1
|
Demongin C, Tranier S, Joshi V, Ceschi L, Desforges B, Pastré D, Hamon L. RNA and the RNA-binding protein FUS act in concert to prevent TDP-43 spatial segregation. J Biol Chem 2024; 300:105716. [PMID: 38311174 PMCID: PMC10912363 DOI: 10.1016/j.jbc.2024.105716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/15/2024] [Accepted: 01/19/2024] [Indexed: 02/10/2024] Open
Abstract
FUS and TDP-43 are two self-adhesive aggregation-prone mRNA-binding proteins whose pathological mutations have been linked to neurodegeneration. While TDP-43 and FUS form reversible mRNA-rich compartments in the nucleus, pathological mutations promote their respective cytoplasmic aggregation in neurons with no apparent link between the two proteins except their intertwined function in mRNA processing. By combining analyses in cellular context and at high resolution in vitro, we unraveled that TDP-43 is specifically recruited in FUS assemblies to form TDP-43-rich subcompartments but without reciprocity. The presence of mRNA provides an additional scaffold to promote the mixing between TDP-43 and FUS. Accordingly, we also found that the pathological truncated form of TDP-43, TDP-25, which has an impaired RNA-binding ability, no longer mixes with FUS. Together, these results suggest that the binding of FUS along nascent mRNAs enables TDP-43, which is highly aggregation-prone, to mix with FUS phase to form mRNA-rich subcompartments. A functional link between FUS and TDP-43 may explain their common implication in amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Clément Demongin
- SABNP, Univ Evry, INSERM, U1204, Université Paris-Saclay, Evry, France
| | - Samuel Tranier
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Vandana Joshi
- SABNP, Univ Evry, INSERM, U1204, Université Paris-Saclay, Evry, France
| | - Léa Ceschi
- SABNP, Univ Evry, INSERM, U1204, Université Paris-Saclay, Evry, France
| | | | - David Pastré
- SABNP, Univ Evry, INSERM, U1204, Université Paris-Saclay, Evry, France
| | - Loic Hamon
- SABNP, Univ Evry, INSERM, U1204, Université Paris-Saclay, Evry, France.
| |
Collapse
|
2
|
Dinh NTM, Nguyen TM, Park MK, Lee CH. Y-Box Binding Protein 1: Unraveling the Multifaceted Role in Cancer Development and Therapeutic Potential. Int J Mol Sci 2024; 25:717. [PMID: 38255791 PMCID: PMC10815159 DOI: 10.3390/ijms25020717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/22/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
Y-box binding protein 1 (YBX1), a member of the Cold Shock Domain protein family, is overexpressed in various human cancers and is recognized as an oncogenic gene associated with poor prognosis. YBX1's functional diversity arises from its capacity to interact with a broad range of DNA and RNA molecules, implicating its involvement in diverse cellular processes. Independent investigations have unveiled specific facets of YBX1's contribution to cancer development. This comprehensive review elucidates YBX1's multifaceted role in cancer across cancer hallmarks, both in cancer cell itself and the tumor microenvironment. Based on this, we proposed YBX1 as a potential target for cancer treatment. Notably, ongoing clinical trials addressing YBX1 as a target in breast cancer and lung cancer have showcased its promise for cancer therapy. The ramp up in in vitro research on targeting YBX1 compounds also underscores its growing appeal. Moreover, the emerging role of YBX1 as a neural input is also proposed where the high level of YBX1 was strongly associated with nerve cancer and neurodegenerative diseases. This review also summarized the up-to-date advanced research on the involvement of YBX1 in pancreatic cancer.
Collapse
Affiliation(s)
- Ngoc Thi Minh Dinh
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea; (N.T.M.D.); (T.M.N.)
| | - Tuan Minh Nguyen
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea; (N.T.M.D.); (T.M.N.)
| | - Mi Kyung Park
- Department of BioHealthcare, Hwasung Medi-Science University, Hwaseong-si 18274, Republic of Korea
| | - Chang Hoon Lee
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea; (N.T.M.D.); (T.M.N.)
| |
Collapse
|
3
|
Li Y, Xu M, Qi Z. Deciphering molecular mechanisms of phase separation in RNA biology by single-molecule biophysical technologies. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1034-1041. [PMID: 37337634 PMCID: PMC10415185 DOI: 10.3724/abbs.2023113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/06/2023] [Indexed: 06/21/2023] Open
Abstract
Ribonucleic acid (RNA) biology has emerged as one of the most important areas in modern biology and biomedicine. RNA and RNA-binding proteins (RBPs) are involved in forming biomolecular condensates, which are crucial for RNA metabolism. To quantitively decipher the molecular mechanisms of RNP granules, researchers have turned to single-molecule biophysical techniques, such as single-molecule Förster resonance energy transfer (smFRET), in vivo single-molecule imaging technique with single particle tracking (SPT), DNA Curtains, optical tweezers, and atomic force microscopy (AFM). These methods are used to investigate the molecular biophysical properties within RNP granules, as well as the molecular interactions between RNA and RBPs and RBPs themselves, which are challenging to study using traditional experimental methods of the liquid-liquid phase separation (LLPS) field, such as fluorescence recovery after photobleaching (FRAP). In this work, we summarize the applications of single-molecule biophysical techniques in RNP granule studies and highlight how these methods can be used to reveal the molecular mechanisms of RNP granules.
Collapse
Affiliation(s)
- Yuchen Li
- Center for Quantitative Biology and Peking-Tsinghua Center for Life SciencesAcademy for Advanced Interdisciplinary StudiesPeking UniversityBeijing100871China
| | - Mengmeng Xu
- Tsinghua-Peking Center for Life SciencesTsinghua UniversityBeijing100084China
| | - Zhi Qi
- Center for Quantitative Biology and Peking-Tsinghua Center for Life SciencesAcademy for Advanced Interdisciplinary StudiesPeking UniversityBeijing100871China
| |
Collapse
|
4
|
Bertrand E, Demongin C, Dobra I, Rengifo-Gonzalez JC, Singatulina AS, Sukhanova MV, Lavrik OI, Pastré D, Hamon L. FUS fibrillation occurs through a nucleation-based process below the critical concentration required for liquid-liquid phase separation. Sci Rep 2023; 13:7772. [PMID: 37179431 PMCID: PMC10183042 DOI: 10.1038/s41598-023-34558-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
FUS is an RNA-binding protein involved in familiar forms of ALS and FTLD that also assembles into fibrillar cytoplasmic aggregates in some neurodegenerative diseases without genetic causes. The self-adhesive prion-like domain in FUS generates reversible condensates via the liquid-liquid phase separation process (LLPS) whose maturation can lead to the formation of insoluble fibrillar aggregates in vitro, consistent with the appearance of cytoplasmic inclusions in ageing neurons. Using a single-molecule imaging approach, we reveal that FUS can assemble into nanofibrils at concentrations in the nanomolar range. These results suggest that the formation of fibrillar aggregates of FUS could occur in the cytoplasm at low concentrations of FUS, below the critical ones required to trigger the liquid-like condensate formation. Such nanofibrils may serve as seeds for the formation of pathological inclusions. Interestingly, the fibrillation of FUS at low concentrations is inhibited by its binding to mRNA or after the phosphorylation of its prion-like domain, in agreement with previous models.
Collapse
Affiliation(s)
- Emilie Bertrand
- SABNP, Univ Evry, INSERM U1204, Université Paris-Saclay, 91025, Evry, France
| | - Clément Demongin
- SABNP, Univ Evry, INSERM U1204, Université Paris-Saclay, 91025, Evry, France
| | - Ioana Dobra
- SABNP, Univ Evry, INSERM U1204, Université Paris-Saclay, 91025, Evry, France
| | | | - Anastasia S Singatulina
- SABNP, Univ Evry, INSERM U1204, Université Paris-Saclay, 91025, Evry, France
- Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia, 630090
| | - Maria V Sukhanova
- Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia, 630090
| | - Olga I Lavrik
- Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia, 630090
| | - David Pastré
- SABNP, Univ Evry, INSERM U1204, Université Paris-Saclay, 91025, Evry, France
| | - Loic Hamon
- SABNP, Univ Evry, INSERM U1204, Université Paris-Saclay, 91025, Evry, France.
| |
Collapse
|
5
|
Ji J, Wang W, Chen C. Single-molecule techniques to visualize and to characterize liquid-liquid phase separation and phase transition. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1023-1033. [PMID: 36876423 PMCID: PMC10415186 DOI: 10.3724/abbs.2023028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/09/2023] [Indexed: 02/23/2023] Open
Abstract
Biomolecules forming membraneless structures via liquid-liquid phase separation (LLPS) is a common event in living cells. Some liquid-like condensates can convert into solid-like aggregations, and such a phase transition process is related to some neurodegenerative diseases. Liquid-like condensates and solid-like aggregations usually exhibit distinctive fluidity and are commonly distinguished via their morphology and dynamic properties identified through ensemble methods. Emerging single-molecule techniques are a group of highly sensitive techniques, which can offer further mechanistic insights into LLPS and phase transition at the molecular level. Here, we summarize the working principles of several commonly used single-molecule techniques and demonstrate their unique power in manipulating LLPS, examining mechanical properties at the nanoscale, and monitoring dynamic and thermodynamic properties at the molecular level. Thus, single-molecule techniques are unique tools to characterize LLPS and liquid-to-solid phase transition under close-to-physiological conditions.
Collapse
Affiliation(s)
- Jinyao Ji
- School of Life SciencesBeijing Advanced Innovation Center for Structural BiologyBeijing Frontier Research Center of Biological StructureTsinghua UniversityBeijing100084China
| | - Wenjuan Wang
- School of Life SciencesTechnology Center for Protein SciencesTsinghua UniversityBeijing100084China
| | - Chunlai Chen
- School of Life SciencesBeijing Advanced Innovation Center for Structural BiologyBeijing Frontier Research Center of Biological StructureTsinghua UniversityBeijing100084China
| |
Collapse
|
6
|
Korneeva NL. Integrated Stress Response in Neuronal Pathology and in Health. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:S111-S127. [PMID: 35501991 DOI: 10.1134/s0006297922140103] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 06/14/2023]
Abstract
Neurodegeneration involves progressive pathological loss of a specific population of neurons, glial activation, and dysfunction of myelinating oligodendrocytes leading to cognitive impairment and altered movement, breathing, and senses. Neuronal degeneration is a hallmark of aging, stroke, drug abuse, toxic chemical exposure, viral infection, chronic inflammation, and a variety of neurological diseases. Accumulation of intra- and extracellular protein aggregates is a common characteristic of cell pathologies. Excessive production of reactive oxygen species and nitric oxide, induction of endoplasmic reticulum stress, and accumulation of misfolded protein aggregates have been shown to trigger a defensive mechanism called integrated stress response (ISR). Activation of ISR is important for synaptic plasticity in learning and memory formation. However, sustaining of ISR may lead to the development of neuronal pathologies and altered patterns in behavior and perception.
Collapse
Affiliation(s)
- Nadejda L Korneeva
- Louisiana State University Health Science Center, Shreveport, LA 71103, USA.
| |
Collapse
|
7
|
Evdokimova V. Y-box Binding Protein 1: Looking Back to the Future. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:S5-S145. [PMID: 35501983 DOI: 10.1134/s0006297922140024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 06/14/2023]
Abstract
Y-box binding protein 1 is a member of the cold shock domain (CSD) protein family and one of the most studied proteins associated with a large number of human diseases. This review aims to critically reassess the growing number of pathological functions ascribed to YB-1 in the past decades. The focus is given on the important role of YB-1 and related CSD proteins in the physiology of normal cells. The functional significance of these proteins is highlighted by their high evolutionary conservation from bacteria to men, where they are ubiquitously expressed and involved in coordinating all steps of mRNA biogenesis, including transcription, translation, storage, and degradation. Their activities are especially important under conditions requiring rapid change in the gene expression programs, such as early embryonic development, differentiation, stress, and adaptation to new environments. Therefore, to define a precise role of YB-1 in tumorigenic transformation and in other pathological conditions, it is important to understand its basic properties and functions in normal cells, and how they are interrupted in complex diseases including cancer.
Collapse
|
8
|
Pankivskyi S, Pastré D, Steiner E, Joshi V, Rynditch A, Hamon L. ITSN1 regulates SAM68 solubility through SH3 domain interactions with SAM68 proline-rich motifs. Cell Mol Life Sci 2020; 78:1745-1763. [PMID: 32780150 PMCID: PMC7904728 DOI: 10.1007/s00018-020-03610-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/03/2020] [Accepted: 07/22/2020] [Indexed: 02/06/2023]
Abstract
SAM68 is an mRNA-binding protein involved in mRNA processing in the nucleus that forms membraneless compartments called SAM68 Nuclear Bodies (SNBs). We found that intersectin 1 (ITSN1), a multidomain scaffold protein harboring five soluble SH3 domains, interacts with SAM68 proline-rich motifs (PRMs) surrounded by self-adhesive low complexity domains. While SAM68 is poorly soluble in vitro, the interaction of ITSN1 SH3 domains and mRNA with SAM68 enhances its solubility. In HeLa cells, the interaction between the first ITSN1 SH3 domain (SH3A) and P0, the N-terminal PRM of SAM68, induces the dissociation of SNBs. In addition, we reveal the ability of another SH3 domain (SH3D) of ITSN1 to bind to mRNAs. ITSN1 and mRNA may thus act in concert to promote SAM68 solubilization, consistent with the absence of mRNA in SNBs in cells. Together, these results support the notion of a specific chaperoning of PRM-rich SAM68 within nuclear ribonucleoprotein complexes by ITSN1 that may regulate the processing of a fraction of nuclear mRNAs, notably SAM68-controlled splicing events related to higher neuronal functions or cancer progression. This observation may also serve as a putative model of the interaction between other PRM-rich RBPs and signaling proteins harboring SH3 domains.
Collapse
Affiliation(s)
- S Pankivskyi
- SABNP, Univ Evry, INSERM U1204, Université Paris-Saclay, 91025, Evry, France.,Institute of Molecular Biology and Genetics, The National Academy of Sciences, 150 Zabolotnogo Street, Kyiv, 03680, Ukraine
| | - D Pastré
- SABNP, Univ Evry, INSERM U1204, Université Paris-Saclay, 91025, Evry, France
| | - E Steiner
- SABNP, Univ Evry, INSERM U1204, Université Paris-Saclay, 91025, Evry, France
| | - V Joshi
- SABNP, Univ Evry, INSERM U1204, Université Paris-Saclay, 91025, Evry, France
| | - A Rynditch
- Institute of Molecular Biology and Genetics, The National Academy of Sciences, 150 Zabolotnogo Street, Kyiv, 03680, Ukraine.
| | - L Hamon
- SABNP, Univ Evry, INSERM U1204, Université Paris-Saclay, 91025, Evry, France.
| |
Collapse
|
9
|
Y-Box Binding Proteins in mRNP Assembly, Translation, and Stability Control. Biomolecules 2020; 10:biom10040591. [PMID: 32290447 PMCID: PMC7226217 DOI: 10.3390/biom10040591] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/06/2020] [Accepted: 04/10/2020] [Indexed: 12/12/2022] Open
Abstract
Y-box binding proteins (YB proteins) are DNA/RNA-binding proteins belonging to a large family of proteins with the cold shock domain. Functionally, these proteins are known to be the most diverse, although the literature hardly offers any molecular mechanisms governing their activities in the cell, tissue, or the whole organism. This review describes the involvement of YB proteins in RNA-dependent processes, such as mRNA packaging into mRNPs, mRNA translation, and mRNA stabilization. In addition, recent data on the structural peculiarities of YB proteins underlying their interactions with nucleic acids are discussed.
Collapse
|
10
|
Splicing Players Are Differently Expressed in Sporadic Amyotrophic Lateral Sclerosis Molecular Clusters and Brain Regions. Cells 2020; 9:cells9010159. [PMID: 31936368 PMCID: PMC7017305 DOI: 10.3390/cells9010159] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/23/2019] [Accepted: 01/04/2020] [Indexed: 12/12/2022] Open
Abstract
Splicing is a tightly orchestrated process by which the brain produces protein diversity over time and space. While this process specializes and diversifies neurons, its deregulation may be responsible for their selective degeneration. In amyotrophic lateral sclerosis (ALS), splicing defects have been investigated at the singular gene level without considering the higher-order level, involving the entire splicing machinery. In this study, we analyzed the complete spectrum (396) of genes encoding splicing factors in the motor cortex (41) and spinal cord (40) samples from control and sporadic ALS (SALS) patients. A substantial number of genes (184) displayed significant expression changes in tissue types or disease states, were implicated in distinct splicing complexes and showed different topological hierarchical roles based on protein–protein interactions. The deregulation of one of these splicing factors has a central topological role, i.e., the transcription factor YBX1, which might also have an impact on stress granule formation, a pathological marker associated with ALS.
Collapse
|
11
|
Kretov DA, Clément MJ, Lambert G, Durand D, Lyabin DN, Bollot G, Bauvais C, Samsonova A, Budkina K, Maroun RC, Hamon L, Bouhss A, Lescop E, Toma F, Curmi PA, Maucuer A, Ovchinnikov LP, Pastré D. YB-1, an abundant core mRNA-binding protein, has the capacity to form an RNA nucleoprotein filament: a structural analysis. Nucleic Acids Res 2019; 47:3127-3141. [PMID: 30605522 PMCID: PMC6451097 DOI: 10.1093/nar/gky1303] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/17/2018] [Accepted: 12/20/2018] [Indexed: 12/20/2022] Open
Abstract
The structural rearrangements accompanying mRNA during translation in mammalian cells remain poorly understood. Here, we discovered that YB-1 (YBX1), a major partner of mRNAs in the cytoplasm, forms a linear nucleoprotein filament with mRNA, when part of the YB-1 unstructured C-terminus has been truncated. YB-1 possesses a cold-shock domain (CSD), a remnant of bacterial cold shock proteins that have the ability to stimulate translation under the low temperatures through an RNA chaperone activity. The structure of the nucleoprotein filament indicates that the CSD of YB-1 preserved its chaperone activity also in eukaryotes and shows that mRNA is channeled between consecutive CSDs. The energy benefit needed for the formation of stable nucleoprotein filament relies on an electrostatic zipper mediated by positively charged amino acid residues in the YB-1 C-terminus. Thus, YB-1 displays a structural plasticity to unfold structured mRNAs into extended linear filaments. We anticipate that our findings will shed the light on the scanning of mRNAs by ribosomes during the initiation and elongation steps of mRNA translation.
Collapse
Affiliation(s)
- Dmitry A Kretov
- Institute of Protein Research, Russian Academy of Sciences, Pushchino 142290, Russian Federation.,SABNP, University of Evry, INSERM U1204, Université Paris-Saclay, 91025 Evry, France
| | - Marie-Jeanne Clément
- SABNP, University of Evry, INSERM U1204, Université Paris-Saclay, 91025 Evry, France
| | - Guillaume Lambert
- SABNP, University of Evry, INSERM U1204, Université Paris-Saclay, 91025 Evry, France
| | - Dominique Durand
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Dmitry N Lyabin
- Institute of Protein Research, Russian Academy of Sciences, Pushchino 142290, Russian Federation
| | | | - Cyril Bauvais
- Synsight, a/s IncubAlliance 86 rue de Paris Orsay 91400, France
| | - Anastasiia Samsonova
- SABNP, University of Evry, INSERM U1204, Université Paris-Saclay, 91025 Evry, France
| | - Karina Budkina
- Institute of Protein Research, Russian Academy of Sciences, Pushchino 142290, Russian Federation.,SABNP, University of Evry, INSERM U1204, Université Paris-Saclay, 91025 Evry, France
| | - Rachid C Maroun
- SABNP, University of Evry, INSERM U1204, Université Paris-Saclay, 91025 Evry, France
| | - Loic Hamon
- SABNP, University of Evry, INSERM U1204, Université Paris-Saclay, 91025 Evry, France
| | - Ahmed Bouhss
- SABNP, University of Evry, INSERM U1204, Université Paris-Saclay, 91025 Evry, France
| | - Ewen Lescop
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, 91198 Gif sur Yvette cedex, France
| | - Flavio Toma
- SABNP, University of Evry, INSERM U1204, Université Paris-Saclay, 91025 Evry, France
| | - Patrick A Curmi
- SABNP, University of Evry, INSERM U1204, Université Paris-Saclay, 91025 Evry, France
| | - Alexandre Maucuer
- SABNP, University of Evry, INSERM U1204, Université Paris-Saclay, 91025 Evry, France
| | - Lev P Ovchinnikov
- Institute of Protein Research, Russian Academy of Sciences, Pushchino 142290, Russian Federation
| | - David Pastré
- SABNP, University of Evry, INSERM U1204, Université Paris-Saclay, 91025 Evry, France
| |
Collapse
|
12
|
Yang XJ, Zhu H, Mu SR, Wei WJ, Yuan X, Wang M, Liu Y, Hui J, Huang Y. Crystal structure of a Y-box binding protein 1 (YB-1)-RNA complex reveals key features and residues interacting with RNA. J Biol Chem 2019; 294:10998-11010. [PMID: 31160337 PMCID: PMC6635445 DOI: 10.1074/jbc.ra119.007545] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/26/2019] [Indexed: 01/07/2023] Open
Abstract
The Y-box binding protein 1 (YB-1) is a member of the cold shock domain (CSD) protein family and is recognized as an oncogenic factor in several solid tumors. By binding to RNA, YB-1 participates in several steps of posttranscriptional regulation of gene expression, including mRNA splicing, stability, and translation; microRNA processing; and stress granule assembly. However, the mechanisms in YB-1-mediated regulation of RNAs are unclear. Previously, we used both systematic evolution of ligands by exponential enrichment (SELEX) and individual-nucleotide resolution UV cross-linking and immunoprecipitation coupled RNA-Seq (iCLIP-Seq) analyses, which defined the RNA-binding consensus sequence of YB-1 as CA(U/C)C. We also reported that through binding to its core motif CAUC in primary transcripts, YB-1 regulates the alternative splicing of a CD44 variable exon and the biogenesis of miR-29b-2 during both Drosha and Dicer steps. To elucidate the molecular basis of the YB-1-RNA interactions, we report high-resolution crystal structures of the YB-1 CSD in complex with different RNA oligos at 1.7 Å resolution. The structure revealed that CSD interacts with RNA mainly through π-π stacking interactions assembled by four highly conserved aromatic residues. Interestingly, YB-1 CSD forms a homodimer in solution, and we observed that two residues, Tyr-99 and Asp-105, at the dimer interface are important for YB-1 CSD dimerization. Substituting these two residues with Ala reduced CSD's RNA-binding activity and abrogated the splicing activation of YB-1 targets. The YB-1 CSD-RNA structures presented here at atomic resolution provide mechanistic insights into gene expression regulated by CSD-containing proteins.
Collapse
Affiliation(s)
- Xiao-Juan Yang
- From the CAS Center for Excellence in Molecular Cell Science, Shanghai 200031, China, ,the State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China, and ,the Shanghai Key Laboratory of Molecular Andrology, Shanghai 200031, China
| | - Hong Zhu
- From the CAS Center for Excellence in Molecular Cell Science, Shanghai 200031, China, ,the State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China, and
| | - Shi-Rong Mu
- From the CAS Center for Excellence in Molecular Cell Science, Shanghai 200031, China, ,the State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China, and
| | - Wen-Juan Wei
- From the CAS Center for Excellence in Molecular Cell Science, Shanghai 200031, China, ,the State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China, and
| | - Xun Yuan
- the State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China, and ,the Shanghai Key Laboratory of Molecular Andrology, Shanghai 200031, China
| | - Meng Wang
- From the CAS Center for Excellence in Molecular Cell Science, Shanghai 200031, China, ,the State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China, and
| | - Yanchao Liu
- the State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China, and ,the Shanghai Key Laboratory of Molecular Andrology, Shanghai 200031, China
| | - Jingyi Hui
- From the CAS Center for Excellence in Molecular Cell Science, Shanghai 200031, China, ,the State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China, and , To whom correspondence may be addressed:
Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China. Tel.:
86-21-54921354; E-mail:
| | - Ying Huang
- the State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China, and ,the Shanghai Key Laboratory of Molecular Andrology, Shanghai 200031, China, To whom correspondence may be addressed:
Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China. Tel.:
86-21-20778200; E-mail:
| |
Collapse
|
13
|
Novel roles of Drosophila FUS and Aub responsible for piRNA biogenesis in neuronal disorders. Brain Res 2018; 1708:207-219. [PMID: 30578769 DOI: 10.1016/j.brainres.2018.12.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 11/16/2018] [Accepted: 12/19/2018] [Indexed: 02/08/2023]
Abstract
piRNAs, small non-coding RNAs, were considered to be restricted to germline cells. Although they have recently been detected in somatic cells including neurons, it remains unclear how piRNA biogenesis is involved in neuronal diseases. We herein examined the possible roles of Aubergine (Aub), a Piwi-family protein (PIWI) responsible for piRNA biogenesis, in the neuronal disorders, using the Cabeza (Caz) knockdown Drosophila. Caz is a Drosophila homologue of FUS, which is one of the genes causing amyotrophic lateral sclerosis (ALS). Aub overexpression enhanced the mobility defects accompanied by anatomical defects in motoneurons at neuromuscular junctions induced by the neuron-specific knockdown of Caz. In order to elucidate the underlying mechanisms, we examined pre-piRNA and mature-size piRNA levels under these conditions. qRT-PCR and RNA-seq analyses revealed that the Caz knockdown increased pre-piRNA levels, but reduced mature-size piRNA levels in the central nervous system (CNS), suggesting a role in the pre-piRNAs production. Aub overexpression did not increase mature-size piRNA levels. These results suggest that the accumulated pre-piRNAs are abnormal abortive pre-piRNAs that cannot be further processed by slicers, including Aub. We also demonstrated a relationship between Caz and pre-piRNAs in the CNS by RNA immunoprecipitation. Aub overexpression induced the abnormal cytoplasmic localization of Caz. Based on these results, we propose a model in which Caz knockdown-induced abnormal pre-piRNAs associate with Caz, then translocate and accumulate in the cytoplasm, a process that may be mediated by Aub. The novel roles for Caz and Aub demonstrated herein using the Caz-knockdown fly will contribute to a deeper understanding of the pathogenesis of ALS.
Collapse
|
14
|
Relation Between Stress Granules and Cytoplasmic Protein Aggregates Linked to Neurodegenerative Diseases. Curr Neurol Neurosci Rep 2018; 18:107. [DOI: 10.1007/s11910-018-0914-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
15
|
Lindquist JA, Mertens PR. Cold shock proteins: from cellular mechanisms to pathophysiology and disease. Cell Commun Signal 2018; 16:63. [PMID: 30257675 PMCID: PMC6158828 DOI: 10.1186/s12964-018-0274-6] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 09/13/2018] [Indexed: 12/21/2022] Open
Abstract
Cold shock proteins are multifunctional RNA/DNA binding proteins, characterized by the presence of one or more cold shock domains. In humans, the best characterized members of this family are denoted Y-box binding proteins, such as Y-box binding protein-1 (YB-1). Biological activities range from the regulation of transcription, splicing and translation, to the orchestration of exosomal RNA content. Indeed, the secretion of YB-1 from cells via exosomes has opened the door to further potent activities. Evidence links a skewed cold shock protein expression pattern with cancer and inflammatory diseases. In this review the evidence for a causative involvement of cold shock proteins in disease development and progression is summarized. Furthermore, the potential application of cold shock proteins for diagnostics and as targets for therapy is elucidated.
Collapse
Affiliation(s)
- Jonathan A Lindquist
- Clinic for Nephrology and Hypertension, Diabetology and Endocrinology, Otto-von-Guericke University Magdeburg, Leipziger Strasse 44, 39120, Magdeburg, Germany
| | - Peter R Mertens
- Clinic for Nephrology and Hypertension, Diabetology and Endocrinology, Otto-von-Guericke University Magdeburg, Leipziger Strasse 44, 39120, Magdeburg, Germany.
| |
Collapse
|
16
|
Cox D, Raeburn C, Sui X, Hatters DM. Protein aggregation in cell biology: An aggregomics perspective of health and disease. Semin Cell Dev Biol 2018; 99:40-54. [PMID: 29753879 DOI: 10.1016/j.semcdb.2018.05.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 03/21/2018] [Accepted: 05/04/2018] [Indexed: 01/08/2023]
Abstract
Maintaining protein homeostasis (proteostasis) is essential for cellular health and is governed by a network of quality control machinery comprising over 800 genes. When proteostasis becomes imbalanced, proteins can abnormally aggregate or become mislocalized. Inappropriate protein aggregation and proteostasis imbalance are two of the central pathological features of common neurodegenerative diseases including Alzheimer, Parkinson, Huntington, and motor neuron diseases. How aggregation contributes to the pathogenic mechanisms of disease remains incompletely understood. Here, we integrate some of the key and emerging ideas as to how protein aggregation relates to imbalanced proteostasis with an emphasis on Huntington disease as our area of main expertise. We propose the term "aggregomics" be coined in reference to how aggregation of particular proteins concomitantly influences the spatial organization and protein-protein interactions of the surrounding proteome. Meta-analysis of aggregated interactomes from various published datasets reveals chaperones and RNA-binding proteins are common components across various disease contexts. We conclude with an examination of therapeutic avenues targeting proteostasis mechanisms.
Collapse
Affiliation(s)
- Dezerae Cox
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Australia; Bio21 Molecular Science and Biotechnology Institute, Australia
| | - Candice Raeburn
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Australia; Bio21 Molecular Science and Biotechnology Institute, Australia
| | - Xiaojing Sui
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Australia; Bio21 Molecular Science and Biotechnology Institute, Australia
| | - Danny M Hatters
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Australia; Bio21 Molecular Science and Biotechnology Institute, Australia.
| |
Collapse
|
17
|
Maucuer A, Desforges B, Joshi V, Boca M, Kretov DA, Hamon L, Bouhss A, Curmi PA, Pastré D. Microtubules as platforms for probing liquid-liquid phase separation in cells - application to RNA-binding proteins. J Cell Sci 2018; 131:jcs.214692. [PMID: 29728455 PMCID: PMC6031325 DOI: 10.1242/jcs.214692] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 04/27/2018] [Indexed: 01/13/2023] Open
Abstract
Liquid–liquid phase separation enables compartmentalization of biomolecules in cells, notably RNA and associated proteins in the nucleus. Besides having critical functions in RNA processing, there is a major interest in deciphering the molecular mechanisms of compartmentalization orchestrated by RNA-binding proteins such as TDP-43 (also known as TARDBP) and FUS because of their link to neuron diseases. However, tools for probing compartmentalization in cells are lacking. Here, we developed a method to analyze the mixing and demixing of two different phases in a cellular context. The principle is the following: RNA-binding proteins are confined on microtubules and quantitative parameters defining their spatial segregation are measured along the microtubule network. Through this approach, we found that four mRNA-binding proteins, HuR (also known as ELAVL1), G3BP1, TDP-43 and FUS form mRNA-rich liquid-like compartments on microtubules. TDP-43 is partly miscible with FUS but immiscible with either HuR or G3BP1. We also demonstrate that mRNA is essential to capture the mixing and demixing behavior of mRNA-binding proteins in cells. Taken together, we show that microtubules can be used as platforms to understand the mechanisms underlying liquid–liquid phase separation and their deregulation in human diseases. Summary: Confining RNA-binding proteins on microtubules allows analysis of the mixing and demixing of coexisting RNA-rich sub-compartments with liquid-like properties in living cells.
Collapse
Affiliation(s)
- Alexandre Maucuer
- SABNP Lab, Univ Evry, INSERM U1204, Université Paris-Saclay, 91025 Evry, France
| | - Bénédicte Desforges
- SABNP Lab, Univ Evry, INSERM U1204, Université Paris-Saclay, 91025 Evry, France
| | - Vandana Joshi
- SABNP Lab, Univ Evry, INSERM U1204, Université Paris-Saclay, 91025 Evry, France
| | - Mirela Boca
- SABNP Lab, Univ Evry, INSERM U1204, Université Paris-Saclay, 91025 Evry, France
| | - Dmitry A Kretov
- SABNP Lab, Univ Evry, INSERM U1204, Université Paris-Saclay, 91025 Evry, France.,Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.,Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Loic Hamon
- SABNP Lab, Univ Evry, INSERM U1204, Université Paris-Saclay, 91025 Evry, France
| | - Ahmed Bouhss
- SABNP Lab, Univ Evry, INSERM U1204, Université Paris-Saclay, 91025 Evry, France
| | - Patrick A Curmi
- SABNP Lab, Univ Evry, INSERM U1204, Université Paris-Saclay, 91025 Evry, France
| | - David Pastré
- SABNP Lab, Univ Evry, INSERM U1204, Université Paris-Saclay, 91025 Evry, France
| |
Collapse
|
18
|
Fay MM, Anderson PJ. The Role of RNA in Biological Phase Separations. J Mol Biol 2018; 430:4685-4701. [PMID: 29753780 DOI: 10.1016/j.jmb.2018.05.003] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/02/2018] [Accepted: 05/03/2018] [Indexed: 12/13/2022]
Abstract
Phase transitions that alter the physical state of ribonucleoprotein particles contribute to the spacial and temporal organization of the densely packed intracellular environment. This allows cells to organize biologically coupled processes as well as respond to environmental stimuli. RNA plays a key role in phase separation events that modulate various aspects of RNA metabolism. Here, we review the role that RNA plays in ribonucleoprotein phase separations.
Collapse
Affiliation(s)
- Marta M Fay
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Paul J Anderson
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
19
|
Fernandes N, Eshleman N, Buchan JR. Stress Granules and ALS: A Case of Causation or Correlation? ADVANCES IN NEUROBIOLOGY 2018; 20:173-212. [PMID: 29916020 DOI: 10.1007/978-3-319-89689-2_7] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease characterized by cytoplasmic protein aggregates within motor neurons. These aggregates are linked to ALS pathogenesis. Recent evidence has suggested that stress granules may aid the formation of ALS protein aggregates. Here, we summarize current understanding of stress granules, focusing on assembly and clearance. We also assess the evidence linking alterations in stress granule formation and dynamics to ALS protein aggregates and disease pathology.
Collapse
Affiliation(s)
- Nikita Fernandes
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA
| | - Nichole Eshleman
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA
| | - J Ross Buchan
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
20
|
Sheinberger J, Shav-Tal Y. mRNPs meet stress granules. FEBS Lett 2017; 591:2534-2542. [DOI: 10.1002/1873-3468.12765] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 07/19/2017] [Accepted: 07/21/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Jonathan Sheinberger
- The Mina & Everard Goodman Faculty of Life Sciences; Institute of Nanotechnology; Bar-Ilan University; Ramat Gan Israel
| | - Yaron Shav-Tal
- The Mina & Everard Goodman Faculty of Life Sciences; Institute of Nanotechnology; Bar-Ilan University; Ramat Gan Israel
| |
Collapse
|