1
|
Luo P, Zhong Y, Yang X, Lai Q, Huang S, Zhang X, Zhang B, Wei Y. Self-assembled water soluble and bone-targeting phosphorylated quercetin ameliorates postmenopausal osteoporosis in ovariectomy mice. Colloids Surf B Biointerfaces 2025; 249:114495. [PMID: 39798316 DOI: 10.1016/j.colsurfb.2025.114495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/30/2024] [Accepted: 01/02/2025] [Indexed: 01/15/2025]
Abstract
Natural compounds have shown promising application prospects in preventing or treating various diseases, including osteoporosis on account of their abundant sources, low price, multi-targeting and multiple biological effects. As a bioactive natural product, quercetin (Que) has previously demonstrated to ameliorate osteoporosis (OP), however, its poor bioavailability resulting from low water solubility, poor stability and lack of bone-targeting largely restricted its efficacy and clinical applications. Inspired by the bone-targeting capability of phosphate compounds, we reported a one-step procedure for synthesis of phosphorylated Que (p-Que) by direct phosphorylating phenol groups of Que for the first time. The phosphate groups on p-Que could not only improve the water dispersibility of Que, but also endow p-Que desirable bioavailability and bone-targeting feature. The results from biological assays suggested that p-Que could inhibit osteoclastogenesis and bone resorption and alleviate trabeculae loss in osteoporotic mice. In conclusion, this work demonstrated that phosphorylation strategy can effectively solve low water solubility, lack of bone-targeting capability and poor bioavailability of natural compounds, providing a novel and efficient approach for development of OP nanomedicines.
Collapse
Affiliation(s)
- Peng Luo
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yong Wai Zheng Street, Nanchang, Jiangxi 330006, China; Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Yanlong Zhong
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yong Wai Zheng Street, Nanchang, Jiangxi 330006, China; Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Xiaowei Yang
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yong Wai Zheng Street, Nanchang, Jiangxi 330006, China; Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Qi Lai
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yong Wai Zheng Street, Nanchang, Jiangxi 330006, China; Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Shaorong Huang
- Institute of Geriatrics, Jiangxi Provincial People's Hospital & The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi 330006, China.
| | - Xiaoyong Zhang
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China.
| | - Bin Zhang
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yong Wai Zheng Street, Nanchang, Jiangxi 330006, China.
| | - Yen Wei
- Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084, China
| |
Collapse
|
2
|
Xu Z, Xin Y, Zhang X, Liu J, Liu Y, Guo R, Jiang Q, Qiu J. Research hotspots and trends of plumbagin: A bibliometric perspective. Medicine (Baltimore) 2025; 104:e41726. [PMID: 40020101 PMCID: PMC11875571 DOI: 10.1097/md.0000000000041726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 02/12/2025] [Indexed: 03/05/2025] Open
Abstract
Plumbagin is a biologically active naphthoquinone compound. Research related to plumbagin has gained popularity, evidenced by a gradual increase in publications. However, a bibliometric study in this field has yet to be conducted. Consequently, this study aims to evaluate the global scientific output of plumbagin research through bibliometric analysis, explore the status of research in this field over the past 15 years, and predict its future research hotspots. Visual analysis software, including CiteSpace, VOSviewer, and the R package 'bibliometrix', was employed to analyze all literature pertaining to plumbagin published between 2009 and 2024. Bibliometric records were sourced from the Web of Science Core Collection. This study analyzed a total of 2061 publications. China was found to have the largest number of publications, while the Council of Scientific & Industrial Research recorded the highest publication count in this field. Thomas and David D were identified as the authors with the most publications. The journal with the highest number of citations was J Biol Chem, and Padhye S was noted as the author with the highest citation count. In recent years, cancer treatment has emerged as the most closely related research topic concerning plumbagin, and keyword cluster analysis highlighted 'sarcoplasmic reticulum' as a prominent research keyword. Through quantitative and visual analysis of plumbagin, this study reveals that plumbagin research remains a valuable field. Anticancer treatment of plumbagin is identified as a future research direction.
Collapse
Affiliation(s)
- Zichen Xu
- Department of Stomatology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Department of Stomatology, Jiangxi Provincial Key Laboratory of Oral Diseases, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yuqi Xin
- Department of Stomatology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Department of Stomatology, Jiangxi Provincial Key Laboratory of Oral Diseases, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Xinjian Zhang
- Department of Stomatology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Department of Stomatology, Jiangxi Provincial Key Laboratory of Oral Diseases, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Jianwei Liu
- Department of Stomatology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Department of Stomatology, Jiangxi Provincial Key Laboratory of Oral Diseases, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yang Liu
- Department of Stomatology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Department of Stomatology, Jiangxi Provincial Key Laboratory of Oral Diseases, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Runying Guo
- Department of Stomatology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Department of Stomatology, Jiangxi Provincial Key Laboratory of Oral Diseases, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Qingkun Jiang
- Department of Stomatology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jiaxuan Qiu
- Department of Stomatology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
3
|
Miao L, Zhu Y, Chang H, Zhang X. Nanotheranostics in Breast Cancer Bone Metastasis: Advanced Research Progress and Future Perspectives. Pharmaceutics 2024; 16:1491. [PMID: 39771471 PMCID: PMC11676679 DOI: 10.3390/pharmaceutics16121491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/27/2024] [Accepted: 11/14/2024] [Indexed: 01/11/2025] Open
Abstract
Breast cancer is the leading cause of cancer-related morbidity and mortality among women worldwide, with bone being the most common site of all metastatic breast cancer. Bone metastases are often associated with pain and skeletal-related events (SREs), indicating poor prognosis and poor quality of life. Most current therapies for breast cancer bone metastasis primarily serve palliative purposes, focusing on pain management, mitigating the risk of bone-related complications, and inhibiting tumor progression. The emergence of nanodelivery systems offers novel insights and potential solutions for the diagnosis and treatment of breast cancer-related bone metastasis. This article reviews the recent advancements and innovative applications of nanodrug delivery systems in the context of breast cancer bone metastasis and explores future directions in nanotheranostics.
Collapse
Affiliation(s)
- Lin Miao
- Department of Breast Surgery, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital and Institute, Shenyang 110042, China; (L.M.); (Y.Z.)
- Graduate School, China Medical University, Shenyang 110122, China
| | - Yidan Zhu
- Department of Breast Surgery, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital and Institute, Shenyang 110042, China; (L.M.); (Y.Z.)
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| | - Hong Chang
- Department of Breast Surgery, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital and Institute, Shenyang 110042, China; (L.M.); (Y.Z.)
| | - Xinfeng Zhang
- Department of Breast Surgery, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital and Institute, Shenyang 110042, China; (L.M.); (Y.Z.)
- Graduate School, China Medical University, Shenyang 110122, China
| |
Collapse
|
4
|
Guan Y, Zhang W, Mao Y, Li S. Nanoparticles and bone microenvironment: a comprehensive review for malignant bone tumor diagnosis and treatment. Mol Cancer 2024; 23:246. [PMID: 39487487 PMCID: PMC11529338 DOI: 10.1186/s12943-024-02161-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 10/17/2024] [Indexed: 11/04/2024] Open
Abstract
Malignant bone tumors, which are difficult to treat with current clinical strategies, originate from bone tissues and can be classified into primary and secondary types. Due to the specificity of the bone microenvironment, the results of traditional means of treating bone tumors are often unsatisfactory, so there is an urgent need to develop new treatments for malignant bone tumors. Recently, nanoparticle-based approaches have shown great potential in diagnosis and treatment. Nanoparticles (NPs) have gained significant attention due to their versatility, making them highly suitable for applications in bone tissue engineering, advanced imaging techniques, and targeted drug delivery. For diagnosis, NPs enhance imaging contrast and sensitivity by integrating targeting ligands, which significantly improve the specific recognition and localization of tumor cells for early detection. For treatment, NPs enable targeted drug delivery, increasing drug accumulation at tumor sites while reducing systemic toxicity. In conclusion, understanding bone microenvironment and using the unique properties of NPs holds great promise in improving disease management, enhancing treatment outcomes, and ultimately improving the quality of life for patients with malignant bone tumors. Further research and development will undoubtedly contribute to the advancement of personalized medicine in the field of bone oncology.
Collapse
Affiliation(s)
- Yujing Guan
- Second Ward of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, 110042, China
- The Liaoning Provincial Key Laboratory of Interdisciplinary Research on Gastrointestinal Tumor Combining Medicine with Engineering, Shenyang, Liaoning, 110042, China
- Institute of Cancer Medicine, Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Wei Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province, 110016, P.R. China
| | - Yuling Mao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province, 110016, P.R. China.
| | - Shenglong Li
- Second Ward of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, 110042, China.
- The Liaoning Provincial Key Laboratory of Interdisciplinary Research on Gastrointestinal Tumor Combining Medicine with Engineering, Shenyang, Liaoning, 110042, China.
- Institute of Cancer Medicine, Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning, 116024, China.
| |
Collapse
|
5
|
Wu Y, Sun B, Tang Y, Shen A, Lin Y, Zhao X, Li J, Monteiro MJ, Gu W. Bone targeted nano-drug and nano-delivery. Bone Res 2024; 12:51. [PMID: 39231955 PMCID: PMC11375042 DOI: 10.1038/s41413-024-00356-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/04/2024] [Accepted: 07/16/2024] [Indexed: 09/06/2024] Open
Abstract
There are currently no targeted delivery systems to satisfactorily treat bone-related disorders. Many clinical drugs consisting of small organic molecules have a short circulation half-life and do not effectively reach the diseased tissue site. This coupled with repeatedly high dose usage that leads to severe side effects. With the advance in nanotechnology, drugs contained within a nano-delivery device or drugs aggregated into nanoparticles (nano-drugs) have shown promises in targeted drug delivery. The ability to design nanoparticles to target bone has attracted many researchers to develop new systems for treating bone related diseases and even repurposing current drug therapies. In this review, we shall summarise the latest progress in this area and present a perspective for future development in the field. We will focus on calcium-based nanoparticle systems that modulate calcium metabolism and consequently, the bone microenvironment to inhibit disease progression (including cancer). We shall also review the bone affinity drug family, bisphosphonates, as both a nano-drug and nano-delivery system for bone targeted therapy. The ability to target and release the drug in a controlled manner at the disease site represents a promising safe therapy to treat bone diseases in the future.
Collapse
Affiliation(s)
- Yilun Wu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Bing Sun
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD, Australia
| | - Ying Tang
- Science and Technology Innovation Centre, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Aining Shen
- Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Yanlin Lin
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD, Australia
| | - Xiaohui Zhao
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Jingui Li
- School of Veterinary Medicine, Jiangsu Co-innovation Centre for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Michael J Monteiro
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD, Australia
| | - Wenyi Gu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD, Australia.
| |
Collapse
|
6
|
Shu M, Wang J, Xu Z, Lu T, He Y, Li R, Zhong G, Yan Y, Zhang Y, Chu X, Ke J. Targeting nanoplatform synergistic glutathione depletion-enhanced chemodynamic, microwave dynamic, and selective-microwave thermal to treat lung cancer bone metastasis. Bioact Mater 2024; 39:544-561. [PMID: 38883314 PMCID: PMC11179176 DOI: 10.1016/j.bioactmat.2024.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/30/2024] [Accepted: 04/16/2024] [Indexed: 06/18/2024] Open
Abstract
Once bone metastasis occurs in lung cancer, the efficiency of treatment can be greatly reduced. Current mainstream treatments are focused on inhibiting cancer cell growth and preventing bone destruction. Microwave ablation (MWA) has been used to treat bone tumors. However, MWA may damage the surrounding normal tissues. Therefore, it could be beneficial to develop a nanocarrier combined with microwave to treat bone metastasis. Herein, a microwave-responsive nanoplatform (MgFe2O4@ZOL) was constructed. MgFe2O4@ZOL NPs release the cargos of Fe3+, Mg2+ and zoledronic acid (ZOL) in the acidic tumor microenvironment (TME). Fe3+ can deplete intracellular glutathione (GSH) and catalyze H2O2 to generate •OH, resulting in chemodynamic therapy (CDT). In addition, the microwave can significantly enhance the production of reactive oxygen species (ROS), thereby enabling the effective implementation of microwave dynamic therapy (MDT). Moreover, Mg2+ and ZOL promote osteoblast differentiation. In addition, MgFe2O4@ZOL NPs could target and selectively heat tumor tissue and enhance the effect of microwave thermal therapy (MTT). Both in vitro and in vivo experiments revealed that synergistic targeting, GSH depletion-enhanced CDT, MDT, and selective MTT exhibited significant antitumor efficacy and bone repair. This multimodal combination therapy provides a promising strategy for the treatment of bone metastasis in lung cancer patients.
Collapse
Affiliation(s)
- Man Shu
- Department of Joint and Orthopedics, Orthopedic Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China
- Department of Orthopaedics, General Hospital of Southern Theater Command of PLA, Guangzhou, 510010, China
- Guangdong Engineering Technology Research Center of Functional Repair of Bone Defects and Biomaterials, Guangdong, 510080, China
| | - Jingguang Wang
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Ziyang Xu
- Department of Orthopaedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangdong, 510080, China
- Guangdong Engineering Technology Research Center of Functional Repair of Bone Defects and Biomaterials, Guangdong, 510080, China
| | - Teliang Lu
- Department of Orthopaedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangdong, 510080, China
- Guangdong Engineering Technology Research Center of Functional Repair of Bone Defects and Biomaterials, Guangdong, 510080, China
| | - Yue He
- Department of Orthopaedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangdong, 510080, China
- Guangdong Engineering Technology Research Center of Functional Repair of Bone Defects and Biomaterials, Guangdong, 510080, China
| | - Renshan Li
- Department of Joint and Orthopedics, Orthopedic Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China
- Guangdong Engineering Technology Research Center of Functional Repair of Bone Defects and Biomaterials, Guangdong, 510080, China
| | - Guoqing Zhong
- Department of Orthopaedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangdong, 510080, China
- Guangdong Engineering Technology Research Center of Functional Repair of Bone Defects and Biomaterials, Guangdong, 510080, China
| | - Yunbo Yan
- Department of Internal Medicine, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Yu Zhang
- Department of Orthopaedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangdong, 510080, China
- Guangdong Engineering Technology Research Center of Functional Repair of Bone Defects and Biomaterials, Guangdong, 510080, China
| | - Xiao Chu
- Department of Orthopaedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangdong, 510080, China
- Medical Research Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, 510080, China
- Guangdong Engineering Technology Research Center of Functional Repair of Bone Defects and Biomaterials, Guangdong, 510080, China
| | - Jin Ke
- Department of Joint and Orthopedics, Orthopedic Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China
- Guangdong Engineering Technology Research Center of Functional Repair of Bone Defects and Biomaterials, Guangdong, 510080, China
| |
Collapse
|
7
|
Hao X, Jiang B, Wu J, Xiang D, Xiong Z, Li C, Li Z, He S, Tu C, Li Z. Nanomaterials for bone metastasis. J Control Release 2024; 373:640-651. [PMID: 39084467 DOI: 10.1016/j.jconrel.2024.07.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/23/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024]
Abstract
Bone metastasis, a prevalent occurrence in primary malignant tumors, is often associated with a grim prognosis. The bone microenvironment comprises various coexisting cell types, working together in a coordinated manner. This dynamic microenvironment plays a pivotal role in the initiation and progression of bone metastases. While cancer therapies have made advancements, the available options for addressing bone metastases remain insufficient. The advent of nanotechnology has ushered in a new era for managing and preventing bone metastases because of the physicochemical and adaptable advantages of nanoplatforms. In this review, we make an introduction of the underlying mechanisms and the current clinical therapies of bone metastases, highlighting the advances of intelligent nanosystems that can stimulate vascular regeneration, promote bone regeneration, eliminate tumor cells, minimize bone damage, and expedite bone healing. The innovation surrounding bone-targeting nanoplatforms presents a fresh approach to the theranostics of bone metastases.
Collapse
Affiliation(s)
- Xinyan Hao
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Xiangya School of Medicine, Central South University, Changsha, Hunan 410011, China; Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Buchan Jiang
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Junyong Wu
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Daxiong Xiang
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Zijian Xiong
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Xiangya School of Medicine, Central South University, Changsha, Hunan 410011, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Chenbei Li
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Zhaoqi Li
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Shasha He
- Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China.
| | - Chao Tu
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Changsha Medical University, Changsha 410219, China.
| | - Zhihong Li
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Shenzhen Research Institute of Central South University, Guangdong 518063, China; FuRong Laboratory, Changsha 410078, Hunan, China.
| |
Collapse
|
8
|
Shi S, Duan H, Ou X. Targeted delivery of anti-osteoporosis therapy: Bisphosphonate-modified nanosystems and composites. Biomed Pharmacother 2024; 175:116699. [PMID: 38705129 DOI: 10.1016/j.biopha.2024.116699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/19/2024] [Accepted: 05/01/2024] [Indexed: 05/07/2024] Open
Abstract
Osteoporosis (OP) constitutes a significant health concern that profoundly affects individuals' quality of life. Bisphosphonates, conventional pharmaceuticals widely employed in OP treatment, encounter limitations related to inadequate drug targeting and a short effective duration, thereby compromising their clinical efficacy. The burgeoning field of nanotechnology has witnessed the development and application of diverse functional nanosystems designed for OP treatment. Owing to the bone tissue affinity of bisphosphonates, these nanosystems are modified to address shortcomings associated with traditional drug delivery. In this review, we explore the potential of bisphosphonate-modified nanosystems as a promising strategy for addressing osteoporotic conditions. With functional modification, these nanosystems exhibit a targeted and reversible effect on osteoporotic remodeling, presenting a promising solution to enhance precision in drug delivery. The synthesis methods, physicochemical properties, and in vitro/in vivo performance of bisphosphonate-modified nanosystems are comprehensively examined in this review. Through a thorough analysis of recent advances and accomplishments in this field, we aim to provide insights into the potential applications and future directions of bisphosphonate-modified nanosystems for targeted and reversible osteoporotic remodeling.
Collapse
Affiliation(s)
- Shaoyan Shi
- Department of Hand Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an Honghui Hospital North District, Xi'an, Shaanxi 710000, China
| | - Honghao Duan
- Department of Hand Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an Honghui Hospital North District, Xi'an, Shaanxi 710000, China
| | - Xuehai Ou
- Department of Hand Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an Honghui Hospital North District, Xi'an, Shaanxi 710000, China.
| |
Collapse
|
9
|
Yu X, Zhu L. Nanoparticles for the Treatment of Bone Metastasis in Breast Cancer: Recent Advances and Challenges. Int J Nanomedicine 2024; 19:1867-1886. [PMID: 38414525 PMCID: PMC10898486 DOI: 10.2147/ijn.s442768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/15/2024] [Indexed: 02/29/2024] Open
Abstract
Although the frequency of bone metastases from breast cancer has increased, effective treatment is lacking, prompting the development of nanomedicine, which involves the use of nanotechnology for disease diagnosis and treatment. Nanocarrier drug delivery systems offer several advantages over traditional drug delivery methods, such as higher reliability and biological activity, improved penetration and retention, and precise targeting and delivery. Various nanoparticles that can selectively target tumor cells without causing harm to healthy cells or organs have been synthesized. Recent advances in nanotechnology have enabled the diagnosis and prevention of metastatic diseases as well as the ability to deliver complex molecular "cargo" particles to metastatic regions. Nanoparticles can modulate systemic biodistribution and enable the targeted accumulation of therapeutic agents. Several delivery strategies are used to treat bone metastases, including untargeted delivery, bone-targeted delivery, and cancer cell-targeted delivery. Combining targeted agents with nanoparticles enhances the selective delivery of payloads to breast cancer bone metastatic lesions, providing multiple delivery advantages for treatment. In this review, we describe recent advances in nanoparticle development for treating breast cancer bone metastases.
Collapse
Affiliation(s)
- Xianzhe Yu
- Department of Medical Oncology, Cancer Center & Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People's Republic of China
- Department of Gastrointestinal Surgery, Chengdu Second People's Hospital, Chengdu, Sichuan Province, People's Republic of China
| | - Lingling Zhu
- Department of Medical Oncology, Cancer Center & Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| |
Collapse
|
10
|
Zhang Y, Chen Q. Novel insights into osteocyte and inter-organ/tissue crosstalk. Front Endocrinol (Lausanne) 2024; 14:1308408. [PMID: 38685911 PMCID: PMC11057460 DOI: 10.3389/fendo.2023.1308408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/14/2023] [Indexed: 05/02/2024] Open
Abstract
Osteocyte, a cell type living within the mineralized bone matrix and connected to each other by means of numerous dendrites, appears to play a major role in body homeostasis. Benefiting from the maturation of osteocyte extraction and culture technique, many cross-sectional studies have been conducted as a subject of intense research in recent years, illustrating the osteocyte-organ/tissue communication not only mechanically but also biochemically. The present review comprehensively evaluates the new research work on the possible crosstalk between osteocyte and closely situated or remote vital organs/tissues. We aim to bring together recent key advances and discuss the mutual effect of osteocyte and brain, kidney, vascular calcification, muscle, liver, adipose tissue, and tumor metastasis and elucidate the therapeutic potential of osteocyte.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingchang Chen
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| |
Collapse
|
11
|
Zhang Y, Wang Y, Zhu A, Yu N, Xia J, Li J. Dual-Targeting Biomimetic Semiconducting Polymer Nanocomposites for Amplified Theranostics of Bone Metastasis. Angew Chem Int Ed Engl 2024; 63:e202310252. [PMID: 38010197 DOI: 10.1002/anie.202310252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/03/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023]
Abstract
Bone metastasis is a type of metastatic tumors that involves the spreads of malignant tumor cells into skeleton, and its diagnosis and treatment remain a big challenge due to the unique tumor microenvironment. We herein develop osteoclast and tumor cell dual-targeting biomimetic semiconducting polymer nanocomposites (SPFeNOC ) for amplified theranostics of bone metastasis. SPFeNOC contain semiconducting polymer and iron oxide (Fe3 O4 ) nanoparticles inside core and surface camouflaged hybrid membrane of cancer cells and osteoclasts. The hybrid membrane camouflage enables their targeting to both metastatic tumor cells and osteoclasts in bone metastasis through homologous targeting mechanism, thus achieving an enhanced nanoparticle accumulation in tumors. The semiconducting polymer mediates near-infrared (NIR) fluorescence imaging and sonodynamic therapy (SDT), and Fe3 O4 nanoparticles are used for magnetic resonance (MR) imaging and chemodynamic therapy (CDT). Because both cancer cells and osteoclasts are killed synchronously via the combinational action of SDT and CDT, the vicious cycle in bone metastasis is broken to realize high antitumor efficacy. Therefore, 4T1 breast cancer-based bone metastasis can be effectively detected and cured by using SPFeNOC as dual-targeting theranostic nanoagents. This study provides an unusual biomimetic nanoplatform that simultaneously targets osteoclasts and cancer cells for amplified theranostics of bone metastasis.
Collapse
Affiliation(s)
- Yijing Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Yue Wang
- Department of Radiology, Shanghai Songjiang District Central Hospital, Shanghai, 201600, China
| | - Anni Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Ningyue Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Jindong Xia
- Department of Radiology, Shanghai Songjiang District Central Hospital, Shanghai, 201600, China
| | - Jingchao Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| |
Collapse
|
12
|
Zhai X, Peng S, Zhai C, Wang S, Xie M, Guo S, Bai J. Design of Nanodrug Delivery Systems for Tumor Bone Metastasis. Curr Pharm Des 2024; 30:1136-1148. [PMID: 38551047 DOI: 10.2174/0113816128296883240320040636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/04/2024] [Indexed: 06/28/2024]
Abstract
Tumor metastasis is a complex process that is controlled at the molecular level by numerous cytokines. Primary breast and prostate tumors most commonly metastasize to bone, and the development of increasingly accurate targeted nanocarrier systems has become a research focus for more effective anti-bone metastasis therapy. This review summarizes the molecular mechanisms of bone metastasis and the principles and methods for designing bone-targeted nanocarriers and then provides an in-depth review of bone-targeted nanocarriers for the treatment of bone metastasis in the context of chemotherapy, photothermal therapy, gene therapy, and combination therapy. Furthermore, this review also discusses the treatment of metastatic and primary bone tumors, providing directions for the design of nanodelivery systems and future research.
Collapse
Affiliation(s)
- Xiaoqing Zhai
- School of Clinical Medicine, Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang 261053, China
| | - Shan Peng
- School of Stomatology, Weifang Medical University, Weifang 261053, China
| | - Chunyuan Zhai
- School of Clinical Medicine, Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang 261053, China
| | - Shuai Wang
- People's Hospital of Gaoqing County, Zibo 256399, China
| | - Meina Xie
- School of Bioscience and Technology, Weifang Medical University, Weifang 261053, China
| | - Shoudong Guo
- School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Jingkun Bai
- School of Bioscience and Technology, Weifang Medical University, Weifang 261053, China
| |
Collapse
|
13
|
Chen Z, Wang Q, Liu J, Wang W, Yuan W, Liu Y, Sun Z, Wang C. Effects of extracellular vesicle-derived noncoding RNAs on pre-metastatic niche and tumor progression. Genes Dis 2024; 11:176-188. [PMID: 37588211 PMCID: PMC10425748 DOI: 10.1016/j.gendis.2022.12.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/29/2022] [Accepted: 12/08/2022] [Indexed: 01/20/2023] Open
Abstract
A pre-metastatic niche (PMN) is a protective microenvironment that facilitates the colonization of disseminating tumor cells in future metastatic organs. Extracellular vesicles (EVs) play a role in intercellular communication by delivering cargoes, such as noncoding RNAs (ncRNAs). The pivotal role of extracellular vesicle-derived noncoding RNAs (EV-ncRNAs) in the PMN has attracted increasing attention. In this review, we summarized the effects of EV-ncRNAs on the PMN in terms of immunosuppression, vascular permeability and angiogenesis, inflammation, metabolic reprogramming, and fibroblast alterations. In particular, we provided a comprehensive overview of the effects of EV-ncRNAs on the PMN in different cancers. Finally, we discussed the promising clinical applications of EV-ncRNAs, including their potential as diagnostic and prognostic markers and therapeutic targets.
Collapse
Affiliation(s)
- Zhuang Chen
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Qiming Wang
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan 450008, China
| | - Jinbo Liu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Wenkang Wang
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Weitang Yuan
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yang Liu
- Department of Radiotherapy, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan 450008, China
| | - Zhenqiang Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Chengzeng Wang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| |
Collapse
|
14
|
Qian Y, Wang M, Xie Y, Sun Q, Gao M, Li C. Rationally Integrated Precise ER-Targeted and Oxygen-Compensated Photodynamic Immunostimulant for Immunogenicity-Boosted Tumor Therapy. Adv Healthc Mater 2023; 12:e2301728. [PMID: 37602576 DOI: 10.1002/adhm.202301728] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/29/2023] [Indexed: 08/22/2023]
Abstract
Notwithstanding that immunotherapy has made eminent clinical breakthroughs, activating the immunogenicity and breaking the immunosuppressive tumor microenvironment (ITME) remains tempting yet challenging. Herein, a customized-designed immunostimulant is engineered for attenuating ITME and eliciting an immune response to address this challenge head-on. This immunostimulant is equipped with dual silica layers coated upconversion nanoparticles (UCNPs) as nanocarriers modified with endoplasmic reticulum (ER)-targeted molecular N-p-Tosylglycine, in which the dense silica for chlorin e6 (Ce6) and the glutathione (GSH)-responsive degradable silica for loading resveratrol (RES) - (UCSMRER ). On the one hand, this precise ER-targeted photodynamic therapy (PDT) can generate reactive oxygen species (ROS) in situ under the 980 nm laser irradiation, which not only induced severe cell death directly but also caused intense ER stress-based immunogenic cell death (ICD). On the other hand, tumor hypoxia aggravated by the PDT is alleviated by RES released on-demand, which reduced oxygen consumption by impairing the mitochondrial electron transport chain (ETC). This integrated precise ER-targeted and oxygen-compensated strategy maximized the PDT effect and potentiated ICD-associated immunotherapy, which availed to attenuate ITME, activate tumor immunogenicity, and further magnify the anti-tumor effect. This innovative concept about PDT and immunotherapy sheds light on cancer-related clinical application.
Collapse
Affiliation(s)
- Yanrong Qian
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, P. R. China
| | - Man Wang
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, P. R. China
| | - Yulin Xie
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, P. R. China
| | - Qianqian Sun
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, P. R. China
| | - Minghong Gao
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, P. R. China
| | - Chunxia Li
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, P. R. China
| |
Collapse
|
15
|
Song Z, Miao J, Miao M, Cheng B, Li S, Liu Y, Miao Q, Li Q, Gao M. Cathepsin K-Activated Probe for Fluoro-Photoacoustic Imaging of Early Osteolytic Metastasis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300217. [PMID: 37341286 PMCID: PMC10460880 DOI: 10.1002/advs.202300217] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/01/2023] [Indexed: 06/22/2023]
Abstract
Precise detection of early osteolytic metastases is crucial for their treatment but remains challenging in the clinic because of the limited sensitivity and specificity of traditional imaging techniques. Although fluorescence imaging offers attractive features for the diagnosis of osteolytic metastases, it is hampered by limited penetration depth. To address this issue, a fluoro-photoacoustic dual-modality imaging probe comprising a near-infrared dye caged by a cathepsin K (CTSK)-cleavable peptide sequence on one side and functionalized with osteophilic alendronate through a polyethylene glycol linker on the other side is reported. Through systematic in vitro and in vivo experiments, it is demonstrated that in response to CTSK, the probe generated both near-infrared fluorescent and photoacoustic signals from bone metastatic regions, thus offering a potential strategy for detecting deep-seated early osteolytic metastases.
Collapse
Affiliation(s)
- Zhuorun Song
- Key Laboratory of Radiation Medicine and ProtectionSchool for Radiological and Interdisciplinary Sciences (RAD‐X)Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhou215123China
| | - Jia Miao
- Key Laboratory of Radiation Medicine and ProtectionSchool for Radiological and Interdisciplinary Sciences (RAD‐X)Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhou215123China
| | - Minqian Miao
- Key Laboratory of Radiation Medicine and ProtectionSchool for Radiological and Interdisciplinary Sciences (RAD‐X)Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhou215123China
| | - Baoliang Cheng
- Key Laboratory of Radiation Medicine and ProtectionSchool for Radiological and Interdisciplinary Sciences (RAD‐X)Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhou215123China
| | - Shenhua Li
- Key Laboratory of Radiation Medicine and ProtectionSchool for Radiological and Interdisciplinary Sciences (RAD‐X)Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhou215123China
| | - Yinghua Liu
- Key Laboratory of Radiation Medicine and ProtectionSchool for Radiological and Interdisciplinary Sciences (RAD‐X)Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhou215123China
| | - Qingqing Miao
- Key Laboratory of Radiation Medicine and ProtectionSchool for Radiological and Interdisciplinary Sciences (RAD‐X)Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhou215123China
| | - Qing Li
- Key Laboratory of Radiation Medicine and ProtectionSchool for Radiological and Interdisciplinary Sciences (RAD‐X)Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhou215123China
| | - Mingyuan Gao
- Key Laboratory of Radiation Medicine and ProtectionSchool for Radiological and Interdisciplinary Sciences (RAD‐X)Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhou215123China
| |
Collapse
|
16
|
Luo P, Gao FQ, Sun W, Li JY, Wang C, Zhang QY, Li ZZ, Xu P. Activatable fluorescent probes for imaging and diagnosis of rheumatoid arthritis. Mil Med Res 2023; 10:31. [PMID: 37443101 DOI: 10.1186/s40779-023-00467-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023] Open
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disease that is primarily manifested as synovitis and polyarticular opacity and typically leads to serious joint damage and irreversible disability, thus adversely affecting locomotion ability and life quality. Consequently, good prognosis heavily relies on the early diagnosis and effective therapeutic monitoring of RA. Activatable fluorescent probes play vital roles in the detection and imaging of biomarkers for disease diagnosis and in vivo imaging. Herein, we review the fluorescent probes developed for the detection and imaging of RA biomarkers, namely reactive oxygen/nitrogen species (hypochlorous acid, peroxynitrite, hydroxyl radical, nitroxyl), pH, and cysteine, and address the related challenges and prospects to inspire the design of novel fluorescent probes and the improvement of their performance in RA studies.
Collapse
Affiliation(s)
- Pan Luo
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Fu-Qiang Gao
- Department of Orthopedics, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Wei Sun
- Department of Orthopaedic Surgery of the Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jun-You Li
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Cheng Wang
- Department of Orthopaedic Surgery, Peking University Third Hospital, Peking University, Beijing, 100191, China
| | - Qing-Yu Zhang
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Zhi-Zhuo Li
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Peng Xu
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China.
| |
Collapse
|
17
|
Reis IB, Tibo LHS, de Souza BR, Durán N, Fávaro WJ. OncoTherad ® is an immunomodulator of biological response that downregulate RANK/RANKL signaling pathway and PD-1/PD-L1 immune checkpoint in non-muscle invasive bladder cancer. J Cancer Res Clin Oncol 2023; 149:5025-5036. [PMID: 36322290 DOI: 10.1007/s00432-022-04449-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/20/2022] [Indexed: 11/07/2022]
Abstract
INTODUCTION Bladder cancer is the second most common urinary tract cancer. Above 70% of the occurrence of bladder cancer is superficial (pTis, pTa, and pT1), non-muscle invasive tumor (NMIBC), and the incidence of invasive disease is occasional. Treatments for NMIBC consist of transurethral resection (TUR) and subsequently intravesical immunotherapy with Bacillus Calmette-Guérin (BCG), intending to prevent tumor progression and decrease recurrence. However, 20-30% of these tumors have progression, and 70% have a recurrence after exclusive TUR treatment. The immunomodulator of biological response, OncoTherad®, is an attractive potential to revolutionize cancer therapy. In our previous studies with mice, the results showed that treatment with OncoTherad® reduced 100% of tumor progression in NMIBC through the activation of Toll-Like Receptors' non-canonical pathway. MATERIALS AND METHODS In the present study, 36 female C57Bl/6J mice were divided into 6 groups (n = 6/group): Control, Cancer, Cancer + BCG, Cancer + OncoTherad® (MRB-CFI-1), Cancer + P14-16 and Cancer + CFI-1. NMIBC was chemically induced and the treatments were followed for 6 weeks. A week after the last dose of treatment, animals were euthanized, the bladder was collected and routinely processed for immunohistochemical analyses of RANK, RANKL, FOXP3, and PD-1/PD-L1, such as PD-1/PD-L1 western blotting. CONCLUSION The immunohistochemical results showed that OncoTherad® reduced RANK and RANKL immunoreactivities compared to the cancer group, which indicates a good prognosis. Immunohistochemical and western blotting analyses confirmed that OncoTherad® modulated PD-1/PD-L1 immune checkpoint.
Collapse
Affiliation(s)
- Ianny Brum Reis
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, São Paulo State University (UNESP), Rua Humaitá, 1680-Centro, Araraquara, SP, CEP 14801-903, Brazil.
| | | | | | - Nelson Durán
- Institute of Biology, Universidade Estadual de Campinas/UNICAMP, Campinas, SP, Brazil
- Nanomedicine Research Unit (Nanomed), Federal University of ABC (UFABC), Santo André, SP, Brazil
| | - Wagner José Fávaro
- Institute of Biology, Universidade Estadual de Campinas/UNICAMP, Campinas, SP, Brazil
| |
Collapse
|
18
|
Fernandes NB, Nayak Y, Garg S, Nayak UY. Multifunctional engineered mesoporous silica/inorganic material hybrid nanoparticles: Theranostic perspectives. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
19
|
Hegde M, Naliyadhara N, Unnikrishnan J, Alqahtani MS, Abbas M, Girisa S, Sethi G, Kunnumakkara AB. Nanoparticles in the diagnosis and treatment of cancer metastases: Current and future perspectives. Cancer Lett 2023; 556:216066. [PMID: 36649823 DOI: 10.1016/j.canlet.2023.216066] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/31/2022] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
Metastasis accounts for greater than 90% of cancer-related deaths. Despite recent advancements in conventional chemotherapy, immunotherapy, targeted therapy, and their rational combinations, metastatic cancers remain essentially untreatable. The distinct obstacles to treat metastases include their small size, high multiplicity, redundancy, therapeutic resistance, and dissemination to multiple organs. Recent advancements in nanotechnology provide the numerous applications in the diagnosis and prophylaxis of metastatic diseases, including the small particle size to penetrate cell membrane and blood vessels and their capacity to transport complex molecular 'cargo' particles to various metastatic regions such as bones, brain, liver, lungs, and lymph nodes. Indeed, nanoparticles (NPs) have demonstrated a significant ability to target specific cells within these organs. In this regard, the purpose of this review is to summarize the present state of nanotechnology in terms of its application in the diagnosis and treatment of metastatic cancer. We intensively reviewed applications of NPs in fluorescent imaging, PET scanning, MRI, and photoacoustic imaging to detect metastasis in various cancer models. The use of targeted NPs for cancer ablation in conjunction with chemotherapy, photothermal treatment, immuno therapy, and combination therapy is thoroughly discussed. The current review also highlights the research opportunities and challenges of leveraging engineering technologies with cancer cell biology and pharmacology to fabricate nanoscience-based tools for treating metastases.
Collapse
Affiliation(s)
- Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Nikunj Naliyadhara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Jyothsna Unnikrishnan
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha, 61421, Saudi Arabia; BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester, LE1 7RH, UK
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha, 61421, Saudi Arabia; Computers and Communications Department, College of Engineering, Delta University for Science and Technology, Gamasa, 35712, Egypt
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
20
|
Yang W, Pan Q, Huang F, Hu H, Shao Z. Research progress of bone metastases: From disease recognition to clinical practice. Front Oncol 2023; 12:1105745. [PMID: 36761418 PMCID: PMC9905420 DOI: 10.3389/fonc.2022.1105745] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/21/2022] [Indexed: 01/26/2023] Open
Abstract
Bone metastases, as one of the common types of metastatic tumors, have a great impact on the survival period and quality of life of patients. Bone metastases are usually characterized by bone destruction. Skeletal related events caused by bone destruction often lead to pain, pathological fractures and even paralysis. In this review, we provide a detailed explanation of bone metastases from the epidemiology, clinical features, pathogenesis, and recently developed clinical treatment viewpoints. We concluded that the incidence of bone metastases is increasing gradually, with serious clinical symptoms, complex pathogenesis and diverse clinical treatment. Tumor cells, immune cells, osteoblasts/osteoclasts and other cells as well as cytokines and enzymes all play a key role in the pathogenesis of bone metastases. We believe that the future treatment of bone metastases will be diversified and comprehensive. Some advanced technologies, such as nanomedicine, could be used for treatment, but this depends on understanding how disease occurs. With the development of treatment, the survival time and quality of life of patients will be improved.
Collapse
Affiliation(s)
| | | | | | - Hongzhi Hu
- *Correspondence: Hongzhi Hu, ; Zengwu Shao,
| | | |
Collapse
|
21
|
Zheng K, Bai J, Yang H, Xu Y, Pan G, Wang H, Geng D. Nanomaterial-assisted theranosis of bone diseases. Bioact Mater 2022; 24:263-312. [PMID: 36632509 PMCID: PMC9813540 DOI: 10.1016/j.bioactmat.2022.12.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/16/2022] [Accepted: 12/18/2022] [Indexed: 12/27/2022] Open
Abstract
Bone-related diseases refer to a group of skeletal disorders that are characterized by bone and cartilage destruction. Conventional approaches can regulate bone homeostasis to a certain extent. However, these therapies are still associated with some undesirable problems. Fortunately, recent advances in nanomaterials have provided unprecedented opportunities for diagnosis and therapy of bone-related diseases. This review provides a comprehensive and up-to-date overview of current advanced theranostic nanomaterials in bone-related diseases. First, the potential utility of nanomaterials for biological imaging and biomarker detection is illustrated. Second, nanomaterials serve as therapeutic delivery platforms with special functions for bone homeostasis regulation and cellular modulation are highlighted. Finally, perspectives in this field are offered, including current key bottlenecks and future directions, which may be helpful for exploiting nanomaterials with novel properties and unique functions. This review will provide scientific guidance to enhance the development of advanced nanomaterials for the diagnosis and therapy of bone-related diseases.
Collapse
Affiliation(s)
- Kai Zheng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006, Jiangsu, China
| | - Jiaxiang Bai
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006, Jiangsu, China,Corresponding author.Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China.
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006, Jiangsu, China
| | - Yaozeng Xu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006, Jiangsu, China
| | - Guoqing Pan
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Huaiyu Wang
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China,Corresponding author.
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006, Jiangsu, China,Corresponding author. Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China.
| |
Collapse
|
22
|
Chintamaneni PK, Nagasen D, Babu KC, Mourya A, Madan J, Srinivasarao DA, Ramachandra RK, Santhoshi PM, Pindiprolu SKSS. Engineered upconversion nanocarriers for synergistic breast cancer imaging and therapy: Current state of art. J Control Release 2022; 352:652-672. [PMID: 36328078 DOI: 10.1016/j.jconrel.2022.10.056] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/22/2022] [Accepted: 10/26/2022] [Indexed: 11/10/2022]
Abstract
Breast cancer is the most common type of cancer in women and is the second leading cause of cancer-related deaths worldwide. Early diagnosis and effective therapeutic interventions are critical determinants that can improve survival and quality of life in breast cancer patients. Nanotheranostics are emerging interventions that offer the dual benefit of in vivo diagnosis and therapeutics through a single nano-sized carrier. Rare earth metal-doped upconversion nanoparticles (UCNPs) with their ability to convert near-infrared light to visible light or UV light in vivo settings have gained special attraction due to their unique luminescence and tumor-targeting properties. In this review, we have discussed applications of UCNPs in drug and gene delivery, photothermal therapy (PTT), photodynamic therapy (PDT) and tumor targeting in breast cancer. Further, present challenges and future opportunities for UCNPs in breast cancer treatment have also been mentioned.
Collapse
Affiliation(s)
- Pavan Kumar Chintamaneni
- Department of Pharmaceutics, GITAM School of Pharmacy, GITAM (Deemed to be University), Rudraram, 502329 Telangana, India.
| | - Dasari Nagasen
- Aditya Pharmacy College, Surampalem 533437, India; Jawaharlal Nehru Technological University Kakinada, Kakinada 533003, Andhra Pradesh, India.
| | - Katta Chanti Babu
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, Telangana, India
| | - Atul Mourya
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, Telangana, India
| | - Jitender Madan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, Telangana, India
| | - Dadi A Srinivasarao
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, Telangana, India.
| | - R K Ramachandra
- Crystal Growth and Nanoscience Research Center, Department of Physics, Government College (A), Rajamahendravaram, Andhra Pradesh, India; Government Degree College, Chodavaram, Andhra Pradesh, India.
| | - P Madhuri Santhoshi
- Crystal Growth and Nanoscience Research Center, Department of Physics, Government College (A), Rajamahendravaram, Andhra Pradesh, India
| | - Sai Kiran S S Pindiprolu
- Aditya Pharmacy College, Surampalem 533437, India; Jawaharlal Nehru Technological University Kakinada, Kakinada 533003, Andhra Pradesh, India.
| |
Collapse
|
23
|
Cheng X, Zhou J, Yue J, Wei Y, Gao C, Xie X, Huang L. Recent Development in Sensitizers for Lanthanide-Doped Upconversion Luminescence. Chem Rev 2022; 122:15998-16050. [PMID: 36194772 DOI: 10.1021/acs.chemrev.1c00772] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The attractive features of lanthanide-doped upconversion luminescence (UCL), such as high photostability, nonphotobleaching or photoblinking, and large anti-Stokes shift, have shown great potentials in life science, information technology, and energy materials. Therefore, UCL modulation is highly demanded toward expected emission wavelength, lifetime, and relative intensity in order to satisfy stringent requirements raised from a wide variety of areas. Unfortunately, the majority of efforts have been devoted to either simple codoping of multiple activators or variation of hosts, while very little attention has been paid to the critical role that sensitizers have been playing. In fact, different sensitizers possess different excitation wavelengths and different energy transfer pathways (to different activators), which will lead to different UCL features. Thus, rational design of sensitizers shall provide extra opportunities for UCL tuning, particularly from the excitation side. In this review, we specifically focus on advances in sensitizers, including the current status, working mechanisms, design principles, as well as future challenges and endeavor directions.
Collapse
Affiliation(s)
- Xingwen Cheng
- Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing211816, China
| | - Jie Zhou
- Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing211816, China
| | - Jingyi Yue
- Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing211816, China
| | - Yang Wei
- Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing211816, China
| | - Chao Gao
- Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing211816, China
| | - Xiaoji Xie
- Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing211816, China
| | - Ling Huang
- Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing211816, China.,State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi830046, China
| |
Collapse
|
24
|
Pan Y, Wang J, Jiang Z, Guo Q, Zhang Z, Li J, Hu Y, Wang L. Zoledronate combined metal-organic frameworks for bone-targeting and drugs deliveries. Sci Rep 2022; 12:12290. [PMID: 35854057 PMCID: PMC9296467 DOI: 10.1038/s41598-022-15941-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 07/01/2022] [Indexed: 11/12/2022] Open
Abstract
Medicine treatments for bone-related diseases such as osteoporosis, bone metastasis, osteomyelitis, and osteolysis are often limited by insufficient drug concentration at the lesion sites owing to the low perfusion of bone tissue. A carrier that can deliver multiple bone destruction site-targeting drugs is required to address this limitation. Here, we reported a novel bone-targeting nano-drug delivery platform formed by the integration of zoledronate (ZOL) and zeolitic imidazolate framework-8 (ZIF-8) nanoparticles. The ZOL mixed zeolitic imidazolate framework (ZZF) nanoparticles were synthesized in water at room temperature (25 °C), where many biomacromolecules could maintain their activity. This allowed the ZZF nanoparticles to adapt the encapsulation ability and pH response release property from ZIF-8 and the excellent bone targeting performance of ZOL simultaneously. Considering the ease of preparation and biomacromolecule-friendly drug delivery of this nano platform, it may be useful in treating bone-related diseases.
Collapse
Affiliation(s)
- Yixiao Pan
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, Changsha, China
| | - Jiahao Wang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, Changsha, China
| | - Zichao Jiang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, Changsha, China
| | - Qi Guo
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, Changsha, China
| | - Zhen Zhang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, Changsha, China
| | - Jingyi Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, Changsha, China
| | - Yihe Hu
- Department of Orthopedics, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China. .,Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, Changsha, China.
| | - Long Wang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China. .,Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, Changsha, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China. .,Hunan Key Laboratary of Aging Biology, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
25
|
Arshad R, Kiani MH, Rahdar A, Sargazi S, Barani M, Shojaei S, Bilal M, Kumar D, Pandey S. Nano-Based Theranostic Platforms for Breast Cancer: A Review of Latest Advancements. Bioengineering (Basel) 2022; 9:bioengineering9070320. [PMID: 35877371 PMCID: PMC9311542 DOI: 10.3390/bioengineering9070320] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 12/24/2022] Open
Abstract
Breast cancer (BC) is a highly metastatic multifactorial disease with various histological and molecular subtypes. Due to recent advancements, the mortality rate in BC has improved over the past five decades. Detection and treatment of many cancers are now possible due to the application of nanomedicine in clinical practice. Nanomedicine products such as Doxil® and Abraxane® have already been extensively used for BC adjuvant therapy with favorable clinical outcomes. However, these products were designed initially for generic anticancer purposes and not specifically for BC treatment. With a better understanding of the molecular biology of BC, several novel and promising nanotherapeutic strategies and devices have been developed in recent years. In this context, multi-functionalized nanostructures are becoming potential carriers for enhanced chemotherapy in BC patients. To design these nanostructures, a wide range of materials, such as proteins, lipids, polymers, and hybrid materials, can be used and tailored for specific purposes against BC. Selective targeting of BC cells results in the activation of programmed cell death in BC cells and can be considered a promising strategy for managing triple-negative BC. Currently, conventional BC screening methods such as mammography, digital breast tomosynthesis (DBT), ultrasonography, and magnetic resonance imaging (MRI) are either costly or expose the user to hazardous radiation that could harm them. Therefore, there is a need for such analytical techniques for detecting BC that are highly selective and sensitive, have a very low detection limit, are durable, biocompatible, and reproducible. In detecting BC biomarkers, nanostructures are used alone or in conjunction with numerous molecules. This review intends to highlight the recent advances in nanomedicine in BC treatment and diagnosis, emphasizing the targeting of BC cells that overexpress receptors of epidermal growth factors. Researchers may gain insight from these strategies to design and develop more tailored nanomedicine for BC to achieve further improvements in cancer specificity, antitumorigenic effects, anti-metastasis effects, and drug resistance reversal effects.
Collapse
Affiliation(s)
- Rabia Arshad
- Faculty of Pharmacy, University of Lahore, Lahore 54000, Pakistan;
| | | | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol 98613-35856, Iran
- Correspondence: (A.R.); or (S.P.)
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan 98167-43463, Iran;
| | - Mahmood Barani
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman 76169-13555, Iran;
| | - Shirin Shojaei
- Imam Ali Hospital, Kermanshah University of Medical Sciences, Kermanshah 67158-47141, Iran;
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China;
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan 173229, India;
| | - Sadanand Pandey
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Korea
- Correspondence: (A.R.); or (S.P.)
| |
Collapse
|
26
|
Du K, Feng J, Gao X, Zhang H. Nanocomposites based on lanthanide-doped upconversion nanoparticles: diverse designs and applications. LIGHT, SCIENCE & APPLICATIONS 2022; 11:222. [PMID: 35831282 PMCID: PMC9279428 DOI: 10.1038/s41377-022-00871-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/11/2022] [Accepted: 06/01/2022] [Indexed: 06/10/2023]
Abstract
Lanthanide-doped upconversion nanoparticles (UCNPs) have aroused extraordinary interest due to the unique physical and chemical properties. Combining UCNPs with other functional materials to construct nanocomposites and achieve synergistic effect abound recently, and the resulting nanocomposites have shown great potentials in various fields based on the specific design and components. This review presents a summary of diverse designs and synthesis strategies of UCNPs-based nanocomposites, including self-assembly, in-situ growth and epitaxial growth, as well as the emerging applications in bioimaging, cancer treatments, anti-counterfeiting, and photocatalytic fields. We then discuss the challenges, opportunities, and development tendency for developing UCNPs-based nanocomposites.
Collapse
Affiliation(s)
- Kaimin Du
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, 116023, Dalian, China
| | - Jing Feng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, China.
- University of Science and Technology of China, Hefei, Anhui, 230026, China.
| | - Xuan Gao
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, China
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, China.
- University of Science and Technology of China, Hefei, Anhui, 230026, China.
- Department of Chemistry, Tsinghua University, 100084, Beijing, China.
| |
Collapse
|
27
|
Liang H, Zhou L, Hu Z, Ge Y, Zhang T, Chen Q, Wang B, Lu S, Ding W, Dong J, Xue F, Jiang L. Siglec15 Checkpoint Blockade for Simultaneous Immunochemotherapy and Osteolysis Inhibition in Lung Adenocarcinoma Spinal Metastasis via a Hollow Nanoplatform. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107787. [PMID: 35751455 DOI: 10.1002/smll.202107787] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 05/13/2022] [Indexed: 06/15/2023]
Abstract
Low responsiveness to anti-programmed death-1/programmed death-ligand 1 (anti-PD-1/PD-L1) for solid tumors indicates the presence of other immunosuppressive pathways. Siglec15, a newly discovered immune checkpoint, has been reported to repress immune responses in the tumor microenvironment (TME) and regulate osteoclast differentiation. However, the role of Siglec15 in the treatment for bone metastasis remains unclear. Herein, Siglec15 shows significantly higher expression in lung adenocarcinoma spinal metastasis (LUAD-SM) than in para-cancerous spinal tissues and primary LUAD. Subsequently, a TME-responsive hollow MnO2 nanoplatform (H-M) loaded with Siglec15 siRNA and cisplatin (H-M@siS15/Cis) is developed, and the surface is modified with an aspartic acid octapeptide (Asp8 ), thus allowing H-M to target spinal metastasis. High drug-loading capacity, good biocompatibility, effective tumor accumulation, and efficient Siglec15 silencing are demonstrated. Furthermore, the nanoparticles could reverse immunosuppression caused by tumor cells and tumor-associated macrophages (TAMs) and inhibit osteoclast differentiation via Siglec15 downregulation in vitro. In a LUAD-SM mouse model, H-M@siS15/Cis-Asp8 exhibits superior therapeutic efficacy via synergetic immunochemotherapy and osteolysis inhibition. Taken together, this single nanoplatform reveals the therapeutic potential of the new immune checkpoint Siglec15 in LUAD-SM and provides a strategy to treat this disease.
Collapse
Affiliation(s)
- Haifeng Liang
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Lei Zhou
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zhichao Hu
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yuxiang Ge
- Department of Orthopedics Surgery, Minhang Hospital, Fudan University, Shanghai, 201100, China
| | - Taiwei Zhang
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Qing Chen
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Ben Wang
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Shunyi Lu
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Wang Ding
- Department of Orthopedics Surgery, Minhang Hospital, Fudan University, Shanghai, 201100, China
| | - Jian Dong
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Department of Orthopaedic Surgery, Zhongshan Hospital Wusong Branch, Fudan University, Shanghai, 200940, China
| | - Fengfeng Xue
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Libo Jiang
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| |
Collapse
|
28
|
Ge T, Weiwei Z, Ge F, Zhu L, Song P, Li W, Gui L, Dong W, Tao Y, Yang K. A bone-targeting drug delivery vehicle of a metal-organic framework conjugate with zoledronate combined with photothermal therapy for tumor inhibition in cancer bone metastasis. Biomater Sci 2022; 10:1831-1843. [PMID: 35253030 DOI: 10.1039/d1bm01717a] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Chemotherapy is a conventional treatment method for metastatic bone cancer, but it has limitations, such as lower drug-targeting of bone tissues and serious side effects. Bone metastasis almost always occurs in advanced cancer, and most patients in this period have strong drug resistance, which further worsens the curative effect. To address the above-mentioned difficulties, a drug delivery platform is proposed in this paper that accomplishes the bone-targeting of drugs to efficiently inhibit tumors. First, the anti-cancer drugs 5-fluorouracil (5-Fu) and indocyanine green (ICG) were loaded into a zeolitic imidazolate framework (ZIF-90) to form 5-Fu/ICG@ZIF-90. Polyethylene glycol with zoledronic acid (ZOL) was encapsulated using 5-Fu/ICG@ZIF-90 to synthesize 5-Fu/ICG@ZIF-90-PEG-ZOL nanoparticles, which showed dimensional stability, good thermal stability, and bone-targeting ability. Second, the in vitro anti-cancer activity of the designed platform was investigated using cytotoxicity, apoptosis, live-dead staining, cell cycle, and cell ultrathin section analysis. The results indicated that the nanoparticles inhibited MCF-7 cell activity when chemotherapy was combined with PTT. Finally, H&E staining and TUNEL detection were performed in mouse organs and tumors. The nanoparticles combined with photothermal therapy (PTT) and triggered by near-infrared irradiation induce apoptosis of tumor cells in vivo, displaying a better efficacy of combined chemotherapy and photothermal therapy. Experiments conducted on the 5-Fu/ICG@ZIF-90-PEG-ZOL nanoparticles demonstrated their promising performance for cancer bone metastasis inhibition.
Collapse
Affiliation(s)
- Ting Ge
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China.
| | - Zhang Weiwei
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China.
| | - Fei Ge
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China.
| | - Longbao Zhu
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China.
| | - Ping Song
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China.
| | - Wanzheng Li
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China.
| | - Lin Gui
- Department of Microbiology and Immunology, Wannan Medical College, Wuhu, Anhui 241002, People's Republic of China
| | - Wan Dong
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China.
| | - Yugui Tao
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China.
| | - Kai Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, Jiangsu, China.
| |
Collapse
|
29
|
Breast Cancer Bone Metastasis: A Narrative Review of Emerging Targeted Drug Delivery Systems. Cells 2022; 11:cells11030388. [PMID: 35159207 PMCID: PMC8833898 DOI: 10.3390/cells11030388] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/10/2022] [Accepted: 01/16/2022] [Indexed: 01/06/2023] Open
Abstract
Bone is one of the most common metastatic sites among breast cancer (BC) patients. Once bone metastasis is developed, patients' survival and quality of life will be significantly declined. At present, there are limited therapeutic options for BC patients with bone metastasis. Different nanotechnology-based delivery systems have been developed aiming to specifically deliver the therapeutic agents to the bone. The conjugation of targeting agents to nanoparticles can enhance the selective delivery of various payloads to the metastatic bone lesion. The current review highlights promising and emerging advanced nanotechnologies designed for targeted delivery of anticancer therapeutics, contrast agents, photodynamic and photothermal materials to the bone to achieve the goal of treatment, diagnosis, and prevention of BC bone metastasis. A better understanding of various properties of these new therapeutic approaches may open up new landscapes in medicine towards improving the quality of life and overall survival of BC patients who experience bone metastasis.
Collapse
|
30
|
Propylene Glycol Caprylate-Based Nanoemulsion Formulation of Plumbagin: Development and Characterization of Anticancer Activity. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3549061. [PMID: 35047632 PMCID: PMC8763502 DOI: 10.1155/2022/3549061] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 12/02/2021] [Accepted: 12/13/2021] [Indexed: 11/17/2022]
Abstract
Plumbagin, a bioactive naphthoquinone, has demonstrated potent antitumor potential. However, plumbagin is a sparingly water-soluble compound; therefore, clinical translation requires and will be facilitated by the development of a new pharmaceutical formulation. We have generated an oil-in-water nanoemulsion formulation of plumbagin using a low-energy spontaneous emulsification process with propylene glycol caprylate (Capryol 90) as an oil phase and Labrasol/Kolliphor RH40 as surfactant and cosurfactant excipients. Formulation studies using Capryol 90/Labrasol/Kolliphor RH40 components, based on pseudoternary diagram and analysis of particle size distribution and polydispersity determined by dynamic light scattering (DLS), identified an optimized composition of excipients for nanoparticle formulation. The nanoemulsion loaded with plumbagin as an active pharmaceutical ingredient had an average hydrodynamic diameter of 30.9 nm with narrow polydispersity. The nanoemulsion exhibited long-term stability, as well as good retention of particle size in simulated physiological environments. Furthermore, plumbagin-loaded nanoemulsion showed an augmented cytotoxicity against prostate cancer cells PTEN-P2 in comparison to free drug. In conclusion, we generated a formulation of plumbagin with high loading drug capacity, robust stability, and scalable production. Novel Capryol 90-based nanoemulsion formulation of plumbagin demonstrated antiproliferative activity against prostate cancer cells, warranting thus further pharmaceutical development.
Collapse
|
31
|
Huang Y, Zhai X, Ma T, Zhang M, Pan H, Weijia Lu W, Zhao X, Sun T, Li Y, Shen J, Yan C, Du Y. Rare earth-based materials for bone regeneration: Breakthroughs and advantages. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214236] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
32
|
Ojha AK, Rajasekaran R, Pandey AK, Dutta A, Seesala VS, Das SK, Chaudhury K, Dhara S. Nanotheranostics: Nanoparticles Applications, Perspectives, and Challenges. BIOSENSING, THERANOSTICS, AND MEDICAL DEVICES 2022:345-376. [DOI: 10.1007/978-981-16-2782-8_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2023]
|
33
|
Xu Q, Cao Z, Xu J, Dai M, Zhang B, Lai Q, Liu X. Effects and mechanisms of natural plant active compounds for the treatment of osteoclast-mediated bone destructive diseases. J Drug Target 2021; 30:394-412. [PMID: 34859718 DOI: 10.1080/1061186x.2021.2013488] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Bone-destructive diseases, caused by overdifferentiation of osteoclasts, reduce bone mass and quality, and disrupt bone microstructure, thereby causes osteoporosis, Paget's disease, osteolytic bone metastases, and rheumatoid arthritis. Osteoclasts, the only multinucleated cells with bone resorption function, are derived from haematopoietic progenitors of the monocyte/macrophage lineage. The regulation of osteoclast differentiation is considered an effective target for the treatment of bone-destructive diseases. Natural plant-derived products have received increasing attention in recent years due to their good safety profile, the preference of natural compounds over synthetic drugs, and their potential therapeutic and preventive activity against osteoclast-mediated bone-destructive diseases. In this study, we reviewed the research progress of the potential antiosteoclast active compounds extracted from medicinal plants and their molecular mechanisms. Active compounds from natural plants that inhibit osteoclast differentiation and functions include flavonoids, terpenoids, quinones, glucosides, polyphenols, alkaloids, coumarins, lignans, and limonoids. They inhibit bone destruction by downregulating the expression of osteoclast-specific marker genes (CTSK, MMP-9, TRAP, OSCAR, DC-STAMP, V-ATPase d2, and integrin av3) and transcription factors (c-Fos, NFATc1, and c-Src), prevent the effects of local factors (ROS, LPS, and NO), and suppress the activation of various signalling pathways (MAPK, NF-κB, Akt, and Ca2+). Therefore, osteoclast-targeting natural products are of great value in the prevention and treatment of bone destructive diseases.
Collapse
Affiliation(s)
- Qiang Xu
- Department of Orthopedics, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhiyou Cao
- Department of Orthopedics, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - JiaQiang Xu
- Department of Orthopedics, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Min Dai
- Department of Orthopedics, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Bin Zhang
- Department of Orthopedics, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qi Lai
- Department of Orthopedics, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xuqiang Liu
- Department of Orthopedics, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
34
|
Yang H, Yu Z, Ji S, Huo Q, Yan J, Gao Y, Niu Y, Xu M, Liu Y. Targeting bone microenvironments for treatment and early detection of cancer bone metastatic niches. J Control Release 2021; 341:443-456. [PMID: 34748870 DOI: 10.1016/j.jconrel.2021.11.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 02/06/2023]
Abstract
Bone tissues are the main metastatic sites of many cancers, and bone metastasis is an important cause of death. When bone metastasis occurs, dynamic interactions between tumor cells and bone tissues promote changes in the tumor-bone microenvironments that are conducive to tumor growth and progression, which also promote several related diseases, including pathological fracture, bone pain, and hypercalcemia. Accordingly, it has obvious clinical benefits for improving the cure rate and reducing the occurrence of related diseases through targeting bone microenvironments for the treatment and early detection of cancer bone metastasis niches. In this review, we briefly analyzed the relationship between bone microstructures and tumor metastasis, as well as microenvironmental changes in osteoblasts, osteoclasts, immune cells, and extracellular and bone matrixes caused when metastatic tumor cells colonize bones. We also discuss novel designs in nanodrugs for inhibiting tumor proliferation and migration through targeting to tumor bone metastases and abnormal bone-microenvironment components. In addition, related researches on the early detection of bone and multi-organ metastases by nanoprobes are also introduced. And we look forward to provide some useful proposals and enlightenments on nanotechnology-based drug delivery and probes for the treatment and early detection of bone metastasis.
Collapse
Affiliation(s)
- Hongbin Yang
- Department of Pharmacy, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China; Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Occupational Disease Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, Jiangsu, China; School of Pharmacy, Bengbu Medical College, Bengbu 233030, Anhui, China
| | - Zhenyan Yu
- School of Pharmacy, Bengbu Medical College, Bengbu 233030, Anhui, China
| | - Shuaishuai Ji
- School of Pharmacy, Bengbu Medical College, Bengbu 233030, Anhui, China
| | - Qiang Huo
- School of Pharmacy, Bengbu Medical College, Bengbu 233030, Anhui, China
| | - Juanzhu Yan
- Laboratory of Nano- and Translational Medicine, Carolina Center for Cancer Nanotechnology Excellence, Carolina Institute of Nanomedicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Yue Gao
- Department of Occupational Disease Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, Jiangsu, China
| | - Yimin Niu
- Department of Pharmacy, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China; Department of Neurology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China.
| | - Ming Xu
- Department of Occupational Disease Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, Jiangsu, China.
| | - Yang Liu
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, Jiangsu, China.
| |
Collapse
|
35
|
Yu W, Hu C, Gao H. Advances of nanomedicines in breast cancer metastasis treatment targeting different metastatic stages. Adv Drug Deliv Rev 2021; 178:113909. [PMID: 34352354 DOI: 10.1016/j.addr.2021.113909] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/20/2021] [Accepted: 07/28/2021] [Indexed: 02/07/2023]
Abstract
Breast cancer is the most common tumor in women, and the metastasis further increases the malignancy with extremely high mortality. However, there is almost no effective method in the clinic to completely inhibit breast cancer metastasis due to the dynamic multistep process with complex pathways and scattered occurring site. Nowadays, nanomedicines have been evidenced with great potential in treating cancer metastasis. In this review, we summarize the latest research advances of nanomedicines in anti-metastasis treatment. Strategies are categorized according to the metastasis dynamics, including primary tumor, circulating tumor cells, pre-metastatic niches and secondary tumor. In each different stage of metastasis process, nanomedicines are designed specifically with different functions. At the end of the review, we give our perspectives on current limitations and future directions in anti-metastasis therapy. We expect the review provides comprehensive understandings of anti-metastasis therapy for breast cancer, and boosts the clinical translation in the future to improve women's health.
Collapse
|
36
|
Cheng X, Wei J, Ge Q, Xing D, Zhou X, Qian Y, Jiang G. The optimized drug delivery systems of treating cancer bone metastatic osteolysis with nanomaterials. Drug Deliv 2021; 28:37-53. [PMID: 33336610 PMCID: PMC7751395 DOI: 10.1080/10717544.2020.1856225] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Some cancers such as human breast cancer, prostate cancer, and lung cancer easily metastasize to bone, leading to osteolysis and bone destruction accompanied by a complicated microenvironment. Systemic administration of bisphosphonates (BP) or denosumab is the routine therapy for osteolysis but with non-negligible side effects such as mandibular osteonecrosis and hypocalcemia. Thus, it is imperative to exploit optimized drug delivery systems, and some novel nanotechnology and nanomaterials have opened new horizons for scientists. Targeted and local drug delivery systems can optimize biodistribution depending on nanoparticles (NPs) or microspheres (MS) and implantable biomaterials with the controllable property. Drug delivery kinetics can be optimized by smart and sustained/local drug delivery systems for responsive delivery and sustained delivery. These delicately fabricated drug delivery systems with special matrix, structure, morphology, and modification can minimize unexpected toxicity caused by systemic delivery and achieve desired effects through integrating multiple drugs or multiple functions. This review summarized recent studies about optimized drug delivery systems for the treatment of cancer metastatic osteolysis, aimed at giving some inspiration in designing efficient multifunctional drug delivery systems.
Collapse
Affiliation(s)
- Xi Cheng
- Department of Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Jinrong Wei
- Department of Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Qi Ge
- Department of Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Danlei Xing
- Department of Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Xuefeng Zhou
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, People's Republic of China
| | - Yunzhu Qian
- Center of Stomatology, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Guoqin Jiang
- Department of Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| |
Collapse
|
37
|
Ackun-Farmmer MA, Overby CT, Haws BE, Choe R, Benoit DSW. Biomaterials for Orthopaedic Diagnostics and Theranostics. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2021; 19. [PMID: 34458652 DOI: 10.1016/j.cobme.2021.100308] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Despite widespread use of conventional diagnostic methods in orthopaedic applications, limitations still exist in detection and diagnosing many pathologies especially at early stages when intervention is most critical. The use of biomaterials to develop diagnostics and theranostics, including nanoparticles and scaffolds for systemic or local applications, has significant promise to address these shortcomings and enable successful clinical translation. These developments in both modular and holistic design of diagnostic and theranostic biomaterials may improve patient treatments for myriad orthopaedic applications ranging from cancer to fractures to infection.
Collapse
Affiliation(s)
- Marian A Ackun-Farmmer
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA.,Center for Musculoskeletal Research, University of Rochester, Rochester, NY, USA
| | - Clyde T Overby
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA.,Center for Musculoskeletal Research, University of Rochester, Rochester, NY, USA
| | - Brittany E Haws
- Department of Orthopaedics, University of Rochester, Rochester, NY, USA
| | - Regine Choe
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA.,Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY, USA
| | - Danielle S W Benoit
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA.,Center for Musculoskeletal Research, University of Rochester, Rochester, NY, USA.,Department of Orthopaedics, University of Rochester, Rochester, NY, USA.,Materials Science Program, University of Rochester, Rochester, NY, USA.,Department of Chemical Engineering, University of Rochester, Rochester, NY, USA
| |
Collapse
|
38
|
Long-Term Tri-Modal In Vivo Tracking of Engrafted Cartilage-Derived Stem/Progenitor Cells Based on Upconversion Nanoparticles. Biomolecules 2021; 11:biom11070958. [PMID: 34209859 PMCID: PMC8301782 DOI: 10.3390/biom11070958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/20/2021] [Accepted: 06/24/2021] [Indexed: 01/10/2023] Open
Abstract
Cartilage-derived stem/progenitor cells (CSPCs) are a potential choice for seed cells in osteal and chondral regeneration, and the outcomes of their survival and position distribution in vivo form the basis for the investigation of their mechanism. However, the current use of in vivo stem cell tracing techniques in laboratories is relatively limited, owing to their high operating costs and cytotoxicity. Herein, we performed tri-modal in vivo imaging of CSPCs during subcutaneous chondrogenesis using upconversion nanoparticles (UCNPs) for 28 days. Distinctive signals at accurate positions were acquired without signal noise from X-ray computed tomography, magnetic resonance imaging, and upconversion luminescence. The measured intensities were all significantly proportional to the cell numbers, thereby enabling real-time in vivo quantification of the implanted cells. However, limitations of the detectable range of cell numbers were also observed, owing to the imaging shortcomings of UCNPs, which requires further improvement of the nanoparticles. Our study explores the application value of upconversion nanomaterials in the tri-modal monitoring of implanted stem cells and provides new perspectives for future clinical translation.
Collapse
|
39
|
Ma Y, Chen L, Li X, Hu A, Wang H, Zhou H, Tian B, Dong J. Rationally integrating peptide-induced targeting and multimodal therapies in a dual-shell theranostic platform for orthotopic metastatic spinal tumors. Biomaterials 2021; 275:120917. [PMID: 34182327 DOI: 10.1016/j.biomaterials.2021.120917] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 05/15/2021] [Accepted: 05/20/2021] [Indexed: 12/17/2022]
Abstract
Metastatic tumors present great challenges in diagnosis and treatment. Herein, a proof-of-concept theranostic nanoplatform composed of an Au nanoparticle core and a double-shell of metal-organic framework (MOF) and mesoporous silica (MS) is developed for combating spinal metastasis of lung cancer in an orthotopic model. Two drugs, Alpelisib (BYL719) as an inhibitor and cisplatin as a chemotherapeutic drug, are separately loaded into the double-shell with high loading content. A targeting peptide called dYNH and indocyanine green (ICG) are conjugated onto the outmost MS layer for specifically targeting metastatic tumor cells and enhancing photothermal effect. The resultant Au@MOF@MS-ICG -dYNH-PAA (AMMD) shows enhanced cellular uptake on tumor cells and accumulation at metastatic spinal tumors, as evidenced by fluorescent and photoacoustic imaging. Benefiting from this ultra-high affinity to tumor cells and the photothermal effect of ICG, the dual-drug-loaded AMMD (BCAMMD) modified with ICG exhibits superior therapeutic efficacy on spinal tumors. More importantly, bone destruction, which frequently occurs in bone-related tumors, is effectively suppressed by BYL719 in BCAMMD. Hence, by rationally integrating multiple functions, including excellent targeting ability, dual-drug loading, photothermal therapy, and photoacoustic imaging, the developed all-in-one theranostic nanoplatform provides a useful paradigm of employing nanomedicine to treat metastatic spinal tumors efficiently.
Collapse
Affiliation(s)
- Yiqun Ma
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China
| | - Liang Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China.
| | - Xilei Li
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China
| | - Annan Hu
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China
| | - Huiren Wang
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China
| | - Hao Zhou
- Department of Orthopaedic Surgery, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, 200031, PR China
| | - Bo Tian
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China.
| | - Jian Dong
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China; Department of Orthopaedic Surgery, Shanghai Baoshan District Wusong Central Hospital, Zhongshan Hospital Wusong Branch, Fudan University, Shanghai, 200940, PR China.
| |
Collapse
|
40
|
Pan P, Yue Q, Li J, Gao M, Yang X, Ren Y, Cheng X, Cui P, Deng Y. Smart Cargo Delivery System based on Mesoporous Nanoparticles for Bone Disease Diagnosis and Treatment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2004586. [PMID: 34165902 PMCID: PMC8224433 DOI: 10.1002/advs.202004586] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/11/2021] [Indexed: 05/05/2023]
Abstract
Bone diseases constitute a major issue for modern societies as a consequence of progressive aging. Advantages such as open mesoporous channel, high specific surface area, ease of surface modification, and multifunctional integration are the driving forces for the application of mesoporous nanoparticles (MNs) in bone disease diagnosis and treatment. To achieve better therapeutic effects, it is necessary to understand the properties of MNs and cargo delivery mechanisms, which are the foundation and key in the design of MNs. The main types and characteristics of MNs for bone regeneration, such as mesoporous silica (mSiO2 ), mesoporous hydroxyapatite (mHAP), mesoporous calcium phosphates (mCaPs) are introduced. Additionally, the relationship between the cargo release mechanisms and bone regeneration of MNs-based nanocarriers is elucidated in detail. Particularly, MNs-based smart cargo transport strategies such as sustained cargo release, stimuli-responsive (e.g., pH, photo, ultrasound, and multi-stimuli) controllable delivery, and specific bone-targeted therapy for bone disease diagnosis and treatment are analyzed and discussed in depth. Lastly, the conclusions and outlook about the design and development of MNs-based cargo delivery systems in diagnosis and treatment for bone tissue engineering are provided to inspire new ideas and attract researchers' attention from multidisciplinary areas spanning chemistry, materials science, and biomedicine.
Collapse
Affiliation(s)
- Panpan Pan
- Department of Chemistry, Department of Gastroenterology, Zhongshan Hospital of Fudan University, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| | - Qin Yue
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610051, China
| | - Juan Li
- Department of Chemistry, Department of Gastroenterology, Zhongshan Hospital of Fudan University, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| | - Meiqi Gao
- Department of Chemistry, Department of Gastroenterology, Zhongshan Hospital of Fudan University, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| | - Xuanyu Yang
- Department of Chemistry, Department of Gastroenterology, Zhongshan Hospital of Fudan University, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| | - Yuan Ren
- Department of Chemistry, Department of Gastroenterology, Zhongshan Hospital of Fudan University, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| | - Xiaowei Cheng
- Department of Chemistry, Department of Gastroenterology, Zhongshan Hospital of Fudan University, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| | - Penglei Cui
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yonghui Deng
- Department of Chemistry, Department of Gastroenterology, Zhongshan Hospital of Fudan University, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| |
Collapse
|
41
|
Kandasamy G, Maity D. Multifunctional theranostic nanoparticles for biomedical cancer treatments - A comprehensive review. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 127:112199. [PMID: 34225852 DOI: 10.1016/j.msec.2021.112199] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/12/2021] [Accepted: 05/18/2021] [Indexed: 12/16/2022]
Abstract
Modern-day search for the novel agents (their preparation and consequent implementation) to effectively treat the cancer is mainly fuelled by the historical failure of the conventional treatment modalities. Apart from that, the complexities such as higher rate of cell mutations, variable tumor microenvironment, patient-specific disparities, and the evolving nature of cancers have made this search much stronger in the latest times. As a result of this, in about two decades, the theranostic nanoparticles (TNPs) - i.e., nanoparticles that integrate therapeutic and diagnostic characteristics - have been developed. The examples for TNPs include mesoporous silica nanoparticles, luminescence nanoparticles, carbon-based nanomaterials, metal nanoparticles, and magnetic nanoparticles. These TNPs have emerged as single and powerful cancer-treating multifunctional nanoplatforms, as they widely provide the necessary functionalities to overcome the previous/conventional limitations including lack of the site-specific delivery of anti-cancer drugs, and real-time continuous monitoring of the target cancer sites while performing therapeutic actions. This has been mainly possible due to the association of the as-developed TNPs with the already-available unique diagnostic (e.g., luminescence, photoacoustic, and magnetic resonance imaging) and therapeutic (e.g., photothermal, photodynamic, hyperthermia therapy) modalities in the biomedical field. In this review, we have discussed in detail about the recent developments on the aforementioned important TNPs without/with targeting ability (i.e., attaching them with ligands or tumor-specific antibodies) and also the strategies that are implemented to increase their tumor accumulation and to enhance their theranostic efficacies for effective biomedical cancer treatments.
Collapse
Affiliation(s)
- Ganeshlenin Kandasamy
- Department of Biomedical Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai, India
| | - Dipak Maity
- Department of Chemical Engineering, University of Petroleum and Energy Studies, Dehradun, India.
| |
Collapse
|
42
|
Lim CW, Kim D. Bone targeting nano-aggregates prepared from self-assembled polyaspartamide graft copolymers for pH sensitive DOX delivery. Biomater Sci 2021; 9:1660-1667. [PMID: 33409517 DOI: 10.1039/d0bm01473g] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Nanoparticles with bone targeting ability and pH-sensitivity were prepared with polyaspartamide (PASPAM) derivatives based on polysuccinimide (PSI) grafted with octadecylamine (C18), hydrazine (HYD) and polyethylene glycol (PEG, Mw: 5000). For the bone targeting, alendronate (ALN), which has bone affinity, was grafted to PEG and doxorubicin (DOX) was conjugated with linkers of acid sensitive hydrazone bonds, which can be cleaved most effectively in an intracellular acidic environment. At pH 5.0, ∼75% of the drug was released from ALN-PEG/C18/HYD-DOX-g-PASPAM due to the effective cleavage of HYD under the acidic condition. Also, ALN-PEG/C18/HYD-DOX-g-PASPAM particles were more effectively adsorbed on the surface of bone than PEG/C18/HYD-DOX-g-PASPAM. According to an in vivo antitumor activity test, the volume of tumor treated with ALN-PEG/C18/HYD-DOX-g-PASPAM decreased (1550 mm3) when compared with the PBS control sample (3850 mm3), proving that ALN-PEG/C18/HYD-DOX-g-PASPAM is an effective drug delivery system for the treatment of bone metastasis of breast cancer.
Collapse
Affiliation(s)
- Cheol Won Lim
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Kyunggi 440-746, Republic of Korea.
| | - Dukjoon Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Kyunggi 440-746, Republic of Korea.
| |
Collapse
|
43
|
Ren M, Li Y, Zhang H, Li L, He P, Ji P, Yang S. An oligopeptide/aptamer-conjugated dendrimer-based nanocarrier for dual-targeting delivery to bone. J Mater Chem B 2021; 9:2831-2844. [PMID: 33704322 DOI: 10.1039/d0tb02926b] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Bone targeting is one of the most potentially valuable therapeutic methods for medically treating bone diseases, such as osteoarthritis, osteoporosis, nonunion bone defects, bone cancer, and myeloma-related bone disease, but its efficacy remains a challenge due to unfavorable bone biodistribution, off-target effects, and the lack of cell specificity. To address these problems, we synthesized a new dual-targeting nanocarrier for delivery to bone by covalently modifying the G4.0 PAMAM dendrimer with the C11 peptide and the CH6 aptamer (CH6-PAMAM-C11). The molecular structure was confirmed using 1H-NMR and FT-IR spectroscopy. CLSM results showed that the novel nanocarrier could successfully accumulate in the targeted cells, mineralized areas and tissues. DLS and TEM demonstrated that CH6-PAMAM-C11 was approximately 40-50 nm in diameter. In vitro targeting experiments confirmed that the C11 ligand had a high affinity for HAP, while the CH6 aptamer had a high affinity for osteoblasts. The in vivo biodistribution analysis showed that CH6-PAMAM-C11 could rapidly accumulate in bone within 4 h and 12 h and then deliver drugs to sites of osteoblast activity. The components of CH6-PAMAM-C11 were well excreted via the kidneys. The accumulation of many more CH6-PAMAM-C11 dual-targeting nanocarriers than single-targeting nanocarriers was observed in the periosteal layer of the rat skull, along with aggregation at sites of osteoblast activity. All of these results indicate that CH6-PAMAM-C11 may be a promising nanocarrier for the delivery of drugs to bone, particularly for the treatment of osteoporosis, and our research strategy may serve as a reference for research in targeted drug, small molecule drug and nucleic acid delivery.
Collapse
Affiliation(s)
- Mingxing Ren
- College of Stomatology, Chongqing Medical University, 426 Songshibei Road, Yubei District, Chongqing, 401147, China.
| | | | | | | | | | | | | |
Collapse
|
44
|
Choi G, Rejinold NS, Piao H, Choy JH. Inorganic-inorganic nanohybrids for drug delivery, imaging and photo-therapy: recent developments and future scope. Chem Sci 2021; 12:5044-5063. [PMID: 34168768 PMCID: PMC8179608 DOI: 10.1039/d0sc06724e] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/09/2021] [Indexed: 12/13/2022] Open
Abstract
Advanced nanotechnology has been emerging rapidly in terms of novel hybrid nanomaterials that have found various applications in day-to-day life for the betterment of the public. Specifically, gold, iron, silica, hydroxy apatite, and layered double hydroxide based nanohybrids have shown tremendous progress in biomedical applications, including bio-imaging, therapeutic delivery and photothermal/dynamic therapy. Moreover, recent progress in up-conversion nanohybrid materials is also notable because they have excellent NIR imaging capability along with therapeutic benefits which would be useful for treating deep-rooted tumor tissues. Our present review highlights recent developments in inorganic-inorganic nanohybrids, and their applications in bio-imaging, drug delivery, and photo-therapy. In addition, their future scope is also discussed in detail.
Collapse
Affiliation(s)
- Goeun Choi
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University Cheonan 31116 Republic of Korea
- College of Science and Technology, Dankook University Cheonan 31116 Republic of Korea
| | - N Sanoj Rejinold
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University Cheonan 31116 Republic of Korea
| | - Huiyan Piao
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University Cheonan 31116 Republic of Korea
| | - Jin-Ho Choy
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University Cheonan 31116 Republic of Korea
- Department of Pre-medical Course, College of Medicine, Dankook University Cheonan 31116 Republic of Korea
- Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovative Research, Tokyo Institute of Technology Yokohama 226-8503 Japan
| |
Collapse
|
45
|
Hofmann CLM, Fischer S, Eriksen EH, Bläsi B, Reitz C, Yazicioglu D, Howard IA, Richards BS, Goldschmidt JC. Experimental validation of a modeling framework for upconversion enhancement in 1D-photonic crystals. Nat Commun 2021; 12:104. [PMID: 33397918 PMCID: PMC7782824 DOI: 10.1038/s41467-020-20305-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 11/23/2020] [Indexed: 11/15/2022] Open
Abstract
Photonic structures can be designed to tailor luminescence properties of materials, which becomes particularly interesting for non-linear phenomena, such as photon upconversion. However, there is no adequate theoretical framework to optimize photonic structure designs for upconversion enhancement. Here, we present a comprehensive theoretical model describing photonic effects on upconversion and confirm the model’s predictions by experimental realization of 1D-photonic upconverter devices with large statistics and parameter scans. The measured upconversion photoluminescence enhancement reaches 82 ± 24% of the simulated enhancement, in the mean of 2480 separate measurements, scanning the irradiance and the excitation wavelength on 40 different sample designs. Additionally, the trends expected from the modeled interaction of photonic energy density enhancement, local density of optical states and internal upconversion dynamics, are clearly validated in all experimentally performed parameter scans. Our simulation tool now opens the possibility of precisely designing photonic structure designs for various upconverting materials and applications. A theoretical framework to optimize photonic structure designs for upconversion enhancement is lacking. Here, the authors present a comprehensive theoretical model and confirm the model’s predictions by experimental realisation of 1D-photonic upconverter devices with large statistics and parameter scans.
Collapse
Affiliation(s)
- Clarissa L M Hofmann
- Fraunhofer Institute for Solar Energy Systems, Heidenhofstraße 2, 79110, Freiburg, Germany. .,Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.
| | - Stefan Fischer
- Department of Materials Science and Engineering, Stanford University, 496 Lomita Mall, Stanford, CA, 94305, USA
| | - Emil H Eriksen
- Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000, Aarhus, Denmark
| | - Benedikt Bläsi
- Fraunhofer Institute for Solar Energy Systems, Heidenhofstraße 2, 79110, Freiburg, Germany
| | - Christian Reitz
- Institute of Nanotechnology (INT), Karlsruhe Nano Micro Facility, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Deniz Yazicioglu
- Fraunhofer Institute for Solar Energy Systems, Heidenhofstraße 2, 79110, Freiburg, Germany.,Laboratory for Nanotechnology, Institute of Micro Systems Technology - IMTEK, University of Freiburg, Georges-Köhler-Allee 103, 79110, Freiburg, Germany
| | - Ian A Howard
- Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.,Light Technology Institute (LTI), Karlsruhe Institute of Technology, Engesserstrasse 13, 76131, Karlsruhe, Germany
| | - Bryce S Richards
- Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.,Light Technology Institute (LTI), Karlsruhe Institute of Technology, Engesserstrasse 13, 76131, Karlsruhe, Germany
| | | |
Collapse
|
46
|
Ordikhani F, Zandi N, Mazaheri M, Luther GA, Ghovvati M, Akbarzadeh A, Annabi N. Targeted nanomedicines for the treatment of bone disease and regeneration. Med Res Rev 2020; 41:1221-1254. [PMID: 33347711 DOI: 10.1002/med.21759] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 10/14/2020] [Accepted: 11/11/2020] [Indexed: 12/17/2022]
Abstract
Targeted delivery by either passive or active targeting of therapeutics to the bone is an attractive treatment for various bone related diseases such as osteoporosis, osteosarcoma, multiple myeloma, and metastatic bone tumors. Engineering novel drug delivery carriers can increase therapeutic efficacy and minimize the risk of side effects. Developmnet of nanocarrier delivery systems is an interesting field of ongoing studies with opportunities to provide more effective therapies. In addition, preclinical nanomedicine research can open new opportunities for preclinical bone-targeted drug delivery; nevertheless, further research is needed to progress these therapies towards clinical applications. In the present review, the latest advancements in targeting moieties and nanocarrier drug delivery systems for the treatment of bone diseases are summarized. We also review the regeneration capability and effective delivery of nanomedicines for orthopedic applications.
Collapse
Affiliation(s)
- Farideh Ordikhani
- Transplantation Research Center, Division of Renal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Nooshin Zandi
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran, Iran.,Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, USA
| | - Mozhdeh Mazaheri
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
| | - Gaurav A Luther
- Department of Orthopedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Mahsa Ghovvati
- Department of Chemical and Biomolecular Engineering, University of California- Los Angeles, California, Los Angeles, USA
| | - Abolfazl Akbarzadeh
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, USA.,Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasim Annabi
- Department of Chemical and Biomolecular Engineering, University of California- Los Angeles, California, Los Angeles, USA
| |
Collapse
|
47
|
Huang X, Xie M, Xie Y, Mei F, Lu X, Li X, Chen L. The roles of osteocytes in alveolar bone destruction in periodontitis. J Transl Med 2020; 18:479. [PMID: 33308247 PMCID: PMC7733264 DOI: 10.1186/s12967-020-02664-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/03/2020] [Indexed: 02/06/2023] Open
Abstract
Periodontitis, a bacterium-induced inflammatory disease that is characterized by alveolar bone loss, is highly prevalent worldwide. Elucidating the underlying mechanisms of alveolar bone loss in periodontitis is crucial for understanding its pathogenesis. Classically, bone cells, such as osteoclasts, osteoblasts and bone marrow stromal cells, are thought to dominate the development of bone destruction in periodontitis. Recently, osteocytes, the cells embedded in the mineral matrix, have gained attention. This review demonstrates the key contributing role of osteocytes in periodontitis, especially in alveolar bone loss. Osteocytes not only initiate physiological bone remodeling but also assist in inflammation-related changes in bone remodeling. The latest evidence suggests that osteocytes are involved in regulating bone anabolism and catabolism in the progression of periodontitis. The altered secretion of receptor activator of NF-κB ligand (RANKL), sclerostin and Dickkopf-related protein 1 (DKK1) by osteocytes affects the balance of bone resorption and formation and promotes bone loss. In addition, the accumulation of prematurely senescent and apoptotic osteocytes observed in alveolar bone may exacerbate local destruction. Based on their communication with the bloodstream, it is noteworthy that osteocytes may participate in the interaction between local periodontitis lesions and systemic diseases. Overall, further investigations of osteocytes may provide vital insights that improve our understanding of the pathophysiology of periodontitis.
Collapse
Affiliation(s)
- Xiaofei Huang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Mengru Xie
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Yanling Xie
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Feng Mei
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Xiaofeng Lu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Xiaoshuang Li
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China. .,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China.
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China. .,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China.
| |
Collapse
|
48
|
Osteocyte apoptosis: the roles and key molecular mechanisms in resorption-related bone diseases. Cell Death Dis 2020; 11:846. [PMID: 33046704 PMCID: PMC7552426 DOI: 10.1038/s41419-020-03059-8] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 01/18/2023]
Abstract
Vital osteocytes have been well known to function as an important orchestrator in the preservation of robustness and fidelity of the bone remodeling process. Nevertheless, some key pathological factors, such as sex steroid deficiency and excess glucocorticoids, and so on, are implicated in inducing a bulk of apoptotic osteocytes, subsequently resulting in resorption-related bone loss. As much, osteocyte apoptosis, under homeostatic conditions, is in an optimal state of balance tightly controlled by pro- and anti-apoptotic mechanism pathways. Importantly, there exist many essential signaling proteins in the process of osteocyte apoptosis, which has a crucial role in maintaining a homeostatic environment. While increasing in vitro and in vivo studies have established, in part, key signaling pathways and cross-talk mechanism on osteocyte apoptosis, intrinsic and complex mechanism underlying osteocyte apoptosis occurs in various states of pathologies remains ill-defined. In this review, we discuss not only essential pro- and anti-apoptotic signaling pathways and key biomarkers involved in these key mechanisms under different pathological agents, but also the pivotal role of apoptotic osteocytes in osteoclastogenesis-triggered bone loss, hopefully shedding new light on the attractive and proper actions of pharmacotherapeutics of targeting apoptosis and ensuing resorption-related bone diseases such as osteoporosis and fragility fractures.
Collapse
|
49
|
Li D, Liu Q, Qi Q, Shi H, Hsu EC, Chen W, Yuan W, Wu Y, Lin S, Zeng Y, Xiao Z, Xu L, Zhang Y, Stoyanova T, Jia W, Cheng Z. Gold Nanoclusters for NIR-II Fluorescence Imaging of Bones. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2003851. [PMID: 33000882 DOI: 10.1002/smll.202003851] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/20/2020] [Indexed: 05/25/2023]
Abstract
Fluorescence imaging in the second near-infrared window (NIR-II, 1000-1700 nm) holds great promise for deep tissue visualization. Development of novel clinical translatable NIR-II probes is crucial for realizing the medical applications of NIR-II fluorescence imaging. Herein, the glutathione-capped gold nanoclusters (AuNCs, specifically Au25 (SG)18 ) demonstrate highly efficient binding capability to hydroxyapatite in vitro for the first time. Further in vivo NIR-II fluorescence imaging of AuNCs indicate that they accumulate in bone tissues with high contrast and signal-background ratio. AuNCs are also mainly and quickly excreted from body through renal system, showing excellent ribs and thoracic vertebra imaging because of no background signal in liver and spleen. The deep tissue penetration capability and high resolution of AuNCs in NIR-II imaging render their great potential for fluorescence-guided surgery like spinal pedicle screw implantation. Overall, AuNCs are highly promising and clinical translatable NIR-II imaging probe for visualizing bone and bone related abnormalities.
Collapse
Affiliation(s)
- Deling Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Qiang Liu
- College of Chemistry and Environmental Protection Engineering, Southwest Minzu University, Chengdu, Sichuan, 610041, China
| | - Qingrong Qi
- Molecular Imaging Program at Stanford (MIPS), Bio-X Program, and Department of Radiology, Stanford University, Palo Alto, CA, 94305, USA
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Hui Shi
- Molecular Imaging Program at Stanford (MIPS), Bio-X Program, and Department of Radiology, Stanford University, Palo Alto, CA, 94305, USA
| | - En-Chi Hsu
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University, Palo Alto, CA, 94304, USA
| | - Weiyu Chen
- Molecular Imaging Program at Stanford (MIPS), Bio-X Program, and Department of Radiology, Stanford University, Palo Alto, CA, 94305, USA
| | - Wenli Yuan
- Molecular Imaging Program at Stanford (MIPS), Bio-X Program, and Department of Radiology, Stanford University, Palo Alto, CA, 94305, USA
| | - Yifan Wu
- Molecular Imaging Program at Stanford (MIPS), Bio-X Program, and Department of Radiology, Stanford University, Palo Alto, CA, 94305, USA
| | - Sien Lin
- Department of Medicine, Stanford University School of Medicine, Palo Alto, CA, 94305, USA
| | - Yitian Zeng
- Department of Medicine, Stanford University School of Medicine, Palo Alto, CA, 94305, USA
| | - Zunyu Xiao
- Molecular Imaging Program at Stanford (MIPS), Bio-X Program, and Department of Radiology, Stanford University, Palo Alto, CA, 94305, USA
| | - Lingyun Xu
- Molecular Imaging Program at Stanford (MIPS), Bio-X Program, and Department of Radiology, Stanford University, Palo Alto, CA, 94305, USA
| | - Yanrong Zhang
- Department of Materials Science and Engineering, Stanford University, Palo Alto, CA, 94304, USA
| | - Tanya Stoyanova
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University, Palo Alto, CA, 94304, USA
| | - Wang Jia
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Zhen Cheng
- Molecular Imaging Program at Stanford (MIPS), Bio-X Program, and Department of Radiology, Stanford University, Palo Alto, CA, 94305, USA
| |
Collapse
|
50
|
Gao X, Li L, Cai X, Huang Q, Xiao J, Cheng Y. Targeting nanoparticles for diagnosis and therapy of bone tumors: Opportunities and challenges. Biomaterials 2020; 265:120404. [PMID: 32987273 DOI: 10.1016/j.biomaterials.2020.120404] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 09/15/2020] [Accepted: 09/18/2020] [Indexed: 12/14/2022]
Abstract
A variety of targeted nanoparticles were developed for the diagnosis and therapy of orthotopic and metastatic bone tumors during the past decade. This critical review will focus on principles and methods in the design of these bone-targeted nanoparticles. Ligands including bisphosphonates, aspartic acid-rich peptides and synthetic polymers were grafted on nanoparticles such as PLGA nanoparticles, liposomes, dendrimers and inorganic nanoparticles for bone targeting. Besides, other ligands such as monoclonal antibodies, peptides and aptamers targeting biomarkers on tumor/bone cells were identified for targeted diagnosis and therapy. Examples of targeted nanoparticles for the early detection of bone metastatic tumors and the ablation of cancer via chemotherapy, photothermal therapy, gene therapy and combination therapy will be intensively reviewed. The development of multifunctional nanoparticles to break down the "vicious" cycle between tumor cell proliferation and bone resorption, and the challenges and perspectives in this area will be discussed.
Collapse
Affiliation(s)
- Xin Gao
- East China Normal University and Shanghai Changzheng Hospital Joint Research Center for Orthopedic Oncology, 200241, Shanghai, China; Department of Orthopedics Oncology, Changzheng Hospital, Navy Medical University, Shanghai, 200003, China
| | - Lin Li
- East China Normal University and Shanghai Changzheng Hospital Joint Research Center for Orthopedic Oncology, 200241, Shanghai, China; Department of Orthopedics Oncology, Changzheng Hospital, Navy Medical University, Shanghai, 200003, China
| | - Xiaopan Cai
- East China Normal University and Shanghai Changzheng Hospital Joint Research Center for Orthopedic Oncology, 200241, Shanghai, China; Department of Orthopedics Oncology, Changzheng Hospital, Navy Medical University, Shanghai, 200003, China
| | - Quan Huang
- East China Normal University and Shanghai Changzheng Hospital Joint Research Center for Orthopedic Oncology, 200241, Shanghai, China; Department of Orthopedics Oncology, Changzheng Hospital, Navy Medical University, Shanghai, 200003, China.
| | - Jianru Xiao
- East China Normal University and Shanghai Changzheng Hospital Joint Research Center for Orthopedic Oncology, 200241, Shanghai, China; Department of Orthopedics Oncology, Changzheng Hospital, Navy Medical University, Shanghai, 200003, China.
| | - Yiyun Cheng
- East China Normal University and Shanghai Changzheng Hospital Joint Research Center for Orthopedic Oncology, 200241, Shanghai, China; Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|