which shows the changeable net charge responding to surrounding pH. The net charge of PGlu(DET-Car), is neutral at physiological pH 7.4, allowing it to exhibit a stealth property during the blood circulation; however, it becomes cationic for tissue-interactive performance under tumorous acidic conditions owing to the stepwise protonation behavior of ethylenediamine. Indeed, the PGlu(DET-Car)-coated NPs (i.e., gold NPs in the present study) exhibited prolonged blood circulation and remarkably enhanced tumor accumulation and retention than PEG-coated NPs, achieving 32.1% of injected dose/g of tissue, which was 4.2 times larger relative to PEG-coated NPs. Interestingly, a considerable portion of PGlu(DET-Car)-coated NPs clearly penetrated into deeper tumor sites and realized the effective accumulation in hypoxic regions, probably because the cationic net charge of PGlu(DET-Car) is augmented in more acidic hypoxic regions. This study suggests that the changeable net charge on the NP surface in response to tumorous acidic conditions is a promising strategy for tumor-targeted delivery based on the EPR effect.
Collapse
|