1
|
Park YS, Choi Y, Lee JS. Focal adhesion dynamics-mediated cell migration and proliferation on silica bead arrays. Biomater Sci 2025; 13:1849-1857. [PMID: 40012335 DOI: 10.1039/d4bm01659a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Interactions between cells and the extracellular matrix (ECM) alter cellular behaviors, including adhesion, migration, proliferation, and differentiation via focal adhesions that link the ECM to the actin cytoskeleton as an intracellular signaling pathway. Although nanomaterials with various mechanical, geometrical, and topographical features have been used to provide a variety of cell-ECM interactions, it remains unclear how their nanostructured surfaces affect cellular behavior. In this study, we investigated focal adhesion dynamics during the migration and proliferation of HeLa cells on silica bead (SB) arrays with various nanotopographies. Cell adhesion was altered according to the surface curvature and pinhole size of the SB arrays, and cell morphology was determined by the ratio of the adhesive and non-adhesive areas of cells on the SB arrays. In turn, this triggered different focal adhesion dynamics in cells. In addition, we demonstrated the rapid migration and high proliferation characteristics of rounded cells with weak adhesion based on confocal microscopy analysis and migration trajectory on SB arrays, indicating focal adhesion dynamics-mediated cell migration and proliferation on nanostructured surfaces.
Collapse
Affiliation(s)
- Yi-Seul Park
- Department of Chemistry, Sookmyung Women's University, Seoul 04310, Korea.
| | - Yerin Choi
- Department of Chemistry and Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul 04763, South Korea.
| | - Jin Seok Lee
- Department of Chemistry and Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul 04763, South Korea.
| |
Collapse
|
2
|
Cui LH, Noh JM, Kim DH, Seo HR, Joo HJ, Choi SC, Song MH, Kim KS, Huang LH, Na JE, Rhyu IJ, Qu XK, Lee KB, Lim DS. Nanotopography promotes cardiogenesis of pluripotent stem cell-derived embryoid bodies through focal adhesion kinase signaling. Biochem Biophys Res Commun 2024; 735:150796. [PMID: 39427377 DOI: 10.1016/j.bbrc.2024.150796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/20/2024] [Accepted: 10/07/2024] [Indexed: 10/22/2024]
Abstract
Controlling the microenvironment surrounding the pluripotent stem cells (PSCs) is a pivotal strategy for regulating cellular differentiation. Surface nanotopography is one of the key factors influencing the lineage-specific differentiation of PSCs. However, much of the underlying mechanism remains unknown. In this study, we focused on the effects of gradient nanotopography on the differentiation of embryoid bodies (EBs). EBs were cultured on three differently sized nanopillar surfaces (Large, 280-360; Medium, 200-280; Small, 120-200 nm) for spontaneous cardiomyocyte differentiation without chemical stimuli. The large nanotopography significantly promoted cardiogenesis, with increased expression of cardiac markers such as α-MHC, cTnT, and cTnI, and redistributed vinculin expression to the contact area. In addition, the small and medium nanotopographies also influenced EB differentiation, affecting both cardiogenesis and hematopoiesis to varying degrees. The phosphorylation of focal adhesion kinase (FAK) decreased in the EBs on the large nanotopography compared to that in the EBs cultured on the flat surface. The gradient nanotopography with 280-360 nm nanopillars is beneficial for the cardiogenesis of EBs in a FAK-dependent manner. This study provides valuable insights into controlling stem cell differentiation through nanotopographical cues, thereby advancing our understanding of the microenvironmental regulation in stem cell-based cardiac tissue engineering.
Collapse
Affiliation(s)
- Long-Hui Cui
- Department of Cardiology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Ji-Min Noh
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, South Korea
| | - Dae Hwan Kim
- Department of Biomedical Engineering, College of Health Science, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, South Korea; BK21 Four R&E Center for Precision Public Health, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, South Korea
| | - Ha-Rim Seo
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, South Korea; Division of Drug Efficacy Evaluation, New Drug Development Center, Osong Medical Innovation Foundation, 123 Osongsaengmyeong-ro, Osong-eup, Heungdeok-gu, Cheonju-si, 28160, South Korea
| | - Hyung Joon Joo
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, South Korea
| | - Seung-Cheol Choi
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, South Korea; R&D Center for Companion Diagnosis, SOL Bio Corporation, Suite 510, 27, Seongsui-ro7-gil, Seongdong-gu, Seoul, 04780, South Korea
| | - Myeong-Hwa Song
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, South Korea
| | - Kyung-Seob Kim
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, South Korea
| | - Li-Hua Huang
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, South Korea
| | - Ji Eun Na
- Department of Anatomy, College of Medicine, Korea University, Seoul, 02841, South Korea
| | - Im Joo Rhyu
- Department of Anatomy, College of Medicine, Korea University, Seoul, 02841, South Korea
| | - Xin-Kai Qu
- Department of Cardiology, Huadong Hospital Affiliated to Fudan University, Shanghai, China.
| | - Kyu Back Lee
- Department of Biomedical Engineering, College of Health Science, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, South Korea.
| | - Do-Sun Lim
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, South Korea.
| |
Collapse
|
3
|
Nosrati H, Fallah Tafti M, Aghamollaei H, Bonakdar S, Moosazadeh Moghaddam M. Directed Differentiation of Adipose-Derived Stem Cells Using Imprinted Cell-Like Topographies as a Growth Factor-Free Approach. Stem Cell Rev Rep 2024; 20:1752-1781. [PMID: 39066936 DOI: 10.1007/s12015-024-10767-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2024] [Indexed: 07/30/2024]
Abstract
The influence of surface topography on stem cell behavior and differentiation has garnered significant attention in regenerative medicine and tissue engineering. The cell-imprinting method has been introduced as a promising approach to mimic the geometry and topography of cells. The cell-imprinted substrates are designed to replicate the topographies and dimensions of target cells, enabling tailored interactions that promote the differentiation of stem cells towards desired specialized cell types. In fact, by replicating the size and shape of cells, biomimetic substrates provide physical cues that profoundly impact stem cell differentiation. These cues play a pivotal role in directing cell morphology, cytoskeletal organization, and gene expression, ultimately influencing lineage commitment. The biomimetic substrates' ability to emulate the native cellular microenvironment supports the creation of platforms capable of steering stem cell fate with high precision. This review discusses the role of mechanical factors that impact stem cell fate. It also provides an overview of the design and fabrication principles of cell-imprinted substrates. Furthermore, the paper delves into the use of cell-imprinted polydimethylsiloxane (PDMS) substrates to direct adipose-derived stem cells (ADSCs) differentiation into a variety of specialized cells for tissue engineering and regenerative medicine applications. Additionally, the review discusses the limitations of cell-imprinted PDMS substrates and highlights the efforts made to overcome these limitations.
Collapse
Affiliation(s)
- Hamed Nosrati
- Student Research Committee, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mahsa Fallah Tafti
- Vision Health Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Hossein Aghamollaei
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Shahin Bonakdar
- National Cell Bank Department, Pasteur Institute of Iran, Tehran, Iran
| | - Mehrdad Moosazadeh Moghaddam
- Student Research Committee, Baqiyatallah University of Medical Sciences, Tehran, Iran.
- Tissue Engineering and Regenerative Medicine Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Salehi A, Sprejz S, Ruehl H, Olayioye M, Cattaneo G. An imprint-based approach to replicate nano- to microscale roughness on gelatin hydrogel scaffolds: surface characterization and effect on endothelialization. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:1214-1235. [PMID: 38431849 DOI: 10.1080/09205063.2024.2322771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/19/2024] [Indexed: 03/05/2024]
Abstract
Biologization of biomaterials with endothelial cells (ECs) is an important step in vascular tissue engineering, aiming at improving hemocompatibility and diminishing the thrombo-inflammatory response of implants. Since subcellular topography in the scale of nano to micrometers can influence cellular adhesion, proliferation, and differentiation, we here investigate the effect of surface roughness on the endothelialization of gelatin hydrogel scaffolds. Considering the micron and sub-micron features of the different native tissues underlying the endothelium in the body, we carried out a biomimetic approach to replicate the surface roughness of tissues and analyzed how this impacted the adhesion and proliferation of human umbilical endothelial cells (HUVECs). Using an imprinting technique, nano and micro-roughness ranging from Sa= 402 nm to Sa= 8 μm were replicated on the surface of gelatin hydrogels. Fluorescent imaging of HUVECs on consecutive days after seeding revealed that microscale topographies negatively affect cell spreading and proliferation. By contrast, nanoscale roughnesses of Sa= 402 and Sa= 538 nm promoted endothelialization as evidenced by the formation of confluent cell monolayers with prominent VE-cadherin surface expression. Collectively, we present an affordable and flexible imprinting method to replicate surface characteristics of tissues on hydrogels and demonstrate how nanoscale roughness positively supports their endothelialization.
Collapse
Affiliation(s)
- Ali Salehi
- Institute of Biomedical Engineering, University of Stuttgart, Stuttgart, Germany
| | - Stefanie Sprejz
- Institute of Biomedical Engineering, University of Stuttgart, Stuttgart, Germany
| | - Holger Ruehl
- Institute for Micro Integration, University of Stuttgart, Stuttgart, Germany
| | - Monilola Olayioye
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Giorgio Cattaneo
- Institute of Biomedical Engineering, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
5
|
Yan W, Li Y, Yin J, Liu Q, Shi Y, Tan J, Wang Y, Zhang S, Zhang J, Li J, Yan S. Protective effect of human epicardial adipose-derived stem cells on myocardial injury driven by poly-lactic acid nanopillar array. Biotechnol Appl Biochem 2024; 71:110-122. [PMID: 37904285 DOI: 10.1002/bab.2525] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/07/2023] [Indexed: 11/01/2023]
Abstract
We investigated if poly-lactic acid (PLA) nanopillar array can trigger the differentiation of human epicardial (ADSCs) (heADSCs) into cardiomyocyte-like cells and explored the effects of these cardiomyocyte-like cells on myocardial infarction (MI) in vivo. PLA nanopillar array (200 nm diameter) and plain PLA film (PLA planar) induced heADSCs were marked with carboxyfluorescein. After 7 days, the expressions of myocardiocyte-specific genes were significantly enhanced in cells seeded on PLA nanopillar array compared with that on PLA planar, especially CACNA1C, KCNH2, and MYL2 genes (p < 0.05). However, the expressions of cardiac troponin T (cTNT), KCNQ1, and KCNA5 were lower than those in PLA planar-induced heADSCs (p < 0.05), whereas GATA4 tended to increase with time. The cells with positively stained α-actinin and cTNT were elevated in heADSCs induced by PLA nanopillar array compared with those induced by PLA planar only (p < 0.05). In vivo experiments showed that cardiac function was improved after injecting PLA-nanopillar array-induced heADSCs into the ischemic heart (p < 0.05, compared with PLA planar + MI group). Furthermore, tyrosine hydroxylase density was significantly lower (p < 0.05). PLA nanopillar array directly drives the differentiation of heADSCs into cardiomyocyte-like cells, and the induced heADSCs exhibit a protective effect on ischemic myocardium by improving cardiac function in MI rats.
Collapse
Affiliation(s)
- Wenju Yan
- Cheeloo College of Medicine, Shandong University& Shandong Qianfoshan Hospital, Jinan, China
- Department of Vasculocardiology, Taian City Central Hospital, Taian, China
| | - Yan Li
- Department of Cardiology, The First Hospital Affiliated to Shandong First Medical University& Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Jie Yin
- Department of Cardiology, The First Hospital Affiliated to Shandong First Medical University& Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Qian Liu
- Cheeloo College of Medicine, Shandong University& Shandong Qianfoshan Hospital, Jinan, China
| | - Yugen Shi
- Department of Cardiology, The First Hospital Affiliated to Shandong First Medical University& Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Jiayu Tan
- Department of Cardiology, The First Hospital Affiliated to Shandong First Medical University& Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Yu Wang
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shan Zhang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, China
| | - Junyi Zhang
- Cheeloo College of Medicine, Shandong University& Shandong Qianfoshan Hospital, Jinan, China
| | - Jingxin Li
- Cheeloo College of Medicine, Shandong University& Shandong Qianfoshan Hospital, Jinan, China
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Suhua Yan
- Cheeloo College of Medicine, Shandong University& Shandong Qianfoshan Hospital, Jinan, China
- Department of Cardiology, The First Hospital Affiliated to Shandong First Medical University& Shandong Provincial Qianfoshan Hospital, Jinan, China
| |
Collapse
|
6
|
Lai CY, Liu CF, Lin TL, Chen MY, Huang YC, Huang HH, Dong CL, Wang DY, Yeh PH, Wu WW. Defect-Rich SnO 2 Nanofiber as an Oxygen-Defect-Driven Photoenergy Shield against UV Light Cell Damage. ACS APPLIED MATERIALS & INTERFACES 2023; 15:42868-42880. [PMID: 37647236 DOI: 10.1021/acsami.3c08926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Usually, most studies focus on toxic gas and photosensors by using electrospinning and metal oxide polycrystalline SnO2 nanofibers (PNFs), while fewer studies discuss cell-material interactions and photoelectric effect. In this work, the controllable surface morphology and oxygen defect (VO) structure properties were provided to show the opportunity of metal oxide PNFs to convert photoenergy into bio-energy for bio-material applications. Using the photobiomodulation effect of defect-rich polycrystalline SnO2 nanofibers (PNFs) is the main idea to modulate the cell-material interactions, such as adhesion, growth direction, and reactive oxygen species (ROS) density. The VO structures, including out-of-plane oxygen defects (op-VO), bridge oxygen defects (b-VO), and in-plane oxygen defects (ip-VO), were studied using synchrotron analysis to investigate the electron transfer between the VO structures and conduction bands. These intragrain VO structures can be treated as generation-recombination centers, which can convert various photoenergies (365-520 nm) into different current levels that form distinct surface potential levels; this is referred to as the photoelectric effect. PNF conductivity was enhanced 53.6-fold by enlarging the grain size (410 nm2) by increasing the annealing temperature, which can improve the photoelectric effect. In vitro removal of reactive oxygen species (ROS) can be achieved by using the photoelectric effect of PNFs. Also, the viability and shape of human bone marrow mesenchymal stem cells (hMSCs-BM) were also influenced significantly by the photobiomodulation effect. The cell damage and survival rate can be prevented and enhanced by using PNFs; metal oxide nanofibers are no longer only environmental sensors but can also be a bio-material to convert the photoenergy into bio-energy for biomedical science applications.
Collapse
Affiliation(s)
- Chun-Yen Lai
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Chia-Fei Liu
- Department of Dentistry, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Tzu-Ling Lin
- Department of Physics, Tamkang University, New Taipei 25137, Taiwan
| | - Mei-Yu Chen
- Department of Physics, Tamkang University, New Taipei 25137, Taiwan
| | - Yu-Cheng Huang
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Her-Hsiung Huang
- Department of Dentistry, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Chung-Li Dong
- Department of Physics, Tamkang University, New Taipei 25137, Taiwan
| | - Ding-Yeong Wang
- Department of Electrical Engineering, Feng Chia University, Taichung 407802, Taiwan
| | - Ping-Hung Yeh
- Department of Physics, Tamkang University, New Taipei 25137, Taiwan
| | - Wen-Wei Wu
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
- Center for the Intelligent Semiconductor Nano-system Technology Research, Hsinchu 30078, Taiwan
| |
Collapse
|
7
|
Adhikari J, Roy A, Chanda A, D A G, Thomas S, Ghosh M, Kim J, Saha P. Effects of surface patterning and topography on the cellular functions of tissue engineered scaffolds with special reference to 3D bioprinting. Biomater Sci 2023; 11:1236-1269. [PMID: 36644788 DOI: 10.1039/d2bm01499h] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The extracellular matrix (ECM) of the tissue organ exhibits a topography from the nano to micrometer range, and the design of scaffolds has been inspired by the host environment. Modern bioprinting aims to replicate the host tissue environment to mimic the native physiological functions. A detailed discussion on the topographical features controlling cell attachment, proliferation, migration, differentiation, and the effect of geometrical design on the wettability and mechanical properties of the scaffold are presented in this review. Moreover, geometrical pattern-mediated stiffness and pore arrangement variations for guiding cell functions have also been discussed. This review also covers the application of designed patterns, gradients, or topographic modulation on 3D bioprinted structures in fabricating the anisotropic features. Finally, this review accounts for the tissue-specific requirements that can be adopted for topography-motivated enhancement of cellular functions during the fabrication process with a special thrust on bioprinting.
Collapse
Affiliation(s)
- Jaideep Adhikari
- School of Advanced Materials, Green Energy and Sensor Systems, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, India
| | - Avinava Roy
- Department of Metallurgy and Materials Engineering, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, India
| | - Amit Chanda
- Department of Mechanical Engineering, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Gouripriya D A
- Centre for Interdisciplinary Sciences, JIS Institute of Advanced Studies and Research (JISIASR) Kolkata, JIS University, GP Block, Salt Lake, Sector-5, West Bengal 700091, India.
| | - Sabu Thomas
- School of Chemical Sciences, MG University, Kottayam 686560, Kerala, India
| | - Manojit Ghosh
- Department of Metallurgy and Materials Engineering, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, India
| | - Jinku Kim
- Department of Bio and Chemical Engineering, Hongik University, Sejong, 30016, South Korea.
| | - Prosenjit Saha
- Centre for Interdisciplinary Sciences, JIS Institute of Advanced Studies and Research (JISIASR) Kolkata, JIS University, GP Block, Salt Lake, Sector-5, West Bengal 700091, India.
| |
Collapse
|
8
|
Shin E, Kwon TY, Cho Y, Kim Y, Shin JH, Han YM. ECM Architecture-Mediated Regulation of β-Cell Differentiation from hESCs via Hippo-Independent YAP Activation. ACS Biomater Sci Eng 2023; 9:680-692. [PMID: 36580628 DOI: 10.1021/acsbiomaterials.2c01054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Changes in the extracellular matrix (ECM) influence stem cell fate. When hESCs were differentiated on a thin layer of Matrigel coated onto PDMS (Matrigel_PDMS), they exhibited a substantial increase in focal adhesion and focal adhesion-associated proteins compared with those cultured on Matrigel coated onto TCPS (Matrigel_TCPS), resulting in YAP/TEF1 activation and ultimately promoting the transcriptional activities of pancreatic endoderm (PE)-associated genes. Interestingly, YAP activation in PE cells was mediated through integrin α3-FAK-CDC42-PP1A signaling rather than the typical Hippo signaling pathway. Furthermore, pancreatic islet-like organoids (PIOs) generated on Matrigel_PDMS secreted more insulin than those generated from Matrigel_TCPS. Electron micrographs revealed differential Matrigel architectures depending on the underlying substrate, resulting in varying cell-matrix anchorage resistance levels. Accordingly, the high apparent stiffness of the unique mucus-like network structure of Matrigel_PDMS was the critical factor that directly upregulated focal adhesion, thereby leading to better maturation of the pancreatic development of hESCs in vitro.
Collapse
Affiliation(s)
- Eunji Shin
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Tae Yoon Kwon
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Youngbin Cho
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Youngjin Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Jennifer H Shin
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Yong-Mahn Han
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| |
Collapse
|
9
|
Allahyari Z, Gaborski TR. Engineering cell-substrate interactions on porous membranes for microphysiological systems. LAB ON A CHIP 2022; 22:2080-2089. [PMID: 35593461 DOI: 10.1039/d2lc00114d] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Microphysiological systems are now widely used to recapitulate physiological and pathological microenvironments in order to study and understand a variety of cellular processes as well as drug delivery and stem cell differentiation. Central to many of these systems are porous membranes that enable tissue barrier formation as well as compartmentalization while still facilitating small molecule diffusion, cellular transmigration and cell-cell communication. The role or impact of porous membranes on the cells cultured upon them has not been widely studied or reviewed. Although many chemical and physical substrate characteristics have been shown to be effective in controlling and directing cellular behavior, the influence of pore characteristics and the ability to engineer porous membranes to influence these responses is not fully understood. In this mini-review, we show that many studies point to a multiphasic cell-substrate response, where increasing pore sizes and pore-pore spacing generally leads to improved cell-substrate interactions. However, the smallest pores in the nano-scale sometimes promote the strongest cell-substrate interactions, while the very largest micron-scale pores hinder cell-substrate interactions. This synopsis provides an insight into the importance of membrane pores in controlling cellular responses, and may help with the design and utilization of porous membranes for induction of desired cell processes in the development of biomimetic platforms.
Collapse
Affiliation(s)
- Zahra Allahyari
- Department of Microsystems Engineering, Rochester Institute of Technology, 160 Lomb Memorial Drive, Rochester, NY 14623, USA.
- Department of Biomedical Engineering, Rochester Institute of Technology, 160 Lomb Memorial Drive, Rochester, NY 14623, USA
| | - Thomas R Gaborski
- Department of Microsystems Engineering, Rochester Institute of Technology, 160 Lomb Memorial Drive, Rochester, NY 14623, USA.
- Department of Biomedical Engineering, Rochester Institute of Technology, 160 Lomb Memorial Drive, Rochester, NY 14623, USA
| |
Collapse
|
10
|
Nabizadeh Z, Nasrollahzadeh M, Daemi H, Baghaban Eslaminejad M, Shabani AA, Dadashpour M, Mirmohammadkhani M, Nasrabadi D. Micro- and nanotechnology in biomedical engineering for cartilage tissue regeneration in osteoarthritis. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2022; 13:363-389. [PMID: 35529803 PMCID: PMC9039523 DOI: 10.3762/bjnano.13.31] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 03/24/2022] [Indexed: 05/12/2023]
Abstract
Osteoarthritis, which typically arises from aging, traumatic injury, or obesity, is the most common form of arthritis, which usually leads to malfunction of the joints and requires medical interventions due to the poor self-healing capacity of articular cartilage. However, currently used medical treatment modalities have reported, at least in part, disappointing and frustrating results for patients with osteoarthritis. Recent progress in the design and fabrication of tissue-engineered microscale/nanoscale platforms, which arises from the convergence of stem cell research and nanotechnology methods, has shown promising results in the administration of new and efficient options for treating osteochondral lesions. This paper presents an overview of the recent advances in osteochondral tissue engineering resulting from the application of micro- and nanotechnology approaches in the structure of biomaterials, including biological and microscale/nanoscale topographical cues, microspheres, nanoparticles, nanofibers, and nanotubes.
Collapse
Affiliation(s)
- Zahra Nabizadeh
- Department of Medical Biotechnology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Biotechnology Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | | | - Hamed Daemi
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cell and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Ali Akbar Shabani
- Department of Medical Biotechnology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Biotechnology Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Mehdi Dadashpour
- Department of Medical Biotechnology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Biotechnology Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Majid Mirmohammadkhani
- Department of Epidemiology and Biostatistics, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Davood Nasrabadi
- Department of Medical Biotechnology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Biotechnology Research Center, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
11
|
Esfahani SN, Resto Irizarry AM, Xue X, Lee SBD, Shao Y, Fu J. Micro/nanoengineered technologies for human pluripotent stem cells maintenance and differentiation. NANO TODAY 2021; 41:101310. [PMID: 34745321 PMCID: PMC8570530 DOI: 10.1016/j.nantod.2021.101310] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Human pluripotent stem cells (hPSCs) are a promising source of cells for cell replacement-based therapies as well as modeling human development and diseases in vitro. However, achieving fate control of hPSC with a high yield and specificity remains challenging. The fate specification of hPSCs is regulated by biochemical and biomechanical cues in their environment. Driven by this knowledge, recent exciting advances in micro/nanoengineering have been leveraged to develop a broad range of tools for the generation of extracellular biomechanical and biochemical signals that determine the behavior of hPSCs. In this review, we summarize such micro/nanoengineered technologies for controlling hPSC fate and highlight the role of biochemical and biomechanical cues such as substrate rigidity, surface topography, and cellular confinement in the hPSC-based technologies that are on the horizon.
Collapse
Affiliation(s)
- Sajedeh Nasr Esfahani
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Xufeng Xue
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Samuel Byung-Deuk Lee
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yue Shao
- Department of Engineering Mechanics, Tsinghua University, Beijing, China
| | - Jiangping Fu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
12
|
Kim DH, Lee IH, Yun WS, Shim JH, Choi D, Hwang SH, Kim SW. Long-term efficacy and safety of 3D printed implant in patients with nasal septal deformities. Eur Arch Otorhinolaryngol 2021; 279:1943-1950. [PMID: 34291346 DOI: 10.1007/s00405-021-06996-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/12/2021] [Indexed: 12/14/2022]
Abstract
PURPOSE To investigate the long-term safety and efficacy of a 3D-printed bioresorbable polycaprolactone (PCL) nasal implant for nasal septal deformity reconstruction. METHODS Fourteen patients who had undergone nasal septum reconstruction surgery using 3D-printed PCL nasal septal implants were enrolled. The primary outcome was the change in total Nasal Obstruction Symptom Evaluation (NOSE) scale scores between postoperative 3 months and current status (3.59 ± 0.51 years). The secondary outcomes were changes in the minimum cross-sectional area (MCA) and volume of both nasal cavities based on acoustic rhinometry, the cross-sectional area of the ostiomeatal unit, and the nasal septum angle of the paranasal sinus (PNS) in computed tomography (CT) images, and a visual analog scale (VAS) of the patients' subjective satisfaction. RESULTS The results showed no significant changes in the MCAs (Cohen's d:0.09; p = 0.711) or nasal volume (Cohen's d:0.26; p = 0.356), the area of the ostiomeatal unit (Cohen's d:0.49; p = 0.064), septum angles (Cohen's d:0.18; p = 0.831), the NOSE scale (Cohen's d:0.14; p = 0.621), or patients' subjective satisfaction (Cohen's d:0.52; p = 0.076) during the follow-up period. CONCLUSIONS This homogeneous composite microporous PCL nasal septal implant demonstrated long-term clinical efficacy and safety in human tissues that required maintenance of mechanical strength. Therefore, the indications for this implant could extend to various other craniofacial reconstructions in the future.
Collapse
Affiliation(s)
- Do Hyun Kim
- Department of Otolaryngology-Head and Neck Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Banpo-daero 222, Seocho-gu, Seoul, 137-701, Republic of Korea
| | - Il Hwan Lee
- Department of Otolaryngology-Head and Neck Surgery, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Incheon, Republic of Korea
| | - Won-Soo Yun
- Department of Mechanical Engineering, Korea Polytechnic University, Siheung-Si, Gyeonggi-Do, Korea.,Research Institute, T&R Biofab Co. Ltd, Siheung-Si, Gyeonggi-Do, Korea
| | - Jin-Hyung Shim
- Department of Mechanical Engineering, Korea Polytechnic University, Siheung-Si, Gyeonggi-Do, Korea.,Research Institute, T&R Biofab Co. Ltd, Siheung-Si, Gyeonggi-Do, Korea
| | - Dami Choi
- Research Institute, T&R Biofab Co. Ltd, Siheung-Si, Gyeonggi-Do, Korea
| | - Se Hwan Hwang
- Department of Otolaryngology-Head and Neck Surgery, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 327 Sosa-ro, Bucheon-si, Gyeonggi-Do, 14647, Korea.
| | - Sung Won Kim
- Department of Otolaryngology-Head and Neck Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Banpo-daero 222, Seocho-gu, Seoul, 137-701, Republic of Korea.
| |
Collapse
|
13
|
Zhang X, Gong B, Zhai J, Zhao Y, Lu Y, Zhang L, Xue J. A Perspective: Electrospun Fibers for Repairing Spinal Cord Injury. Chem Res Chin Univ 2021. [DOI: 10.1007/s40242-021-1162-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
Choi A, Yoon H, Han SJ, Lee JH, Rhyou IH, Kim DS. Rapid harvesting of stem cell sheets by thermoresponsive bulk poly( N-isopropylacrylamide) (PNIPAAm) nanotopography. Biomater Sci 2021; 8:5260-5270. [PMID: 32930245 DOI: 10.1039/d0bm01338b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
To date, cell sheet engineering-based technologies have actualized diverse scaffold-free bio-products to revitalize unintentionally damaged tissues/organs, including cardiomyopathy, corneal defects, and periodontal damage. Although substantial interest is now centered on the practical utilization of these bio-products for patients, the long harvest period of stem cells- or other primary cell-sheets has become a huge hurdle. Here, we dramatically reduce the total harvest period of a cell sheet (from cell layer formation to cell sheet detachment) composed of human bone marrow mesenchymal stem cells (hBMSCs) down to 2 d with the help of bulk thermoresponsive poly(N-isopropylacrylamide) (PNIPAAm) substrate nanotopography, which is not achievable via the previous grafting methods using PNIPAAm. We directly replicated an isotropic 400 nm-nanopore-array pattern on a bulk PNIPAAm substrate through UV polymerization of highly concentrated NIPAAm monomers, which was achieved using a remarkably increased Young's modulus of bulk PNIPAAm that was 1500 times higher than conventional PNIPAAm. The rapid harvesting of the hBMSC sheet on the bulk PNIPAAm substrate nanotopography was not only based on the accelerated formation and maturation of the hBMSC layer, but also the easy detachment of the hBMSC sheet induced by the abrupt change in the surface roughness of the substrate below the lower critical solution temperature (LCST) owing to the enlarged surface area of the substrate. Our findings may contribute to reverse presumptions about the limitations regarding the grafting methods for the cell sheet harvest and could broaden the practical utilization of cell sheets for patients in the near future.
Collapse
Affiliation(s)
- Andrew Choi
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Pohang, 37673, Korea.
| | - Hyungjun Yoon
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Pohang, 37673, Korea.
| | - Seon Jin Han
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Pohang, 37673, Korea.
| | - Ji-Ho Lee
- Department of Orthopedic Surgery, Pohang Semyeong Christianity Hospital, 351 Posco-daero, Pohang, 37816, Korea
| | - In Hyeok Rhyou
- Department of Orthopedic Surgery, Pohang Semyeong Christianity Hospital, 351 Posco-daero, Pohang, 37816, Korea
| | - Dong Sung Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Pohang, 37673, Korea.
| |
Collapse
|
15
|
Guo T, Oztug NAK, Han P, Ivanovski S, Gulati K. Old is Gold: Electrolyte Aging Influences the Topography, Chemistry, and Bioactivity of Anodized TiO 2 Nanopores. ACS APPLIED MATERIALS & INTERFACES 2021; 13:7897-7912. [PMID: 33570904 DOI: 10.1021/acsami.0c19569] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Titanium dioxide (TiO2) nanostructures including nanopores and nanotubes have been fabricated on titanium (Ti)-based orthopedic/dental implants via electrochemical anodization (EA) to enable local drug release and enhanced bioactivity. EA using organic electrolytes such as ethylene glycol often requires aging (repeated anodization of nontarget Ti) to fabricate stable well-ordered nanotopographies. However, limited information is available with respect to its influence on topography, chemistry, mechanical stability, and bioactivity of the fabricated structures. In the current study, titania nanopores (TNPs) using a similar voltage/time were fabricated using different ages of electrolyte (fresh/0 h to 30 h aged). Current density vs time plots of EA, changes in the electrolyte (pH, conductivity, and Ti/F ion concentration), and topographical, chemical, and mechanical characteristics of the fabricated TNPs were compared. EA using 10-20 h electrolytes resulted in stable TNPs with uniform size and improved alignment (parallel to the underlying substrate microroughness). Additionally, to evaluate bioactivity, primary human gingival fibroblasts (hGFs) were cultured onto various TNPs in vitro. The findings confirmed that the proliferation and morphology of hGFs were enhanced on 10-20 h aged electrolyte anodized TNPs. This pioneering study systematically investigates the optimization of anodization electrolyte toward fabricating nanoporous implants with desirable characteristics.
Collapse
Affiliation(s)
- Tianqi Guo
- The University of Queensland, School of Dentistry, Herston, Queensland 4006, Australia
| | - Necla Asli Kocak Oztug
- The University of Queensland, School of Dentistry, Herston, Queensland 4006, Australia
- Istanbul University, Faculty of Dentistry, Department of Periodontology, Istanbul 34116, Turkey
| | - Pingping Han
- The University of Queensland, School of Dentistry, Herston, Queensland 4006, Australia
| | - Sašo Ivanovski
- The University of Queensland, School of Dentistry, Herston, Queensland 4006, Australia
| | - Karan Gulati
- The University of Queensland, School of Dentistry, Herston, Queensland 4006, Australia
| |
Collapse
|
16
|
Nanotechnology shaping stem cell therapy: Recent advances, application, challenges, and future outlook. Biomed Pharmacother 2021; 137:111236. [PMID: 33486201 DOI: 10.1016/j.biopha.2021.111236] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/29/2020] [Accepted: 12/31/2020] [Indexed: 01/10/2023] Open
Abstract
Currently, stem cell nanotechnology is one of the novel and exciting fields. Certain experimental studies conducted on the interaction of stem cells with nanostructures or nanomaterials have made significant progress. The significance of nanostructures, nanotechnology, and nanomaterials in the development of stem cell-based therapies for degenerative diseases and injuries has been well established. Specifically, the structure and properties of nanomaterials affecting the propagation and differentiation of stem cells have become a new interdisciplinary frontier in material science and regeneration medicines. In the current review, we highlight the recent major progress in this field, explore the application prospects, and discuss the issues, approaches, and challenges, to improve the applications of nanotechnology in the research and development of stem cells.
Collapse
|
17
|
Promoted migration of fibroblast cells on low aspect ratio isotropic nanopore surface by reduced maturation of focal adhesion at peripheral region. Colloids Surf B Biointerfaces 2020; 195:111229. [DOI: 10.1016/j.colsurfb.2020.111229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/26/2020] [Accepted: 06/29/2020] [Indexed: 01/08/2023]
|
18
|
Han S, Kim J, Lee G, Kim D. Mechanical Properties of Materials for Stem Cell Differentiation. ACTA ACUST UNITED AC 2020; 4:e2000247. [DOI: 10.1002/adbi.202000247] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/28/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Seong‐Beom Han
- KU‐KIST Graduate School of Converging Science and Technology Korea University 145, Anam‐ro, Seongbuk‐gu Seoul 02841 Republic of Korea
| | - Jeong‐Ki Kim
- KU‐KIST Graduate School of Converging Science and Technology Korea University 145, Anam‐ro, Seongbuk‐gu Seoul 02841 Republic of Korea
| | - Geonhui Lee
- KU‐KIST Graduate School of Converging Science and Technology Korea University 145, Anam‐ro, Seongbuk‐gu Seoul 02841 Republic of Korea
| | - Dong‐Hwee Kim
- KU‐KIST Graduate School of Converging Science and Technology Korea University 145, Anam‐ro, Seongbuk‐gu Seoul 02841 Republic of Korea
| |
Collapse
|
19
|
Yang L, Jurczak KM, Ge L, Rijn P. High-Throughput Screening and Hierarchical Topography-Mediated Neural Differentiation of Mesenchymal Stem Cells. Adv Healthc Mater 2020; 9:e2000117. [PMID: 32363812 DOI: 10.1002/adhm.202000117] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/27/2020] [Indexed: 12/12/2022]
Abstract
Biophysical factors such as anisotropic topography composed of micro/nanosized structures are important for directing the fate of human bone marrow-derived mesenchymal stem cells (hBM-MSCs) and have been applied to neuronal differentiation. Via high-throughput screening (HTS) methods based on topography gradients, the optimum topography is determined and translated toward a hierarchical architecture designed to mimic the nerve nano/microstructure. The polydimethylsiloxane (PDMS)-based topography gradient with amplitudes (A) from 541 to 3073 nm and wavelengths (W) between 4 and 30 µm is developed and the fate commitment of MSC toward neuron lineage is investigated. The hierarchical structures, combining nano- and microtopography (W0.3/W26 parallel/perpendicular) are fabricated to explore the combined topography effects on neuron differentiation. From the immunofluorescent staining results (Tuj1 and MAP2), the substrate characterized by W: 26 µm; A: 2.9 µm shows highest potential for promoting neurogenesis. Furthermore, the hierarchical features (W0.3/W26 parallel) significantly enhance neural differentiation. The hBM-MSCs on the hierarchical substrates exhibit a significantly lower percentage of nuclear Yes-associated protein (YAP)/TAZ and weaker cell contractility indicating that the promoted neurogenesis is mediated by the cell tension and YAP/TAZ pathway. This research provides new insight into designing biomaterials for applications in neural tissue engineering and contributes to the understanding of topography-mediated neuronal differentiation.
Collapse
Affiliation(s)
- Liangliang Yang
- Department of Biomedical Engineering University Medical Center GroningenUniversity of Groningen Groningen, A. Deusinglaan 1 Groningen 9713 AV The Netherlands
| | - Klaudia Malgorzata Jurczak
- Department of Biomedical Engineering University Medical Center GroningenUniversity of Groningen Groningen, A. Deusinglaan 1 Groningen 9713 AV The Netherlands
| | - Lu Ge
- Department of Biomedical Engineering University Medical Center GroningenUniversity of Groningen Groningen, A. Deusinglaan 1 Groningen 9713 AV The Netherlands
| | - Patrick Rijn
- Department of Biomedical Engineering University Medical Center GroningenUniversity of Groningen Groningen, A. Deusinglaan 1 Groningen 9713 AV The Netherlands
| |
Collapse
|
20
|
Application of co-culture technology of epithelial type cells and mesenchymal type cells using nanopatterned structures. PLoS One 2020; 15:e0232899. [PMID: 32392240 PMCID: PMC7213697 DOI: 10.1371/journal.pone.0232899] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 04/23/2020] [Indexed: 01/23/2023] Open
Abstract
Various nanopatterning techniques have been developed to improve cell proliferation and differentiation efficiency. As we previously reported, nanopillars and pores are able to sustain human pluripotent stem cells and differentiate pancreatic cells. From this, the nanoscale patterns would be effective environment for the co-culturing of epithelial and mesenchymal cell types. Interestingly, the nanopatterning selectively reduced the proliferative rate of mesenchymal cells while increasing the expression of adhesion protein in epithelial type cells. Additionally, co-cultured cells on the nanopatterning were not negatively affected in terms of cell function metabolic ability or cell survival. This is in contrast to conventional co-culturing methods such as ultraviolet or chemical treatments. The nanopatterning appears to be an effective environment for mesenchymal co-cultures with typically low proliferative rates cells such as astrocytes, neurons, melanocytes, and fibroblasts without using potentially damaging treatments.
Collapse
|
21
|
Alessandra G, Algerta M, Paola M, Carsten S, Cristina L, Paolo M, Elisa M, Gabriella T, Carla P. Shaping Pancreatic β-Cell Differentiation and Functioning: The Influence of Mechanotransduction. Cells 2020; 9:E413. [PMID: 32053947 PMCID: PMC7072458 DOI: 10.3390/cells9020413] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/29/2020] [Accepted: 02/07/2020] [Indexed: 02/08/2023] Open
Abstract
Embryonic and pluripotent stem cells hold great promise in generating β-cells for both replacing medicine and novel therapeutic discoveries in diabetes mellitus. However, their differentiation in vitro is still inefficient, and functional studies reveal that most of these β-like cells still fail to fully mirror the adult β-cell physiology. For their proper growth and functioning, β-cells require a very specific environment, the islet niche, which provides a myriad of chemical and physical signals. While the nature and effects of chemical stimuli have been widely characterized, less is known about the mechanical signals. We here review the current status of knowledge of biophysical cues provided by the niche where β-cells normally live and differentiate, and we underline the possible machinery designated for mechanotransduction in β-cells. Although the regulatory mechanisms remain poorly understood, the analysis reveals that β-cells are equipped with all mechanosensors and signaling proteins actively involved in mechanotransduction in other cell types, and they respond to mechanical cues by changing their behavior. By engineering microenvironments mirroring the biophysical niche properties it is possible to elucidate the β-cell mechanotransductive-regulatory mechanisms and to harness them for the promotion of β-cell differentiation capacity in vitro.
Collapse
Affiliation(s)
- Galli Alessandra
- Department of Excellence of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20134 Milan, Italy
| | - Marku Algerta
- Department of Excellence of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20134 Milan, Italy
| | - Marciani Paola
- Department of Excellence of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20134 Milan, Italy
| | - Schulte Carsten
- CIMAINA, Department of Physics, Università degli Studi di Milano, 20133 Milan, Italy
| | - Lenardi Cristina
- CIMAINA, Department of Physics, Università degli Studi di Milano, 20133 Milan, Italy
| | - Milani Paolo
- CIMAINA, Department of Physics, Università degli Studi di Milano, 20133 Milan, Italy
| | - Maffioli Elisa
- Department of Veterinary Medicine, Università degli Studi di Milano, 20133 Milan, Italy
| | - Tedeschi Gabriella
- Department of Veterinary Medicine, Università degli Studi di Milano, 20133 Milan, Italy
| | - Perego Carla
- Department of Excellence of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20134 Milan, Italy
| |
Collapse
|
22
|
Kim JH, Park BG, Kim SK, Lee DH, Lee GG, Kim DH, Choi BO, Lee KB, Kim JH. Nanotopographical regulation of pancreatic islet-like cluster formation from human pluripotent stem cells using a gradient-pattern chip. Acta Biomater 2019; 95:337-347. [PMID: 30529081 DOI: 10.1016/j.actbio.2018.12.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 12/03/2018] [Accepted: 12/05/2018] [Indexed: 12/12/2022]
Abstract
Bioengineering approaches to regulate stem cell fates aim to recapitulate the in vivo microenvironment. In recent years, manipulating the micro- and nano-scale topography of the stem cell niche has gained considerable interest for the purposes of controlling extrinsic mechanical cues to regulate stem cell fate and behavior in vitro. Here, we established an optimal nanotopographical system to improve 3-dimensional (3D) differentiation of pancreatic cells from human pluripotent stem cells (hPSCs) by testing gradient-pattern chips of nano-scale polystyrene surface structures with varying sizes and shapes. The optimal conditions for 3D differentiation of pancreatic cells were identified by assessing the expression of developmental regulators that are required for pancreatic islet development and maturation. Our results showed that the gradient chip of pore-part 2 (Po-2, 200-300 nm diameter) pattern was the most efficient setting to generate clusters of pancreatic endocrine progenitors (PDX1+ and NGN3+) compared to those of other pore diameters (Po-1, 100-200 or Po-3, 300-400 nm) tested across a range of pillar patterns and flat surfaces. Furthermore, the Po-2 gradient pattern-derived clusters generated islet-like 3D spheroids and tested positive for the zinc-chelating dye dithizone. The spheroids consisted of more than 30% CD200 + endocrine cells and also expressed NKX6.1 and NKX2.2. In addition, pancreatic β- cells expressing insulin and polyhormonal cells expressing both insulin and glucagon were obtained at the final stage of pancreatic differentiation. In conclusion, our data suggest that an optimal topographical structure for differentiation to specific cell types from hPSCs can be tested efficiently by using gradient-pattern chips designed with varying sizes and surfaces. STATEMENT OF SIGNIFICANCE: Our study provides demonstrates of using gradient nanopatterned chips for differentiation of pancreatic islet-like clusters. Gradient nanopatterned chips are consisted of two different shapes (nanopillar and nanopore) in three different ranges of nano sizes (100-200, 200-300, 300-400 nm). We found that optimal nanostructures for differentiation of pancreatic islet-like clusters were 200-300 nm nano pores. Cell transplantation is one of the major therapeutic option for type 1 diabetes mellitus (DM) using stem cell-derived β-like cells. We generated 50 um pancreatic islet-like clusters in size, which would be an optimal size for cell transplantation. Futuremore, the small clusters provide a powerful source for cell therapy. Our findings suggest gradient nanopatterned chip provides a powerful tool to generate specific functional cell types of a high purity for potential uses in cell therapy development.
Collapse
|
23
|
Chang EA, Jin SW, Nam MH, Kim SD. Human Induced Pluripotent Stem Cells : Clinical Significance and Applications in Neurologic Diseases. J Korean Neurosurg Soc 2019; 62:493-501. [PMID: 31392877 PMCID: PMC6732359 DOI: 10.3340/jkns.2018.0222] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 04/22/2019] [Indexed: 02/07/2023] Open
Abstract
The generation of human induced pluripotent stem cells (iPSCs) from somatic cells using gene transfer opens new areas for precision medicine with personalized cell therapy and encourages the discovery of essential platforms for targeted drug development. iPSCs retain the genome of the donor, may regenerate indefinitely, and undergo differentiation into virtually any cell type of interest using a range of published protocols. There has been enormous interest among researchers regarding the application of iPSC technology to regenerative medicine and human disease modeling, in particular, modeling of neurologic diseases using patient-specific iPSCs. For instance, Parkinson’s disease, Alzheimer’s disease, and spinal cord injuries may be treated with iPSC therapy or replacement tissues obtained from iPSCs. In this review, we discuss the work so far on generation and characterization of iPSCs and focus on recent advances in the use of human iPSCs in clinical setting.
Collapse
Affiliation(s)
- Eun-Ah Chang
- Department of Laboratory Medicine, Korea University Ansan Hospital, Ansan, Korea
| | - Sung-Won Jin
- Department of Neurosurgery, Korea University Ansan Hospital, Ansan, Korea
| | - Myung-Hyun Nam
- Department of Laboratory Medicine, Korea University Ansan Hospital, Ansan, Korea
| | - Sang-Dae Kim
- Department of Neurosurgery, Korea University Ansan Hospital, Ansan, Korea
| |
Collapse
|
24
|
Tang SW, Uddin MH, Tong WY, Pasic P, Yuen W, Thissen H, Lam YW, Voelcker NH. Replication of a Tissue Microenvironment by Thermal Scanning Probe Lithography. ACS APPLIED MATERIALS & INTERFACES 2019; 11:18988-18994. [PMID: 31051073 DOI: 10.1021/acsami.9b05553] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Thermal scanning probe lithography (t-SPL) is a nanofabrication technique in which an immobilized thermolabile resist, such as polyphthalaldehyde (PPA), is locally vaporized by a heated atomic force microscope tip. Compared with other nanofabrication techniques, such as soft lithography and nanoimprinting lithography, t-SPL is more efficient and convenient as it does not involve time-consuming mask productions or complicated etching procedures, making it a promising candidate technique for the fast prototyping of nanoscale topographies for biological studies. Here, we established the direct use of PPA-coated surfaces as a cell culture substrate. We showed that PPA is biocompatible and that the deposition of allylamine by plasma polymerization on a silicon wafer before PPA coating can stabilize the immobilization of PPA in aqueous solutions. When seeded on PPA-coated surfaces, human mesenchymal stem cells (MSC) adhered, spread, and proliferated in a manner indistinguishable from cells cultured on glass surfaces. This allowed us to subsequently use t-SPL to generate nanotopographies for cell culture experiments. As a proof of concept, we analyzed the surface topography of bovine tendon sections, previously shown to induce morphogenesis and differentiation of MSC, by means of atomic force microscopy, and then "wrote" topographical data on PPA by means of t-SPL. The resulting substrate, matching the native tissue topography on the nanoscale, was directly used for MSC culture. The t-SPL substrate induced similar changes in cell morphology and focal adhesion formation in the MSC compared to native tendon sections, suggesting that t-SPL can rapidly generate cell culture substrates with complex and spatially accurate topographical signals. This technique may greatly accelerate the prototyping of models for the study of cell-matrix interactions.
Collapse
Affiliation(s)
- Sze Wing Tang
- Department of Chemistry , City University of Hong Kong , Tat Chee Avenue , Kowloon , Hong Kong SAR
| | - Md Hemayet Uddin
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility , 151 Wellington Road , Clayton , Victoria 3168 , Australia
| | - Wing Yin Tong
- Commonwealth Scientific and Industrial Research Organization (CSIRO) , Clayton , Victoria 3168 , Australia
| | - Paul Pasic
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility , 151 Wellington Road , Clayton , Victoria 3168 , Australia
| | - Wai Yuen
- HealthBaby Biotech (Hong Kong) Company, Limited , Lakeside 2 West Wing, No. 10 Science Park West Avenue , Sha Tin , Hong Kong SAR
| | - Helmut Thissen
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility , 151 Wellington Road , Clayton , Victoria 3168 , Australia
| | - Yun Wah Lam
- Department of Chemistry , City University of Hong Kong , Tat Chee Avenue , Kowloon , Hong Kong SAR
| | - Nicolas H Voelcker
- Drug Delivery Disposition & Dynamics, Monash Institute of Pharmaceutical Science , Monash University , 381 Royal Parade , Parkville , Victoria 3052 , Australia
- Commonwealth Scientific and Industrial Research Organization (CSIRO) , Clayton , Victoria 3168 , Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility , 151 Wellington Road , Clayton , Victoria 3168 , Australia
| |
Collapse
|
25
|
Song G, Ma Z, Liu D, Qian D, Zhou J, Meng H, Zhou B, Song Z. Bone marrow-derived mesenchymal stem cells attenuate severe acute pancreatitis via regulation of microRNA-9 to inhibit necroptosis in rats. Life Sci 2019; 223:9-21. [DOI: 10.1016/j.lfs.2019.03.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/01/2019] [Accepted: 03/08/2019] [Indexed: 12/23/2022]
|
26
|
Choi A, Seo KD, Yoon H, Han SJ, Kim DS. Bulk poly(N-isopropylacrylamide) (PNIPAAm) thermoresponsive cell culture platform: toward a new horizon in cell sheet engineering. Biomater Sci 2019; 7:2277-2287. [DOI: 10.1039/c8bm01664j] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In contrast to the conventional ‘grafting’-based thermoresponsive cell culture platform, we first developed a bulk form of thermoresponsive cell culture platform for attaching/detaching diverse types and origins of the cell sheets in different shape.
Collapse
Affiliation(s)
- Andrew Choi
- Department of Mechanical Engineering
- Pohang University of Science and Technology (POSTECH)
- Pohang 37673
- Republic of Korea
| | - Kyoung Duck Seo
- Department of Mechanical Engineering
- Pohang University of Science and Technology (POSTECH)
- Pohang 37673
- Republic of Korea
| | - Hyungjun Yoon
- Department of Mechanical Engineering
- Pohang University of Science and Technology (POSTECH)
- Pohang 37673
- Republic of Korea
| | - Seon Jin Han
- Department of Mechanical Engineering
- Pohang University of Science and Technology (POSTECH)
- Pohang 37673
- Republic of Korea
| | - Dong Sung Kim
- Department of Mechanical Engineering
- Pohang University of Science and Technology (POSTECH)
- Pohang 37673
- Republic of Korea
| |
Collapse
|
27
|
Navarro-Tableros V, Gomez Y, Brizzi MF, Camussi G. Generation of Human Stem Cell-Derived Pancreatic Organoids (POs) for Regenerative Medicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1212:179-220. [PMID: 31025308 DOI: 10.1007/5584_2019_340] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Insulin-dependent diabetes mellitus or type 1 diabetes mellitus (T1DM) is an auto-immune condition characterized by the loss of pancreatic β-cells. The curative approach for highly selected patients is the pancreas or the pancreatic islet transplantation. Nevertheless, these options are limited by a growing shortage of donor organs and by the requirement of immunosuppression.Xenotransplantation of porcine islets has been extensively investigated. Nevertheless, the strong xenoimmunity and the risk of transmission of porcine endogenous retroviruses, have limited their application in clinic. Generation of β-like cells from stem cells is one of the most promising strategies in regenerative medicine. Embryonic, and more recently, adult stem cells are currently the most promising cell sources exploited to generate functional β-cells in vitro. A number of studies demonstrated that stem cells could generate functional pancreatic organoids (POs), able to restore normoglycemia when implanted in different preclinical diabetic models. Nevertheless, a gradual loss of function and cell dead are commonly detected when POs are transplanted in immunocompetent animals. So far, the main issue to be solved is the post-transplanted islet loss, due to the host immune attack. To avoid this hurdle, nanotechnology has provided a number of polymers currently under investigation for islet micro and macro-encapsulation. These new approaches, besides conferring PO immune protection, are able to supply oxygen and nutrients and to preserve PO morphology and long-term viability.Herein, we summarize the current knowledge on bioengineered POs and the stem cell differentiation platforms. We also discuss the in vitro strategies used to generate functional POs, and the protocols currently used to confer immune-protection against the host immune attack (micro- and macro-encapsulation). In addition, the most relevant ongoing clinical trials, and the most relevant hurdles met to move towards clinical application are revised.
Collapse
Affiliation(s)
- Victor Navarro-Tableros
- 2i3T Società per la gestione dell'incubatore di imprese e per il trasferimento tecnologico Scarl, University of Turin, Turin, Italy
| | - Yonathan Gomez
- Department of Medical Sciences, University of Turin, Turin, Italy
| | | | - Giovanni Camussi
- Department of Medical Sciences, University of Turin, Turin, Italy.
- Fondazione per la Ricerca Biomedica-ONLUS, Turin, Italy.
| |
Collapse
|
28
|
3D-Models of Insulin-Producing β-Cells: from Primary Islet Cells to Stem Cell-Derived Islets. Stem Cell Rev Rep 2018; 14:177-188. [PMID: 29181780 DOI: 10.1007/s12015-017-9783-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
There is a need for physiologically relevant assay platforms to provide functionally relevant models of diabetes, to accelerate the discovery of new treatment options and boost developments in drug discovery. In this review, we compare several 3D-strategies that have been used to increase the functional relevance of ex vivo human primary pancreatic islets and developments into the generation of stem cell derived pancreatic beta-cells (β-cells). Special attention will be given to recent approaches combining the use of extracellular matrix (ECM) scaffolds with pancreatic molecular memory, which can be used to improve yield and functionality of in vitro stem cell-derived pancreatic models. The ultimate goal is to develop scalable cell-based platforms for diabetes research and drug screening. This article will critically assess key aspects related to in vitro pancreatic 3D-ECM models and highlight the most promising approaches for future research.
Collapse
|
29
|
Argentati C, Morena F, Bazzucchi M, Armentano I, Emiliani C, Martino S. Adipose Stem Cell Translational Applications: From Bench-to-Bedside. Int J Mol Sci 2018; 19:E3475. [PMID: 30400641 PMCID: PMC6275042 DOI: 10.3390/ijms19113475] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/22/2018] [Accepted: 11/01/2018] [Indexed: 02/08/2023] Open
Abstract
During the last five years, there has been a significantly increasing interest in adult adipose stem cells (ASCs) as a suitable tool for translational medicine applications. The abundant and renewable source of ASCs and the relatively simple procedure for cell isolation are only some of the reasons for this success. Here, we document the advances in the biology and in the innovative biotechnological applications of ASCs. We discuss how the multipotential property boosts ASCs toward mesenchymal and non-mesenchymal differentiation cell lineages and how their character is maintained even if they are combined with gene delivery systems and/or biomaterials, both in vitro and in vivo.
Collapse
Affiliation(s)
- Chiara Argentati
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via del Giochetto, 06126 Perugia, Italy.
| | - Francesco Morena
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via del Giochetto, 06126 Perugia, Italy.
| | - Martina Bazzucchi
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via del Giochetto, 06126 Perugia, Italy.
| | - Ilaria Armentano
- Department of Ecological and Biological Sciences, Tuscia University Largo dell'Università, snc, 01100 Viterbo, Italy.
| | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via del Giochetto, 06126 Perugia, Italy.
- CEMIN, Center of Excellence on Nanostructured Innovative Materials, Via del Giochetto, 06126 Perugia, Italy.
| | - Sabata Martino
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via del Giochetto, 06126 Perugia, Italy.
- CEMIN, Center of Excellence on Nanostructured Innovative Materials, Via del Giochetto, 06126 Perugia, Italy.
| |
Collapse
|
30
|
Yu SM, Oh JM, Lee J, Lee-Kwon W, Jung W, Amblard F, Granick S, Cho YK. Substrate curvature affects the shape, orientation, and polarization of renal epithelial cells. Acta Biomater 2018; 77:311-321. [PMID: 30006316 DOI: 10.1016/j.actbio.2018.07.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 06/25/2018] [Accepted: 07/09/2018] [Indexed: 10/28/2022]
Abstract
The unique structure of kidney tubules is representative of their specialized function. Because maintaining tubular structure and controlled diameter is critical for kidney function, it is critical to understand how topographical cues, such as curvature, might alter cell morphology and biological characteristics. Here, we examined the effect of substrate curvature on the shape and phenotype of two kinds of renal epithelial cells (MDCK and HK-2) cultured on a microchannel with a broad range of principal curvature. We found that cellular architecture on curved substrates was closely related to the cell type-specific characteristics (stiffness, cell-cell adherence) of the cells and their density, as well as the sign and degree of curvature. As the curvature increased on convex channels, HK-2 cells, having lower cell stiffness and monolayer integrity than those of MDCK cells, aligned their in-plane axis perpendicular to the channel but did not significantly change in morphology. By contrast, MDCK cells showed minimal change in both morphology and alignment. However, on concave channels, both cell types were elongated and showed longitudinal directionality, although the changes in MDCK cells were more conservative. Moreover, substrate curvature contributed to cell polarization by enhancing the expression of apical and basolateral cell markers with height increase of the cells. Our study suggests curvature to be an important guiding principle for advanced tissue model developments, and that curved and geometrically ambiguous substrates can modulate the cellular morphology and phenotype. STATEMENT OF SIGNIFICANCE In many tissues, such as renal tubules or intestinal villi, epithelial layers exist in naturally curved forms, a geometry that is not reproduced by flat cultures. Because maintaining tubular structure is critical for kidney function, it is important to understand how topographical cues, such as curvature, might alter cell morphology and biological characteristics. We found that cellular architecture on curved substrates was closely related to cell type and density, as well as the sign and degree of the curvature. Moreover, substrate curvature contributed to cell polarization by enhancing the expression of apical and basolateral cell markers with height increase. Our results suggested that substrate curvature might contribute to cellular architecture and enhance the polarization of kidney tubule cells.
Collapse
|
31
|
Kumari S, Vermeulen S, van der Veer B, Carlier A, de Boer J, Subramanyam D. Shaping Cell Fate: Influence of Topographical Substratum Properties on Embryonic Stem Cells. TISSUE ENGINEERING. PART B, REVIEWS 2018; 24:255-266. [PMID: 29455619 PMCID: PMC7116060 DOI: 10.1089/ten.teb.2017.0468] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Development of multicellular organisms is a highly orchestrated process, with cells responding to factors and features present in the extracellular milieu. Changes in the surrounding environment help decide the fate of cells at various stages of development. This review highlights recent research that details the effects of mechanical properties of the surrounding environment and extracellular matrix and the underlying molecular mechanisms that regulate the behavior of embryonic stem cells (ESCs). In this study, we review the role of mechanical properties during embryogenesis and discuss the effect of engineered microtopographies on ESC pluripotency.
Collapse
Affiliation(s)
- Sarita Kumari
- National Center for Cell Science, SP Pune University, Pune, India
| | - Steven Vermeulen
- Laboratory for Cell Biology-Inspired Tissue Engineering, MERLN Institute, University of Maastricht, Maastricht, The Netherlands
| | - Ben van der Veer
- Laboratory for Cell Biology-Inspired Tissue Engineering, MERLN Institute, University of Maastricht, Maastricht, The Netherlands
| | - Aurélie Carlier
- Laboratory for Cell Biology-Inspired Tissue Engineering, MERLN Institute, University of Maastricht, Maastricht, The Netherlands
| | - Jan de Boer
- Laboratory for Cell Biology-Inspired Tissue Engineering, MERLN Institute, University of Maastricht, Maastricht, The Netherlands
| | | |
Collapse
|
32
|
Abstract
Stem cells are a powerful resource for many applications including regenerative medicine, patient-specific disease modeling, and toxicology screening. However, eliciting the desired behavior from stem cells, such as expansion in a naïve state or differentiation into a particular mature lineage, remains challenging. Drawing inspiration from the native stem cell niche, hydrogel platforms have been developed to regulate stem cell fate by controlling microenvironmental parameters including matrix mechanics, degradability, cell-adhesive ligand presentation, local microstructure, and cell-cell interactions. We survey techniques for modulating hydrogel properties and review the effects of microenvironmental parameters on maintaining stemness and controlling differentiation for a variety of stem cell types. Looking forward, we envision future hydrogel designs spanning a spectrum of complexity, ranging from simple, fully defined materials for industrial expansion of stem cells to complex, biomimetic systems for organotypic cell culture models.
Collapse
Affiliation(s)
- Christopher M Madl
- Department of Bioengineering, Stanford University, Stanford, California 94305, USA
| | - Sarah C Heilshorn
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, USA;
| |
Collapse
|
33
|
Lim J, Choi A, Kim HW, Yoon H, Park SM, Tsai CHD, Kaneko M, Kim DS. Constrained Adherable Area of Nanotopographic Surfaces Promotes Cell Migration through the Regulation of Focal Adhesion via Focal Adhesion Kinase/Rac1 Activation. ACS APPLIED MATERIALS & INTERFACES 2018; 10:14331-14341. [PMID: 29649358 DOI: 10.1021/acsami.7b18954] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Cell migration is crucial in physiological and pathological processes such as embryonic development and wound healing; such migration is strongly guided by the surrounding nanostructured extracellular matrix. Previous studies have extensively studied the cell migration on anisotropic nanotopographic surfaces; however, only a few studies have reported cell migration on isotropic nanotopographic surfaces. We herein, for the first time, propose a novel concept of adherable area on cell migration using isotropic nanopore surfaces with sufficient nanopore depth by adopting a high aspect ratio. As the pore size of the nanopore surface was controlled to 200, 300, and 400 nm in a fixed center-to-center distance of 480 nm, it produced 86, 68, and 36% of adherable area, respectively, on the fabricated surface. A meticulous investigation of the cell migration in response to changes in the constrained adherable area of the nanotopographic surface showed 1.4-, 1.5-, and 1.6-fold increase in migration speeds and a 1.4-, 2-, and 2.5-fold decrease in the number of focal adhesions as the adherable area was decreased to 86, 68, and 36%, respectively. Furthermore, a strong activation of FAK/Rac1 signaling was observed to be involved in the promoted cell migration. These results suggest that the reduced adherable area promotes cell migration through decreasing the FA formation, which in turn upregulates FAK/Rac1 activation. The findings in this study can be utilized to control the cell migration behaviors, which is a powerful tool in the research fields involving cell migration such as promoting wound healing and tissue repair.
Collapse
Affiliation(s)
- Jiwon Lim
- Department of Mechanical Engineering , Pohang University of Science and Technology (POSTECH) , 77 Cheongam-Ro, Nam-gu , Pohang , Gyeongbuk 37673 , Korea
| | - Andrew Choi
- Department of Mechanical Engineering , Pohang University of Science and Technology (POSTECH) , 77 Cheongam-Ro, Nam-gu , Pohang , Gyeongbuk 37673 , Korea
| | - Hyung Woo Kim
- Department of Mechanical Engineering , Pohang University of Science and Technology (POSTECH) , 77 Cheongam-Ro, Nam-gu , Pohang , Gyeongbuk 37673 , Korea
| | - Hyungjun Yoon
- Department of Mechanical Engineering , Pohang University of Science and Technology (POSTECH) , 77 Cheongam-Ro, Nam-gu , Pohang , Gyeongbuk 37673 , Korea
| | - Sang Min Park
- Department of Mechanical Engineering , Pohang University of Science and Technology (POSTECH) , 77 Cheongam-Ro, Nam-gu , Pohang , Gyeongbuk 37673 , Korea
| | - Chia-Hung Dylan Tsai
- Department of Mechanical Engineering , Osaka University , 1-1 Yamadaoka , Suita , Osaka 565-0871 , Japan
| | - Makoto Kaneko
- Department of Mechanical Engineering , Osaka University , 1-1 Yamadaoka , Suita , Osaka 565-0871 , Japan
| | - Dong Sung Kim
- Department of Mechanical Engineering , Pohang University of Science and Technology (POSTECH) , 77 Cheongam-Ro, Nam-gu , Pohang , Gyeongbuk 37673 , Korea
| |
Collapse
|
34
|
Zhang S, Ma B, Liu F, Duan J, Wang S, Qiu J, Li D, Sang Y, Liu C, Liu D, Liu H. Polylactic Acid Nanopillar Array-Driven Osteogenic Differentiation of Human Adipose-Derived Stem Cells Determined by Pillar Diameter. NANO LETTERS 2018. [PMID: 29517915 DOI: 10.1021/acs.nanolett.7b04747] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Numerous studies have determined that physical cues, especially the nanotopography of materials, play key roles in directing stem cell differentiation. However, most research on nanoarrays for stem cell fate regulation is based on nonbiodegradable materials, such as silicon wafers, TiO2, and poly(methyl methacrylate), which are rarely used as tissue engineering biomaterials. In this study, we prepared biodegradable polylactic acid (PLA) nanopillar arrays with different diameters but the same center-to-center distance using a series of anodic aluminum oxide nanowell arrays as templates. Human adipose-derived stem cells (hADSCs) were selected to investigate the effect of the diameter of PLA nanopillar arrays on stem cell differentiation. By culturing hADSCs without the assistance of any growth factors or osteogenic-induced media, the differentiation tendencies of hADSCs on the nanopillar arrays were assessed at the gene and protein levels. The assessment results suggested that the osteogenic differentiation of hADSCs can be driven by nanopillar arrays, especially by nanopillar arrays with a diameter of 200 nm. Moreover, an in vivo animal model of the samples demonstrated that PLA film with the 200 nm pillar array exhibits an improved ectopic osteogenic ability compared with the planar PLA film after 4 weeks of ectopic implantation. This study has provided a new variable to investigate in the interaction between stem cells and nanoarray structures, which will guide the bone regeneration clinical research field. This work paves the way for the utility of degradable biopolymer nanoarrays with specific geometrical and mechanical signals in biomedical applications, such as patches and strips for spine fusion, bone crack repair, and restoration of tooth enamel.
Collapse
Affiliation(s)
- Shan Zhang
- State Key Laboratory of Crystal Materials , Shandong University , Jinan , 250100 , China
| | - Baojin Ma
- State Key Laboratory of Crystal Materials , Shandong University , Jinan , 250100 , China
| | - Feng Liu
- State Key Laboratory of Crystal Materials , Shandong University , Jinan , 250100 , China
| | - Jiazhi Duan
- State Key Laboratory of Crystal Materials , Shandong University , Jinan , 250100 , China
| | - Shicai Wang
- State Key Laboratory of Crystal Materials , Shandong University , Jinan , 250100 , China
| | - Jichuan Qiu
- State Key Laboratory of Crystal Materials , Shandong University , Jinan , 250100 , China
| | - Dong Li
- Cryomedicine Laboratory , Qilu Hospital, Shandong University , Jinan , 250012 , China
| | - Yuanhua Sang
- State Key Laboratory of Crystal Materials , Shandong University , Jinan , 250100 , China
| | - Chao Liu
- Department of Oral and Maxillofacial surgery, Qilu Hospital, Institute of Stomatology , Shandong University , Jinan , 250012 , China
| | - Duo Liu
- State Key Laboratory of Crystal Materials , Shandong University , Jinan , 250100 , China
| | - Hong Liu
- State Key Laboratory of Crystal Materials , Shandong University , Jinan , 250100 , China
- Institute for Advanced Interdisciplinary Research , Jinan University , Jinan , 250022 , China
| |
Collapse
|
35
|
Comparison of Teratoma Formation between Embryonic Stem Cells and Parthenogenetic Embryonic Stem Cells by Molecular Imaging. Stem Cells Int 2018; 2018:7906531. [PMID: 29765423 PMCID: PMC5889892 DOI: 10.1155/2018/7906531] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 12/27/2017] [Indexed: 11/18/2022] Open
Abstract
With their properties of self-renewal and differentiation, embryonic stem (ES) cells hold great promises for regenerative therapy. However, teratoma formation and ethical concerns of ES cells may restrict their potential clinical applications. Currently, parthenogenetic embryonic stem (pES) cells have attracted the interest of researchers for its self-renewing and pluripotent differentiation while eliciting less ethic concerns. In this study, we established a model with ES and pES cells both stably transfected with a double-fusion reporter gene containing renilla luciferase (Rluc) and red fluorescent protein (RFP) to analyze the mechanisms of teratoma formation. Transgenic Vegfr2-luc mouse, which expresses firefly luciferase (Fluc) under the promoter of vascular endothelial growth factor receptor 2 (Vegfr2-luc), was used to trace the growth of new blood vessel recruited by transplanted cells. Bioluminescence imaging (BLI) of Rluc/Fluc provides an effective tool in estimating the growth and angiogenesis of teratoma in vivo. We found that the tumorigenesis and angiogenesis capacity of ES cells were higher than those of pES cells, in which VEGF/VEGFR2 signal pathway plays an important role. In conclusion, pES cells have the decreased potential of teratoma formation but meanwhile have similar differentiating capacity compared with ES cells. These data demonstrate that pES cells provide an alternative source for ES cells with the risk reduction of teratoma formation and without ethical controversy.
Collapse
|
36
|
Kumar A, Placone JK, Engler AJ. Understanding the extracellular forces that determine cell fate and maintenance. Development 2017; 144:4261-4270. [PMID: 29183939 DOI: 10.1242/dev.158469] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Stem cells interpret signals from their microenvironment while simultaneously modifying the niche through secreting factors and exerting mechanical forces. Many soluble stem cell cues have been determined over the past century, but in the past decade, our molecular understanding of mechanobiology has advanced to explain how passive and active forces induce similar signaling cascades that drive self-renewal, migration, differentiation or a combination of these outcomes. Improvements in stem cell culture methods, materials and biophysical tools that assess function have improved our understanding of these cascades. Here, we summarize these advances and offer perspective on ongoing challenges.
Collapse
Affiliation(s)
- Aditya Kumar
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA.,Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Jesse K Placone
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA.,Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Adam J Engler
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA .,Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| |
Collapse
|
37
|
Cha KJ, Kong SY, Lee JS, Kim HW, Shin JY, La M, Han BW, Kim DS, Kim HJ. Cell density-dependent differential proliferation of neural stem cells on omnidirectional nanopore-arrayed surface. Sci Rep 2017; 7:13077. [PMID: 29026125 PMCID: PMC5638797 DOI: 10.1038/s41598-017-13372-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 09/22/2017] [Indexed: 11/09/2022] Open
Abstract
Recently, the importance of surface nanotopography in the determination of stem cell fate and behavior has been revealed. In the current study, we generated polystyrene cell-culture dishes with an omnidirectional nanopore arrayed surface (ONAS) (diameter: 200 nm, depth: 500 nm, center-to-center distance: 500 nm) and investigated the effects of nanotopography on rat neural stem cells (NSCs). NSCs cultured on ONAS proliferated better than those on the flat surface when cell density was low and showed less spontaneous differentiation during proliferation in the presence of mitogens. Interestingly, NSCs cultured on ONAS at clonal density demonstrated a propensity to generate neurospheres, whereas those on the flat surface migrated out, proliferated as individuals, and spread out to attach to the surface. However, the differential patterns of proliferation were cell density-dependent since the distinct phenomena were lost when cell density was increased. ONAS modulated cytoskeletal reorganization and inhibited formation of focal adhesion, which is generally observed in NSCs grown on flat surfaces. ONAS appeared to reinforce NSC-NSC interaction, restricted individual cell migration and prohibited NSC attachment to the nanopore surface. These data demonstrate that ONAS maintains NSCs as undifferentiated while retaining multipotency and is a better topography for culturing low density NSCs.
Collapse
Affiliation(s)
- Kyoung Je Cha
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), San 31 Hyoja-dong Nam-gu, Pohang, 790-784, South Korea.,Ultimate Fabrication Technology Group, Korea Institute of Industrial Technology (KITECH), Techno sunhwan-ro Yuga-myeon Dalseong-gun, Deagu, 711-880, South Korea
| | - Sun-Young Kong
- Laboratory of Molecular and Stem Cell Pharmacology, College of Pharmacy, Chung-Ang University, 221 Heukseok-dong Dongjak-gu, Seoul, 156-756, South Korea
| | - Ji Soo Lee
- Laboratory of Molecular and Stem Cell Pharmacology, College of Pharmacy, Chung-Ang University, 221 Heukseok-dong Dongjak-gu, Seoul, 156-756, South Korea
| | - Hyung Woo Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), San 31 Hyoja-dong Nam-gu, Pohang, 790-784, South Korea
| | - Jae-Yeon Shin
- Laboratory of Molecular and Stem Cell Pharmacology, College of Pharmacy, Chung-Ang University, 221 Heukseok-dong Dongjak-gu, Seoul, 156-756, South Korea
| | - Moonwoo La
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), San 31 Hyoja-dong Nam-gu, Pohang, 790-784, South Korea.,Molds & Dies R&D Group, Korea Institute of Industrial Technology (KITECH), 156 Gaetbeol-ro, Yeonsu-gu, Incheon, 406-840, South Korea
| | - Byung Woo Han
- Department of Biochemistry, College of pharmacy, Seoul National University, San 56-1 Sillim-dong Gwanak-gu, Seoul, 151-742, South Korea
| | - Dong Sung Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), San 31 Hyoja-dong Nam-gu, Pohang, 790-784, South Korea.
| | - Hyun-Jung Kim
- Laboratory of Molecular and Stem Cell Pharmacology, College of Pharmacy, Chung-Ang University, 221 Heukseok-dong Dongjak-gu, Seoul, 156-756, South Korea.
| |
Collapse
|
38
|
Ko JY, Oh HJ, Lee J, Im GI. Nanotopographic Influence on the In Vitro Behavior of Induced Pluripotent Stem Cells. Tissue Eng Part A 2017; 24:595-606. [PMID: 28726546 DOI: 10.1089/ten.tea.2017.0144] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
While the influence of nanotopography on stem cell behavior has been extensively investigated on adult stem cells, far fewer studies have investigated the interaction of induced pluripotent stem cells (iPSCs) with various nanotopographical patterns. The purpose of this study was to identify nanopatterns that can influence the stemness and proliferation, as well as the adhesive properties in iPSCs, and thereby explore the feasibility of applying these nano-features for regenerative medicine. Three kinds of nanopatterns were fabricated from polydimethylsiloxane membranes, irregular patterned membrane (IPM), groove patterned membrane (GPM), and postpatterned membrane (PPM), in addition to flat patterned membrane (FPM) which did not have any nanotopographic features and was used as the control pattern. On the surfaces of GPM or PPM, iPSCs showed tendency for aggregation and did not spread out well at passage 1. However, with continued passaging (P6, P10), the tendency to form aggregates was greatly reduced. While iPSCs cultured on GPM and PPM had low population doubling time values compared with FPM and IPM at P1, the differences disappeared in later passages. The expression of the cell proliferation marker Ki67 in iPSCs gradually decreased with continued passaging in cells cultured on FPM and IPM, but not in those cultured on GPM and PPM. The expression of Oct3/4 and Nanog, marker of stemness, was significantly higher on GPM and PPM than on FPM at P6 and P10. At P5, numerous filopodia were demonstrated in the peripheral attachments of iPSC colonies on FPM and IPM, while GPM and PPM generally had globular appearance. The expression of the focal adhesion (FA) molecules α-actinin, vinculin, phalloidin, or FA kinase was significantly greater on GPM and PPM than on FPM and IPM at P6 or P10. In conclusion, continued passaging on regular nanopatterns, including groove- and post-forms, was effective in maintaining an undifferentiated state and proliferation of iPSCs and also in increasing the expression of FA molecules.
Collapse
Affiliation(s)
- Ji-Yun Ko
- 1 Department of Orthopaedics, Dongguk University Ilsan Hospital , Goyang, Republic of Korea
| | - Hyun-Jik Oh
- 2 Department of Biomedical Engineering, College of Health Science, Korea University , Seoul, Republic of Korea.,3 MicroFIT R&BD Institute , Gyeonggi-do, Republic of Korea
| | - Jimin Lee
- 1 Department of Orthopaedics, Dongguk University Ilsan Hospital , Goyang, Republic of Korea
| | - Gun-Il Im
- 1 Department of Orthopaedics, Dongguk University Ilsan Hospital , Goyang, Republic of Korea
| |
Collapse
|
39
|
Lee SJ, Yang S. Substrate Curvature Restricts Spreading and Induces Differentiation of Human Mesenchymal Stem Cells. Biotechnol J 2017; 12. [PMID: 28731631 DOI: 10.1002/biot.201700360] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 07/06/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Sang Joo Lee
- Department of Mechanical and Aerospace EngineeringFlorida Institute of Technology150 West University BoulevardMelbourneFL32901USA
| | - Shengyuan Yang
- Department of Mechanical and Aerospace EngineeringFlorida Institute of Technology150 West University BoulevardMelbourneFL32901USA
| |
Collapse
|
40
|
Design of a nanocomposite substrate inducing adult stem cell assembly and progression toward an Epiblast-like or Primitive Endoderm-like phenotype via mechanotransduction. Biomaterials 2017; 144:211-229. [PMID: 28841465 DOI: 10.1016/j.biomaterials.2017.08.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 08/01/2017] [Accepted: 08/13/2017] [Indexed: 01/10/2023]
Abstract
This work shows that the active interaction between human umbilical cord matrix stem cells and Poly (l-lactide)acid (PLLA) and PLLA/Multi Walled Carbon Nanotubes (MWCNTs) nanocomposite films results in the stem cell assembly as a spheroid conformation and affects the stem cell fate transition. We demonstrated that spheroids directly respond to a tunable surface and the bulk properties (electric, dielectric and thermal) of plain and nanocomposite PLLA films by triggering a mechanotransduction axis. This stepwise process starts from tethering of the cells' focal adhesion proteins to the surface, together with the adherens junctions between cells. Both complexes transmit traction forces to F-Actin stress fibres that link Filamin-A and Myosin-IIA proteins, generating a biological scaffold, with increased stiffening conformation from PLLA to PLLA/MWCNTs, and enable the nucleoskeleton proteins to boost chromatin reprogramming processes. Herein, the opposite expression of NANOG and GATA6 transcription factors, together with other lineage specification related proteins, steer spheroids toward an Epiblast-like or Primitive Endoderm-like lineage commitment, depending on the absence or presence of 1 wt% MWCNTs, respectively. This work represents a pioneering effort to create a stem cell/material interface that can model the stem cell fate transition under growth culture conditions.
Collapse
|
41
|
Seo HR, Joo HJ, Kim DH, Cui LH, Choi SC, Kim JH, Cho SW, Lee KB, Lim DS. Nanopillar Surface Topology Promotes Cardiomyocyte Differentiation through Cofilin-Mediated Cytoskeleton Rearrangement. ACS APPLIED MATERIALS & INTERFACES 2017; 9:16803-16812. [PMID: 28497946 DOI: 10.1021/acsami.7b01555] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Nanoscaled surface patterning is an emerging potential method of directing the fate of stem cells. We adopted nanoscaled pillar gradient patterned cell culture plates with three diameter gradients [280-360 (GP 280/360), 200-280 (GP 200/280), and 120-200 nm (GP 120/200)] and investigated their cell fate-modifying effect on multipotent fetal liver kinase 1-positive mesodermal precursor cells (Flk1+ MPCs) derived from embryonic stem cells. We observed increased cell proliferation and colony formation of the Flk1+ MPCs on the nanopattern plates. Interestingly, the 200-280 nm-sized (GP 200/280) pillar surface dramatically increased cardiomyocyte differentiation and expression of the early cardiac marker gene Mesp1. The gradient nanopattern surface-induced cardiomyocytes had cardiac sarcomeres with mature cardiac gene expression. We observed Vinculin and p-Cofilin-mediated cytoskeleton reorganization during this process. In summary, the gradient nanopattern surface with 200-280 nm-sized pillars enhanced cardiomyocyte differentiation in Flk1+ MPCs.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sung Woo Cho
- Division of Cardiology, Department of Internal Medicine, Inje University College of Medicine, Seoul Paik Hospital , 9 Mareunnae-ro, Jung-gu, Seoul 04551, Republic of Korea
| | | | | |
Collapse
|
42
|
|
43
|
Long J, Kim H, Kim D, Lee JB, Kim DH. A biomaterial approach to cell reprogramming and differentiation. J Mater Chem B 2017; 5:2375-2379. [PMID: 28966790 PMCID: PMC5616208 DOI: 10.1039/c6tb03130g] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cell reprogramming of somatic cells into pluripotent states and subsequent differentiation into certain phenotypes has helped progress regenerative medicine research and other medical applications. Recent research has used viral vectors to induce this reprogramming; however, limitations include low efficiency and safety concerns. In this review, we discuss how biomaterial methods offer potential avenues for either increasing viability and downstream applicability of viral methods, or providing a safer alternative. The use of non-viral delivery systems, such as electroporation, micro/nanoparticles, nucleic acids and the modulation of culture substrate topography and stiffness have generated valuable insights regarding cell reprogramming.
Collapse
Affiliation(s)
- Joseph Long
- Department of Bioengineering, University of Washington, Seattle WA, 98195, USA
- Center for Cardiovascular Biology, Institute for Stem Cell and Regenerative Medicine; University of Washington; Seattle, WA, 98109, USA
| | - Hyejin Kim
- Department of Chemical Engineering, University of Seoul, Seoul, 02504, South Korea
| | - Dajeong Kim
- Department of Chemical Engineering, University of Seoul, Seoul, 02504, South Korea
| | - Jong Bum Lee
- Department of Chemical Engineering, University of Seoul, Seoul, 02504, South Korea
| | - Deok-Ho Kim
- Department of Bioengineering, University of Washington, Seattle WA, 98195, USA
- Center for Cardiovascular Biology, Institute for Stem Cell and Regenerative Medicine; University of Washington; Seattle, WA, 98109, USA
| |
Collapse
|
44
|
Zou Y, Feng H, Ouyang H, Jin Y, Yu M, Liu Z, Li Z. The modulation effect of the convexity of silicon topological nanostructures on the growth of mesenchymal stem cells. RSC Adv 2017. [DOI: 10.1039/c7ra00542c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The convexity of topological nanostructures, as analyzed by grey-level histogram and fast Fourier transformation, has important modulation effects on the size expansion and filopodia generation of mesenchymal stem cells.
Collapse
Affiliation(s)
- Yang Zou
- Beijing Institute of Nanoenergy and Nanosystems
- Chinese Academy of Sciences
- National Center for Nanoscience and Technology (NCNST)
- Beijing
- P. R. China
| | - Hongqing Feng
- Beijing Institute of Nanoenergy and Nanosystems
- Chinese Academy of Sciences
- National Center for Nanoscience and Technology (NCNST)
- Beijing
- P. R. China
| | - Han Ouyang
- Beijing Institute of Nanoenergy and Nanosystems
- Chinese Academy of Sciences
- National Center for Nanoscience and Technology (NCNST)
- Beijing
- P. R. China
| | - Yiming Jin
- Beijing Institute of Nanoenergy and Nanosystems
- Chinese Academy of Sciences
- National Center for Nanoscience and Technology (NCNST)
- Beijing
- P. R. China
| | - Min Yu
- Beijing Institute of Nanoenergy and Nanosystems
- Chinese Academy of Sciences
- National Center for Nanoscience and Technology (NCNST)
- Beijing
- P. R. China
| | - Zhuo Liu
- Beijing Institute of Nanoenergy and Nanosystems
- Chinese Academy of Sciences
- National Center for Nanoscience and Technology (NCNST)
- Beijing
- P. R. China
| | - Zhou Li
- Beijing Institute of Nanoenergy and Nanosystems
- Chinese Academy of Sciences
- National Center for Nanoscience and Technology (NCNST)
- Beijing
- P. R. China
| |
Collapse
|
45
|
Yi DK, Nanda SS, Kim K, Tamil Selvan S. Recent progress in nanotechnology for stem cell differentiation, labeling, tracking and therapy. J Mater Chem B 2017; 5:9429-9451. [DOI: 10.1039/c7tb02532g] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nanotechnology advancements for stem cell differentiation, labeling, tracking and therapeutic applications in cardiac repair, bone, and liver regeneration are delineated.
Collapse
Affiliation(s)
- Dong Kee Yi
- Department of Chemistry
- Myongji University
- Yongin 449-728
- South Korea
| | | | - Kwangmeyung Kim
- Center for Theragnosis
- Biomedical Research Institute
- Korea Institute of Science and Technology (KIST)
- Seoul
- South Korea
| | | |
Collapse
|
46
|
Wang PY, Thissen H, Kingshott P. Modulation of human multipotent and pluripotent stem cells using surface nanotopographies and surface-immobilised bioactive signals: A review. Acta Biomater 2016; 45:31-59. [PMID: 27596488 DOI: 10.1016/j.actbio.2016.08.054] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 07/30/2016] [Accepted: 08/30/2016] [Indexed: 02/08/2023]
Abstract
The ability to control the interactions of stem cells with synthetic surfaces is proving to be effective and essential for the quality of passaged stem cells and ultimately the success of regenerative medicine. The stem cell niche is crucial for stem cell self-renewal and differentiation. Thus, mimicking the stem cell niche, and here in particular the extracellular matrix (ECM), in vitro is an important goal for the expansion of stem cells and their applications. Here, surface nanotopographies and surface-immobilised biosignals have been identified as major factors that control stem cell responses. The development of tailored surfaces having an optimum nanotopography and displaying suitable biosignals is proposed to be essential for future stem cell culture, cell therapy and regenerative medicine applications. While early research in the field has been restricted by the limited availability of micro- and nanofabrication techniques, new approaches involving the use of advanced fabrication and surface immobilisation methods are starting to emerge. In addition, new cell types such as induced pluripotent stem cells (iPSCs) have become available in the last decade, but have not been fully understood. This review summarises significant advances in the area and focuses on the approaches that are aimed at controlling the behavior of human stem cells including maintenance of their self-renewal ability and improvement of their lineage commitment using nanotopographies and biosignals. More specifically, we discuss developments in biointerface science that are an important driving force for new biomedical materials and advances in bioengineering aiming at improving stem cell culture protocols and 3D scaffolds for clinical applications. Cellular responses revolve around the interplay between the surface properties of the cell culture substrate and the biomolecular composition of the cell culture medium. Determination of the precise role played by each factor, as well as the synergistic effects amongst the factors, all of which influence stem cell responses is essential for future developments. This review provides an overview of the current state-of-the-art in the design of complex material surfaces aimed at being the next generation of tools tailored for applications in cell culture and regenerative medicine. STATEMENT OF SIGNIFICANCE This review focuses on the effect of surface nanotopographies and surface-bound biosignals on human stem cells. Recently, stem cell research attracts much attention especially the induced pluripotent stem cells (iPSCs) and direct lineage reprogramming. The fast advance of stem cell research benefits disease treatment and cell therapy. On the other hand, surface property of cell adhered materials has been demonstrated very important for in vitro cell culture and regenerative medicine. Modulation of cell behavior using surfaces is costeffective and more defined. Thus, we summarise the recent progress of modulation of human stem cells using surface science. We believe that this review will capture a broad audience interested in topographical and chemical patterning aimed at understanding complex cellular responses to biomaterials.
Collapse
|
47
|
Song L, Wang K, Li Y, Yang Y. Nanotopography promoted neuronal differentiation of human induced pluripotent stem cells. Colloids Surf B Biointerfaces 2016; 148:49-58. [PMID: 27591570 DOI: 10.1016/j.colsurfb.2016.08.041] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 08/20/2016] [Accepted: 08/23/2016] [Indexed: 01/27/2023]
Abstract
Inefficient neural differentiation of human induced pluripotent stem cells (hiPSCs) motivates recent investigation of the influence of biophysical characteristics of cellular microenvironment, in particular nanotopography, on hiPSC fate decision. However, the roles of geometry and dimensions of nanotopography in neural lineage commitment of hiPSCs have not been well understood. The objective of this study is to delineate the effects of geometry, feature size and height of nanotopography on neuronal differentiation of hiPSCs. HiPSCs were seeded on equally spaced nanogratings (500 and 1000nm in linewidth) and hexagonally arranged nanopillars (500nm in diameter), each having a height of 150 or 560nm, and induced for neuronal differentiation in concert with dual Smad inhibitors. The gratings of 560nm height reduced cell proliferation, enhanced cytoplasmic localization of Yes-associated protein, and promoted neuronal differentiation (up to 60% βIII-tubulin+ cells) compared with the flat control. Nanograting-induced cell polarity and cytoplasmic YAP localization were shown to be critical to the induced neural differentiation of hiPSCs. The derived neuronal cells express MAP2, Tau, glutamate, GABA and Islet-1, indicating the existence of multiple neuronal subtypes. This study contributes to the delineation of cell-nanotopography interactions and provides the insights into the design of nanotopography configuration for pluripotent stem cell neural lineage commitment.
Collapse
Affiliation(s)
- Liqing Song
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, United States
| | - Kai Wang
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV 26506, United States
| | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, United States.
| | - Yong Yang
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV 26506, United States.
| |
Collapse
|