1
|
Jeon BJ, Guareschi MM, Stewart JM, Wu E, Gopinath A, Arroyo-Currás N, Dauphin-Ducharme P, Plaxco KW, Lukeman PS, Rothemund PWK. Modular DNA origami-based electrochemical detection of DNA and proteins. Proc Natl Acad Sci U S A 2025; 122:e2311279121. [PMID: 39793064 PMCID: PMC11725875 DOI: 10.1073/pnas.2311279121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 10/15/2024] [Indexed: 01/12/2025] Open
Abstract
The diversity and heterogeneity of biomarkers has made the development of general methods for single-step quantification of analytes difficult. For individual biomarkers, electrochemical methods that detect a conformational change in an affinity binder upon analyte binding have shown promise. However, because the conformational change must operate within a nanometer-scale working distance, an entirely new sensor, with a unique conformational change, must be developed for each analyte. Here, we demonstrate a modular electrochemical biosensor, built from DNA origami, which is easily adapted to diverse molecules by merely replacing its analyte binding domains. Instead of relying on a unique nanometer-scale movement of a single redox reporter, all sensor variants rely on the same 100-nm scale conformational change, which brings dozens of reporters close enough to a gold electrode surface that a signal can be measured via square-wave voltammetry, a standard electrochemical technique. To validate our sensor's mechanism, we used single-stranded DNA as an analyte, and optimized the number of redox reporters and various linker lengths. Adaptation of the sensor to streptavidin and Platelet-Derived Growth Factor-BB (PDGF-BB) analytes was achieved by simply adding biotin or anti-PDGF aptamers to appropriate DNA linkers. Geometrically optimized streptavidin sensors exhibited signal gain and limit of detection markedly better than comparable reagentless electrochemical sensors. After use, the same sensors could be regenerated under mild conditions: Performance was largely maintained over four cycles of DNA strand displacement and rehybridization. By leveraging the modularity of DNA nanostructures, our work provides a straightforward route to the single-step quantification of arbitrary nucleic acids and proteins.
Collapse
Affiliation(s)
- Byoung-jin Jeon
- Department of Bioengineering, California Institute of Technology, Pasadena, CA91125
| | - Matteo M. Guareschi
- Department of Bioengineering, California Institute of Technology, Pasadena, CA91125
| | | | - Emily Wu
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Ashwin Gopinath
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | | | | | - Kevin W. Plaxco
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA93106
| | | | - Paul W. K. Rothemund
- Department of Bioengineering, California Institute of Technology, Pasadena, CA91125
| |
Collapse
|
2
|
Hao Z, Kong L, Ruan L, Deng Z. Recent Advances in DNA Origami-Enabled Optical Biosensors for Multi-Scenario Application. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1968. [PMID: 39683355 DOI: 10.3390/nano14231968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/01/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024]
Abstract
Over the past few years, significant progress has been made in DNA origami technology due to the unrivaled self-assembly properties of DNA molecules. As a highly programmable, addressable, and biocompatible nanomaterial, DNA origami has found widespread applications in biomedicine, such as cell scaffold construction, antimicrobial drug delivery, and supramolecular enzyme assembly. To expand the scope of DNA origami application scenarios, researchers have developed DNA origami structures capable of actively identifying and quantitatively reporting targets. Optical DNA origami biosensors are promising due to their fast-to-use, sensitive, and easy implementation. However, the conversion of DNA origami to optical biosensors is still in its infancy stage, and related strategies have not been systematically summarized, increasing the difficulty of guiding subsequent researchers. Therefore, this review focuses on the universal strategies that endow DNA origami with dynamic responsiveness from both de novo design and current DNA origami modification. Various applications of DNA origami biosensors are also discussed. Additionally, we highlight the advantages of DNA origami biosensors, which offer a single-molecule resolution and high signal-to-noise ratio as an alternative to traditional analytical techniques. We believe that over the next decade, researchers will continue to transform DNA origami into optical biosensors and explore their infinite possible uses.
Collapse
Affiliation(s)
- Ziao Hao
- State Key Laboratory of Analytical Chemistry for Life Science, National Laboratory of Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China
| | - Lijun Kong
- State Key Laboratory of Analytical Chemistry for Life Science, National Laboratory of Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China
| | - Longfei Ruan
- State Key Laboratory of Analytical Chemistry for Life Science, National Laboratory of Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China
| | - Zhengtao Deng
- State Key Laboratory of Analytical Chemistry for Life Science, National Laboratory of Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China
| |
Collapse
|
3
|
Al Abdullatif S, Narum S, Hu Y, Rogers J, Fitzgerald R, Salaita K. Molecular Compressive Force Sensor for Mapping Forces at the Cell-Substrate Interface. J Am Chem Soc 2024; 146:6830-6836. [PMID: 38418383 PMCID: PMC10941184 DOI: 10.1021/jacs.3c13648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 03/01/2024]
Abstract
Mechanical forces are crucial for biological processes such as T cell antigen recognition. A suite of molecular tension probes to measure pulling forces have been reported over the past decade; however, there are no reports of molecular probes for measuring compressive forces, representing a gap in the current mechanobiology toolbox. To address this gap, we report a molecular compression reporter using pseudostable hairpins (M-CRUSH). The design principle was based on a pseudostable DNA structure that folds in response to an external compressive force. We created a library of DNA stem-loop hairpins with varying thermodynamic stability, and then used Förster Resonance Energy Transfer (FRET) to quantify hairpin folding stability as a function of temperature and crowding. We identified an optimal pseudostable DNA hairpin highly sensitive to molecular crowding that displayed a shift in melting temperature (Tm) of 7 °C in response to a PEG crowding agent. When immobilized on surfaces, this optimized DNA hairpin showed a 29 ± 6% increase in FRET index in response to 25% w/w PEG 8K. As a proof-of-concept demonstration, we employed M-CRUSH to map the compressive forces generated by primary naïve T cells. We noted dynamic compressive forces that were highly sensitive to antigen presentation and coreceptor engagement. Importantly, mechanical forces are generated by cytoskeletal protrusions caused by acto-myosin activity. This was confirmed by treating cells with cytoskeletal inhibitors, which resulted in a lower FRET response when compared to untreated cells. Furthermore, we showed that M-CRUSH signal is dependent on probe density with greater density probes showing enhanced signal. Finally, we demonstrated that M-CRUSH probes are modular and can be applied to different cell types by displaying a compressive signal observed under human platelets. M-CRUSH offers a powerful tool to complement tension sensors and map out compressive forces in living systems.
Collapse
Affiliation(s)
- Sarah Al Abdullatif
- Department
of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Steven Narum
- Department
of Biomedical Engineering, Georgia Institute
of Technology and Emory University, Atlanta, Georgia 30322, United States
| | - Yuesong Hu
- Department
of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Jhordan Rogers
- Department
of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Rachel Fitzgerald
- Department
of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Khalid Salaita
- Department
of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
- Department
of Biomedical Engineering, Georgia Institute
of Technology and Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
4
|
Abstract
DNA nanotechnology is a rapidly developing field that uses DNA as a building material for nanoscale structures. Key to the field's development has been the ability to accurately describe the behavior of DNA nanostructures using simulations and other modeling techniques. In this Review, we present various aspects of prediction and control in DNA nanotechnology, including the various scales of molecular simulation, statistical mechanics, kinetic modeling, continuum mechanics, and other prediction methods. We also address the current uses of artificial intelligence and machine learning in DNA nanotechnology. We discuss how experiments and modeling are synergistically combined to provide control over device behavior, allowing scientists to design molecular structures and dynamic devices with confidence that they will function as intended. Finally, we identify processes and scenarios where DNA nanotechnology lacks sufficient prediction ability and suggest possible solutions to these weak areas.
Collapse
Affiliation(s)
- Marcello DeLuca
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Sebastian Sensale
- Department of Physics, Cleveland State University, Cleveland, Ohio 44115, United States
| | - Po-An Lin
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Gaurav Arya
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
5
|
Robbins A, Hildebolt H, Neuhoff M, Beshay P, Winter JO, Castro CE, Bundschuh R, Poirier MG. Cooperative control of a DNA origami force sensor. Sci Rep 2024; 14:4132. [PMID: 38374280 PMCID: PMC10876929 DOI: 10.1038/s41598-024-53841-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 02/06/2024] [Indexed: 02/21/2024] Open
Abstract
Biomolecular systems are dependent on a complex interplay of forces. Modern force spectroscopy techniques provide means of interrogating these forces, but they are not optimized for studies in constrained environments as they require attachment to micron-scale probes such as beads or cantilevers. Nanomechanical devices are a promising alternative, but this requires versatile designs that can be tuned to respond to a wide range of forces. We investigate the properties of a nanoscale force sensitive DNA origami device which is highly customizable in geometry, functionalization, and mechanical properties. The device, referred to as the NanoDyn, has a binary (open or closed) response to an applied force by undergoing a reversible structural transition. The transition force is tuned with minor alterations of 1 to 3 DNA oligonucleotides and spans tens of picoNewtons (pN). The DNA oligonucleotide design parameters also strongly influence the efficiency of resetting the initial state, with higher stability devices (≳10 pN) resetting more reliably during repeated force-loading cycles. Finally, we show the opening force is tunable in real time by adding a single DNA oligonucleotide. These results establish the potential of the NanoDyn as a versatile force sensor and provide fundamental insights into how design parameters modulate mechanical and dynamic properties.
Collapse
Affiliation(s)
- Ariel Robbins
- Biophysics Graduate Program, The Ohio State University, Columbus, OH, 43210, USA
| | - Hazen Hildebolt
- Department of Physics, The Ohio State University, Columbus, OH, 43210, USA
| | - Michael Neuhoff
- Department of Physics, The Ohio State University, Columbus, OH, 43210, USA
| | - Peter Beshay
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Jessica O Winter
- Biophysics Graduate Program, The Ohio State University, Columbus, OH, 43210, USA
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Carlos E Castro
- Biophysics Graduate Program, The Ohio State University, Columbus, OH, 43210, USA
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Ralf Bundschuh
- Biophysics Graduate Program, The Ohio State University, Columbus, OH, 43210, USA
- Department of Physics, The Ohio State University, Columbus, OH, 43210, USA
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, USA
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Michael G Poirier
- Biophysics Graduate Program, The Ohio State University, Columbus, OH, 43210, USA.
- Department of Physics, The Ohio State University, Columbus, OH, 43210, USA.
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
6
|
Mathur D, Díaz SA, Hildebrandt N, Pensack RD, Yurke B, Biaggne A, Li L, Melinger JS, Ancona MG, Knowlton WB, Medintz IL. Pursuing excitonic energy transfer with programmable DNA-based optical breadboards. Chem Soc Rev 2023; 52:7848-7948. [PMID: 37872857 PMCID: PMC10642627 DOI: 10.1039/d0cs00936a] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Indexed: 10/25/2023]
Abstract
DNA nanotechnology has now enabled the self-assembly of almost any prescribed 3-dimensional nanoscale structure in large numbers and with high fidelity. These structures are also amenable to site-specific modification with a variety of small molecules ranging from drugs to reporter dyes. Beyond obvious application in biotechnology, such DNA structures are being pursued as programmable nanoscale optical breadboards where multiple different/identical fluorophores can be positioned with sub-nanometer resolution in a manner designed to allow them to engage in multistep excitonic energy-transfer (ET) via Förster resonance energy transfer (FRET) or other related processes. Not only is the ability to create such complex optical structures unique, more importantly, the ability to rapidly redesign and prototype almost all structural and optical analogues in a massively parallel format allows for deep insight into the underlying photophysical processes. Dynamic DNA structures further provide the unparalleled capability to reconfigure a DNA scaffold on the fly in situ and thus switch between ET pathways within a given assembly, actively change its properties, and even repeatedly toggle between two states such as on/off. Here, we review progress in developing these composite materials for potential applications that include artificial light harvesting, smart sensors, nanoactuators, optical barcoding, bioprobes, cryptography, computing, charge conversion, and theranostics to even new forms of optical data storage. Along with an introduction into the DNA scaffolding itself, the diverse fluorophores utilized in these structures, their incorporation chemistry, and the photophysical processes they are designed to exploit, we highlight the evolution of DNA architectures implemented in the pursuit of increased transfer efficiency and the key lessons about ET learned from each iteration. We also focus on recent and growing efforts to exploit DNA as a scaffold for assembling molecular dye aggregates that host delocalized excitons as a test bed for creating excitonic circuits and accessing other quantum-like optical phenomena. We conclude with an outlook on what is still required to transition these materials from a research pursuit to application specific prototypes and beyond.
Collapse
Affiliation(s)
- Divita Mathur
- Department of Chemistry, Case Western Reserve University, Cleveland OH 44106, USA
| | - Sebastián A Díaz
- Center for Bio/Molecular Science and Engineering, Code 6900, USA.
| | - Niko Hildebrandt
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
- Department of Engineering Physics, McMaster University, Hamilton, L8S 4L7, Canada
| | - Ryan D Pensack
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA.
| | - Bernard Yurke
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA.
| | - Austin Biaggne
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA.
| | - Lan Li
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA.
- Center for Advanced Energy Studies, Idaho Falls, ID 83401, USA
| | - Joseph S Melinger
- Electronics Science and Technology Division, Code 6800, U.S. Naval Research Laboratory, Washington, DC 20375, USA
| | - Mario G Ancona
- Electronics Science and Technology Division, Code 6800, U.S. Naval Research Laboratory, Washington, DC 20375, USA
- Department of Electrical and Computer Engineering, Florida State University, Tallahassee, FL 32310, USA
| | - William B Knowlton
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA.
| | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, USA.
| |
Collapse
|
7
|
Robbins A, Hildebolt H, Neuhoff M, Beshay P, Winter JO, Castro CE, Bundschuh R, Poirier MG. Cooperative control of a DNA origami force sensor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.26.546608. [PMID: 37425797 PMCID: PMC10327127 DOI: 10.1101/2023.06.26.546608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Most biomolecular systems are dependent on a complex interplay of forces. Modern force spectroscopy techniques provide means of interrogating these forces. These techniques, however, are not optimized for studies in constrained or crowded environments as they typically require micron-scale beads in the case of magnetic or optical tweezers, or direct attachment to a cantilever in the case of atomic force microscopy. We implement a nanoscale force-sensing device using a DNA origami which is highly customizable in geometry, functionalization, and mechanical properties. The device, referred to as the NanoDyn, functions as a binary (open or closed) force sensor that undergoes a structural transition under an external force. The transition force is tuned with minor alterations of 1 to 3 DNA oligonucleotides and spans tens of picoNewtons (pN). This actuation of the NanoDyn is reversible and the design parameters strongly influence the efficiency of resetting the initial state, with higher stability devices (≳10 pN) resetting more reliably during repeated force-loading cycles. Finally, we show that the opening force can be adjusted in real time by the addition of a single DNA oligonucleotide. These results establish the NanoDyn as a versatile force sensor and provide fundamental insights into how design parameters modulate mechanical and dynamic properties.
Collapse
Affiliation(s)
- Ariel Robbins
- Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Hazen Hildebolt
- Department of Physics, The Ohio State University, Columbus, OH 43210, USA
| | - Michael Neuhoff
- Department of Physics, The Ohio State University, Columbus, OH 43210, USA
| | - Peter Beshay
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Jessica O. Winter
- Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Carlos E. Castro
- Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Ralf Bundschuh
- Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
- Department of Physics, The Ohio State University, Columbus, OH 43210, USA
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Michael G. Poirier
- Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
- Department of Physics, The Ohio State University, Columbus, OH 43210, USA
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
8
|
Jergens E, de Araujo Fernandes-Junior S, Cui Y, Robbins A, Castro CE, Poirier MG, Gurcan MN, Otero JJ, Winter JO. DNA-caged nanoparticles via electrostatic self-assembly. NANOSCALE 2023. [PMID: 37184508 DOI: 10.1039/d3nr01424j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
DNA-modified nanoparticles enable DNA sensing and therapeutics in nanomedicine and are also crucial for nanoparticle self-assembly with DNA-based materials. However, methods to conjugate DNA to nanoparticle surfaces are limited, inefficient, and lack control. Inspired by DNA tile nanotechnology, we demonstrate a new approach to nanoparticle modification based on electrostatic attraction between negatively charged DNA tiles and positively charged nanoparticles. This approach does not disrupt nanoparticle surfaces and leverages the programmability of DNA nanotechnology to control DNA presentation. We demonstrated this approach using a vareity of nanoparticles, including polymeric micelles, polystyrene beads, gold nanoparticles, and superparamagnetic iron oxide nanoparticles with sizes ranging from 5-20 nm in diameter. DNA cage formation was confirmed through transmission electron microscopy (TEM), neutralization of zeta potential, and a series of fluorescence experiments. DNA cages present "handle" sequences that can be used for reversible target attachment or self-assembly. Handle functionality was verified in solution, at the solid-liquid interface, and inside fixed cells, corresponding to applications in biosensing, DNA microarrays, and erasable immunocytochemistry. These experiments demonstrate the versatility of the electrostatic DNA caging approach and provide a new pathway to nanoparticle modification with DNA that will empower further applications of these materials in medicine and materials science.
Collapse
Affiliation(s)
- Elizabeth Jergens
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, USA.
| | - Silvio de Araujo Fernandes-Junior
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, USA.
- Department of Pathology and the Neurological Research Institute, College of Medicine, The Ohio State University, Columbus, OH, USA.
- Curing Cancer Through Research in Engineering and Sciences (CCE-CURES), The Ohio State University, Columbus, OH, USA
| | - Yixiao Cui
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
| | - Ariel Robbins
- Department of Physics, The Ohio State University, Columbus, OH, USA
- Biophysics Program, The Ohio State University, Columbus, OH, USA
| | - Carlos E Castro
- Biophysics Program, The Ohio State University, Columbus, OH, USA
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH, USA
| | - Michael G Poirier
- Department of Physics, The Ohio State University, Columbus, OH, USA
- Biophysics Program, The Ohio State University, Columbus, OH, USA
| | - Metin N Gurcan
- Center for Biomedical Informatics, School of Medicine, Wake Forest University, Winston-Salem, NC, USA
| | - Jose J Otero
- Department of Pathology and the Neurological Research Institute, College of Medicine, The Ohio State University, Columbus, OH, USA.
- Curing Cancer Through Research in Engineering and Sciences (CCE-CURES), The Ohio State University, Columbus, OH, USA
| | - Jessica O Winter
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, USA.
- Curing Cancer Through Research in Engineering and Sciences (CCE-CURES), The Ohio State University, Columbus, OH, USA
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
- Biophysics Program, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
9
|
Wang Y, Sensale S, Pedrozo M, Huang CM, Poirier MG, Arya G, Castro CE. Steric Communication between Dynamic Components on DNA Nanodevices. ACS NANO 2023; 17:8271-8280. [PMID: 37072126 PMCID: PMC10173695 DOI: 10.1021/acsnano.2c12455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Biomolecular nanotechnology has helped emulate basic robotic capabilities such as defined motion, sensing, and actuation in synthetic nanoscale systems. DNA origami is an attractive approach for nanorobotics, as it enables creation of devices with complex geometry, programmed motion, rapid actuation, force application, and various kinds of sensing modalities. Advanced robotic functions like feedback control, autonomy, or programmed routines also require the ability to transmit signals among subcomponents. Prior work in DNA nanotechnology has established approaches for signal transmission, for example through diffusing strands or structurally coupled motions. However, soluble communication is often slow and structural coupling of motions can limit the function of individual components, for example to respond to the environment. Here, we introduce an approach inspired by protein allostery to transmit signals between two distal dynamic components through steric interactions. These components undergo separate thermal fluctuations where certain conformations of one arm will sterically occlude conformations of the distal arm. We implement this approach in a DNA origami device consisting of two stiff arms each connected to a base platform via a flexible hinge joint. We demonstrate the ability for one arm to sterically regulate both the range of motion and the conformational state (latched or freely fluctuating) of the distal arm, results that are quantitatively captured by mesoscopic simulations using experimentally informed energy landscapes for hinge-angle fluctuations. We further demonstrate the ability to modulate signal transmission by mechanically tuning the range of thermal fluctuations and controlling the conformational states of the arms. Our results establish a communication mechanism well-suited to transmit signals between thermally fluctuating dynamic components and provide a path to transmitting signals where the input is a dynamic response to parameters like force or solution conditions.
Collapse
Affiliation(s)
- Yuchen Wang
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Sebastian Sensale
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
- Department of Physics, Cleveland State University, Cleveland, Ohio 44115, United States
| | - Miguel Pedrozo
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Chao-Min Huang
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Michael G Poirier
- Department of Physics, The Ohio State University, Columbus, Ohio 43210, United States
- Biophysics Graduate Program, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Gaurav Arya
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Carlos E Castro
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, Ohio 43210, United States
- Biophysics Graduate Program, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
10
|
Mills A, Aissaoui N, Finkel J, Elezgaray J, Bellot G. Mechanical DNA Origami to Investigate Biological Systems. Adv Biol (Weinh) 2023; 7:e2200224. [PMID: 36509679 DOI: 10.1002/adbi.202200224] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/25/2022] [Indexed: 12/15/2022]
Abstract
The ability to self-assemble DNA nanodevices with programmed structural dynamics that can sense and respond to the local environment can enable transformative applications in fields including mechanobiology and nanomedicine. The responsive function of biomolecules is often driven by alterations in conformational distributions mediated by highly sensitive interactions with the local environment. In this review, the current state-of-the-art in constructing complex DNA geometries with dynamic and mechanical properties to enable a molecular scale force measurement is first summarized. Next, an overview of engineering modular DNA devices that interact with cell surfaces is highlighted detailing examples of mechanosensitive proteins and the force-induced dynamic molecular interaction on the downstream biochemical signaling. Finally, the challenges and an outlook on this promising class of DNA devices acting as nanomachines to operate at a low piconewton range suitable for a majority of biological effects or as hybrid materials to achieve higher tension exertion required for other biological investigations, are discussed.
Collapse
Affiliation(s)
- Allan Mills
- Centre de Biologie Structurale, INSERM, CNRS, Université de Montpellier, Montpellier, 34090, France
| | - Nesrine Aissaoui
- Laboratoire CiTCoM, Faculté de Santé, Université Paris Cité, CNRS, Paris, 75006, France
| | - Julie Finkel
- Centre de Biologie Structurale, INSERM, CNRS, Université de Montpellier, Montpellier, 34090, France
| | - Juan Elezgaray
- CRPP, CNRS, UMR 5031, Université de Bordeaux, Pessac, 33600, France
| | - Gaëtan Bellot
- Centre de Biologie Structurale, INSERM, CNRS, Université de Montpellier, Montpellier, 34090, France
| |
Collapse
|
11
|
Pal N, Walter NG. Using Single-Molecule FRET to Evaluate DNA Nanodevices at Work. Methods Mol Biol 2023; 2639:157-172. [PMID: 37166717 DOI: 10.1007/978-1-0716-3028-0_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The observation of DNA nanodevices at a single molecule (i.e., device) level and in real time provides rich information that is typically masked in ensemble measurements. Single-molecule fluorescence resonance energy transfer (smFRET) offers a means to directly follow dynamic conformational or compositional changes that DNA nanodevices undergo while operating, thereby retrieving insights critical for refining them toward optimal function. To be successful, smFRET measurements require careful execution and meticulous data analysis for robust statistics. Here we outline the elemental steps for smFRET experiments on DNA nanodevices, starting from microscope slide preparation for single-molecule observation to data acquisition and analysis.
Collapse
Affiliation(s)
- Nibedita Pal
- Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh, India.
| | - Nils G Walter
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
12
|
Beshay PE, Johson JA, Le JV, Castro CE. Design, Assembly, and Function of DNA Origami Mechanisms. Methods Mol Biol 2023; 2639:21-49. [PMID: 37166709 DOI: 10.1007/978-1-0716-3028-0_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
This chapter provides an overview of the common procedures used in making functional DNA origami devices. These procedures include the design, assembly, purification, and characterization of the DNA origami structures, with a focus on dynamic devices.
Collapse
Affiliation(s)
- Peter E Beshay
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH, USA
| | - Joshua A Johson
- Biophysics Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Jenny V Le
- Biophysics Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Carlos E Castro
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH, USA.
- Biophysics Graduate Program, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
13
|
Shahhosseini M, Beshay PE, Akbari E, Roki N, Lucas CR, Avendano A, Song JW, Castro CE. Multiplexed Detection of Molecular Interactions with DNA Origami Engineered Cells in 3D Collagen Matrices. ACS APPLIED MATERIALS & INTERFACES 2022; 14:55307-55319. [PMID: 36509424 PMCID: PMC9785045 DOI: 10.1021/acsami.2c07971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 09/29/2022] [Indexed: 06/17/2023]
Abstract
The interactions of cells with signaling molecules present in their local microenvironment maintain cell proliferation, differentiation, and spatial organization and mediate progression of diseases such as metabolic disorders and cancer. Real-time monitoring of the interactions between cells and their extracellular ligands in a three-dimensional (3D) microenvironment can inform detection and understanding of cell processes and the development of effective therapeutic agents. DNA origami technology allows for the design and fabrication of biocompatible and 3D functional nanodevices via molecular self-assembly for various applications including molecular sensing. Here, we report a robust method to monitor live cell interactions with molecules in their surrounding environment in a 3D tissue model using a microfluidic device. We used a DNA origami cell sensing platform (CSP) to detect two specific nucleic acid sequences on the membrane of B cells and dendritic cells. We further demonstrated real-time detection of biomolecules with the DNA sensing platform on the surface of dendritic cells in a 3D microfluidic tissue model. Our results establish the integration of live cells with membranes engineered with DNA nanodevices into microfluidic chips as a highly capable biosensor approach to investigate subcellular interactions in physiologically relevant 3D environments under controlled biomolecular transport.
Collapse
Affiliation(s)
- Melika Shahhosseini
- Department
of Mechanical and Aerospace Engineering, The Ohio State University, 201 West 19th Avenue, Columbus, Ohio 43210, United States
| | - Peter E. Beshay
- Department
of Mechanical and Aerospace Engineering, The Ohio State University, 201 West 19th Avenue, Columbus, Ohio 43210, United States
| | - Ehsan Akbari
- Biophysics
Graduate Program, The Ohio State University, Columbus, Ohio 43210, United States
| | - Niksa Roki
- Department
of Mechanical and Aerospace Engineering, The Ohio State University, 201 West 19th Avenue, Columbus, Ohio 43210, United States
- Comprehensive
Cancer Center, The Ohio State University, Columbus, Ohio 43210 United States
| | - Christopher R. Lucas
- Department
of Mechanical and Aerospace Engineering, The Ohio State University, 201 West 19th Avenue, Columbus, Ohio 43210, United States
- Comprehensive
Cancer Center, The Ohio State University, Columbus, Ohio 43210 United States
| | - Alex Avendano
- Department
of Biomedical Engineering, The Ohio State
University, Columbus, Ohio 43210, United States
| | - Jonathan W. Song
- Department
of Mechanical and Aerospace Engineering, The Ohio State University, 201 West 19th Avenue, Columbus, Ohio 43210, United States
- Comprehensive
Cancer Center, The Ohio State University, Columbus, Ohio 43210 United States
| | - Carlos E. Castro
- Department
of Mechanical and Aerospace Engineering, The Ohio State University, 201 West 19th Avenue, Columbus, Ohio 43210, United States
- Biophysics
Graduate Program, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
14
|
Kaufhold WT, Pfeifer W, Castro CE, Di Michele L. Probing the Mechanical Properties of DNA Nanostructures with Metadynamics. ACS NANO 2022; 16:8784-8797. [PMID: 35580231 PMCID: PMC9245350 DOI: 10.1021/acsnano.1c08999] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Molecular dynamics simulations are often used to provide feedback in the design workflow of DNA nanostructures. However, even with coarse-grained models, the convergence of distributions from unbiased simulation is slow, limiting applications to equilibrium structural properties. Given the increasing interest in dynamic, reconfigurable, and deformable devices, methods that enable efficient quantification of large ranges of motion, conformational transitions, and mechanical deformation are critically needed. Metadynamics is an automated biasing technique that enables the rapid acquisition of molecular conformational distributions by flattening free energy landscapes. Here we leveraged this approach to sample the free energy landscapes of DNA nanostructures whose unbiased dynamics are nonergodic, including bistable Holliday junctions and part of a bistable DNA origami structure. Taking a DNA origami-compliant joint as a case study, we further demonstrate that metadynamics can predict the mechanical response of a full DNA origami device to an applied force, showing good agreement with experiments. Our results exemplify the efficient computation of free energy landscapes and force response in DNA nanodevices, which could be applied for rapid feedback in iterative design workflows and generally facilitate the integration of simulation and experiments. Metadynamics will be particularly useful to guide the design of dynamic devices for nanorobotics, biosensing, or nanomanufacturing applications.
Collapse
Affiliation(s)
- Will T. Kaufhold
- Department
of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, U.K.
- Department
of Chemistry and fabriCELL, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K.
| | - Wolfgang Pfeifer
- Department
of Mechanical and Aerospace Engineering, The Ohio State University, Columbus 43210, Ohio, United States
| | - Carlos E. Castro
- Department
of Mechanical and Aerospace Engineering, The Ohio State University, Columbus 43210, Ohio, United States
| | - Lorenzo Di Michele
- Department
of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, U.K.
- Department
of Chemistry and fabriCELL, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K.
| |
Collapse
|
15
|
Kaufhold WT, Pfeifer W, Castro CE, Di Michele L. Probing the Mechanical Properties of DNA Nanostructures with Metadynamics. ACS NANO 2022; 16:8784-8797. [PMID: 35580231 DOI: 10.48550/arxiv.2110.01477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Molecular dynamics simulations are often used to provide feedback in the design workflow of DNA nanostructures. However, even with coarse-grained models, the convergence of distributions from unbiased simulation is slow, limiting applications to equilibrium structural properties. Given the increasing interest in dynamic, reconfigurable, and deformable devices, methods that enable efficient quantification of large ranges of motion, conformational transitions, and mechanical deformation are critically needed. Metadynamics is an automated biasing technique that enables the rapid acquisition of molecular conformational distributions by flattening free energy landscapes. Here we leveraged this approach to sample the free energy landscapes of DNA nanostructures whose unbiased dynamics are nonergodic, including bistable Holliday junctions and part of a bistable DNA origami structure. Taking a DNA origami-compliant joint as a case study, we further demonstrate that metadynamics can predict the mechanical response of a full DNA origami device to an applied force, showing good agreement with experiments. Our results exemplify the efficient computation of free energy landscapes and force response in DNA nanodevices, which could be applied for rapid feedback in iterative design workflows and generally facilitate the integration of simulation and experiments. Metadynamics will be particularly useful to guide the design of dynamic devices for nanorobotics, biosensing, or nanomanufacturing applications.
Collapse
Affiliation(s)
- Will T Kaufhold
- Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, U.K
- Department of Chemistry and fabriCELL, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K
| | - Wolfgang Pfeifer
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus 43210, Ohio, United States
| | - Carlos E Castro
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus 43210, Ohio, United States
| | - Lorenzo Di Michele
- Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, U.K
- Department of Chemistry and fabriCELL, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K
| |
Collapse
|
16
|
The Free-Energy Landscape of a Mechanically Bistable DNA Origami. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12125875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Molecular simulations using coarse-grained models allow the structure, dynamics and mechanics of DNA origamis to be comprehensively characterized. Here, we focus on the free-energy landscape of a jointed DNA origami that has been designed to exhibit two mechanically stable states and for which a bistable landscape has been inferred from ensembles of structures visualized by electron microscopy. Surprisingly, simulations using the oxDNA model predict that the defect-free origami has a single free-energy minimum. The expected second state is not stable because the hinge joints do not simply allow free angular motion but instead lead to increasing free-energetic penalties as the joint angles relevant to the second state are approached. This raises interesting questions about the cause of this difference between simulations and experiment, such as how assembly defects might affect the ensemble of structures observed experimentally.
Collapse
|
17
|
Darcy M, Crocker K, Wang Y, Le JV, Mohammadiroozbahani G, Abdelhamid MAS, Craggs TD, Castro CE, Bundschuh R, Poirier MG. High-Force Application by a Nanoscale DNA Force Spectrometer. ACS NANO 2022; 16:5682-5695. [PMID: 35385658 PMCID: PMC9048690 DOI: 10.1021/acsnano.1c10698] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/28/2022] [Indexed: 05/06/2023]
Abstract
The ability to apply and measure high forces (>10 pN) on the nanometer scale is critical to the development of nanomedicine, molecular robotics, and the understanding of biological processes such as chromatin condensation, membrane deformation, and viral packaging. Established force spectroscopy techniques including optical traps, magnetic tweezers, and atomic force microscopy rely on micron-sized or larger handles to apply forces, limiting their applications within constrained geometries including cellular environments and nanofluidic devices. A promising alternative to these approaches is DNA-based molecular calipers. However, this approach is currently limited to forces on the scale of a few piconewtons. To study the force application capabilities of DNA devices, we implemented DNA origami nanocalipers with tunable mechanical properties in a geometry that allows application of force to rupture a DNA duplex. We integrated static and dynamic single-molecule characterization methods and statistical mechanical modeling to quantify the device properties including force output and dynamic range. We found that the thermally driven dynamics of the device are capable of applying forces of at least 20 piconewtons with a nanometer-scale dynamic range. These characteristics could eventually be used to study other biomolecular processes such as protein unfolding or to control high-affinity interactions in nanomechanical devices or molecular robots.
Collapse
Affiliation(s)
- Michael Darcy
- Department
of Physics, Department of Mechanical and Aerospace Engineering, Biophysics Graduate
Program, Department of Chemistry and Biochemistry, and Division of Hematology, Department
of Internal Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Kyle Crocker
- Department
of Physics, Department of Mechanical and Aerospace Engineering, Biophysics Graduate
Program, Department of Chemistry and Biochemistry, and Division of Hematology, Department
of Internal Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Yuchen Wang
- Department
of Physics, Department of Mechanical and Aerospace Engineering, Biophysics Graduate
Program, Department of Chemistry and Biochemistry, and Division of Hematology, Department
of Internal Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jenny V. Le
- Department
of Physics, Department of Mechanical and Aerospace Engineering, Biophysics Graduate
Program, Department of Chemistry and Biochemistry, and Division of Hematology, Department
of Internal Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Golbarg Mohammadiroozbahani
- Department
of Physics, Department of Mechanical and Aerospace Engineering, Biophysics Graduate
Program, Department of Chemistry and Biochemistry, and Division of Hematology, Department
of Internal Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | | | - Timothy D. Craggs
- Department
of Chemistry, University of Sheffield, Sheffield S3 7HF, U.K.
| | - Carlos E. Castro
- Department
of Physics, Department of Mechanical and Aerospace Engineering, Biophysics Graduate
Program, Department of Chemistry and Biochemistry, and Division of Hematology, Department
of Internal Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Ralf Bundschuh
- Department
of Physics, Department of Mechanical and Aerospace Engineering, Biophysics Graduate
Program, Department of Chemistry and Biochemistry, and Division of Hematology, Department
of Internal Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Michael G. Poirier
- Department
of Physics, Department of Mechanical and Aerospace Engineering, Biophysics Graduate
Program, Department of Chemistry and Biochemistry, and Division of Hematology, Department
of Internal Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
18
|
Molecular sensors for detection of tumor-stroma crosstalk. Adv Cancer Res 2022; 154:47-91. [PMID: 35459472 DOI: 10.1016/bs.acr.2022.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In most solid tumors, malignant cells coexist with non-cancerous host tissue comprised of a variety of extracellular matrix components and cell types, notably fibroblasts, immune cells, and endothelial cells. It is becoming increasingly evident that the non-cancerous host tissue, often referred to as the tumor stroma or the tumor microenvironment, wields tremendous influence in the proliferation, survival, and metastatic ability of cancer cells. The tumor stroma has an active biological role in the transmission of signals, such as growth factors and chemokines that activate oncogenic signaling pathways by autocrine and paracrine mechanisms. Moreover, the constituents of the stroma define the mechanical properties and the physical features of solid tumors, which influence cancer progression and response to therapy. Inspired by the emerging importance of tumor-stroma crosstalk and oncogenic physical forces, numerous biosensors, or advanced imaging and analysis techniques have been developed and applied to investigate complex and challenging questions in cancer research. These techniques facilitate measurements and biological readouts at scales ranging from subcellular to tissue-level with unprecedented level of spatial and temporal precision. Here we examine the application of biosensor technology for studying the complex and dynamic multiscale interactions of the tumor-host system.
Collapse
|
19
|
Zhang X, Pan L, Guo R, Zhang Y, Li F, Li M, Li J, Shi J, Qu F, Zuo X, Mao X. DNA origami nanocalipers for pH sensing at the nanoscale. Chem Commun (Camb) 2022; 58:3673-3676. [PMID: 35225310 DOI: 10.1039/d1cc06701j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A DNA origami nanocaliper is employed as a shape-resolved nanomechanical device, with pH-responsive triplex DNA integrated into the two arms. The shape transition of the nanocaliper results in a subtle difference depending on the local pH that is visible via TEM imaging, demonstrating the potential of these nanocalipers to act as a universal platform for pH sensing at the nanoscale.
Collapse
Affiliation(s)
- Xinyue Zhang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China. .,College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, Shandong, China
| | - Li Pan
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China. .,School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ruiyan Guo
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Yueyue Zhang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Fan Li
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Min Li
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Jiang Li
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Jiye Shi
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Fengli Qu
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, Shandong, China
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China. .,School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiuhai Mao
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|
20
|
Beshay PE, Cortes-Medina MG, Menyhert MM, Song JW. The biophysics of cancer: emerging insights from micro- and nanoscale tools. ADVANCED NANOBIOMED RESEARCH 2022; 2:2100056. [PMID: 35156093 PMCID: PMC8827905 DOI: 10.1002/anbr.202100056] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cancer is a complex and dynamic disease that is aberrant both biologically and physically. There is growing appreciation that physical abnormalities with both cancer cells and their microenvironment that span multiple length scales are important drivers for cancer growth and metastasis. The scope of this review is to highlight the key advancements in micro- and nano-scale tools for delineating the cause and consequences of the aberrant physical properties of tumors. We focus our review on three important physical aspects of cancer: 1) solid mechanical properties, 2) fluid mechanical properties, and 3) mechanical alterations to cancer cells. Beyond posing physical barriers to the delivery of cancer therapeutics, these properties are also known to influence numerous biological processes, including cancer cell invasion and migration leading to metastasis, and response and resistance to therapy. We comment on how micro- and nanoscale tools have transformed our fundamental understanding of the physical dynamics of cancer progression and their potential for bridging towards future applications at the interface of oncology and physical sciences.
Collapse
Affiliation(s)
- Peter E Beshay
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210
| | | | - Miles M Menyhert
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210
| | - Jonathan W Song
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
21
|
Lee JY, Kim M, Lee C, Kim DN. Characterizing and Harnessing the Mechanical Properties of Short Single-Stranded DNA in Structured Assemblies. ACS NANO 2021; 15:20430-20441. [PMID: 34870958 DOI: 10.1021/acsnano.1c08861] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Precise engineering of DNA structures is of growing interest to solve challenging problems in biomolecular applications and beyond. The introduction of single-stranded DNA (ssDNA) into the DNA structure can play a pivotal role in providing high controllability of critical structural features. Herein, we present a computational model of ssDNA with structural applications to harness its characteristics. The nonlinear properties of nucleotide gaps are systematically characterized to construct a structural model of the ssDNA across length scales with the incorporation of a finite element framework. The proposed method shows the programmability of structural bending, twisting, and persistence length by implementing the ssDNA in various DNA structures with experimental validation. Our results have significant implications for DNA nanotechnology in expanding the boundary of design and analysis of structural shape and stiffness.
Collapse
Affiliation(s)
- Jae Young Lee
- Institute of Advanced Machines and Design, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Myoungseok Kim
- Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Chanseok Lee
- Institute of Advanced Machines and Design, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Do-Nyun Kim
- Institute of Advanced Machines and Design, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
- Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
- Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| |
Collapse
|
22
|
Shen L, Wang P, Ke Y. DNA Nanotechnology-Based Biosensors and Therapeutics. Adv Healthc Mater 2021; 10:e2002205. [PMID: 34085411 DOI: 10.1002/adhm.202002205] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/19/2021] [Indexed: 12/19/2022]
Abstract
Over the past few decades, DNA nanotechnology engenders a vast variety of programmable nanostructures utilizing Watson-Crick base pairing. Due to their precise engineering, unprecedented programmability, and intrinsic biocompatibility, DNA nanostructures cannot only interact with small molecules, nucleic acids, proteins, viruses, and cancer cells, but also can serve as nanocarriers to deliver different therapeutic agents. Such addressability innate to DNA nanostructures enables their use in various fields of biomedical applications such as biosensors and cancer therapy. This review is begun with a brief introduction of the development of DNA nanotechnology, followed by a summary of recent applications of DNA nanostructures in biosensors and therapeutics. Finally, challenges and opportunities for practical applications of DNA nanotechnology are discussed.
Collapse
Affiliation(s)
- Luyao Shen
- Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta GA 30322 USA
- Institute of Molecular Medicine Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine State Key Laboratory of Oncogenes and Related Genes Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Pengfei Wang
- Institute of Molecular Medicine Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine State Key Laboratory of Oncogenes and Related Genes Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Yonggang Ke
- Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta GA 30322 USA
| |
Collapse
|
23
|
Nakazawa K, El Fakih F, Jallet V, Rossi-Gendron C, Mariconti M, Chocron L, Hishida M, Saito K, Morel M, Rudiuk S, Baigl D. Reversible Supra-Folding of User-Programmed Functional DNA Nanostructures on Fuzzy Cationic Substrates. Angew Chem Int Ed Engl 2021; 60:15214-15219. [PMID: 33675576 DOI: 10.1002/anie.202101909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Indexed: 12/22/2022]
Abstract
We report that user-defined DNA nanostructures, such as two-dimensional (2D) origamis and nanogrids, undergo a rapid higher-order folding transition, referred to as supra-folding, into three-dimensional (3D) compact structures (origamis) or well-defined μm-long ribbons (nanogrids), when they adsorb on a soft cationic substrate prepared by layer-by-layer deposition of polyelectrolytes. Once supra-folded, origamis can be switched back on the surface into their 2D original shape through addition of heparin, a highly charged anionic polyelectrolyte known as an efficient competitor of DNA-polyelectrolyte complexation. Orthogonal to DNA base-pairing principles, this reversible structural reconfiguration is also versatile; we show in particular that 1) it is compatible with various origami shapes, 2) it perfectly preserves fine structural details as well as site-specific functionality, and 3) it can be applied to dynamically address the spatial distribution of origami-tethered proteins.
Collapse
Affiliation(s)
- Koyomi Nakazawa
- PASTEUR, Department of Chemistry, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France.,Department of Chemistry, University of Tsukuba, Tsukuba, Ibaraki, 305-8571, Japan
| | - Farah El Fakih
- PASTEUR, Department of Chemistry, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| | - Vincent Jallet
- PASTEUR, Department of Chemistry, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| | - Caroline Rossi-Gendron
- PASTEUR, Department of Chemistry, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| | - Marina Mariconti
- PASTEUR, Department of Chemistry, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| | - Léa Chocron
- PASTEUR, Department of Chemistry, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| | - Mafumi Hishida
- Department of Chemistry, University of Tsukuba, Tsukuba, Ibaraki, 305-8571, Japan
| | - Kazuya Saito
- Department of Chemistry, University of Tsukuba, Tsukuba, Ibaraki, 305-8571, Japan
| | - Mathieu Morel
- PASTEUR, Department of Chemistry, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| | - Sergii Rudiuk
- PASTEUR, Department of Chemistry, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| | - Damien Baigl
- PASTEUR, Department of Chemistry, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| |
Collapse
|
24
|
Nakazawa K, El Fakih F, Jallet V, Rossi‐Gendron C, Mariconti M, Chocron L, Hishida M, Saito K, Morel M, Rudiuk S, Baigl D. Reversible Supra‐Folding of User‐Programmed Functional DNA Nanostructures on Fuzzy Cationic Substrates. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Koyomi Nakazawa
- PASTEUR Department of Chemistry Ecole Normale Supérieure PSL University Sorbonne Université CNRS 75005 Paris France
- Department of Chemistry University of Tsukuba Tsukuba Ibaraki 305-8571 Japan
| | - Farah El Fakih
- PASTEUR Department of Chemistry Ecole Normale Supérieure PSL University Sorbonne Université CNRS 75005 Paris France
| | - Vincent Jallet
- PASTEUR Department of Chemistry Ecole Normale Supérieure PSL University Sorbonne Université CNRS 75005 Paris France
| | - Caroline Rossi‐Gendron
- PASTEUR Department of Chemistry Ecole Normale Supérieure PSL University Sorbonne Université CNRS 75005 Paris France
| | - Marina Mariconti
- PASTEUR Department of Chemistry Ecole Normale Supérieure PSL University Sorbonne Université CNRS 75005 Paris France
| | - Léa Chocron
- PASTEUR Department of Chemistry Ecole Normale Supérieure PSL University Sorbonne Université CNRS 75005 Paris France
| | - Mafumi Hishida
- Department of Chemistry University of Tsukuba Tsukuba Ibaraki 305-8571 Japan
| | - Kazuya Saito
- Department of Chemistry University of Tsukuba Tsukuba Ibaraki 305-8571 Japan
| | - Mathieu Morel
- PASTEUR Department of Chemistry Ecole Normale Supérieure PSL University Sorbonne Université CNRS 75005 Paris France
| | - Sergii Rudiuk
- PASTEUR Department of Chemistry Ecole Normale Supérieure PSL University Sorbonne Université CNRS 75005 Paris France
| | - Damien Baigl
- PASTEUR Department of Chemistry Ecole Normale Supérieure PSL University Sorbonne Université CNRS 75005 Paris France
| |
Collapse
|
25
|
Yang J, Zhao N, Liang Y, Lu Z, Zhang C. Structure-flexible DNA origami translocation through a solid-state nanopore. RSC Adv 2021; 11:23471-23476. [PMID: 35479792 PMCID: PMC9036576 DOI: 10.1039/d1ra04267j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 06/27/2021] [Indexed: 12/30/2022] Open
Abstract
Nanopore detection is a label-free detection method designed to analyze single molecules by comparing specific translocation events with high signal-to-noise ratios. However, it is still challenging to understand the influences of structural flexibility of 100 nm DNA origami on nanopore translocations. Here, we used solid-state nanopores to characterize the translocation of “nunchaku” origami structures, the flexibility of which can be regulated by introducing specific DNA strands and streptavidin protein. The structural changes can result in significant variations in the translocation signals and distributions. It is anticipated that such a method of the flexible DNA origami translocation through a solid-state nanopore will find further applications in molecular detection as well as biosensing. Using a solid-state nanopore to characterize the translocation of “nunchaku” origami with tunable-structures.![]()
Collapse
Affiliation(s)
- Jing Yang
- School of Control and Computer Engineering, North China Electric Power University Beijing 102206 China .,School of Electronics Engineering and Computer Science, Peking University Beijing 100871 China
| | - Nan Zhao
- School of Control and Computer Engineering, North China Electric Power University Beijing 102206 China
| | - Yuan Liang
- School of Control and Computer Engineering, North China Electric Power University Beijing 102206 China
| | - Zuhong Lu
- The State Key Laboratory of Bioelectronics, Southeast University Nanjing 211189 China
| | - Cheng Zhang
- School of Electronics Engineering and Computer Science, Peking University Beijing 100871 China
| |
Collapse
|
26
|
Johnson JA, Kolliopoulos V, Castro CE. Co-self-assembly of multiple DNA origami nanostructures in a single pot. Chem Commun (Camb) 2021; 57:4795-4798. [PMID: 33982710 DOI: 10.1039/d1cc00049g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Simultaneous self-assembly of two distinct DNA origami nanostructures folded with the same scaffold strand was achieved in a single pot. Relative yields were tuned by adjusting concentrations of the competing strands, correlating well with folding kinetics of individual structures. These results can faciliate efficient fabrication of multi-structure systems and materials.
Collapse
Affiliation(s)
- Joshua A Johnson
- Biophysics Graduate Program, The Ohio State University, 281 W Lane Ave, Columbus, OH 43210, USA.
| | - Vasiliki Kolliopoulos
- Department of Chemical and Biomolecular Engineering, The Ohio State University, 281 W Lane Ave, Columbus, OH 43210, USA
| | - Carlos E Castro
- Biophysics Graduate Program, The Ohio State University, 281 W Lane Ave, Columbus, OH 43210, USA. and Department of Mechanical and Aerospace Engineering, The Ohio State University, 281 W Lane Ave, Columbus, OH 43210, USA
| |
Collapse
|
27
|
Loescher S, Walther A. Multivalency Pattern Recognition to Sort Colloidal Assemblies. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005668. [PMID: 33448120 PMCID: PMC7612461 DOI: 10.1002/smll.202005668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/15/2020] [Indexed: 05/03/2023]
Abstract
Multivalent interaction is an important principle for self-assembly and has been widely used to assemble colloids. However, surface binding partners are statistically distributed, which falls short of the interaction possibilities arising from geometrically controlled multivalency patterns as seen in viruses. Herein, the precision provided by 3D DNA origami is exploited to introduce multivalency pattern recognition via designing geometrically precise interaction patterns at patches of patchy nanocylinders. This gives rise to self-sorting of colloidal assemblies despite having the same type and number of supramolecular binding motifs-solely based on the pattern located on a 20 × 20 nm2 cross-section. The degree of sorting can be modulated by the geometric overlap of patterns and homo; mixed and alternating supracolloidal polymerizations are demonstrated. Multivalency patterns are able to provide an additional information layer to organize soft matter, important towards engineering of biological responses and functional materials design.
Collapse
|
28
|
Wang S, Zhou Z, Ma N, Yang S, Li K, Teng C, Ke Y, Tian Y. DNA Origami-Enabled Biosensors. SENSORS (BASEL, SWITZERLAND) 2020; 20:E6899. [PMID: 33287133 PMCID: PMC7731452 DOI: 10.3390/s20236899] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 11/30/2020] [Indexed: 12/29/2022]
Abstract
Biosensors are small but smart devices responding to the external stimulus, widely used in many fields including clinical diagnosis, healthcare and environment monitoring, etc. Moreover, there is still a pressing need to fabricate sensitive, stable, reliable sensors at present. DNA origami technology is able to not only construct arbitrary shapes in two/three dimension but also control the arrangement of molecules with different functionalities precisely. The functionalization of DNA origami nanostructure endows the sensing system potential of filling in weak spots in traditional DNA-based biosensor. Herein, we mainly review the construction and sensing mechanisms of sensing platforms based on DNA origami nanostructure according to different signal output strategies. It will offer guidance for the application of DNA origami structures functionalized by other materials. We also point out some promising directions for improving performance of biosensors.
Collapse
Affiliation(s)
- Shuang Wang
- Institute of Marine Biomedicine, Shenzhen Polytechnic, Shenzhen 518055, China; (S.W.); (K.L.)
- State Key Laboratory of Analytical Chemistry for Life Science, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China; (Z.Z.); (N.M.); (S.Y.); (Y.T.)
| | - Zhaoyu Zhou
- State Key Laboratory of Analytical Chemistry for Life Science, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China; (Z.Z.); (N.M.); (S.Y.); (Y.T.)
| | - Ningning Ma
- State Key Laboratory of Analytical Chemistry for Life Science, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China; (Z.Z.); (N.M.); (S.Y.); (Y.T.)
| | - Sichang Yang
- State Key Laboratory of Analytical Chemistry for Life Science, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China; (Z.Z.); (N.M.); (S.Y.); (Y.T.)
| | - Kai Li
- Institute of Marine Biomedicine, Shenzhen Polytechnic, Shenzhen 518055, China; (S.W.); (K.L.)
- State Key Laboratory of Analytical Chemistry for Life Science, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China; (Z.Z.); (N.M.); (S.Y.); (Y.T.)
| | - Chao Teng
- Institute of Marine Biomedicine, Shenzhen Polytechnic, Shenzhen 518055, China; (S.W.); (K.L.)
| | - Yonggang Ke
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA;
| | - Ye Tian
- State Key Laboratory of Analytical Chemistry for Life Science, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China; (Z.Z.); (N.M.); (S.Y.); (Y.T.)
- Shenzhen Research Institute of Nanjing University, Shenzhen 518000, China
| |
Collapse
|
29
|
Wang W, Arias DS, Deserno M, Ren X, Taylor RE. Emerging applications at the interface of DNA nanotechnology and cellular membranes: Perspectives from biology, engineering, and physics. APL Bioeng 2020; 4:041507. [PMID: 33344875 PMCID: PMC7725538 DOI: 10.1063/5.0027022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 11/17/2020] [Indexed: 12/17/2022] Open
Abstract
DNA nanotechnology has proven exceptionally apt at probing and manipulating biological environments as it can create nanostructures of almost arbitrary shape that permit countless types of modifications, all while being inherently biocompatible. Emergent areas of particular interest are applications involving cellular membranes, but to fully explore the range of possibilities requires interdisciplinary knowledge of DNA nanotechnology, cell and membrane biology, and biophysics. In this review, we aim for a concise introduction to the intersection of these three fields. After briefly revisiting DNA nanotechnology, as well as the biological and mechanical properties of lipid bilayers and cellular membranes, we summarize strategies to mediate interactions between membranes and DNA nanostructures, with a focus on programmed delivery onto, into, and through lipid membranes. We also highlight emerging applications, including membrane sculpting, multicell self-assembly, spatial arrangement and organization of ligands and proteins, biomechanical sensing, synthetic DNA nanopores, biological imaging, and biomelecular sensing. Many critical but exciting challenges lie ahead, and we outline what strikes us as promising directions when translating DNA nanostructures for future in vitro and in vivo membrane applications.
Collapse
Affiliation(s)
- Weitao Wang
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - D. Sebastian Arias
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Markus Deserno
- Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Xi Ren
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | | |
Collapse
|
30
|
Loretan M, Domljanovic I, Lakatos M, Rüegg C, Acuna GP. DNA Origami as Emerging Technology for the Engineering of Fluorescent and Plasmonic-Based Biosensors. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E2185. [PMID: 32397498 PMCID: PMC7254321 DOI: 10.3390/ma13092185] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/30/2020] [Accepted: 05/05/2020] [Indexed: 12/23/2022]
Abstract
DNA nanotechnology is a powerful and promising tool for the development of nanoscale devices for numerous and diverse applications. One of the greatest potential fields of application for DNA nanotechnology is in biomedicine, in particular biosensing. Thanks to the control over their size, shape, and fabrication, DNA origami represents a unique opportunity to assemble dynamic and complex devices with precise and predictable structural characteristics. Combined with the addressability and flexibility of the chemistry for DNA functionalization, DNA origami allows the precise design of sensors capable of detecting a large range of different targets, encompassing RNA, DNA, proteins, small molecules, or changes in physico-chemical parameters, that could serve as diagnostic tools. Here, we review some recent, salient developments in DNA origami-based sensors centered on optical detection methods (readout) with a special emphasis on the sensitivity, the selectivity, and response time. We also discuss challenges that still need to be addressed before this approach can be translated into robust diagnostic devices for bio-medical applications.
Collapse
Affiliation(s)
- Morgane Loretan
- Photonic Nanosystems, Department of Physics, Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 3, PER08, 1700 Fribourg, Switzerland; (M.L.); (G.P.A.)
| | - Ivana Domljanovic
- Laboratory of Experimental and Translational Oncology, Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 18, PER17, 1700 Fribourg, Switzerland;
| | - Mathias Lakatos
- Photonic Nanosystems, Department of Physics, Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 3, PER08, 1700 Fribourg, Switzerland; (M.L.); (G.P.A.)
| | - Curzio Rüegg
- Laboratory of Experimental and Translational Oncology, Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 18, PER17, 1700 Fribourg, Switzerland;
| | - Guillermo P. Acuna
- Photonic Nanosystems, Department of Physics, Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 3, PER08, 1700 Fribourg, Switzerland; (M.L.); (G.P.A.)
| |
Collapse
|
31
|
Lombardo D, Calandra P, Pasqua L, Magazù S. Self-assembly of Organic Nanomaterials and Biomaterials: The Bottom-Up Approach for Functional Nanostructures Formation and Advanced Applications. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E1048. [PMID: 32110877 PMCID: PMC7084717 DOI: 10.3390/ma13051048] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 02/17/2020] [Accepted: 02/20/2020] [Indexed: 12/11/2022]
Abstract
In this paper, we survey recent advances in the self-assembly processes of novel functional platforms for nanomaterials and biomaterials applications. We provide an organized overview, by analyzing the main factors that influence the formation of organic nanostructured systems, while putting into evidence the main challenges, limitations and emerging approaches in the various fields of nanotechology and biotechnology. We outline how the building blocks properties, the mutual and cooperative interactions, as well as the initial spatial configuration (and environment conditions) play a fundamental role in the construction of efficient nanostructured materials with desired functional properties. The insertion of functional endgroups (such as polymers, peptides or DNA) within the nanostructured units has enormously increased the complexity of morphologies and functions that can be designed in the fabrication of bio-inspired materials capable of mimicking biological activity. However, unwanted or uncontrollable effects originating from unexpected thermodynamic perturbations or complex cooperative interactions interfere at the molecular level with the designed assembly process. Correction and harmonization of unwanted processes is one of the major challenges of the next decades and requires a deeper knowledge and understanding of the key factors that drive the formation of nanomaterials. Self-assembly of nanomaterials still remains a central topic of current research located at the interface between material science and engineering, biotechnology and nanomedicine, and it will continue to stimulate the renewed interest of biologist, physicists and materials engineers by combining the principles of molecular self-assembly with the concept of supramolecular chemistry.
Collapse
Affiliation(s)
- Domenico Lombardo
- Consiglio Nazionale delle Ricerche, Istituto per i Processi Chimico-Fisici, 98158 Messina, Italy
| | - Pietro Calandra
- Consiglio Nazionale delle Ricerche, Istituto Studio Materiali Nanostrutturati, 00015 Roma, Italy;
| | - Luigi Pasqua
- Department of Environmental and Chemical Engineering, University of Calabria, 87036 Rende, Italy;
| | - Salvatore Magazù
- Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, Università di Messina, 98166 Messina, Italy;
| |
Collapse
|
32
|
Abstract
At the nanoscale, pushing, pulling, and shearing forces drive biochemical processes in development and remodeling as well as in wound healing and disease progression. Research in the field of mechanobiology investigates not only how these loads affect biochemical signaling pathways but also how signaling pathways respond to local loading by triggering mechanical changes such as regional stiffening of a tissue. This feedback between mechanical and biochemical signaling is increasingly recognized as fundamental in embryonic development, tissue morphogenesis, cell signaling, and disease pathogenesis. Historically, the interdisciplinary field of mechanobiology has been driven by the development of technologies for measuring and manipulating cellular and molecular forces, with each new tool enabling vast new lines of inquiry. In this review, we discuss recent advances in the manufacturing and capabilities of molecular-scale force and strain sensors. We also demonstrate how DNA nanotechnology has been critical to the enhancement of existing techniques and to the development of unique capabilities for future mechanosensor assembly. DNA is a responsive and programmable building material for sensor fabrication. It enables the systematic interrogation of molecular biomechanics with forces at the 1- to 200-pN scale that are needed to elucidate the fundamental means by which cells and proteins transduce mechanical signals.
Collapse
Affiliation(s)
- Susana M. Beltrán
- Department of Mechanical Engineering, Carnegie Mellon
University, Pittsburgh, Pennsylvania
| | - Marvin J. Slepian
- Department of Medicine and Sarver Heart Center, University
of Arizona, Tucson
- Department of Biomedical Engineering, University of
Arizona, Tucson
- Department of Materials Science and Engineering, University
of Arizona, Tucson
| | - Rebecca E. Taylor
- Department of Mechanical Engineering, Carnegie Mellon
University, Pittsburgh, Pennsylvania
- Department of Biomedical Engineering, Carnegie Mellon
University, Pittsburgh, Pennsylvania
- Department of Electrical and Computer Engineering, Carnegie
Mellon University, Pittsburgh, Pennsylvania
| |
Collapse
|
33
|
Johnson JA, Dehankar A, Winter JO, Castro CE. Reciprocal Control of Hierarchical DNA Origami-Nanoparticle Assemblies. NANO LETTERS 2019; 19:8469-8475. [PMID: 31664841 DOI: 10.1021/acs.nanolett.9b02786] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
DNA origami mechanisms offer promising tools for precision nanomanipulation of molecules or nanomaterials. Recent advances have extended the function of individual DNA origami devices to material scales via hierarchical assemblies. However, achieving rapid and precise control of large conformational changes in hierarchical assemblies remains a critical challenge. Here, we demonstrate a method for controlling DNA origami-nanoparticle assemblies through a multiscale approach, in which nanoparticles impart control on the conformation of individual DNA origami mechanisms, whereas DNA origami assemblies control the conformation of nanoparticle arrays. Specifically, we show that the angular distributions of DNA origami hinge mechanisms are tunable as a function of nanoparticle size and distance from the hinge vertex. We selectively adjust the affinity of nanoparticle binding sites, resulting in hinge actuation via DNA melting without releasing the nanoparticle, thereby enabling rapid and reversible temperature-based actuation. Finally, we demonstrate this rapid actuation in DNA origami-nanoparticle arrays of length scales extending over a micron. These results provide guiding principles toward the design of dynamic, DNA-origami hierarchical materials capable of storing and releasing mechanical energy.
Collapse
|
34
|
Molecular scaffolds: when DNA becomes the hardware for single-molecule investigations. Curr Opin Chem Biol 2019; 53:192-203. [DOI: 10.1016/j.cbpa.2019.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 09/21/2019] [Accepted: 09/24/2019] [Indexed: 01/14/2023]
|
35
|
Masciotti V, Piantanida L, Naumenko D, Amenitsch H, Fanetti M, Valant M, Lei D, Ren G, Lazzarino M. A DNA origami plasmonic sensor with environment-independent read-out. NANO RESEARCH 2019; 12:2900-2907. [PMID: 37799163 PMCID: PMC10552622 DOI: 10.1007/s12274-019-2535-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 09/24/2019] [Accepted: 10/06/2019] [Indexed: 10/07/2023]
Abstract
DNA origami is a promising technology for its reproducibility, flexibility, scalability and biocompatibility. Among the several potential applications, DNA origami has been proposed as a tool for drug delivery and as a contrast agent, since a conformational change upon specific target interaction may be used to release a drug or produce a physical signal, respectively. However, its conformation should be robust with respect to the properties of the medium in which either the recognition or the read-out take place, such as pressure, viscosity and any other unspecific interaction other than the desired target recognition. Here we report on the read-out robustness of a tetragonal DNA-origami/gold-nanoparticle hybrid structure able to change its configuration, which is transduced in a change of its plasmonic properties, upon interaction with a specific DNA target. We investigated its response when analyzed in three different media: aqueous solution, solid support and viscous gel. We show that, once a conformational variation is produced, it remains unaffected by the subsequent physical interactions with the environment.
Collapse
Affiliation(s)
- Valentina Masciotti
- CNR-IOM, AREA Science Park, Basovizza Trieste I-34149, Italy
- PhD Course in Nanotechnology, University of Trieste, Trieste I-34127, Italy
| | - Luca Piantanida
- CNR-IOM, AREA Science Park, Basovizza Trieste I-34149, Italy
| | - Denys Naumenko
- CNR-IOM, AREA Science Park, Basovizza Trieste I-34149, Italy
- Institute for Physics of Semiconductors, National Academy of Sciences of Ukraine, Kyiv 03028, Ukraine
| | - Heinz Amenitsch
- Institute of Inorganic Chemistry, Graz University of Technology, Graz A-8010, Austria
| | - Mattia Fanetti
- Materials Research Laboratory, University of Nova Gorica, Nova Gorica SI-5000, Slovenia
| | - Matjaž Valant
- Materials Research Laboratory, University of Nova Gorica, Nova Gorica SI-5000, Slovenia
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Dongsheng Lei
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley CA 94720, USA
- School of Physical Science and Technology, Electron Microscopy Center of LZU, Lanzhou University, Lanzhou 730000, China
| | - Gang Ren
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley CA 94720, USA
| | - Marco Lazzarino
- CNR-IOM, AREA Science Park, Basovizza Trieste I-34149, Italy
| |
Collapse
|
36
|
Xiao M, Lai W, Man T, Chang B, Li L, Chandrasekaran AR, Pei H. Rationally Engineered Nucleic Acid Architectures for Biosensing Applications. Chem Rev 2019; 119:11631-11717. [DOI: 10.1021/acs.chemrev.9b00121] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Mingshu Xiao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Wei Lai
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Tiantian Man
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Binbin Chang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Li Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Arun Richard Chandrasekaran
- The RNA Institute, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Hao Pei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| |
Collapse
|
37
|
Ishibe T, Congdon T, Stubbs C, Hasan M, Sosso GC, Gibson MI. Enhancement of Macromolecular Ice Recrystallization Inhibition Activity by Exploiting Depletion Forces. ACS Macro Lett 2019; 8:1063-1067. [PMID: 31475076 PMCID: PMC6711362 DOI: 10.1021/acsmacrolett.9b00386] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/07/2019] [Indexed: 11/29/2022]
Abstract
![]()
Antifreeze
(glyco) proteins (AF(G)Ps) are potent inhibitors of
ice recrystallization and may have biotechnological applications.
The most potent AF(G)Ps function at concentrations a thousand times
lower than synthetic mimics such as poly(vinyl alcohol), PVA. Here,
we demonstrate that PVA’s ice recrystallization activity can
be rescued at concentrations where it does not normally function,
by the addition of noninteracting polymeric depletants, due to PVA
forming colloids in the concentrated saline environment present between
ice crystals. These depletants shift the equilibrium toward ice binding
and, hence, enable PVA to inhibit ice growth at lower concentrations.
Using theory and experiments, we show this effect requires polymeric
depletants, not small molecules, to enhance activity. These results
increase our understanding of how to design new ice growth inhibitors,
but also offer opportunities to enhance activity by exploiting depletion
forces, without re-engineering ice-binding materials. It also shows
that when screening for IRI activity that polymer contaminants in
buffers may give rise to false positive results.
Collapse
|
38
|
Du Y, Pan J, Choi JH. A review on optical imaging of DNA nanostructures and dynamic processes. Methods Appl Fluoresc 2019; 7:012002. [PMID: 30523978 DOI: 10.1088/2050-6120/aaed11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
DNA self-assembly offers a powerful means to construct complex nanostructures and program dynamic molecular processes such as strand displacement. DNA nanosystems pack high structural complexity in a small scale (typically, <100 nm) and span dynamic features over long periods of time, which bring new challenges for characterizations. The spatial and temporal features of DNA nanosystems require novel experimental methods capable of high resolution imaging over long time periods. This article reviews recent advances in optical imaging methods for characterizing self-assembled DNA nanosystems, with particular emphasis on super-resolved fluorescence microscopy. Several advanced strategies are developed to obtain accurate and detailed images of intricate DNA nanogeometries and to perform precise tracking of molecular motions in dynamic processes. We present state-of-the-art instruments and imaging strategies including localization microscopy and spectral imaging. We discuss how they are used in biological studies and biomedical applications, and also provide current challenges and future outlook. Overall, this review serves as a practical guide in optical microscopy for the field of DNA nanotechnology.
Collapse
Affiliation(s)
- Yancheng Du
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907
| | | | | |
Collapse
|
39
|
Wu N, Chen F, Zhao Y, Yu X, Wei J, Zhao Y. Functional and Biomimetic DNA Nanostructures on Lipid Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:14721-14730. [PMID: 30044097 DOI: 10.1021/acs.langmuir.8b01818] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Sophisticated and dynamic membrane-anchored DNA nanostructures were developed to mimic a variety of membrane proteins, which play crucial roles in cellular functions. DNA biomimetic constructions bound on membranes are capable of modulating the morphologies, physical properties, and functions of lipid membranes, via mobility on membranes and/or inherent architectural features. This inspired young field of DNA-lipid-based nanobiomimetic systems is on the foundation of DNA nanotechnology. In this review, we highlight key successes in the development of structural DNA nanotechnology and demonstrate some typical static and dynamic complex DNA nanostructures first. Then, we discuss the biophysical properties of lipid membranes. Primary approaches are shown to attach hydrophilic DNA to hydrophobic lipid membranes. With appropriate designs, membrane-floating DNA nanostructures assemble and disassemble on membranes, modulated by external stimuluses. The aggregation of DNA nanostructures could influence the physical properties of lipid membranes. We also summarize artificial nanochannels made of DNA, analogous to transmembrane proteins. Transformations of DNA nanopores might be achieved under certain conditions and realize the transport of small molecules across membranes. Next, we focus on membrane-shaping functions of membrane-anchored DNA nanostructures. Curvature of the membrane is closely related to the rich diversity of cellular functions. Mimicking membrane-sculpting proteins, such as BAR family domains and SNARE proteins etc., DNA biomimetic nanostructures induce the transformations of lipid membranes and modulate membrane adhesion and membrane fusion processes. Although recent studies in DNA nanostructure-lipid membrane biomimetic nanosystems have made great progress, this field is still facing many challenges. In the future, the designs of more elaborated DNA architectures will be explored. Sophisticated dynamic DNA nanostructures inspired by natural membrane machines will be driven by the synergistic effect of multiple interactions, including hydrophobic force, electrostatic force, and ligand-receptor interactions by chemical modifications on bases, to expand their applications in vivo from model membrane to cell membrane to karyotheca.
Collapse
Affiliation(s)
- Na Wu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology , Xi'an Jiaotong University , Xi'an 710049 , People's Republic of China
| | - Feng Chen
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology , Xi'an Jiaotong University , Xi'an 710049 , People's Republic of China
| | - Yue Zhao
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology , Xi'an Jiaotong University , Xi'an 710049 , People's Republic of China
| | - Xu Yu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology , Xi'an Jiaotong University , Xi'an 710049 , People's Republic of China
| | - Jing Wei
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology , Xi'an Jiaotong University , Xi'an 710049 , People's Republic of China
| | - Yongxi Zhao
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology , Xi'an Jiaotong University , Xi'an 710049 , People's Republic of China
| |
Collapse
|
40
|
Loescher S, Groeer S, Walther A. 3D DNA Origami Nanoparticles: From Basic Design Principles to Emerging Applications in Soft Matter and (Bio‐)Nanosciences. Angew Chem Int Ed Engl 2018; 57:10436-10448. [DOI: 10.1002/anie.201801700] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/11/2018] [Indexed: 01/14/2023]
Affiliation(s)
- Sebastian Loescher
- Institute for Macromolecular Chemistry, Stefan-Meier-Strasse 31University of Freiburg 79104 Freiburg Germany
- Freiburg Materials Research Center, Stefan-Meier-Strasse 21University of Freiburg 79104 Freiburg Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies, Georges-Köhler-Allee 105University of Freiburg 79110 Freiburg Germany
- Freiburg Institute for Advanced Studies (FRIAS), Albertstrasse 19University of Freiburg 79104 Freiburg Germany
| | - Saskia Groeer
- Institute for Macromolecular Chemistry, Stefan-Meier-Strasse 31University of Freiburg 79104 Freiburg Germany
- Freiburg Materials Research Center, Stefan-Meier-Strasse 21University of Freiburg 79104 Freiburg Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies, Georges-Köhler-Allee 105University of Freiburg 79110 Freiburg Germany
- Freiburg Institute for Advanced Studies (FRIAS), Albertstrasse 19University of Freiburg 79104 Freiburg Germany
| | - Andreas Walther
- Institute for Macromolecular Chemistry, Stefan-Meier-Strasse 31University of Freiburg 79104 Freiburg Germany
- Freiburg Materials Research Center, Stefan-Meier-Strasse 21University of Freiburg 79104 Freiburg Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies, Georges-Köhler-Allee 105University of Freiburg 79110 Freiburg Germany
- Freiburg Institute for Advanced Studies (FRIAS), Albertstrasse 19University of Freiburg 79104 Freiburg Germany
| |
Collapse
|
41
|
Loescher S, Groeer S, Walther A. 3D‐DNA‐Origami‐Nanopartikel: von grundlegenden Designprinzipien hin zu neuartigen Anwendungen in der weichen Materie und den (Bio‐)Nanowissenschaften. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201801700] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Sebastian Loescher
- Institut für Makromolekulare Chemie, Stefan-Meier-Straße 31Albert-Ludwigs-Universität Freiburg 79104 Freiburg Deutschland
- Freiburger MaterialforschungszentrumAlbert-Ludwigs-Universität Freiburg Deutschland
- Freiburger Zentrum für interaktive Werkstoffe und bioinspirierte TechnologienAlbert-Ludwigs-Universität Freiburg Deutschland
- Freiburg Institute for Advanced Studies (FRIAS)Albert-Ludwigs-Universität Freiburg Deutschland
| | - Saskia Groeer
- Institut für Makromolekulare Chemie, Stefan-Meier-Straße 31Albert-Ludwigs-Universität Freiburg 79104 Freiburg Deutschland
- Freiburger MaterialforschungszentrumAlbert-Ludwigs-Universität Freiburg Deutschland
- Freiburger Zentrum für interaktive Werkstoffe und bioinspirierte TechnologienAlbert-Ludwigs-Universität Freiburg Deutschland
- Freiburg Institute for Advanced Studies (FRIAS)Albert-Ludwigs-Universität Freiburg Deutschland
| | - Andreas Walther
- Institut für Makromolekulare Chemie, Stefan-Meier-Straße 31Albert-Ludwigs-Universität Freiburg 79104 Freiburg Deutschland
- Freiburger MaterialforschungszentrumAlbert-Ludwigs-Universität Freiburg Deutschland
- Freiburger Zentrum für interaktive Werkstoffe und bioinspirierte TechnologienAlbert-Ludwigs-Universität Freiburg Deutschland
- Freiburg Institute for Advanced Studies (FRIAS)Albert-Ludwigs-Universität Freiburg Deutschland
| |
Collapse
|
42
|
Dutta PK, Zhang Y, Blanchard A, Ge C, Rushdi M, Weiss K, Zhu C, Ke Y, Salaita K. Programmable Multivalent DNA-Origami Tension Probes for Reporting Cellular Traction Forces. NANO LETTERS 2018; 18:4803-4811. [PMID: 29911385 PMCID: PMC6087633 DOI: 10.1021/acs.nanolett.8b01374] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Mechanical forces are central to most, if not all, biological processes, including cell development, immune recognition, and metastasis. Because the cellular machinery mediating mechano-sensing and force generation is dependent on the nanoscale organization and geometry of protein assemblies, a current need in the field is the development of force-sensing probes that can be customized at the nanometer-length scale. In this work, we describe a DNA origami tension sensor that maps the piconewton (pN) forces generated by living cells. As a proof-of-concept, we engineered a novel library of six-helix-bundle DNA-origami tension probes (DOTPs) with a tailorable number of tension-reporting hairpins (each with their own tunable tension response threshold) and a tunable number of cell-receptor ligands. We used single-molecule force spectroscopy to determine the probes' tension response thresholds and used computational modeling to show that hairpin unfolding is semi-cooperative and orientation-dependent. Finally, we use our DOTP library to map the forces applied by human blood platelets during initial adhesion and activation. We find that the total tension signal exhibited by platelets on DOTP-functionalized surfaces increases with the number of ligands per DOTP, likely due to increased total ligand density, and decreases exponentially with the DOTP's force-response threshold. This work opens the door to applications for understanding and regulating biophysical processes involving cooperativity and multivalency.
Collapse
Affiliation(s)
- Palash K. Dutta
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322, USA
| | - Yun Zhang
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, USA
| | - Aaron Blanchard
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322, USA
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, USA
| | - Chenghao Ge
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322, USA
| | - Muaz Rushdi
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322, USA
| | - Kristin Weiss
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322, USA
| | - Cheng Zhu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322, USA
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Yonggang Ke
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322, USA
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, USA
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Khalid Salaita
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322, USA
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, USA
| |
Collapse
|
43
|
Ijäs H, Nummelin S, Shen B, Kostiainen MA, Linko V. Dynamic DNA Origami Devices: from Strand-Displacement Reactions to External-Stimuli Responsive Systems. Int J Mol Sci 2018; 19:E2114. [PMID: 30037005 PMCID: PMC6073283 DOI: 10.3390/ijms19072114] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 07/16/2018] [Accepted: 07/18/2018] [Indexed: 12/31/2022] Open
Abstract
DNA nanotechnology provides an excellent foundation for diverse nanoscale structures that can be used in various bioapplications and materials research. Among all existing DNA assembly techniques, DNA origami proves to be the most robust one for creating custom nanoshapes. Since its invention in 2006, building from the bottom up using DNA advanced drastically, and therefore, more and more complex DNA-based systems became accessible. So far, the vast majority of the demonstrated DNA origami frameworks are static by nature; however, there also exist dynamic DNA origami devices that are increasingly coming into view. In this review, we discuss DNA origami nanostructures that exhibit controlled translational or rotational movement when triggered by predefined DNA sequences, various molecular interactions, and/or external stimuli such as light, pH, temperature, and electromagnetic fields. The rapid evolution of such dynamic DNA origami tools will undoubtedly have a significant impact on molecular-scale precision measurements, targeted drug delivery and diagnostics; however, they can also play a role in the development of optical/plasmonic sensors, nanophotonic devices, and nanorobotics for numerous different tasks.
Collapse
Affiliation(s)
- Heini Ijäs
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, 00076 Aalto, Finland.
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, 40014 Jyväskylä, Finland.
| | - Sami Nummelin
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, 00076 Aalto, Finland.
| | - Boxuan Shen
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, 00076 Aalto, Finland.
| | - Mauri A Kostiainen
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, 00076 Aalto, Finland.
- HYBER Center of Excellence, Department of Applied Physics, Aalto University, 00076 Aalto, Finland.
| | - Veikko Linko
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, 00076 Aalto, Finland.
| |
Collapse
|
44
|
Lauback S, Mattioli KR, Marras AE, Armstrong M, Rudibaugh TP, Sooryakumar R, Castro CE. Real-time magnetic actuation of DNA nanodevices via modular integration with stiff micro-levers. Nat Commun 2018; 9:1446. [PMID: 29654315 PMCID: PMC5899095 DOI: 10.1038/s41467-018-03601-5] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 02/25/2018] [Indexed: 01/01/2023] Open
Abstract
DNA nanotechnology has enabled complex nanodevices, but the ability to directly manipulate systems with fast response times remains a key challenge. Current methods of actuation are relatively slow and only direct devices into one or two target configurations. Here we report an approach to control DNA origami assemblies via externally applied magnetic fields using a low-cost platform that enables actuation into many distinct configurations with sub-second response times. The nanodevices in these assemblies are manipulated via mechanically stiff micron-scale lever arms, which rigidly couple movement of a micron size magnetic bead to reconfiguration of the nanodevice while also enabling direct visualization of the conformation. We demonstrate control of three assemblies—a rod, rotor, and hinge—at frequencies up to several Hz and the ability to actuate into many conformations. This level of spatiotemporal control over DNA devices can serve as a foundation for real-time manipulation of molecular and atomic systems. DNA molecular machines hold promise for biological nanotechnology, but how to actuate them in a fast and programmable manner remains challenging. Here, Lauback et al. demonstrate direct manipulation of DNA origami assemblies via a micrometer-long stiff mechanical lever controlled by a magnetic field.
Collapse
Affiliation(s)
- Stephanie Lauback
- Department of Physics, 191 W. Woodruff Ave, The Ohio State University, Columbus, OH, 43210, USA.,Department of Physics and Engineering Physics, 1700 Moore St., Juniata College, Huntingdon, PA, 16652, USA
| | - Kara R Mattioli
- Department of Physics, 191 W. Woodruff Ave, The Ohio State University, Columbus, OH, 43210, USA.,Department of Physics, 450 Church St., University of Michigan, Ann Arbor, MI, 48109, USA
| | - Alexander E Marras
- Department of Mechanical & Aerospace Engineering, 201 W. 19th Ave, The Ohio State University, Columbus, OH, 43210, USA.,Institute for Molecular Engineering, 5640 S. Ellis Ave., University of Chicago, Chicago, IL, 60637, USA
| | - Maxim Armstrong
- Department of Mechanical & Aerospace Engineering, 201 W. 19th Ave, The Ohio State University, Columbus, OH, 43210, USA.,Department of Bioengineering, 648 Stanley Hall MC 1762, University of California, Berkeley, CA, 94720, USA
| | - Thomas P Rudibaugh
- Department of Chemical & Biomolecular Engineering, 151 W. Woodruff Ave, The Ohio State University, Columbus, OH, 43210, USA.,Department of Chemical and Biomolecular Engineering, 911 Partners Way, North Carolina State University, Raleigh, NC, 27606, USA
| | - Ratnasingham Sooryakumar
- Department of Physics, 191 W. Woodruff Ave, The Ohio State University, Columbus, OH, 43210, USA.
| | - Carlos E Castro
- Department of Mechanical & Aerospace Engineering, 201 W. 19th Ave, The Ohio State University, Columbus, OH, 43210, USA. .,Biophysics Graduate Program, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
45
|
Liu Y, Kumar S, Taylor RE. Mix-and-match nanobiosensor design: Logical and spatial programming of biosensors using self-assembled DNA nanostructures. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2018; 10:e1518. [PMID: 29633568 DOI: 10.1002/wnan.1518] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 01/23/2018] [Accepted: 02/14/2018] [Indexed: 01/04/2023]
Abstract
The evergrowing need to understand and engineer biological and biochemical mechanisms has led to the emergence of the field of nanobiosensing. Structural DNA nanotechnology, encompassing methods such as DNA origami and single-stranded tiles, involves the base pairing-driven knitting of DNA into discrete one-, two-, and three-dimensional shapes at nanoscale. Such nanostructures enable a versatile design and fabrication of nanobiosensors. These systems benefit from DNA's programmability, inherent biocompatibility, and the ability to incorporate and organize functional materials such as proteins and metallic nanoparticles. In this review, we present a mix-and-match taxonomy and approach to designing nanobiosensors in which the choices of bioanalyte and transduction mechanism are fully independent of each other. We also highlight opportunities for greater complexity and programmability of these systems that are built using structural DNA nanotechnology. This article is categorized under: Implantable Materials and Surgical Technologies > Nanomaterials and Implants Diagnostic Tools > Biosensing Biology-Inspired Nanomaterials > Nucleic Acid-Based Structures Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Ying Liu
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Sriram Kumar
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Rebecca E Taylor
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania.,Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania
| |
Collapse
|
46
|
Ke Y, Castro C, Choi JH. Structural DNA Nanotechnology: Artificial Nanostructures for Biomedical Research. Annu Rev Biomed Eng 2018; 20:375-401. [PMID: 29618223 DOI: 10.1146/annurev-bioeng-062117-120904] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Structural DNA nanotechnology utilizes synthetic or biologic DNA as designer molecules for the self-assembly of artificial nanostructures. The field is founded upon the specific interactions between DNA molecules, known as Watson-Crick base pairing. After decades of active pursuit, DNA has demonstrated unprecedented versatility in constructing artificial nanostructures with significant complexity and programmability. The nanostructures could be either static, with well-controlled physicochemical properties, or dynamic, with the ability to reconfigure upon external stimuli. Researchers have devoted considerable effort to exploring the usability of DNA nanostructures in biomedical research. We review the basic design methods for fabricating both static and dynamic DNA nanostructures, along with their biomedical applications in fields such as biosensing, bioimaging, and drug delivery.
Collapse
Affiliation(s)
- Yonggang Ke
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Emory University School of Medicine, Atlanta, Georgia 30322, USA;
| | - Carlos Castro
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, Ohio 43214, USA
| | - Jong Hyun Choi
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| |
Collapse
|