1
|
Lin C, Li J, Li G, Luo W, Liu S, Hammud A, Xia Y, Pan A, Wolf M, Müller M, Kumagai T. Quantitative comparison of local field enhancement from tip-apex and plasmonic nanofocusing excitation via plasmon-assisted field emission resonances. NANOSCALE 2025; 17:7164-7172. [PMID: 39995343 DOI: 10.1039/d4nr04262j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Plasmonic nanofocusing via off-site excitation offers a promising approach to minimize background light scattering and enhance excitation efficiency in tip-enhanced optical spectroscopy. However, a comprehensive understanding of its effectiveness compared to direct tip-apex excitation remains limited. Here we introduce plasmon-assisted field emission resonances as a practicable approach for quantitative evaluation of the local field enhancement in a scanning-tunneling-microscope junction via off-site excitation compared to direct tip-apex excitation. By using single-groove pyramidal tips suitable for multi-wavelength excitations, we find that the near-field intensity is approximately 3.8 and 1.7 times higher for off-site excitation than for direct apex excitation at excitation wavelengths of 780 nm and 633 nm, respectively. These results are further supported by numerical electromagnetic field simulations. Our findings demonstrate the effective implementation of plasmonic nanofocusing in low-temperature scanning tunneling microscopy, paving the way for more precise and background-free tip-enhanced optical spectroscopy at the atomic scale.
Collapse
Affiliation(s)
- Chenfang Lin
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Institute of Optoelectronic Integration, College of Materials Science and Engineering, Hunan University, 410082, Changsha, China.
| | - Jie Li
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Institute of Optoelectronic Integration, College of Materials Science and Engineering, Hunan University, 410082, Changsha, China.
| | - Guoao Li
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Institute of Optoelectronic Integration, College of Materials Science and Engineering, Hunan University, 410082, Changsha, China.
| | - Wenjie Luo
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Institute of Optoelectronic Integration, College of Materials Science and Engineering, Hunan University, 410082, Changsha, China.
| | - Shuyi Liu
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Adnan Hammud
- Department of Inorganic Chemistry, Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Yang Xia
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Institute of Optoelectronic Integration, College of Materials Science and Engineering, Hunan University, 410082, Changsha, China.
| | - Anlian Pan
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Institute of Optoelectronic Integration, College of Materials Science and Engineering, Hunan University, 410082, Changsha, China.
- School of Physics and Electronics, Hunan Normal University, 410081, Changsha, China
| | - Martin Wolf
- Department of Physical Chemistry, Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Melanie Müller
- Department of Physical Chemistry, Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Takashi Kumagai
- Institute for Molecular Science, 38 NishigoNaka, Myodaiji, Okazaki 444-8585, Japan.
- The Graduate University for Advanced Studies, SOKENDAI, Hayama, Kanagawa 240-0193, Japan
| |
Collapse
|
2
|
Bao YF, Zhu MY, Zhao XJ, Chen HX, Wang X, Ren B. Nanoscale chemical characterization of materials and interfaces by tip-enhanced Raman spectroscopy. Chem Soc Rev 2024; 53:10044-10079. [PMID: 39229965 DOI: 10.1039/d4cs00588k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Materials and their interfaces are the core for the development of a large variety of fields, including catalysis, energy storage and conversion. In this case, tip-enhanced Raman spectroscopy (TERS), which combines scanning probe microscopy with plasmon-enhanced Raman spectroscopy, is a powerful technique that can simultaneously obtain the morphological information and chemical fingerprint of target samples at nanometer spatial resolution. It is an ideal tool for the nanoscale chemical characterization of materials and interfaces, correlating their structures with chemical performances. In this review, we begin with a brief introduction to the nanoscale characterization of materials and interfaces, followed by a detailed discussion on the recent theoretical understanding and technical improvements of TERS, including the origin of enhancement, TERS instruments, TERS tips and the application of algorithms in TERS. Subsequently, we list the key experimental issues that need to be addressed to conduct successful TERS measurements. Next, we focus on the recent progress of TERS in the study of various materials, especially the novel low-dimensional materials, and the progresses of TERS in studying different interfaces, including both solid-gas and solid-liquid interfaces. Finally, we provide an outlook on the future developments of TERS in the study of materials and interfaces.
Collapse
Affiliation(s)
- Yi-Fan Bao
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Meng-Yuan Zhu
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Xiao-Jiao Zhao
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Hong-Xuan Chen
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Xiang Wang
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| | - Bin Ren
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| |
Collapse
|
3
|
Kusch P, Arcos Pareja JA, Tsarapkin A, Deinhart V, Harbauer K, Hoeflich K, Reich S. Double Tips for In-Plane Polarized Near-Field Microscopy and Spectroscopy. NANO LETTERS 2024; 24:12406-12412. [PMID: 39254859 PMCID: PMC11468238 DOI: 10.1021/acs.nanolett.4c02826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024]
Abstract
Near-field optical microscopy and spectroscopy provide high-resolution imaging below the diffraction limit, crucial in physics, chemistry, and biology for studying molecules, nanoparticles, and viruses. These techniques use a sharp metallic tip of an atomic force microscope (AFM) to enhance incoming and scattered light by excited near-fields at the tip apex, leading to high sensitivity and a spatial resolution of a few nanometers. However, this restricts the near-field orientation to out-of-plane polarization, limiting optical polarization choices. We introduce double tips that offer in-plane polarization for enhanced imaging and spectroscopy. These double tips provide superior enhancement over single tips, although with a slightly lower spatial resolution (∼30 nm). They enable advanced studies of nanotubes, graphene defects, and transition metal dichalcogenides, benefiting from polarization control. The double tips allow varied polarization in tip-enhanced Raman scattering and selective excitation of transverse-electric and -magnetic polaritons, expanding the range of nanoscale samples that can be studied.
Collapse
Affiliation(s)
- Patryk Kusch
- Freie
Universität Berlin, Fachbereich Physik, Berlin, Berlin 14195, Germany
| | | | - Aleksei Tsarapkin
- Ferdinand-Braun-Institut, Leibniz-Institut
fuer Hoechstfrequenztechnik (FBH), Berlin, Berlin 12489 Germany
| | - Victor Deinhart
- Ferdinand-Braun-Institut, Leibniz-Institut
fuer Hoechstfrequenztechnik (FBH), Berlin, Berlin 12489 Germany
| | - Karsten Harbauer
- Institute
for Solar Fuels, Helmholtz-Zentrum Berlin
fuer Materialien und Energie GmbH, Berlin, Berlin 14109 Germany
| | - Katja Hoeflich
- Ferdinand-Braun-Institut, Leibniz-Institut
fuer Hoechstfrequenztechnik (FBH), Berlin, Berlin 12489 Germany
| | - Stephanie Reich
- Freie
Universität Berlin, Fachbereich Physik, Berlin, Berlin 14195, Germany
| |
Collapse
|
4
|
Bourgeois MR, Nixon AG, Chalifour M, Beutler EK, Masiello DJ. Polarization-Resolved Electron Energy Gain Nanospectroscopy With Phase-Structured Electron Beams. NANO LETTERS 2022; 22:7158-7165. [PMID: 36036765 DOI: 10.1021/acs.nanolett.2c02375] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Free-electron-based measurements in scanning transmission electron microscopes (STEMs) reveal valuable information on the broadband spectral responses of nanoscale systems with deeply subdiffraction limited spatial resolution. Leveraging recent advances in manipulating the spatial phase profile of the transverse electron wavefront, we theoretically describe interactions between the electron probe and optically stimulated nanophotonic targets in which the probe gains energy while simultaneously transitioning between transverse states with distinct phase profiles. Exploiting the selection rules governing such transitions, we propose phase-shaped electron energy gain nanospectroscopy for probing the 3D polarization-resolved response field of an optically excited target with nanoscale spatial resolution. Considering ongoing instrumental developments, polarized generalizations of STEM electron energy loss and gain measurements hold the potential to become powerful tools for fundamental studies of quantum materials and their interaction with nearby nanostructures supporting localized surface plasmon or phonon polaritons as well as for noninvasive imaging and nanoscale 3D field tomography.
Collapse
Affiliation(s)
- Marc R Bourgeois
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Austin G Nixon
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Matthieu Chalifour
- Department of Physics, University of Washington, Seattle, Washington 98195, United States
| | - Elliot K Beutler
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - David J Masiello
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
5
|
Single-Molecule Surface-Enhanced Raman Spectroscopy. SENSORS 2022; 22:s22134889. [PMID: 35808385 PMCID: PMC9269420 DOI: 10.3390/s22134889] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/20/2022] [Accepted: 06/24/2022] [Indexed: 12/04/2022]
Abstract
Single-molecule surface-enhanced Raman spectroscopy (SM-SERS) has the potential to detect single molecules in a non-invasive, label-free manner with high-throughput. SM-SERS can detect chemical information of single molecules without statistical averaging and has wide application in chemical analysis, nanoelectronics, biochemical sensing, etc. Recently, a series of unprecedented advances have been realized in science and application by SM-SERS, which has attracted the interest of various fields. In this review, we first elucidate the key concepts of SM-SERS, including enhancement factor (EF), spectral fluctuation, and experimental evidence of single-molecule events. Next, we systematically discuss advanced implementations of SM-SERS, including substrates with ultra-high EF and reproducibility, strategies to improve the probability of molecules being localized in hotspots, and nonmetallic and hybrid substrates. Then, several examples for the application of SM-SERS are proposed, including catalysis, nanoelectronics, and sensing. Finally, we summarize the challenges and future of SM-SERS. We hope this literature review will inspire the interest of researchers in more fields.
Collapse
|
6
|
Tschannen CD, Vasconcelos TL, Novotny L. Tip-enhanced Raman spectroscopy of confined carbon chains. J Chem Phys 2022; 156:044203. [DOI: 10.1063/5.0073950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
| | - Thiago L. Vasconcelos
- Materials Metrology Division, Instituto Nacional de Metrologia Qualidade e Tecnologia (INMETRO), 25250-020 Duque de Caxias, RJ, Brazil
| | - Lukas Novotny
- Photonics Laboratory, ETH Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
7
|
Lu F, Zhang W, Sun L, Mei T, Yuan X. Circular nanocavity substrate-assisted plasmonic tip for its enhancement in nanofocusing and optical trapping. OPTICS EXPRESS 2021; 29:37515-37524. [PMID: 34808821 DOI: 10.1364/oe.441689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Plasmonic tip nanofocusing has widely been applied in tip-enhanced Raman spectroscopy, optical trapping, nonlinear optics, and super-resolution imaging due to its capability of high local field enhancement. In this work, a substrate with a circular nanocavity is proposed to enhance the nanofocusing and optical trapping characteristics of the plasmonic tip. Under axial illumination of a tightly focused radial polarized beam, the circular nanohole etched on a metallic substrate can form a nanocavity to induce an interference effect and further enhance the electric field intensity. When a plasmonic tip is placed closely above such a substrate, the electric field intensity of the gap-plasmon mode can further be improved, which is 10 folds stronger than that of the conventional gap-plasmon mode. Further analysis reveals that the enhanced gap-plasmon mode can significantly strengthen the optical force exerted on a nanoparticle and stably trap a 4-nm-diameter dielectric nanoparticle. Our proposed method can improve the performance of tip-enhanced spectroscopy, plasmonic tweezers and extend their applications. We anticipate that our methods allow simultaneously manipulating and characterizing single nanoparticles in-situ.
Collapse
|
8
|
Su HS, Feng HS, Wu X, Sun JJ, Ren B. Recent advances in plasmon-enhanced Raman spectroscopy for catalytic reactions on bifunctional metallic nanostructures. NANOSCALE 2021; 13:13962-13975. [PMID: 34477677 DOI: 10.1039/d1nr04009j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Metallic nanostructures exhibit superior catalytic performance for diverse chemical reactions and the in-depth understanding of reaction mechanisms requires versatile characterization methods. Plasmon-enhanced Raman spectroscopy (PERS), including surface-enhanced Raman spectroscopy (SERS), shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS), and tip-enhanced Raman spectroscopy (TERS), appears as a powerful technique to characterize the Raman fingerprint information of surface species with high chemical sensitivity and spatial resolution. To expand the range of catalytic reactions studied by PERS, catalytically active metals are integrated with plasmonic metals to produce bifunctional metallic nanostructures. In this minireview, we discuss the recent advances in PERS techniques to probe the chemical reactions catalysed by bifunctional metallic nanostructures. First, we introduce different architectures of these dual-functionality nanostructures. We then highlight the recent works using PERS to investigate important catalytic reactions as well as the electronic and catalytic properties of these nanostructures. Finally, we provide some perspectives for future PERS studies in this field.
Collapse
Affiliation(s)
- Hai-Sheng Su
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | | | | | | | | |
Collapse
|
9
|
Huang SC, Bao YF, Wu SS, Huang TX, Sartin MM, Wang X, Ren B. Electrochemical Tip-Enhanced Raman Spectroscopy: An In Situ Nanospectroscopy for Electrochemistry. Annu Rev Phys Chem 2021; 72:213-234. [PMID: 33400554 DOI: 10.1146/annurev-physchem-061020-053442] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Revealing the intrinsic relationships between the structure, properties, and performance of the electrochemical interface is a long-term goal in the electrochemistry and surface science communities because it could facilitate the rational design of electrochemical devices. Achieving this goal requires in situ characterization techniques that provide rich chemical information and high spatial resolution. Electrochemical tip-enhanced Raman spectroscopy (EC-TERS), which provides molecular fingerprint information with nanometer-scale spatial resolution, is a promising technique for achieving this goal. Since the first demonstration of this technique in 2015, EC-TERS has been developed for characterizing various electrochemical processes at the nanoscale and molecular level. Here, we review the development of EC-TERS over the past 5 years. We discuss progress in addressing the technical challenges, including optimizing the EC-TERS setup and solving tip-related issues, and provide experimental guidelines. We also survey the important applications of EC-TERS for probing molecular protonation, molecular adsorption, electrochemical reactions, and photoelectrochemical reactions. Finally, we discuss the opportunities and challenges in the future development of this young technique.
Collapse
Affiliation(s)
- Sheng-Chao Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; ,
| | - Yi-Fan Bao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; ,
| | - Si-Si Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; ,
| | - Teng-Xiang Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; ,
| | - Matthew M Sartin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; ,
| | - Xiang Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; ,
| | - Bin Ren
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; ,
| |
Collapse
|
10
|
Sartin MM, Su HS, Wang X, Ren B. Tip-enhanced Raman spectroscopy for nanoscale probing of dynamic chemical systems. J Chem Phys 2020; 153:170901. [PMID: 33167627 DOI: 10.1063/5.0027917] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Dynamics are fundamental to all aspects of chemistry and play a central role in the mechanism and product distribution of a chemical reaction. All dynamic processes are influenced by the local environment, so it is of fundamental and practical value to understand the structure of the environment and the dynamics with nanoscale resolution. Most techniques for measuring dynamic processes have microscopic spatial resolution and can only measure the average behavior of a large ensemble of sites within their sampling volumes. Tip-enhanced Raman spectroscopy (TERS) is a powerful tool for overcoming this limitation due to its combination of high chemical specificity and spatial resolution that is on the nanometer scale. Adapting it for the study of dynamic systems remains a work in progress, but the increasing sophistication of TERS is making such studies more routine, and there are now growing efforts to use TERS to examine more complex processes. This Perspective aims to promote development in this area of research by highlighting recent progress in using TERS to understand reacting and dynamic systems, ranging from simple model reactions to complex processes with practical applications. We discuss the unique challenges and opportunities that TERS presents for future studies.
Collapse
Affiliation(s)
- Matthew M Sartin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Hai-Sheng Su
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiang Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Bin Ren
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
11
|
Giuzio G, Martín Sabanés N, Domke KF. Beam Modulation for Aberration Control and Signal Enhancement in Tip-Enhanced Raman Spectroscopy. APPLIED SPECTROSCOPY 2020; 74:1407-1413. [PMID: 32820942 DOI: 10.1177/0003702820938065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Tip-enhanced Raman spectroscopy (TERS) provides the sensitivity required to obtain the vibrational fingerprint of few molecules. While single molecule detection has been demonstrated in UHV experiments, the sensitivity of the technique in ambient, liquid and electrochemical conditions is still limited. In this work, we present a new strategy to increase the signal-to-noise in TERS by spatial light modulation. We iteratively optimize the phase of the excitation beam employing two different feedback mechanisms. In one optimization protocol, we monitor the spectral changes upon aberration correction and tight far-field focusing. In a second protocol, we use a phase-optimization strategy where TER spectra are directly used for feedback. Far-field tight focusing results in average signal enhancements of a factor of 3.5 in air and has no impact on TER signals obtained from solid/liquid interfaces. Using the TER spectrum as direct feedback, we obtain average signal enhancements between a factor of 2.6 in liquid and 4.3 in air. In individual cases, some bands increase by more than one order of magnitude in intensity upon spatial light modulation. Importantly, phase modulation in addition allowed the retrieval of bands that were initially not discernible from the noise. The proposed beam-modulation strategy can be easily implemented in existing TERS instruments and can help to push the detection limit of the technique in applications where the signal-to-noise level is low.
Collapse
Affiliation(s)
- Giovanni Giuzio
- 28308Max Planck Institute for Polymer Research, Mainz, Germany
| | - Natalia Martín Sabanés
- 28308Max Planck Institute for Polymer Research, Mainz, Germany
- Department of Physical Chemistry, Fritz Haber Institute of the Max Planck Society, Berlin, Germany
- Department of Physics, Freie Universität Berlin, Berlin, Germany
| | - Katrin F Domke
- 28308Max Planck Institute for Polymer Research, Mainz, Germany
| |
Collapse
|
12
|
Oliveira BS, Archanjo BS, Valaski R, Achete CA, Cançado LG, Jorio A, Vasconcelos TL. Nanofabrication of plasmon-tunable nanoantennas for tip-enhanced Raman spectroscopy. J Chem Phys 2020; 153:114201. [DOI: 10.1063/5.0021560] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Affiliation(s)
- Bruno S. Oliveira
- Divisão de Metrologia de Materiais, Instituto Nacional de Metrologia, Qualidade e Tecnologia (Inmetro), Duque de Caxias, RJ 25250-020, Brazil
| | - Bráulio S. Archanjo
- Divisão de Metrologia de Materiais, Instituto Nacional de Metrologia, Qualidade e Tecnologia (Inmetro), Duque de Caxias, RJ 25250-020, Brazil
| | - Rogério Valaski
- Divisão de Metrologia de Materiais, Instituto Nacional de Metrologia, Qualidade e Tecnologia (Inmetro), Duque de Caxias, RJ 25250-020, Brazil
| | - Carlos A. Achete
- Divisão de Metrologia de Materiais, Instituto Nacional de Metrologia, Qualidade e Tecnologia (Inmetro), Duque de Caxias, RJ 25250-020, Brazil
| | - Luiz Gustavo Cançado
- Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, MG 30270-901, Brazil
| | - Ado Jorio
- Electrical Engineering and Innovation Technology Graduate Programs, Universidade Federal de Minas Gerais, Belo Horizonte, MG 30270-901, Brazil
| | - Thiago L. Vasconcelos
- Divisão de Metrologia de Materiais, Instituto Nacional de Metrologia, Qualidade e Tecnologia (Inmetro), Duque de Caxias, RJ 25250-020, Brazil
| |
Collapse
|
13
|
Lin R, Zhai Y, Xiong C, Li X. Inverse design of plasmonic metasurfaces by convolutional neural network. OPTICS LETTERS 2020; 45:1362-1365. [PMID: 32163966 DOI: 10.1364/ol.387404] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 02/03/2020] [Indexed: 06/10/2023]
Abstract
Artificial neural networks have shown effectiveness in the inverse design of nanophotonic structures; however, the numerical accuracy and algorithm efficiency are not analyzed adequately in previous reports. In this Letter, we demonstrate the convolutional neural network as an inverse design tool to achieve high numerical accuracy in plasmonic metasurfaces. A comparison of the convolutional neural networks and the fully connected neural networks show that convolutional neural networks have higher generalization capabilities. We share practical guidelines for optimizing the neural network and analyzed the hierarchy of accuracy in the multi-parameter inverse design of plasmonic metasurfaces. A high inverse design accuracy of $\pm 8\;{\rm nm}$±8nm for the critical geometrical parameters is demonstrated.
Collapse
|
14
|
Hermann RJ, Gordon MJ. Quantitative comparison of plasmon resonances and field enhancements of near-field optical antennae using FDTD simulations. OPTICS EXPRESS 2018; 26:27668-27682. [PMID: 30469829 DOI: 10.1364/oe.26.027668] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 09/21/2018] [Indexed: 06/09/2023]
Abstract
Plasmon resonances and electric field enhancements of several near-field optical antennae with plasmonic nanostructures engineered at their apices were quantitatively compared using finite difference time domain simulations. Although many probe designs have been tested experimentally, a systematic comparison of field enhancements has not been possible, due to differences in instrument configuration, reporter mechanism, excitation energy, and plasmonic materials used. For plasmonic nanostructures attached to a non-plasmonic support (e.g., a nanoparticle functionalized AFM tip), we find that the complex refractive index of the support material is critical in controlling the overall plasmonic behavior of the antenna. Supports with strong absorption at optical energies (Pt, W) dampen plasmon resonances and lead to lower enhancements, while those with low absorption (SiO2, Si3N4, Si) boost enhancement by increasing the extinction cross-section of the apex nanostructure. Using a set of physically realistic constraints, probes were optimized for peak plasmonic enhancement at common near-field optical wavelengths (633-647 nm) and those with focused ion-beam milled grooves near the apex were found to give the largest local field enhancements (~30x). Compared to unstructured metal cones, grooved probes gave a 300% improvement in field strength, which can boost tip-enhanced Raman spectroscopy (TERS) signals by 1-2 orders of magnitude. Moreover, grooved probe resonances can be easily tuned over visible and near-infrared energies by varying the plasmonic metal (Ag or Au) and groove location. Overall, this work shows that probes with strong localized surface plasmon resonances at their apices can be engineered to provide large field enhancements and boost signals in near-field optical experiments.
Collapse
|
15
|
Bhattarai A, Krayev A, Temiryazev A, Evplov D, Crampton KT, Hess WP, El-Khoury PZ. Tip-Enhanced Raman Scattering from Nanopatterned Graphene and Graphene Oxide. NANO LETTERS 2018; 18:4029-4033. [PMID: 29791800 DOI: 10.1021/acs.nanolett.8b01690] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Tip-enhanced Raman spectroscopy (TERS) is particularly sensitive to analytes residing at plasmonic tip-sample nanojunctions, where the incident and scattered optical fields may be localized and optimally enhanced. However, the enhanced local electric fields in this so-called gap-mode TERS configuration are nominally orthogonal to the sample plane. As such, any given Raman active vibrational eigenstate needs to have projections (of its polarizability derivative tensor elements) along the sample normal to be detectable via TERS. The faint TERS signals observed from two prototypical systems, namely, pristine graphene and graphene oxide are a classical example of the aforementioned rather restrictive TERS selection rules in this context. In this study, we demonstrate that nanoindentation, herein achieved using pulsed-force lithography with a sharp single-crystal diamond atomic force microscope probe, may be used to locally enhance TERS signals from graphene and graphene oxide flakes on gold. Nanoindentation locally perturbs the otherwise flat graphene structure and introduces out-of-plane protrusions that generate enhanced TERS. Although our approach is nominally invasive, we illustrate that the introduced nanodefects are highly localized, as evidenced by TERS nanoscale chemical mapping. As such, the described protocol may be used to extend and generalize the applicability of TERS for the rapid identification of two-dimensional material systems on the nanoscale.
Collapse
Affiliation(s)
- Ashish Bhattarai
- Physical Sciences Division , Pacific Northwest National Laboratory , P.O. Box 999, Richland , Washington 99352 , United States
| | - Andrey Krayev
- Horiba Instruments Inc. , 359 Bel Marin Keys Boulevard, Suite 20 , Novato , California 94949 , United States
| | - Alexey Temiryazev
- Kotel'nikov Institute of Radioengineering and Electronics of RAS, Fryazino Branch , Vvedensky Square 1 , Fryazino 141190 , Russia
| | - Dmitry Evplov
- Horiba Instruments Inc. , 359 Bel Marin Keys Boulevard, Suite 20 , Novato , California 94949 , United States
| | - Kevin T Crampton
- Physical Sciences Division , Pacific Northwest National Laboratory , P.O. Box 999, Richland , Washington 99352 , United States
| | - Wayne P Hess
- Physical Sciences Division , Pacific Northwest National Laboratory , P.O. Box 999, Richland , Washington 99352 , United States
| | - Patrick Z El-Khoury
- Physical Sciences Division , Pacific Northwest National Laboratory , P.O. Box 999, Richland , Washington 99352 , United States
| |
Collapse
|
16
|
Hermann RJ, Gordon MJ. Nanoscale Optical Microscopy and Spectroscopy Using Near-Field Probes. Annu Rev Chem Biomol Eng 2018; 9:365-387. [DOI: 10.1146/annurev-chembioeng-060817-084150] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Light-matter interactions can provide a wealth of detailed information about the structural, electronic, optical, and chemical properties of materials through various excitation and scattering processes that occur over different length, energy, and timescales. Unfortunately, the wavelike nature of light limits the achievable spatial resolution for interrogation and imaging of materials to roughly λ/2 because of diffraction. Scanning near-field optical microscopy (SNOM) breaks this diffraction limit by coupling light to nanostructures that are specifically designed to manipulate, enhance, and/or extract optical signals from very small regions of space. Progress in the SNOM field over the past 30 years has led to the development of many methods to optically characterize materials at lateral spatial resolutions well below 100 nm. We review these exciting developments and demonstrate how SNOM is truly extending optical imaging and spectroscopy to the nanoscale.
Collapse
Affiliation(s)
- Richard J. Hermann
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California 93106, USA;,
| | - Michael J. Gordon
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California 93106, USA;,
| |
Collapse
|
17
|
Affiliation(s)
- Lifu Xiao
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Zachary D Schultz
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
18
|
Bonhommeau S, Lecomte S. Tip-Enhanced Raman Spectroscopy: A Tool for Nanoscale Chemical and Structural Characterization of Biomolecules. Chemphyschem 2017; 19:8-18. [DOI: 10.1002/cphc.201701067] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 11/04/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Sébastien Bonhommeau
- University of Bordeaux; Institut des Sciences Moléculaires; CNRS UMR 5255; 351 cours de la Libération 33405 Talence cedex France
| | - Sophie Lecomte
- University of Bordeaux; Institut de Chimie et Biologie des Membranes et des Nano-objets; CNRS UMR 5248; Allée Geoffroy Saint Hilaire 33600 Pessac France
| |
Collapse
|
19
|
Shi X, Coca-López N, Janik J, Hartschuh A. Advances in Tip-Enhanced Near-Field Raman Microscopy Using Nanoantennas. Chem Rev 2017; 117:4945-4960. [DOI: 10.1021/acs.chemrev.6b00640] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Xian Shi
- Department of Chemistry and
Center for NanoScience (CeNS), LMU Munich, 81377 Munich, Germany
| | - Nicolás Coca-López
- Department of Chemistry and
Center for NanoScience (CeNS), LMU Munich, 81377 Munich, Germany
| | - Julia Janik
- Department of Chemistry and
Center for NanoScience (CeNS), LMU Munich, 81377 Munich, Germany
| | - Achim Hartschuh
- Department of Chemistry and
Center for NanoScience (CeNS), LMU Munich, 81377 Munich, Germany
| |
Collapse
|
20
|
Trautmann S, Aizpurua J, Götz I, Undisz A, Dellith J, Schneidewind H, Rettenmayr M, Deckert V. A classical description of subnanometer resolution by atomic features in metallic structures. NANOSCALE 2017; 9:391-401. [PMID: 27924333 DOI: 10.1039/c6nr07560f] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Recent experiments have evidenced sub-nanometer resolution in plasmonic-enhanced probe spectroscopy. Such a high resolution cannot be simply explained using the commonly considered radii of metallic nanoparticles on plasmonic probes. In this contribution the effects of defects as small as a single atom found on spherical plasmonic particles acting as probing tips are investigated in connection with the spatial resolution provided. The presence of abundant edge and corner sites with atomic scale dimensions in crystalline metallic nanoparticles is evident from transmission electron microscopy (TEM) images. Electrodynamic calculations based on the Finite Element Method (FEM) are implemented to reveal the impact of the presence of such atomic features in probing tips on the lateral spatial resolution and field localization. Our analysis is developed for three different configurations, and under resonant and non-resonant illumination conditions, respectively. Based on this analysis, the limits of field enhancement, lateral resolution and field confinement in plasmon-enhanced spectroscopy and microscopy are inferred, reaching values below 1 nanometer for reasonable atomic sizes.
Collapse
Affiliation(s)
- S Trautmann
- Leibniz Institute of photonic technology (IPHT), Albert-Einstein-Straße 9, D-07745 Jena, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Richard-Lacroix M, Zhang Y, Dong Z, Deckert V. Mastering high resolution tip-enhanced Raman spectroscopy: towards a shift of perception. Chem Soc Rev 2017. [DOI: 10.1039/c7cs00203c] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recent years have seen tremendous improvement of our understanding of high resolution reachable in TERS experiments, forcing us to re-evaluate our understanding of the intrinsic limits of this field, but also exposing several inconsistencies.
Collapse
Affiliation(s)
- Marie Richard-Lacroix
- Leibniz Institute of Photonic Technology (IPHT)
- D-07745 Jena
- Germany
- Institute of Physical Chemistry and Abbe Center of Photonics
- University of Jena
| | - Yao Zhang
- Centro de Física de Materiales
- Centro Mixto CSIC-UPV/EHU and Donostia International Physics Center (DIPC)
- ES-20018 Donostia-San Sebastián
- Spain
- Hefei National Laboratory for Physical Science at the Microscale and Synergetic Innovation Center of Quantum Information & Quantum Physics
| | - Zhenchao Dong
- Hefei National Laboratory for Physical Science at the Microscale and Synergetic Innovation Center of Quantum Information & Quantum Physics
- University of Science and Technology of China
- Hefei
- P. R. China
| | - Volker Deckert
- Leibniz Institute of Photonic Technology (IPHT)
- D-07745 Jena
- Germany
- Institute of Physical Chemistry and Abbe Center of Photonics
- University of Jena
| |
Collapse
|
22
|
Pozzi EA, Goubert G, Chiang N, Jiang N, Chapman CT, McAnally MO, Henry AI, Seideman T, Schatz GC, Hersam MC, Duyne RPV. Ultrahigh-Vacuum Tip-Enhanced Raman Spectroscopy. Chem Rev 2016; 117:4961-4982. [DOI: 10.1021/acs.chemrev.6b00343] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
| | | | | | - Nan Jiang
- Department
of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Morita-Imura C, Zama K, Imura Y, Kawai T, Shindo H. Stimuli-Responsive Extraction and Ambidextrous Redispersion of Zwitterionic Amphiphile-Capped Silver Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:6948-6955. [PMID: 27333292 DOI: 10.1021/acs.langmuir.6b01753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Citrate-stabilized silver nanoparticles (AgNPs) were functionalized with a pH-responsive amphiphile, 3-[(2-carboxy-ethyl)-hexadecyl-amino]-propionic acid (C16CA). At pH ∼ 4, the zwitterionic C16CA assembled into lamellar structures due to the protonation of the amine groups of the amphiphile that neutralized the anionic charge of the carboxylate groups. The lamellar supramolecules incorporated the AgNPs into their 3D network and extracted them from water. C16CA supramolecules dissolved into water (at pH > 6) and organic solvents; consequently, the recovered C16CA-AgNPs were redispersed not only to water but also to chloroform and tetrahydrofuran without any additional functionalization. C16CA acted as a pH-responsive stabilizer of AgNPs and formed a solvent-switchable molecular layer such as a bilayered structure in water and densely packed monolayer in chloroform and tetrahydrofuran. Redispersion of the AgNPs was achieved in different solvents by changing the solvent affinity of the adsorbed C16CA molecular layer based on the protonation of the amine groups of the pH-responsive amphiphile. The morphology of redispersed AgNPs did not change during the recovery and redispersion procedure, due to the high steric effect of the network structure of C16CA supramolecules. These observations can lead to a novel solvent-exchange method for nanocrystals without aggregation and loss of nanocrystals, and they enable effective preparations of stimuli-responsive plasmonic nanomaterials.
Collapse
Affiliation(s)
- Clara Morita-Imura
- Department of Applied Chemistry, Chuo University , Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Katsuya Zama
- Department of Applied Chemistry, Chuo University , Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Yoshiro Imura
- Department of Industrial Chemistry, Tokyo University of Science , 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8614, Japan
| | - Takeshi Kawai
- Department of Industrial Chemistry, Tokyo University of Science , 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8614, Japan
| | - Hitoshi Shindo
- Department of Applied Chemistry, Chuo University , Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| |
Collapse
|
24
|
Ranasingha O, Wang H, Zobač V, Jelínek P, Panapitiya G, Neukirch AJ, Prezhdo OV, Lewis JP. Slow Relaxation of Surface Plasmon Excitations in Au55: The Key to Efficient Plasmonic Heating in Au/TiO2. J Phys Chem Lett 2016; 7:1563-1569. [PMID: 27043706 DOI: 10.1021/acs.jpclett.6b00283] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Gold nanoparticles distinguish themselves from other nanoparticles due to their unique surface plasmon resonance properties that can be exploited for a multiplicity of applications. The promise of plasmonic heating in systems of Au nanoparticles on transition metal oxide supports, for example, Au/TiO2, rests with the ability of the surface plasmon in Au nanoparticles to effectively transfer energy into the transition metal oxide. Here, we report a critical observation regarding Au nanoparticle (Au55) surface plasmon excitations, that is, the relaxation of the surface plasmon excitation is very slow, on the order of several picoseconds. Starting from five plasmon states in Au55 nanoparticles using nonadiabatic molecular dynamics simulations, we find that the relaxation time constant resulting from these simulations is ∼6.8 ps, mainly resulting from a long-lived intermediate state found at around -0.8 eV. This long-lived intermediate state aligns with the conduction band edge of TiO2, thereby facilitating energy transfer injection from the Au55 nanoparticle into the TiO2. The current results rule out the previously reported molecular-like relaxation dynamics for Au55.
Collapse
Affiliation(s)
- Oshadha Ranasingha
- Department of Physics and Astronomy, West Virginia University , Morgantown, West Virginia 26506-6315, United States
| | - Hong Wang
- Department of Physics and Astronomy, West Virginia University , Morgantown, West Virginia 26506-6315, United States
| | - Vladimír Zobač
- Institute of Physics, Academy of Sciences of the Czech Republic , Cukrovarnicḱa 10, CZ-16200 Prague, Czech Republic
- Department of Physical Electronics, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague , CZ-16200 Prague, Czech Republic
| | - Pavel Jelínek
- Institute of Physics, Academy of Sciences of the Czech Republic , Cukrovarnicḱa 10, CZ-16200 Prague, Czech Republic
| | - Gihan Panapitiya
- Department of Physics and Astronomy, West Virginia University , Morgantown, West Virginia 26506-6315, United States
| | - Amanda J Neukirch
- Department of Physics and Astronomy, University of Rochester , Rochester, New York 14627, United States
| | - Oleg V Prezhdo
- Department of Physics and Astronomy, University of Rochester , Rochester, New York 14627, United States
- Department of Chemistry, University of Southern California , Los Angeles, California 90089-1062, United States
| | - James P Lewis
- Department of Physics and Astronomy, West Virginia University , Morgantown, West Virginia 26506-6315, United States
| |
Collapse
|