1
|
Yin H, Xin Y, Yang J, Luo Q, Yang M, Sun J, Wang Y, Wang Q, Kalvakolanu DV, Guo B, Jiang W, Zhang L. Multifunctional nanozymes: Promising applications in clinical diagnosis and cancer treatment. Biosens Bioelectron 2025; 279:117383. [PMID: 40121930 DOI: 10.1016/j.bios.2025.117383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 02/09/2025] [Accepted: 03/14/2025] [Indexed: 03/25/2025]
Abstract
Cancer remains one of the greatest challenges in modern medicine. Traditional chemotherapy drugs often cause severe side effects, including nausea, vomiting, diarrhea, neurotoxicity, liver damage, and nephrotoxicity. In addition to these adverse effects, high recurrence and metastasis rates following treatment pose significant challenges for clinicians. There is an urgent need for novel therapeutic strategies to improve cancer treatment outcomes. In this context, nanozymes-artificial enzyme mimetics-have attracted considerable attention due to their unique advantages, including potent tumor-killing effects, enhanced biocompatibility, and reduced toxicity. Notably, nanozymes can dynamically monitor tumors through imaging and tracing. The multifunctional nanozyme (MN) is a promising research focus, integrating multiple catalytic activities, signal enhancement, sensing capabilities, and diverse modifications within a single nanozyme system. MNs can selectively target tumor regions, facilitating synergistic effects with other cancer therapies while enabling real-time imaging and tumor tracking. In this review, we first categorize MNs based on their composition and structural characteristics. We then discuss the primary mechanisms by which MNs exert their anticancer effects. Additionally, we review three types of MN biosensors and four MN-based therapeutic approaches applied in cancer treatment. Finally, we highlight the current challenges in MN research and provide an outlook on future developments in this field.
Collapse
Affiliation(s)
- Hailin Yin
- College of Basic Medical Sciences, The Medical Basic Research Innovation Center of Airway Disease in North China, Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China
| | - Yang Xin
- College of Basic Medical Sciences, The Medical Basic Research Innovation Center of Airway Disease in North China, Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China
| | - Jiaying Yang
- College of Basic Medical Sciences, The Medical Basic Research Innovation Center of Airway Disease in North China, Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China
| | - Qian Luo
- College of Basic Medical Sciences, The Medical Basic Research Innovation Center of Airway Disease in North China, Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China
| | - Mei Yang
- College of Basic Medical Sciences, The Medical Basic Research Innovation Center of Airway Disease in North China, Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China
| | - Jicheng Sun
- Department of Surgery, China-Japan Union Hospital, Jilin University, Changchun, 130033, China
| | - Yingtong Wang
- The Undergraduate Center of Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Qi Wang
- College of Basic Medical Sciences, The Medical Basic Research Innovation Center of Airway Disease in North China, Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China
| | - Dhan V Kalvakolanu
- Greenebaum NCI Comprehensive Cancer Center, Department of Microbiology and Immunology, University of Maryland School Medicine, Baltimore, MD, USA
| | - Baofeng Guo
- Department of Surgery, China-Japan Union Hospital, Jilin University, Changchun, 130033, China
| | - Wei Jiang
- Academy of Medical Sciences, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, 450052, China.
| | - Ling Zhang
- College of Basic Medical Sciences, The Medical Basic Research Innovation Center of Airway Disease in North China, Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China.
| |
Collapse
|
2
|
Ma G, Cheng K, Wang X, Zeng Y, Hu C, He L, Shi Z, Lin H, Zhang T, Sun S, Huang P. Dual oxygen supply system of carbon dot-loaded microbubbles with acoustic cavitation for enhanced sonodynamic therapy in diabetic wound healing. Biomaterials 2025; 318:123145. [PMID: 39874643 DOI: 10.1016/j.biomaterials.2025.123145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/19/2025] [Accepted: 01/24/2025] [Indexed: 01/30/2025]
Abstract
Diabetic wounds present significant treatment challenges due to their complex microenvironment, marked by persistent inflammation from bacterial infections, hypoxia caused by diabetic microangiopathy, and biofilm colonization. Sonodynamic therapy (SDT) offers potential for treating such wounds by targeting deep tissues with antibacterial effects, but its efficacy is limited by hypoxic conditions and biofilm barriers. To overcome these obstacles, we developed a novel approach using oxygen-carrying microbubbles loaded with Mn2+-doped carbon dots (MnCDs@O2MBs) to enhance SDT and disrupt biofilms. Through precursor screening and design, MnCDs are engineered to exhibit tailored properties of sonodynamic activity and enzyme-like catalytic capabilities. This system provides a dual oxygen supply for amplifying the SDT effects: MnCDs, serving as a sonosensitizer, also chemically convert excess H2O2 at infection sites into oxygen, while the O2MBs physically release oxygen through ultrasound-induced cavitation. The cavitation effect also disrupts biofilms, improving the delivery of sonosensitizers and boosting SDT efficacy. In a diabetic wound model, this strategy downregulated TLR, NF-κB, and TNF inflammatory pathways, reduced pro-inflammatory factor secretion, promoted angiogenesis, and accelerated wound healing, thereby acting as a promising treatment approach for diabetic wound healing.
Collapse
Affiliation(s)
- Guangrong Ma
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou, 310009, PR China; Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou, 310009, PR China
| | - Ke Cheng
- International Joint Research Center for Photo-Responsive Molecules and Materials School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
| | - Xue Wang
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou, 310009, PR China; Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou, 310009, PR China
| | - Yiqing Zeng
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou, 310009, PR China; Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou, 310009, PR China
| | - Chenlu Hu
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou, 310009, PR China; Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou, 310009, PR China
| | - Luying He
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou, 310009, PR China; Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou, 310009, PR China
| | - Zhan Shi
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou, 310009, PR China; Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou, 310009, PR China
| | - Hengwei Lin
- International Joint Research Center for Photo-Responsive Molecules and Materials School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
| | - Tao Zhang
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou, 310009, PR China; Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou, 310009, PR China.
| | - Shan Sun
- International Joint Research Center for Photo-Responsive Molecules and Materials School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, PR China.
| | - Pintong Huang
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou, 310009, PR China; Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou, 310009, PR China; Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, No. 66 Dongxin Avenue, Binjiang District, Hangzhou, 310053, PR China.
| |
Collapse
|
3
|
Tao J, Sun Y, Wang G, Sun J, Dong S, Ding J. Advanced biomaterials for targeting mature biofilms in periodontitis therapy. Bioact Mater 2025; 48:474-492. [PMID: 40093304 PMCID: PMC11910363 DOI: 10.1016/j.bioactmat.2025.02.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/14/2025] [Accepted: 02/14/2025] [Indexed: 03/19/2025] Open
Abstract
Periodontitis is a chronic inflammatory disease primarily caused by bacteria, leading to inflamed and bleeding gums, periodontal pocket formation, and bone loss. Affecting 70%-90% of adults over 65, periodontitis is a leading cause of tooth loss and significantly impacts quality of life. Standard treatments, including subgingival scraping and antibiotics, have limitations, and antibiotic resistance among periodontal pathogens is an increasing concern. Biofilms are barriers to drugs and immune responses, contributing to bacterial resistance and reducing antibiotic effectiveness. Due to their adjustable physicochemical properties, bioactive materials potentially eliminate bacterial biofilms, presenting a promising alternative for periodontitis therapy. In this review, the recent innovations in biomaterials for removing mature biofilms in periodontitis are examined, and their broader potential is discussed. Additionally, the compositions of bacterial biofilms, formation pathways, and intrinsic drug resistance mechanisms are discussed. Finally, the strategies for optimizing subgingival biofilm removal in periodontitis are highlighted, such as targeting biofilms-embedded bacteria, disrupting the extracellular polymeric substances, and utilizing combined approaches. A comprehensive understanding of the properties of biomaterials guides the rational design of highly targeted and effective therapies for periodontitis.
Collapse
Affiliation(s)
- Jiawen Tao
- The First Outpatient Department, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, 6822 Jinhu Road, Changchun, 130021, PR China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, PR China
| | - Yirong Sun
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, PR China
| | - Guoliang Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, PR China
| | - Jingru Sun
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, PR China
| | - Shujun Dong
- The First Outpatient Department, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, 6822 Jinhu Road, Changchun, 130021, PR China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, PR China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026, PR China
| |
Collapse
|
4
|
Liu H, Nan Z, Zhao C, Bai L, Shi L, He C, Wu D, Wan M, Feng Y. Emerging synergistic strategies for enhanced antibacterial sonodynamic therapy: Advances and prospects. ULTRASONICS SONOCHEMISTRY 2025; 116:107288. [PMID: 40038013 PMCID: PMC11986242 DOI: 10.1016/j.ultsonch.2025.107288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/29/2024] [Accepted: 02/22/2025] [Indexed: 03/06/2025]
Abstract
Antibacterial therapy has been extensively applied in medical field to alleviate the severity and mortality of infection. However, it still exists some issues such as drug side effects, limited efficacy and bacterial resistance. Among the alternative therapies, antibacterial sonodynamic therapy (aSDT) has been explored as a promising approach to tackle those crises. It is meaningful to investigate superior strategy to augment the therapeutic efficacy of aSDT. This review summarizes the potential aSDT-based antibacterial mechanisms and comprehensively discusses the prevailing synergistic strategies, such as nanomaterials-based aSDT antibacterial strategy, aSDT + strategy with physical, chemical and biological methods. Moreover, we also reviewed the medical applications of aSDT strategies. Finally, the perspectives on the current challenges that need be resolved in aSDT are proposed. We expect that this review could provide robust support to expedite the clinical applications of aSDT.
Collapse
Affiliation(s)
- Hengyu Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Zhezhu Nan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Chen Zhao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Liang Bai
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Linrong Shi
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Chenhui He
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Daocheng Wu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Mingxi Wan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Yi Feng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, People's Republic of China.
| |
Collapse
|
5
|
Wang A, Yao K, Wang Q, Han T, Lu W, Xia Y. Poly(ionic liquid)-regulated green one-pot synthesis of Au@Pt porous nanospheres for the smart detection of acid phosphatase and organophosphorus inhibitor. Talanta 2025; 286:127503. [PMID: 39746292 DOI: 10.1016/j.talanta.2024.127503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/18/2024] [Accepted: 12/29/2024] [Indexed: 01/04/2025]
Abstract
Here, a green poly(ionic liquid)-regulated one-pot method is developed for the synthesis of Au@Pt core-shell nanospheres (PNSs) under mild reaction conditions in water. It is found that the poly(ionic liquid) poly[1-methyl-3-butyl (3-hydroxy) imidazole] chloride (PIL-Cl) is very vital to guide the construction of Au@Pt PNSs. The as-obtained Au@Pt-1 PNSs have perfect spherical outlines, porous core-shell structures and large specific surface area by which they exhibit excellent peroxidase-like activity in acidic media and can be used to develop a simple and reliable colorimetric sensing platform. It is shown that the colorimetric sensing platform constructed with Au@Pt-1 PNSs nanozyme can effectively evaluate ACP activity, achieving a wide linear detection range of 0.1-3.0 U/L and having a low limit of detection (LOD) of 0.047 U/L (S/N = 3). Based on the cascade reaction, the Au@Pt-1 PNSs nanozyme and ACP are integrated to develop a biosensor, which can detect organophosphate inhibitor of malathion with a wide linear detection range of 5-80 nM and low LOD of 1.96 nM (S/N = 3). More importantly, this detection method is also practically applied to detect both ACP activity in fetal bovine serum and malathion concentration in cucumber juice with satisfied results. This work presents a simple and green feature for the synthesis of nanozyme with high performance and establishes a biosensing platform based on Au@Pt-1 PNSs nanozyme to effectively monitor the ACP activity and the concentration of its organophosphate inhibitor malathion with high sensitivity, anti-interference capability and good recovery capability.
Collapse
Affiliation(s)
- Aozhou Wang
- School of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang, Henan, 471023, PR China
| | - Kaisheng Yao
- School of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang, Henan, 471023, PR China.
| | - Qi Wang
- School of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang, Henan, 471023, PR China
| | - Tianhang Han
- School of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang, Henan, 471023, PR China
| | - Weiwei Lu
- School of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang, Henan, 471023, PR China
| | - Yumin Xia
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Engineering Research Center of Technical Textiles, Ministry of Education, College of Materials Science and Engineering, College of Science in Donghua University, State Key Laboratory of Polyolefins and Catalysis, Shanghai Key Laboratory of Catalysis Technology for Polyolefins (Shanghai Research Institute of Chemical Industry Co., Ltd., Shanghai), Key Laboratory of High Performance Fibers & Products, PR China.
| |
Collapse
|
6
|
Li P, Yuan W, Hu K. Porous CeO 2 nanozyme with visible-light-enhanced catalase-mimicking activities by ligand-to-metal charge transfer. iScience 2025; 28:112149. [PMID: 40201121 PMCID: PMC11978324 DOI: 10.1016/j.isci.2025.112149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/07/2025] [Accepted: 02/27/2025] [Indexed: 04/10/2025] Open
Abstract
Nanozymes are promising synthetic alternatives to natural enzymes owing to their unique physical and chemical properties, but improving their thermocatalytic activity often involves complex procedures. This study introduces a light-induced approach to enhance the catalytic activity of facilely prepared porous cerium oxide ( P - CeO 2 ) nanozymes. Under visible light irradiation, the catalytic efficiency ( k c a t / K m ) of the P - CeO 2 more than doubles compared to its thermocatalytic efficiency. Spectroscopic analyses reveal that this enhancement stems from a ligand-to-metal charge transfer (LMCT) band, arising from peroxide species adsorbed on the P - CeO 2 surface. As a practical demonstration, P-CeO2 exhibits visible-light enhanced scavenging of reactive oxygen species (ROS) in vitro. Overall, this study provides new mechanistic insights of using LMCT-induced visible light catalysis for the improvement of catalytic activity of light-responsive nanozymes.
Collapse
Affiliation(s)
- Pengju Li
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Wei Yuan
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai 200438, China
| | - Ke Hu
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| |
Collapse
|
7
|
Tang Y, Feng J, Li S, Yang G, Tao Z, Xiao T, Lu F, Xie B, Fan Q, Wang Q. Near-infrared-II triggered inorganic photodynamic nanomedicines for deep-tissue therapy. JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY 2025; 213:196-212. [DOI: 10.1016/j.jmst.2024.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
8
|
Sharma S, Gone GB, Roychowdhury P, Kim HS, Chung SJ, Kuppusamy G, De A. Photodynamic and sonodynamic therapy synergy: mechanistic insights and cellular responses against glioblastoma multiforme. J Drug Target 2025; 33:458-472. [PMID: 39556529 DOI: 10.1080/1061186x.2024.2431676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 10/30/2024] [Accepted: 11/13/2024] [Indexed: 11/20/2024]
Abstract
Glioblastoma multiforme (GBM), the most aggressive form of brain cancer, poses substantial challenges to effective treatment due to its complex and infiltrative nature, making it difficult to manage. Photodynamic therapy (PDT) and sonodynamic therapy (SDT), have emerged as promising individual treatment options against GBM due to their least-invasive approach. However, both PDT and SDT have drawbacks that require careful consideration. A combination therapy using light and sound waves has gained attention, offering new avenues to overcome challenges from individual therapies. Sono-photodynamic therapy (SPDT) has been used against various tumours. Researchers are considering SPDT as a favourable alternative to the conventional therapies for GBM. SPDT offers complementary mechanisms of action, including the production of ROS, disruption of cellular structures, and induction of apoptosis, leading to enhanced tumour cell death. This review gives an insight about PDT/SDT and their limitations in GBM treatment and the need for combination therapy. We try to unveil the process of SPDT and explore the mechanism behind improved SPDT-meditated cell death in GBM cells by focusing on the ROS-mediated cell response occurring as a result of SPDT and discussing current modifications in the existing sensitisers for their optimal use in SPDT for GBM therapy.
Collapse
Affiliation(s)
- Swati Sharma
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Geetanjali B Gone
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon, Republic of Korea
| | - Parikshit Roychowdhury
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Tamil Nadu, India
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Sang Jeon Chung
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon, Republic of Korea
| | - Gowthmarajan Kuppusamy
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Tamil Nadu, India
| | - Anindita De
- Department of Pharmaceutics, School of Pharmacy, JSS University, Noida, Uttar Pradesh, India
- Department of Pharmacy, Ajou University, Suwon-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
9
|
Wang C, Yang Y, Wang N, Luan A, Wang H, Hu C. Design and application of antimicrobial nanomaterials in the treatment of periodontitis. Nanomedicine (Lond) 2025; 20:707-723. [PMID: 40042364 PMCID: PMC11970792 DOI: 10.1080/17435889.2025.2469492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 02/17/2025] [Indexed: 04/02/2025] Open
Abstract
Periodontitis is a chronic inflammatory disease induced by the microbiome, leading to the destruction of periodontal structures and potentially resulting in tooth loss. Using local drug delivery systems as an adjunctive therapy to scaling and root planning in periodontitis is a promising strategy. However, this administration method's effectiveness is constrained by the complexity of the periodontal environment. Nanomaterials have demonstrated significant potential in the antibacterial treatment of periodontitis, attributed to their controllable size, shape, and surface charge, high design flexibility, high reactivity, and high specific surface area. In this review, we summarize the complex periodontal microenvironment and the difficulties of local drug delivery in periodontitis, explicitly reviewing the application and design strategies of nanomaterials with unique properties in the distinct microenvironment of periodontitis. Furthermore, the review discusses the limitations of current research, proposes feasible solutions, and explores prospects for using nanomaterials in this context.
Collapse
Affiliation(s)
- Chunlin Wang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Yujun Yang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Ning Wang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Aohan Luan
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Huilin Wang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Chen Hu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| |
Collapse
|
10
|
Banstola A, Lin ZT, Li Y, Wu MX. PhotoChem Interplays: Lighting the Way for Drug Delivery and Diagnosis. Adv Drug Deliv Rev 2025; 219:115549. [PMID: 39986440 PMCID: PMC11903148 DOI: 10.1016/j.addr.2025.115549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 12/23/2024] [Accepted: 02/15/2025] [Indexed: 02/24/2025]
Abstract
Light, a non-invasive tool integrated with cutting-edge nanotechnologies, has driven transformative advancements in imaging-based diagnosis and drug delivery for cancer and bacterial treatments. This review discusses recent progress in these areas, beginning with emerging imaging technologies. Unlike traditional photosensors activated by visible light, alternative energy sources such as near-infrared (NIR) light, X-rays, and ultrasound have been extensively investigated to activate various photosensors, achieving high sensitivity, wavelength versatility, and spatial resolution for deep-tissue imaging. Moreover, to address challenges like tissue autofluorescence in real-time fluorescence imaging, afterglow luminescent nanoparticles are being developed by integrating these alternative energy sources for real-time imaging and sensing in deep tissue for precise cancer diagnosis and treatment beyond superficial tissues. In addition to deep tissue imaging, light-responsive nanomedicines are revolutionizing anticancer and antimicrobial phototherapy by enabling spatially and temporally controlled drug release. These smart nanoparticles are engineered to release therapeutic cargo at target sites in response to microenvironmental cues specific to tumors or infections. In anticancer phototherapy, these nanoparticles facilitate controlled drug release via photoisomerization, photothermal, and photodynamic processes. To enhance circulation time and specific targeting, biomimetic nanoparticles, which mimic natural anti-tumor responses by our body, have attracted increasing attention. In antimicrobial phototherapy, research has been focused on the chemical modification of the photosensitizer to enable targeted drug delivery. An intriguing strategy has recently emerged involving the development of "pro-photosensitizers" that are specifically activated within bacterial cells upon light irradiation, offering a high margin of safety. These advancements leverage photochemical reactions and nanotechnology to enhance precision therapy and diagnosis in addressing critical health challenges.
Collapse
Affiliation(s)
- Asmita Banstola
- Wellman Center for Photomedicine, Massachusetts General Hospital (MGH), Department of Dermatology, Harvard Medical School (HMS), Boston, MA 02114, USA
| | - Zuan-Tao Lin
- Wellman Center for Photomedicine, Massachusetts General Hospital (MGH), Department of Dermatology, Harvard Medical School (HMS), Boston, MA 02114, USA
| | - Yongli Li
- Wellman Center for Photomedicine, Massachusetts General Hospital (MGH), Department of Dermatology, Harvard Medical School (HMS), Boston, MA 02114, USA
| | - Mei X Wu
- Wellman Center for Photomedicine, Massachusetts General Hospital (MGH), Department of Dermatology, Harvard Medical School (HMS), Boston, MA 02114, USA.
| |
Collapse
|
11
|
Chen Y, Ma K, Liang M, Dong P, Wang H, Yu S, Sun J, Kwok RTK, Lam JWY, Gao Y, Tang BZ, Wang F. Facile One-Pot Assembly of a Versatile Photoactive Nanozyme for Highly Efficient Antibacterial Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2500895. [PMID: 40091297 DOI: 10.1002/smll.202500895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/25/2025] [Indexed: 03/19/2025]
Abstract
Conventional combinational antibacterial therapy requires the complicated assembly of multiple components that might cause a premature leak of therapeutic agents. Thus the one-pot assembly of highly integrated multifunctional antibacterial agents is highly desirable for treating multidrug-resistant (MDR) bacteria. Herein, the vancomycin-derived carbon dots (Van-CDs) are facilely developed as a compact and powerful multifunctional photodynamic nanozyme platform that achieves the augmented reactive oxygen species (ROS) generation for accelerating bacterial elimination. By residual recognition groups of vancomycin, the red emissive Van-CDs gain a specific affinity toward bacteria with a high binding constant of 20 L g-1, manifesting a superior bacteria-imaging ability. Meanwhile, Van-CDs are encoded with an excellent peroxidase-mimicking (POD) activity for mediating the H2O2-activated evolvement of •OH, and also endowed with intrinsic photodynamic property for simultaneously producing singlet oxygen (1O2). Surprisingly, the photodynamic Van-CDs nanozyme possesses an auxiliary photothermal feature, which enables the photothermal imaging-guided hyperthermia-reinforced antibacterial therapy in vivo. Furthermore, a subcutaneous abscess model is established to validate their pronounced biofilm eradication and wound healing acceleration in vivo through the Van-CDs-promoted collagen deposition. Taken together, the present all-in-one compact photodynamic carbon-derived nanozyme with multiple intrinsic therapeutic functions represents a promising and competitive candidate for treating diabetic infections of clinical research.
Collapse
Affiliation(s)
- Yingying Chen
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430071, China
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, State Key Laboratory of Molecular Neuroscience, Department of Chemical and Biological Engineering, and Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Kang Ma
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430071, China
| | - Meijuan Liang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430071, China
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, P. R. China
| | - Pei Dong
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430071, China
| | - Hong Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430071, China
| | - Shanshan Yu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430071, China
| | - Jianwei Sun
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, State Key Laboratory of Molecular Neuroscience, Department of Chemical and Biological Engineering, and Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Ryan T K Kwok
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, State Key Laboratory of Molecular Neuroscience, Department of Chemical and Biological Engineering, and Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Jacky W Y Lam
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, State Key Laboratory of Molecular Neuroscience, Department of Chemical and Biological Engineering, and Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Yuhui Gao
- Fujian Tobacco Quality Supervision & Test Station, Fuzhou, 350003, P. R. China
| | - Ben Zhong Tang
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, State Key Laboratory of Molecular Neuroscience, Department of Chemical and Biological Engineering, and Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, 518172, P. R. China
| | - Fuan Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430071, China
- Research Institute of Shenzhen, Wuhan University, Shenzhen, 518057, P. R. China
| |
Collapse
|
12
|
Zhao RN, Ke YY, Sun HY, Quan C, Xu Q, Li J, Guan JQ, Zhang YM. Achievements and challenges in glucose oxidase-instructed multimodal synergistic antibacterial applications. Microbiol Res 2025; 297:128149. [PMID: 40187057 DOI: 10.1016/j.micres.2025.128149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 02/26/2025] [Accepted: 03/17/2025] [Indexed: 04/07/2025]
Abstract
Glucose oxidase (GOx) with unique catalytic properties and inherent biocompatibility can effectively oxidize both endogenous and exogenous glucose with oxygen (O2) into gluconic acid and hydrogen peroxide (H2O2). Accordingly, the GOx-based catalytic chemistry offers new possibilities for designing and constructing multimodal synergistic antibacterial systems. The consumption of glucose permanently downregulates bacterial cell metabolism by blocking essential energy supplies, inhibiting their growth and survival. Additionally, the production of gluconic acid could downregulates the pH within the bacterial infection microenvironment, enhancing the production of hydroxyl radicals (∙OH) from H2O2 via enhanced Fenton or Fendon-like reactions and triggering the pH-responsive release of drugs. Furthermore, the generated H2O2 in situ avoids the addition of exogenous hydrogen peroxide. Therefore, it is possible to design GOx-based multimodal antibacterial synergistic therapies by combining GOx-instructed cascade reactions with other therapeutic approaches such as chemodynamic therapies (CDT), hypoxia-activated prodrugs, photosensitizers, and stimuli-responsive drug release. Such multimodal strategies are expected to exhibit better therapeutic effects than single therapeutic modes. This tutorial review highlights recent advancements in GOx-instructed multimodal synergistic antibacterial systems, focusing on design philosophy and construction strategies. Current challenges and future prospects for advancing GOx-based multimodal antibacterial synergistic therapies are discussed.
Collapse
Affiliation(s)
- Rui-Nan Zhao
- College of Life Science, Dalian Minzu University, Economical and Technological Development Zone, Dalian 116600, China; Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, China
| | - Yi-Yin Ke
- College of Life Science, Dalian Minzu University, Economical and Technological Development Zone, Dalian 116600, China; Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, China
| | - Hui-Yan Sun
- College of Life Science, Dalian Minzu University, Economical and Technological Development Zone, Dalian 116600, China; Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, China
| | - Chunshan Quan
- College of Life Science, Dalian Minzu University, Economical and Technological Development Zone, Dalian 116600, China; Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, China
| | - Qingsong Xu
- College of Life Science, Dalian Minzu University, Economical and Technological Development Zone, Dalian 116600, China; Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, China
| | - Jun Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Science, P. O. Box 110, Dalian 116023, China.
| | - Jing-Qi Guan
- Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130021, China.
| | - Yan-Mei Zhang
- College of Life Science, Dalian Minzu University, Economical and Technological Development Zone, Dalian 116600, China; Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, China.
| |
Collapse
|
13
|
Omoteso OA, Fadaka AO, Walker RB, Khamanga SM. Innovative Strategies for Combating Multidrug-Resistant Tuberculosis: Advances in Drug Delivery Systems and Treatment. Microorganisms 2025; 13:722. [PMID: 40284559 PMCID: PMC12029526 DOI: 10.3390/microorganisms13040722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/18/2025] [Accepted: 03/21/2025] [Indexed: 04/29/2025] Open
Abstract
Multidrug-resistant tuberculosis (MDR-TB) is a significant public health challenge globally, exacerbated by the limited efficacy of existing therapeutic approaches, prolonged treatment duration, and severe side effects. As drug resistance continues to emerge, innovative drug delivery systems and treatment strategies are critical to combating this crisis. This review highlights the molecular mechanisms underlying resistance to drugs in Mycobacterium tuberculosis, such as genetic mutation, efflux pump activity, and biofilm formation, contributing to the persistence and difficulty in eradicating MDR-TB. Current treatment options, including second-line drugs, offer limited effectiveness, prompting the need for innovation of advanced therapies and drug delivery systems. The progression in drug discovery has resulted in the approval of innovative therapeutics, including bedaquiline and delamanid, amongst other promising candidates under investigation. However, overcoming the limitations of traditional drug delivery remains a significant challenge. Nanotechnology has emerged as a promising solution, with nanoparticle-based drug delivery systems offering improved bioavailability and targeted and controlled release delivery, particularly for pulmonary targeting and intracellular delivery to macrophages. Furthermore, the development of inhalable formulations and the potential of nanomedicines to bypass drug resistance mechanisms presents a novel approach to enhancing drug efficacy. Moreover, adjunctive therapies, including immune modulation and host-directed therapies, are being explored to improve treatment outcomes. Immunotherapies, such as cytokine modulation and novel TB vaccines, offer complementary strategies to the use of antibiotics in combating MDR-TB. Personalized medicine approaches, leveraging genomic profiling of both the pathogen and the host, offer promise in optimizing treatment regimens and minimizing drug resistance. This review underscores the importance of multidisciplinary approaches, combining drug discovery, advanced delivery system development, and immune modulation to address the complexities of treating MDR-TB. Continued innovation, global collaboration, and improved diagnostics are essential to developing practical, accessible, and affordable treatments for MDR-TB.
Collapse
Affiliation(s)
- Omobolanle A. Omoteso
- Division of Pharmaceutics, Faculty of Pharmacy, Rhodes University, Makhanda 6139, South Africa; (R.B.W.); (S.M.K.)
| | - Adewale O. Fadaka
- Department of Anesthesia, Division of Pain Management, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
| | - Roderick B. Walker
- Division of Pharmaceutics, Faculty of Pharmacy, Rhodes University, Makhanda 6139, South Africa; (R.B.W.); (S.M.K.)
| | - Sandile M. Khamanga
- Division of Pharmaceutics, Faculty of Pharmacy, Rhodes University, Makhanda 6139, South Africa; (R.B.W.); (S.M.K.)
| |
Collapse
|
14
|
Xi X, Ma S, Sun P, Hu Z, Wei J, Niu Y. A piezoelectric hydrogel containing bismuth sulfide with cationic vacancies with enhanced sonodynamic/nanozyme activity for synergistically killing bacteria and boosting osteoblast differentiation. J Mater Chem B 2025; 13:3420-3436. [PMID: 39935384 DOI: 10.1039/d4tb02693d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
A piezoelectric nanozyme is a novel biomaterial with the integration of piezoelectricity and nanozyme activity that has the capability of killing bacteria and promoting cell responses under a mechanical stimulus and exhibits great prospects in tissue regeneration. Herein, a piezoelectric nanozyme of bismuth sulfide (BS) with cationic vacancies (VBS) was synthesized, which exhibits enhanced piezoelectricity and nanozyme activities compared with BS. Moreover, a piezoelectric hydrogel of VBS and phenylboronic acid grafted sodium alginate-arginine (VBS-PSA) was prepared. Triggered by ultrasound (US) with high power (>0.5 W cm-2), VBS-PSA produces a large amount of reactive oxygen species (ROS) through both piezoelectricity-enhanced sonodynamic efficiency and peroxidase-like (POD-like) activity, thereby displaying the powerful antibacterial capability. However, under low-power US (≤0.5 W cm-2), the piezoelectric effect of VBS-PSA generates electrical signals that significantly stimulate the osteoblast responses (proliferation and osteoblast differentiation) and enhance catalase-like (CAT-like) activity for scavengers of ROS and generation of oxygen, thereby creating a favorable microenvironment for cell growth. Our study presents a novel strategy to apply the piezoelectric effect of hydrogels for enhancing sonodynamic efficiency and nanozyme activities that synergistically kill bacteria and stimulate osteoblast responses. The piezoelectric hydrogel would have great potential for the repair of infected bone defects.
Collapse
Affiliation(s)
- Xiaowen Xi
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China.
| | - Susu Ma
- Shidong Hospital affiliated to University of Shanghai for Science and Technology, 999 Shiguang Road, Shanghai, 200438, PR China.
- Department of Trauma Orthopaedics, the first affiliated hospital of Naval Medical University, 168 Changhai Road, Shanghai, 200433, PR China
| | - Ping Sun
- Shanghai Eighth Peoples Hospital, Department of Orthopedics, Shanghai, 200235, PR China.
| | - Zhitao Hu
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China.
| | - Jie Wei
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China.
| | - Yunfei Niu
- Shidong Hospital affiliated to University of Shanghai for Science and Technology, 999 Shiguang Road, Shanghai, 200438, PR China.
- Department of Trauma Orthopaedics, the first affiliated hospital of Naval Medical University, 168 Changhai Road, Shanghai, 200433, PR China
| |
Collapse
|
15
|
Peng T, Chen Y, Luan X, Hu W, Wu W, Guo B, Lu C, Wu C, Pan X. Microneedle technology for enhanced topical treatment of skin infections. Bioact Mater 2025; 45:274-300. [PMID: 39659727 PMCID: PMC11629152 DOI: 10.1016/j.bioactmat.2024.11.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 10/31/2024] [Accepted: 11/20/2024] [Indexed: 12/12/2024] Open
Abstract
Skin infections caused by microbes such as bacteria, fungi, and viruses often lead to aberrant skin functions and appearance, eventually evolving into a significant risk to human health. Among different drug administration paradigms for skin infections, microneedles (MNs) have demonstrated superiority mainly because of their merits in enhancing drug delivery efficiency and reducing microbial resistance. Also, integrating biosensing functionality to MNs offers point-of-care wearable medical devices for analyzing specific pathogens, disease status, and drug pharmacokinetics, thus providing personalized therapy for skin infections. Herein, we do a timely update on the development of MN technology in skin infection management, with a special focus on how to devise MNs for personalized antimicrobial therapy. Notably, the advantages of state-of-the-art MNs for treating skin infections are pointed out, which include hijacking sequential drug transport barriers to enhance drug delivery efficiency and delivering various therapeutics (e.g., antibiotics, antimicrobial peptides, photosensitizers, metals, sonosensitizers, nanoenzyme, living bacteria, poly ionic liquid, and nanomoter). In addition, the nanoenzyme-based multimodal antimicrobial therapy is highlighted in addressing intractable infectious wounds. Furthermore, the MN-based biosensors used to identify pathogen types, track disease status, and quantify antibiotic concentrations are summarized. The limitations of antimicrobial MNs toward clinical translation are offered regarding large-scale production, quality control, and policy guidance. Finally, the future development of biosensing MNs with easy-to-use and intelligent properties and MN-based wearable drug delivery for home-based therapy are prospected. We hope this review will provide valuable guidance for future development in MN-mediated topical treatment of skin infections.
Collapse
Affiliation(s)
- Tingting Peng
- State Key Laboratory of Bioactive Molecules and Druggability Assessment/ International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of Pharmacy, Jinan University, Guangzhou 511436, China
| | - Yangyan Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xuanyu Luan
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Wanshan Hu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment/ International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of Pharmacy, Jinan University, Guangzhou 511436, China
| | - Wentao Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Bing Guo
- School of Science, Harbin Institute of Technology, Shenzhen 518055, China
| | - Chao Lu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment/ International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of Pharmacy, Jinan University, Guangzhou 511436, China
| | - Chuanbin Wu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment/ International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of Pharmacy, Jinan University, Guangzhou 511436, China
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
16
|
Sun X, Chen X, Wang S, Gu H, Bao H, Ning Z, Feng X, Chen Y. Oxygenous and biofilm-targeted nanosonosensitizer anchored with Pt nanozyme and antimicrobial peptide in the gelatin/sodium alginate hydrogel for infected diabetic wound healing. Int J Biol Macromol 2025; 293:139356. [PMID: 39743100 DOI: 10.1016/j.ijbiomac.2024.139356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/08/2024] [Accepted: 12/28/2024] [Indexed: 01/04/2025]
Abstract
Sonodynamic therapy is an emerging therapeutic approach for combating bacterial infections. However, the characteristics of hypoxia, high H2O2 microenvironment, and the formation of persistent biofilms in diabetic wound sites limit its efficacy in this field. To address these issues, we developed a multifunctional antibacterial hydrogel dressing PPCN@Pt-AMPs/HGel with the cross-linked gelatin and sodium alginate as the matrix, where the nanosonosensitizer PCN-224 was decorated with the oxygen-generating Pt nanoenzyme and further coupled with a biofilm-targeting antimicrobial peptide via an interacting polydopamine layer. This nano-composite hydrogel displayed improved mechanical properties as well as good biocompatibility and biodegradability. The catalase-like activity of the nanoparticles facilitated the ultrasound-induced generation of the singlet oxygen due to the catalytic decomposition of the H2O2 into O2. In vitro results showed that the hydrogel dressing exhibited excellent antimicrobial ability under low-intensity ultrasound stimulation, which could effectively inhibit the newly formed biofilm and eliminate the full-grown biofilms. In the infected diabetic wound of rats, PPCN@Pt-AMPs/HGel significantly enhanced the wound healing rate under low-intensity ultrasound stimulation and improved the regeneration outcomes by promoting granulation tissue formation, angiogenesis, and type III collagen deposition. In conclusion, our study provides a novel and effective antibacterial hydrogel dressing for sonodynamic treatment of diabetic wounds.
Collapse
Affiliation(s)
- Xinxing Sun
- Department of Pharmaceutics, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
| | - Xinzhao Chen
- Department of Histology and Embryology, College of Basic Medical Science, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, China
| | - Sihui Wang
- Department of Pharmaceutics, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
| | - Hongchun Gu
- Department of Pharmaceutics, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
| | - Hongyang Bao
- Department of Pharmaceutics, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
| | - Zixun Ning
- Department of Pharmaceutics, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
| | - Xun Feng
- Department of Sanitary Chemistry, School of Public Health, Shenyang Medical College, No.146 Yellow River North Street, Shenyang 110034, China.
| | - Yang Chen
- Department of Pharmaceutics, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, China.
| |
Collapse
|
17
|
Wu M, Li D, Liu Y, Ruan X, Yang J, Li Z, Chen S, Yang X, Ling W. Surface Bi-vacancy and corona polarization engineered nanosheets with sonopiezocatalytic antibacterial activity for wound healing. J Mater Chem B 2025; 13:2533-2548. [PMID: 39838929 DOI: 10.1039/d4tb02489c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Piezocatalytic therapy is an emerging therapeutic strategy for eradicating drug-resistant bacteria, but suffers from insufficient piezoelectricity and catalytic active site availability. Herein, Bi-vacancies (BiV) and corona polarization were introduced to BiOBr nanosheets to create a BiOBr-BiVP nanoplatform for piezocatalytic antibacterial therapy. This meticulously tailored strategy strengthens the built-in electric field of nanosheets, enhancing piezoelectric potential and charge density and boosting charge separation and migration efficiency. Meanwhile, BiV adeptly adjust the band structure and increase reaction sites. Ultrasonication of nanosheets continuously enables the generation of reactive oxygen species (ROS) and CO, facilitating almost 100% broad-spectrum antibacterial efficacy. BiOBr-BiVP nanosheets demonstrate full bacterial eradication and accelerate wound healing through simultaneous regulation of inflammatory factors, facilitation of collagen deposition, and promotion of angiogenesis. Overall, this ultrasonic-triggered piezocatalytic nanoplatform combines BiV and the corona polarization strategy, providing a robust strategy for amplifying piezocatalytic mediated ROS/CO generation for drug-resistant bacterial eradication.
Collapse
Affiliation(s)
- Mingbo Wu
- Department of Medical Ultrasound, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China.
- Department of Oncology, General Hospital of Western Theater Command of PLA, Chengdu 610083, China
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, 610500, China
| | - Dong Li
- Department of Oncology, General Hospital of Western Theater Command of PLA, Chengdu 610083, China
| | - Yao Liu
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, 610500, China
| | - Xiaomiao Ruan
- Department of Medical Ultrasound, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China.
- School of Bioscience and Biotechnology, Chengdu Medical College, Chengdu 610500, People's Republic of China
| | - Jingwen Yang
- Department of Medical Ultrasound, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China.
- School of Bioscience and Biotechnology, Chengdu Medical College, Chengdu 610500, People's Republic of China
| | - Zegang Li
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, 610500, China
- School of Bioscience and Biotechnology, Chengdu Medical College, Chengdu 610500, People's Republic of China
- Key Laboratory of target discovery and protein drug development in major diseases of Sichuan Higher Education institutes, Chengdu Medical College, Chengdu,610500, People's Republic of China
| | - Siyi Chen
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, 610500, China
- Key Laboratory of target discovery and protein drug development in major diseases of Sichuan Higher Education institutes, Chengdu Medical College, Chengdu,610500, People's Republic of China
| | - Xin Yang
- School of Bioscience and Biotechnology, Chengdu Medical College, Chengdu 610500, People's Republic of China
- Key Laboratory of target discovery and protein drug development in major diseases of Sichuan Higher Education institutes, Chengdu Medical College, Chengdu,610500, People's Republic of China
| | - Wenwu Ling
- Department of Medical Ultrasound, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China.
| |
Collapse
|
18
|
Li Z, Jia G, Su Z, Zhu C. Nanozyme-Based Strategies against Bone Infection. RESEARCH (WASHINGTON, D.C.) 2025; 8:0605. [PMID: 39935691 PMCID: PMC11811343 DOI: 10.34133/research.0605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/09/2025] [Accepted: 01/16/2025] [Indexed: 02/13/2025]
Abstract
Nanozymes are a class of nanomaterials that exhibit catalytic functions analogous to those of natural enzymes. They demonstrate considerable promise in the biomedical field, particularly in the treatment of bone infections, due to their distinctive physicochemical properties and adjustable catalytic activities. Bone infections (e.g., periprosthetic infections and osteomyelitis) are infections that are challenging to treat clinically. Traditional treatments often encounter issues related to drug resistance and suboptimal anti-infection outcomes. The advent of nanozymes has brought with it a new avenue of hope for the treatment of bone infections.
Collapse
Affiliation(s)
| | | | - Zheng Su
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine,
University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Chen Zhu
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine,
University of Science and Technology of China, Hefei, Anhui 230001, China
| |
Collapse
|
19
|
Hou X, Zhai L, Fu L, Lu J, Guo P, Zhang Y, Zheng D, Ma G. Advances in Engineered Phages for Disease Treatment. SMALL METHODS 2025:e2401611. [PMID: 39935185 DOI: 10.1002/smtd.202401611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 01/15/2025] [Indexed: 02/13/2025]
Abstract
Phage therapy presents a promising solution for combating multidrug-resistant (MDR) bacterial infections and other bacteria-related diseases, attributed to their innate ability to target and lyse bacteria. Recent clinical successes, particularly in treating MDR-related respiratory and post-surgical infections, validated the therapeutic potential of phage therapy. However, the complex microenvironment within the human body poses significant challenges to phage activity and efficacy in vivo. To overcome these barriers, recent advances in phage engineering have aimed to enhance targeting accuracy, improve stability and survivability, and explore synergistic combinations with other therapeutic modalities. This review provides a comprehensive overview of phage therapy, emphasizing the application of engineered phages in antibacterial therapy, tumor therapy, and vaccine development. Furthermore, the review highlights the current challenges and future trends for advancing phage therapy toward broader clinical applications.
Collapse
Affiliation(s)
- Xiaolin Hou
- State Key Laboratory of Biopharmaceutical Preparation and Delivery Institute of Process Engineering, Chinese Academy of Sciences, Bejing, 100190, P. R. China
| | - Lin Zhai
- State Key Laboratory of Biopharmaceutical Preparation and Delivery Institute of Process Engineering, Chinese Academy of Sciences, Bejing, 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Laiying Fu
- State Key Laboratory of Biopharmaceutical Preparation and Delivery Institute of Process Engineering, Chinese Academy of Sciences, Bejing, 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Junna Lu
- State Key Laboratory of Biopharmaceutical Preparation and Delivery Institute of Process Engineering, Chinese Academy of Sciences, Bejing, 100190, P. R. China
| | - Peilin Guo
- State Key Laboratory of Biopharmaceutical Preparation and Delivery Institute of Process Engineering, Chinese Academy of Sciences, Bejing, 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yu Zhang
- State Key Laboratory of Biopharmaceutical Preparation and Delivery Institute of Process Engineering, Chinese Academy of Sciences, Bejing, 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Diwei Zheng
- State Key Laboratory of Biopharmaceutical Preparation and Delivery Institute of Process Engineering, Chinese Academy of Sciences, Bejing, 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Guanghui Ma
- State Key Laboratory of Biopharmaceutical Preparation and Delivery Institute of Process Engineering, Chinese Academy of Sciences, Bejing, 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
20
|
Guo J, Qiu Y, Hu C, Cao Y, Li D, Du Y. Enhancing Antituberculosis Treatment Nanoparticles Encapsulated with Catalase and Levofloxacin Under Ultrasound Stimulation: A 3D Spheroid Study. Mol Pharm 2025; 22:747-759. [PMID: 39772621 DOI: 10.1021/acs.molpharmaceut.4c00748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Tuberculosis (TB) is a chronic infectious disease caused by Mycobacterium tuberculosis (MTB). Tuberculous granuloma is the central and key pathological structure of tuberculosis and is characterized by tissue hypoxia and ineffective drug delivery. To address these issues, this study fabricated a composite nanoparticle loaded with catalase (CAT) and levofloxacin (LEV) (CAT@LEV-NPs) and then combined it with ultrasound (US) to investigate the bactericidal effect and underlying mechanisms using TB spheroids. The TB spheroids were constructed using attenuated Bacillus Calmette-Guérin (BCG) instead of MTB to facilitate operation under general experimental conditions. This study examined the physical properties and oxygen production efficiency of CAT@LEV-NPs. Subsequently, we treated TB spheroids with nanoparticles alone or in combination with US and found that ultrasound significantly increased drug permeability and activated CAT@LEV-NPs to produce a large number of reactive oxygen species (ROS). The combined treatment showed excellent antibacterial effects, resulting in more severe damage to the bacterial structure than other treatments. Additionally, the combined treatment induced a higher M1 polarization of macrophages, increased the apoptosis rate, and improved the anoxic microenvironment in TB spheroids. These factors may be closely related to the enhanced bactericidal effects of combined treatment. In conclusion, our study suggests that US combined with CAT@LEV-NPs could serve as a novel, noninvasive, safe, and effective treatment modality for intractable MTB infections.
Collapse
Affiliation(s)
- Jiajun Guo
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Yan Qiu
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Can Hu
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Yuchao Cao
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Dairong Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yonghong Du
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
21
|
Wang D, Ma W, Zhang Y, Wang Y, Sun L, Jiang J, Jiao L, Li R, Zhang Y, Zhang M, Zhou Q. A versatile nanoplatform carrying cascade Pt nanozymes remodeling tumor microenvironment for amplified sonodynamic/chemo therapy of thyroid cancer. Biomaterials 2025; 313:122778. [PMID: 39213978 DOI: 10.1016/j.biomaterials.2024.122778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/06/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
Thyroid cancer is increasing globally, with anaplastic thyroid carcinoma (ATC) being the most aggressive type and having a poor prognosis. Current clinical treatments for thyroid cancer present numerous challenges, including invasiveness and the necessity of lifelong medication. Furthermore, a significant portion of patients with ATC experience cancer recurrence and metastasis. To overcome this dilemma, we developed a pH-responsive biomimetic nanocarrier (CLP@HP-A) through the incorporation of Chlorin e6 (Ce6) and Lenvatinib (Len) within hollow polydopamine nanoparticles (HP) that were further modified with platinum nanoparticles (Pt), enabling synergistic chemotherapy and sonodynamic therapy. The CLP@HP-A nanocarriers exhibited specific binding with galectin-3 receptors, facilitating their internalization through receptor-mediated endocytosis for targeted drug delivery. Upon exposure to ultrasound (US) irradiation, Ce6 rapidly generated reactive oxygen species (ROS) to induce significant oxidative stress and trigger apoptosis in tumor cells. Additionally, Pt not only alleviated tumor hypoxia by catalyzing the conversion of H2O2 to oxygen (O2) but also augmented intracellular ROS levels through the production of hydroxyl radicals (•OH), thereby enhancing the efficacy of sonodynamic therapy. Moreover, Len demonstrated a potent cytotoxic effect on thyroid cancer cells through the induction of apoptosis. Transcriptomics analysis findings additionally corroborated that CLP@HP-A effectively triggered cancer cell apoptosis, thereby serving as a crucial mechanism for its cytotoxic effects. In conclusion, the integration of sonodynamic/chemo combination therapy with targeted drug delivery systems offers a novel approach to the management of malignant tumors.
Collapse
Affiliation(s)
- Dan Wang
- Department of Ultrasound, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| | - Wenqi Ma
- Department of Ultrasound, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| | - Yuanyuan Zhang
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Yufeng Wang
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Lei Sun
- Department of Ultrasound, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| | - Jue Jiang
- Department of Ultrasound, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| | - Lianying Jiao
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Runqing Li
- Department of Radiology, the First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Yujie Zhang
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| | - Mingzhen Zhang
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China; Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| | - Qi Zhou
- Department of Ultrasound, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China.
| |
Collapse
|
22
|
Liao Y, Zhang Z, Zhao Y, Zhang S, Zha K, Ouyang L, Hu W, Zhou W, Sun Y, Liu G. Glucose oxidase: An emerging multidimensional treatment option for diabetic wound healing. Bioact Mater 2025; 44:131-151. [PMID: 39484022 PMCID: PMC11525048 DOI: 10.1016/j.bioactmat.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/06/2024] [Accepted: 10/06/2024] [Indexed: 11/03/2024] Open
Abstract
The healing of diabetic skin wounds is a complex process significantly affected by the hyperglycemic environment. In this context, glucose oxidase (GOx), by catalyzing glucose to produce gluconic acid and hydrogen peroxide, not only modulates the hyperglycemic microenvironment but also possesses antibacterial and oxygen-supplying functions, thereby demonstrating immense potential in the treatment of diabetic wounds. Despite the growing interest in GOx-based therapeutic strategies in recent years, a systematic summary and review of these efforts have been lacking. To address this gap, this review article outlines the advancements in the application of GOx and GOx-like nanozymes in the treatment of diabetic wounds, including reaction mechanisms, the selection of carrier materials, and synergistic therapeutic strategies such as multi-enzyme combinations, microneedle structures, and gas therapy. Finally, the article looks forward to the application prospects of GOx in aiding the healing of diabetic wounds and the challenges faced in translating these innovations to clinical practice. We sincerely hope that this review can provide readers with a comprehensive understanding of GOx-based diabetic treatment strategies, facilitate the rigorous construction of more robust multifunctional therapeutic systems, and ultimately benefit patients with diabetic wounds.
Collapse
Affiliation(s)
| | | | | | | | - Kangkang Zha
- Wuhan Union Hospital of Tongji Medical College of Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Jianghan District, Wuhan, Hubei, 430022, China
| | - Lizhi Ouyang
- Wuhan Union Hospital of Tongji Medical College of Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Jianghan District, Wuhan, Hubei, 430022, China
| | - Weixian Hu
- Wuhan Union Hospital of Tongji Medical College of Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Jianghan District, Wuhan, Hubei, 430022, China
| | - Wu Zhou
- Wuhan Union Hospital of Tongji Medical College of Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Jianghan District, Wuhan, Hubei, 430022, China
| | - Yun Sun
- Wuhan Union Hospital of Tongji Medical College of Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Jianghan District, Wuhan, Hubei, 430022, China
| | - Guohui Liu
- Wuhan Union Hospital of Tongji Medical College of Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Jianghan District, Wuhan, Hubei, 430022, China
| |
Collapse
|
23
|
Javanmard Z, Pourhajibagher M, Bahador A. New strategies to enhance antimicrobial photo-sonodynamic therapy based on nanosensitizers against bacterial infections. Folia Microbiol (Praha) 2025; 70:55-70. [PMID: 39367131 DOI: 10.1007/s12223-024-01206-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 09/30/2024] [Indexed: 10/06/2024]
Abstract
The rapid evolution and spread of multidrug resistance among bacterial pathogens has significantly outpaced the development of new antibiotics, underscoring the urgent need for alternative therapies. Antimicrobial photodynamic therapy and antimicrobial sonodynamic therapy have emerged as promising treatments. Antimicrobial photodynamic therapy relies on the interaction between light and a photosensitizer to produce reactive oxygen species, which are highly cytotoxic to microorganisms, leading to their destruction without fostering resistance. Antimicrobial sonodynamic therapy, a novel variation, substitutes ultrasound for light to activate the sonosensitizers, expanding the therapeutic reach. To increase the efficiency of antimicrobial photodynamic therapy and antimicrobial sonodynamic therapy, the combination of these two methods, known as antimicrobial photo-sonodynamic therapy, is currently being explored and considered a promising approach. Recent advances, particularly in the application of nanomaterials, have further enhanced the efficacy of these therapies. Nanosensitizers, due to their improved reactive oxygen species generation and targeted delivery, offer significant advantages in overcoming the limitations of conventional sensitizers. These breakthroughs provide new avenues for treating bacterial infections, especially multidrug-resistant strains and biofilm-associated infections. Continued research, including comprehensive clinical studies, is crucial to optimizing nanomaterial-based antimicrobial photo-sonodynamic therapy for clinical use, ensuring their effectiveness in real-world applications.
Collapse
Affiliation(s)
- Zahra Javanmard
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Pourhajibagher
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Abbas Bahador
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Fellowship in Clinical Laboratory Sciences, BioHealth Lab, Tehran, Iran.
| |
Collapse
|
24
|
Wang JL, Pan X, Li X, Liu KM, Yao M, An JY, Wan Y, Yu XQ, Feng S, Wu MY. Photoimmunologic Therapy of Stubborn Biofilm via Inhibiting Bacteria Revival and Preventing Reinfection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2411468. [PMID: 39723739 DOI: 10.1002/adma.202411468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 11/11/2024] [Indexed: 12/28/2024]
Abstract
Stubborn biofilm infections pose serious threats to public health. Clinical practices highly rely on mechanical debridement and antibiotics, which often fail and lead to persistent and recurrent infections. The main culprits are 1) persistent bacteria reviving, colonizing, and rejuvenating biofilms, and 2) secondary pathogen exposure, particularly in individuals with chronic diseases. Addressing how to inhibit persistent bacteria revival and prevent reinfection simultaneously is still a major challenge. Herein, an oligo-ethylene glycol-modified lipophilic cationic photosensitizer (PS), TBTCP-PEG7, is developed. It effectively eradicates Methicillin-Resistant Staphylococcus aureus (MRSA) under light irradiation. Furthermore, TBTCP-PEG7-mediated photodynamic therapy (PDT) not only conquers stubborn biofilm infections by downregulating the two-component system (TCS), quorum sensing (QS), and virulence factors, thereby reducing intercellular communication, inhibiting persistent bacterial regrowth and biofilm remodeling but also prevents reinfection by upregulating heat shock protein-related genes to induce immunogenetic cell death (ICD) and establish immune memory. In vivo, TBTCP-PEG7 efficiently eradicates MRSA biofilm adhered to medical catheters, stimulates angiogenesis, reduces inflammatory factor expression, and accelerates wound healing. Furthermore, ICD promotes short-term immune and long-term immunological memory for coping with secondary infections. This two-pronged strategy not only effectively overcomes stubborn, persistent and recurrent biofilm infection, but also provides theoretical guidance for designing the next generation of antibacterial materials.
Collapse
Affiliation(s)
- Jia-Li Wang
- School of Biomedical Engineering, Sichuan University, Chengdu, 610065, China
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Xiu Pan
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Xin Li
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Kun-Mei Liu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Mei Yao
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Jin-Yu An
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Yu Wan
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Xiao-Qi Yu
- Asymmetric Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Department of Chemistry, Xihua University, Chengdu, 610039, P. R. China
| | - Shun Feng
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Ming-Yu Wu
- School of Biomedical Engineering, Sichuan University, Chengdu, 610065, China
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| |
Collapse
|
25
|
Hulme J. Harnessing Ultrasonic Technologies to Treat Staphylococcus Aureus Skin Infections. Molecules 2025; 30:512. [PMID: 39942617 PMCID: PMC11819699 DOI: 10.3390/molecules30030512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
The rise of antibiotic-resistant Staphylococcus aureus strains, particularly MRSA, complicates the management of skin and soft tissue infections. This review highlights ultrasonic methodologies as adjunctive therapies to combat S. aureus-driven skin infections and prevent progression to biofilm formation and chronic wounds. Low- and high-frequency ultrasound (LFU and HFU) demonstrate potential in disrupting biofilms, enhancing drug delivery, and promoting tissue repair through cavitation and microbubble activity. These approaches integrate ultrasonic frequencies with microbubbles and therapeutics, such as antibiotics and affimers, to minimize resistance and improve healing. Tailoring the bioeffects of ultrasound on skin structures through localized delivery technologies, including microneedle patches and piezoelectric systems, presents promising solutions for early intervention in skin and soft structure infections (SSSIs).
Collapse
Affiliation(s)
- John Hulme
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, 1342 Sungnam-daero, Sujung-gu, Seongnam-si 461-701, Republic of Korea
| |
Collapse
|
26
|
Yan X, Li X, Yu P, Wang L, Zhao Q. Nanozymes as Antibacterial Agents: New Concerns in Design and Enhancement Strategies. Chembiochem 2025; 26:e202400677. [PMID: 39432556 DOI: 10.1002/cbic.202400677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/08/2024] [Accepted: 10/21/2024] [Indexed: 10/23/2024]
Abstract
Nanozymes exhibiting natural enzyme-mimicking catalytic activities as antibacterial agents present several advantages, including high stability, low cost, broad-spectrum antibacterial activity, ease of preparation and storage, and minimal bacterial resistance. Consequently, they have attracted significant attention in recent years. However, the rapid expansion of antimicrobial nanozyme research has resulted in pioneering reviews that do not comprehensively address emerging concerns and enhancement strategies within this field. This paper first summarizes the factors influencing the intrinsic activity of nanozymes; subsequently, we outline new research considerations for designing antibacterial nanozymes with enhanced functionality and biosafety features such as degradable, imageable, targeted, and bacterial-binding nanozymes as well as those capable of selectively targeting pathogenic bacteria while sparing normal cells and probiotics. Furthermore, we review novel enhancement strategies involving external physical stimuli (light or ultrasound), the introduction of extrinsic small molecules, and self-supplying H2O2 to enhance the activity of antibacterial nanozymes under physiological conditions characterized by low concentrations of H2O2 and O2. Additionally, we present non-redox nanozymes that operate independently of highly toxic reactive oxygen species (ROS) alongside those designed to combat less common pathogenic bacteria. Finally, we discuss current issues, challenges faced in the field, and future prospects for antibacterial nanozymes.
Collapse
Affiliation(s)
- Xianhang Yan
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Xiaoqiang Li
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Pengtian Yu
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Lijun Wang
- School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Qingwei Zhao
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, Hangzhou, 310003, China
- Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine for Clinical Evaluation and Translational Research, Hangzhou, 310003, China
| |
Collapse
|
27
|
Yin X, Lai Y, Zhang X, Zhang T, Tian J, Du Y, Li Z, Gao J. Targeted Sonodynamic Therapy Platform for Holistic Integrative Helicobacter pylori Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2408583. [PMID: 39535366 PMCID: PMC11727135 DOI: 10.1002/advs.202408583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/27/2024] [Indexed: 11/16/2024]
Abstract
Helicobacter pylori (H. pylori) is a primary pathogen associated with gastrointestinal diseases, including gastric cancer. The increase in resistance to antibiotics, along with the adverse effects caused by complicated medication protocols, has made the eradication of H. pylori a more formidable challenge, necessitating alternative therapeutics. Herein, a targeted nanoplatform is reported based on sonodynamic therapy, the chitosan-conjugated fucose loaded with indocyanine green (ICG@FCS). It penetrates the gastric mucosa and homes in on H. pylori through dual targeting mechanisms: molecular via fucose and physical via ultrasound. Upon ultrasound activation, it generates singlet oxygen, effectively attacking planktonic bacteria, disrupting biofilms, and facilitating the clearance of intracellular bacteria by promoting autophagy, including multidrug-resistant strains. The ICG@FCS nanoplatform minimally affects the gut microbiota and aids in gastric mucosa repair. a holistic integrative H. pylori therapy strategy is proposed that targets eradication while preserving gastrointestinal health. This strategy emphasizes the importance of maintaining patient health while eradicating the pathogen. This advancement is set to refine the comprehensive antibacterial approach, offering a promising horizon in the ongoing battle against antibiotic resistance and more effective gastric cancer prevention strategies.
Collapse
Affiliation(s)
- Xiaojing Yin
- Department of GastroenterologyShanghai Institute of Pancreatic DiseasesChanghai HospitalShanghai200433China
- Changhai Clinical Research UnitChanghai HospitalNaval Medical UniversityShanghai200433China
| | - Yongkang Lai
- Department of GastroenterologyShanghai Institute of Pancreatic DiseasesChanghai HospitalShanghai200433China
- Changhai Clinical Research UnitChanghai HospitalNaval Medical UniversityShanghai200433China
- Department of GastroenterologyGanzhou People's Hospital Affiliated to Nanchang UniversityGanzhou341000China
| | - Xinyuan Zhang
- School of Health Science and EngineeringUniversity of Shanghai for Science and TechnologyShanghai200093China
| | - Tingling Zhang
- Changhai Clinical Research UnitChanghai HospitalNaval Medical UniversityShanghai200433China
- National Key Laboratory of Immunity and InflammationNaval Medical UniversityShanghai200433China
| | - Jing Tian
- Department of PharmacyShanghai Changhai Hospitalthe First Affiliated Hospital of Navy Medical UniversityShanghai200433China
| | - Yiqi Du
- Department of GastroenterologyShanghai Institute of Pancreatic DiseasesChanghai HospitalShanghai200433China
- Changhai Clinical Research UnitChanghai HospitalNaval Medical UniversityShanghai200433China
- National Key Laboratory of Immunity and InflammationNaval Medical UniversityShanghai200433China
| | - Zhaoshen Li
- Department of GastroenterologyShanghai Institute of Pancreatic DiseasesChanghai HospitalShanghai200433China
- Changhai Clinical Research UnitChanghai HospitalNaval Medical UniversityShanghai200433China
- National Key Laboratory of Immunity and InflammationNaval Medical UniversityShanghai200433China
| | - Jie Gao
- Department of GastroenterologyShanghai Institute of Pancreatic DiseasesChanghai HospitalShanghai200433China
- Changhai Clinical Research UnitChanghai HospitalNaval Medical UniversityShanghai200433China
- National Key Laboratory of Immunity and InflammationNaval Medical UniversityShanghai200433China
- Shanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical DevicesShanghai200433China
| |
Collapse
|
28
|
Zhou X, Feng S, Xu Q, Li Y, Lan J, Wang Z, Ding Y, Wang S, Zhao Q. Current advances in nanozyme-based nanodynamic therapies for cancer. Acta Biomater 2025; 191:1-28. [PMID: 39571955 DOI: 10.1016/j.actbio.2024.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/29/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024]
Abstract
Nanozymes are nano-catalysis materials with enzyme-like activities, which can repair the defects of natural enzyme such as harsh catalytic conditions, and harness their strengths to treat tumor. The emerging nanodynamic therapies improved drug selectivity and decreased drug tolerance, while causing efficient cell apoptosis through the generated reactive oxygen species (ROS). Nanodynamic therapies based on nanozymes can improve the complicated tumor microenvironment (TME) to reduce the defect rate of nanodynamic therapies, and provide more options for tumor treatment. This review summarized the characteristics and applications of nanozymes with different activities and the factors influencing the activity of nanozymes. We also focused on the application of nanozymes in nanodynamic therapies, including photodynamic therapy (PDT), chemodynamic therapy (CDT), and sonodynamic therapy (SDT). Moreover, we discussed the strategies for optimizing nanodynamic therapies based on nanozymes for tumor treatment in detail, and provided a systematic review of tactics for synergies with other tumor therapies. Ultimately, we analyzed the shortcomings of nanodynamic therapies based on nanozymes and the relevant research prospect, which would provide sufficient evidence and lay a foundation for further research. STATEMENT OF SIGNIFICANCE: 1. The novelty and significance of the work with respect to the existing literatures. (1) Recent advances in nanozyme-based nanodynamic therapies are comprehensively and systematically reviewed, and strategies to address the limitations and challenges of current therapies based on nanozymes are discussed firstly. (2) The mechanism of nanozymes in nanodynamic therapies is described for the first time. The synergistic therapies, prospects, and challenges of nanozyme-based nanodynamic therapies are innovatively discussed. 2. The scientific impact and interest to our readership. This review focuses on the recent progress of nanozyme-based nanodynamic therapies. This review indicates the way forward for the combined treatment of nanozymes and nanodynamic therapies, and lays a foundation for facilitating theoretical development in clinic.
Collapse
Affiliation(s)
- Xubin Zhou
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Shuaipeng Feng
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Qingqing Xu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Yian Li
- School of Libra Arts of Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Jiaru Lan
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Ziyi Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Yiduo Ding
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Siling Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Qinfu Zhao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China.
| |
Collapse
|
29
|
Ge M, Jiang F, Lin H. Nanocatalytic medicine enabled next-generation therapeutics for bacterial infections. Mater Today Bio 2024; 29:101255. [PMID: 39381264 PMCID: PMC11459013 DOI: 10.1016/j.mtbio.2024.101255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/08/2024] [Accepted: 09/14/2024] [Indexed: 10/10/2024] Open
Abstract
The rapid rise of antibiotic-resistant strains and the persistence of biofilm-associated infections have significantly challenged global public health. Unfortunately, current clinical high-dose antibiotic regimens and combination therapies often fail to completely eradicate these infections, which can lead to adverse side effects and further drug resistance. Amidst this challenge, however, the burgeoning development in nanotechnology and nanomaterials brings hopes. This review provides a comprehensive summary of recent advancements in nanomaterials for treating bacterial infections. Firstly, the research progress of catalytic therapies in the field of antimicrobials is comprehensively discussed. Thereafter, we systematically discuss the strategies of nanomaterials for anti-bacterial infection therapies, including endogenous response catalytic therapy, exogenous stimulation catalytic therapy, and catalytic immunotherapy, in order to elucidate the mechanism of nanocatalytic anti-infections. Based on the current state of the art, we conclude with insights on the remaining challenges and future prospects in this rapidly emerging field.
Collapse
Affiliation(s)
- Min Ge
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Feng Jiang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Han Lin
- Shanghai Institute of Ceramics Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences, Shanghai, 200050, China
- Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai, 200331, China
| |
Collapse
|
30
|
Tagaras N, Song H, Sahar S, Tong W, Mao Z, Buerki‐Thurnherr T. Safety Landscape of Therapeutic Nanozymes and Future Research Directions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407816. [PMID: 39445544 PMCID: PMC11633477 DOI: 10.1002/advs.202407816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/20/2024] [Indexed: 10/25/2024]
Abstract
Oxidative stress and inflammation are at the root of a multitude of diseases. Treatment of these conditions is often necessary but current standard therapies to fight excessive reactive oxygen species (ROS) and inflammation are often ineffective or complicated by substantial safety concerns. Nanozymes are emerging nanomaterials with intrinsic enzyme-like properties that hold great promise for effective cancer treatment, bacterial elimination, and anti-inflammatory/anti-oxidant therapy. While there is rapid progress in tailoring their catalytic activities as evidenced by the recent integration of single-atom catalysts (SACs) to create next-generation nanozymes with superior activity, selectivity, and stability, a better understanding and tuning of their safety profile is imperative for successful clinical translation. This review outlines the current applied safety assessment approaches and provides a comprehensive summary of the safety knowledge of therapeutic nanozymes. Overall, nanozymes so far show good in vitro and in vivo biocompatibility despite considerable differences in their composition and enzymatic activities. However, current safety investigations mostly cover a limited set of basic toxicological endpoints, which do not allow for a thorough and deep assessment. Ultimately, remaining research gaps that should be carefully addressed in future studies are highlighted, to optimize the safety profile of therapeutic nanozymes early in their pre-clinical development.
Collapse
Affiliation(s)
- Nikolaos Tagaras
- Laboratory for Particles‐Biology InteractionsSwiss Federal Laboratories for Materials Science and Technology (Empa)St. Gallen9014Switzerland
- Department of Health Sciences and TechnologyETH ZurichZurich8093Switzerland
| | - Haihan Song
- MOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang University866 Yuhangtang RdHangzhou310058China
| | - Shafaq Sahar
- College of Chemical and Biological EngineeringMOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang University866 Yuhangtang RdHangzhou310058China
| | - Weijun Tong
- MOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang University866 Yuhangtang RdHangzhou310058China
| | - Zhengwei Mao
- College of Chemical and Biological EngineeringMOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang University866 Yuhangtang RdHangzhou310058China
| | - Tina Buerki‐Thurnherr
- Laboratory for Particles‐Biology InteractionsSwiss Federal Laboratories for Materials Science and Technology (Empa)St. Gallen9014Switzerland
| |
Collapse
|
31
|
Zhou Y, Zou W, Zhang Y, Fang H, Mo F, Sun D, Zhang X, You T. Aptamer modified CeCo MOF hybrid catalysts with multiple enzymatic activities for enhanced catalytic therapy of infected wounds. Int J Biol Macromol 2024; 285:138215. [PMID: 39617230 DOI: 10.1016/j.ijbiomac.2024.138215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/25/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
Designing and inventing synergistic emerging antimicrobial strategies is critical for mitigating potential resistance to conventional antibiotics. This task is challenging because these antimicrobial agents should need to eliminate bacteria, slow oxidative stress in wounds, and be safe and nontoxic. Here, we report a highly safe antimicrobial nanocatalyst for bacterial scavenging through aptamer-synergistic multienzyme activity. The nanocatalysts (termed as ASCM) were constructed by loading copper nanoparticles (Cu NPs), natural superoxide dismutase (SOD), and functionalized aptamers on bimetallic metal-organic frameworks (CeCo MOFs). The hybrid nanocatalysts exhibit remarkable SOD-like activity as well as its catalase (CAT)-, peroxidase (POD)- and glutathione peroxidase (GPx)-like activities to release highly toxic hydroxyl radicals (•OH) and oxygen (O2) to kill bacteria and relieve wound hypoxia. Systematic antimicrobial testing revealed that ASCM exhibited a high inactivation efficiency (>99 %) against both methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa (PA). Animal experiments have shown that ASCM can effectively treat MRSA-infected wounds and has a good biosafety profile while inhibiting the inflammatory response. Overall, this work describes the design of an efficient, strategically synergistic antibacterial nanocatalysts that can achieve safe bacterial scavenging and alleviate oxidative stress.
Collapse
Affiliation(s)
- Yingxin Zhou
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Nursing, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China
| | - Wanqing Zou
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Nursing, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China
| | - Yulu Zhang
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Nursing, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China
| | - Haolan Fang
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Nursing, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China
| | - Fayin Mo
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Nursing, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China
| | - Duanping Sun
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Nursing, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China.
| | - Xuanxuan Zhang
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Nursing, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China.
| | - Tianhui You
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Nursing, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China.
| |
Collapse
|
32
|
Feng Z, Guo Y, Zhang Y, Zhang A, Jia M, Yin J, Shen G. Nanozymes: a bibliometrics review. J Nanobiotechnology 2024; 22:704. [PMID: 39538291 PMCID: PMC11562681 DOI: 10.1186/s12951-024-02907-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024] Open
Abstract
As novel multifunctional materials that merge enzyme-like capabilities with the distinctive traits of nanomaterials, nanozymes have made significant strides in interdisciplinary research areas spanning materials science, bioscience, and beyond. This article, for the first time, employed bibliometric methods to conduct an in-depth statistical analysis of the global nanozymes research and demonstrate research progress, hotspots and trends. Drawing on data from the Web of Science Core Collection database, we comprehensively retrieved the publications from 2004 to 2024. The burgeoning interest in nanozymes research across various nations indicated a growing and widespread trend. This article further systematically elaborated the enzyme-like activities, matrix, multifunctional properties, catalytic mechanisms and various applications of nanozymes, and the field encounters challenges. Despite notable progress, and requires deeper exploration guide the future research directions. This field harbors broad potential for future developments, promising to impact various aspects of technology and society.
Collapse
Affiliation(s)
- Zihan Feng
- School of Pharmacy, College of Life and Environmental Science, Minzu University of China, Beijing, 100081, China
| | - Yuexin Guo
- School of Pharmacy, North China University of Science and Technology, Tangshan, 063210, China
| | - Yicong Zhang
- School of Pharmacy, College of Life and Environmental Science, Minzu University of China, Beijing, 100081, China
| | - Aiqin Zhang
- School of Pharmacy, College of Life and Environmental Science, Minzu University of China, Beijing, 100081, China.
| | - Meng Jia
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Junfa Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Gangyi Shen
- School of Pharmacy, College of Life and Environmental Science, Minzu University of China, Beijing, 100081, China.
| |
Collapse
|
33
|
Yu L, Zhang C, Yang J, Li L. A Novel pH-Responsive Nano-Sized Lanthanum-Doped Polyvinyl Alcohol-Carbon Quantum Dot Composite for Root Canal Irrigation. Int J Nanomedicine 2024; 19:11343-11356. [PMID: 39524921 PMCID: PMC11550707 DOI: 10.2147/ijn.s475872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 09/28/2024] [Indexed: 11/16/2024] Open
Abstract
Purpose The primary goals of endodontic therapy are to eliminate microbes and prevent reinfection. Persistent root canal infections and failure of root canal therapy are primarily attributed to the presence of bacteria, particularly E. faecalis. Chemical irrigants play a crucial role in complementing mechanical instrumentation in ensuring adequate disinfection. However, current techniques and available irrigants are limited in their ability to achieve optimal sterilization of the root canal system. In this study, we developed a novel material called La@PCDs by combining CQD-PVA and lanthanum for root canal irrigation. Methods A one-pot hydrothermal method was used to prepare composites of lanthanum and CQD-PVA (La@PCDs). Scanning electron microscopy (SEM), Fourier-transform infrared (FTIR) spectroscopy and the particle size were employed to characterize La@PCDs. ROS generation was evaluated by measuring the fluorescence intensity emitted at 525 nm from 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA). In vitro experiments were conducted to assess the effectiveness of the nanoparticles in combating Enterococcus faecalis and eradicating in situ biofilm eradication in root canal. Furthermore, cytotoxicity assessments were carried out to demonstrate the safety of La@PCDs. Results SEM and FTIR results showed that La@PCDs were successfully prepared and exhibiting a homogeneous size distribution and irregular morphology. ROS assessment demonstrated that La@PCDs have a synergistic effect, promoting the production of a large number of ROS. This effect only occurred under acidic PH conditions. The inherent acidity in the biofilm microenvironment can act as internal stimulus. In vitro experiments revealed superior antibacterial efficiency under acidic conditions without causing significant cytotoxicity compared to the commonly used NaClO irrigant. The biosafety of La@PCDs was confirmed. Conclusion Compared to existing materials, these nanoparticles exhibit favorable antibacterial and anti-biofilm properties, along with improved biocompatibility. These findings emphasize the potential of the integrated La@PCDs as a promising option for enhancing root canal irrigation and disinfection.
Collapse
Affiliation(s)
- Lihua Yu
- Department of Pediatric Dentistry, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, 300041, People’s Republic of China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, People’s Republic of China
| | - Chunxia Zhang
- Tianjin Baogang Rare Earth Research Institute Co., Ltd, Tianjin, 300300, People’s Republic of China
| | - Jie Yang
- Department of Stomatology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, People’s Republic of China
| | - Lu Li
- Tianjin Baogang Rare Earth Research Institute Co., Ltd, Tianjin, 300300, People’s Republic of China
| |
Collapse
|
34
|
Li N, Tang J, Wang C, Wang M, Chen G, Jiao L, Yang Q, Tan X. Multienzyme-mimic Fe single-atom nanozymes regulate infection microenvironment for photothermal-enhanced catalytic antibacterial therapy. Colloids Surf B Biointerfaces 2024; 245:114363. [PMID: 39509851 DOI: 10.1016/j.colsurfb.2024.114363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/03/2024] [Accepted: 11/05/2024] [Indexed: 11/15/2024]
Abstract
The rational design of nanozymes with highly efficient reactive oxygen species (ROS) generation to overcome the resistant infection microenvironment still faces a significant challenge. Herein, the highly active Fe single-atom nanozymes (Fe SAzymes) with a hierarchically porous nanostructure were prepared through a colloidal silica-induced template method. The proposed Fe SAzymes with satisfactory oxidase (OD)-like and peroxidase (POD)-like activity can transform O2 and H2O2 to superoxide anion free radical (•O2-) and hydroxyl radical (•OH), which possess an excellent bactericidal effect. Also, the glutathione peroxidase (GPX)-like activity of Fe SAzymes can consume glutathione in the infection microenvironment, thus facilitating ROS generation to enhance the sterilization effect. Besides, the intrinsic photothermal effect of Fe SAzymes further significantly boosts the enzyme-like activity to generate much more reactive oxygen species for efficient antibacterial therapy. Accordingly, both in vitro and in vivo results indicate that the Fe SAzymes with synergistically photothermal-catalytic performances exhibit satisfactory antibacterial effects and biocompatibility. This work provides new insights into designing highly efficient SAzymes for effective sterilization applications by an amount of ROS generation.
Collapse
Affiliation(s)
- Na Li
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital & Center for Molecular Imaging Probe & Hunan Engineering Research Center for Early Diagnosis and Treatment of Liver Cancer, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Jing Tang
- Department of Public Health Laboratory Sciences & National Health Commission Key Laboratory of Birth Defect Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan 410008, China
| | - Congxiao Wang
- Department of Interventional Medical Center, the Affiliated Hospital of Qingdao University, No. 1677 Wutaishan Road, Qingdao, Shandong 266000, China.
| | - Minghui Wang
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital & Center for Molecular Imaging Probe & Hunan Engineering Research Center for Early Diagnosis and Treatment of Liver Cancer, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Guodong Chen
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital & Center for Molecular Imaging Probe & Hunan Engineering Research Center for Early Diagnosis and Treatment of Liver Cancer, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Lei Jiao
- Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
| | - Qinglai Yang
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital & Center for Molecular Imaging Probe & Hunan Engineering Research Center for Early Diagnosis and Treatment of Liver Cancer, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| | - Xiaofeng Tan
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital & Center for Molecular Imaging Probe & Hunan Engineering Research Center for Early Diagnosis and Treatment of Liver Cancer, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
35
|
Zivari-Ghader T, Rashidi MR, Mehrali M. Biological macromolecule-based hydrogels with antibacterial and antioxidant activities for wound dressing: A review. Int J Biol Macromol 2024; 279:134578. [PMID: 39122064 DOI: 10.1016/j.ijbiomac.2024.134578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/04/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Because of the complex symptoms resulting from metabolic dysfunction in the wound microenvironment during bacterial infections, along with the necessity to combat free radicals, achieving prompt and thorough wound healing remains a significant medical challenge that has yet to be fully addressed. Moreover, the misuse of common antibiotics has contributed to the emergence of drug-resistant bacteria, underscoring the need for enhancements in the practical and commonly utilized approach to wound treatment. In this context, hydrogel dressings based on biological macromolecules with antibacterial and antioxidant properties present a promising new avenue for skin wound treatment due to their multifunctional characteristics. Despite the considerable potential of this innovative approach to wound care, comprehensive research on these multifunctional dressings is still insufficient. Consequently, the development of advanced biological macromolecule-based hydrogels, such as chitosan, alginate, cellulose, hyaluronic acid, and others, has been the primary focus of this study. These materials have been enriched with various antibacterial and antioxidant agents to confer multifunctional attributes for wound healing purposes. This review article aims to offer a comprehensive overview of the latest progress in this field, providing a critical theoretical basis for future advancements in the utilization of these advanced biological macromolecule-based hydrogels for wound healing.
Collapse
Affiliation(s)
- Tayebeh Zivari-Ghader
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran
| | - Mohammad-Reza Rashidi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran.
| | - Mehdi Mehrali
- Department of Civil and Mechanical Engineering, Technical University of Denmark, 2800 Kgs Lyngby, Denmark.
| |
Collapse
|
36
|
Zhang M, Sun D, Huang H, Yang D, Song X, Feng W, Jing X, Chen Y. Nanosonosensitizer Optimization for Enhanced Sonodynamic Disease Treatment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409663. [PMID: 39308222 DOI: 10.1002/adma.202409663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/16/2024] [Indexed: 11/16/2024]
Abstract
Low-intensity ultrasound-mediated sonodynamic therapy (SDT), which, by design, integrates sonosensitizers and molecular oxygen to generate therapeutic substances (e.g., toxic hydroxyl radicals, superoxide anions, or singlet oxygen) at disease sites, has shown enormous potential for the effective treatment of a variety of diseases. Nanoscale sonosensitizers play a crucial role in the SDT process because their structural, compositional, physicochemical, and biological characteristics are key determinants of therapeutic efficacy. In particular, advances in materials science and nanotechnology have invigorated a series of optimization strategies for augmenting the therapeutic efficacy of nanosonosensitizers. This comprehensive review systematically summarizes, discusses, and highlights state-of-the-art studies on the current achievements of nanosonosensitizer optimization in enhanced sonodynamic disease treatment, with an emphasis on the general design principles of nanosonosensitizers and their optimization strategies, mainly including organic and inorganic nanosonosensitizers. Additionally, recent advancements in optimized nanosonosensitizers for therapeutic applications aimed at treating various diseases, such as cancer, bacterial infections, atherosclerosis, and autoimmune diseases, are clarified in detail. Furthermore, the biological effects of the improved nanosonosensitizers for versatile SDT applications are thoroughly discussed. The review concludes by highlighting the current challenges and future opportunities in this rapidly evolving research field to expedite its practical clinical translation and application.
Collapse
Affiliation(s)
- Min Zhang
- Department of Ultrasound, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, 570311, P. R. China
| | - Dandan Sun
- Department of Ultrasound, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, 570311, P. R. China
| | - Hui Huang
- Materdicine Laboratory, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Dayan Yang
- Department of Ultrasound, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, 570311, P. R. China
| | - Xinran Song
- Materdicine Laboratory, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Wei Feng
- Materdicine Laboratory, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Xiangxiang Jing
- Department of Ultrasound, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, 570311, P. R. China
| | - Yu Chen
- Materdicine Laboratory, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute of Shanghai University, Wenzhou, Zhejiang, 325088, P. R. China
- Shanghai Institute of Materdicine, Shanghai, 200051, P. R. China
| |
Collapse
|
37
|
Nasra S, Pramanik S, Oza V, Kansara K, Kumar A. Advancements in wound management: integrating nanotechnology and smart materials for enhanced therapeutic interventions. DISCOVER NANO 2024; 19:159. [PMID: 39354172 PMCID: PMC11445205 DOI: 10.1186/s11671-024-04116-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/23/2024] [Indexed: 10/03/2024]
Abstract
Wound management spans various techniques and materials tailored to address acute and chronic non-healing wounds, with the primary objective of achieving successful wound closure. Chronic wounds pose additional challenges, often necessitating dressings to prepare the wound bed for subsequent surgical procedures like skin grafting. Ideal dressing materials should not only expedite wound healing but also mitigate protein, electrolyte, and fluid loss while minimizing pain and infection risk. Nanotechnology has emerged as a transformative tool in wound care, revolutionizing the landscape of biomedical dressings. Its application offers remarkable efficacy in accelerating wound healing and combating bacterial infections, representing a significant advancement in wound care practices. Integration of nanotechnology into dressings has resulted in enhanced properties, including improved mechanical strength and controlled drug release, facilitating tailored therapeutic interventions. This review article comprehensively explores recent breakthroughs in wound healing therapies, with a focus on innovative medical dressings such as nano-enzymes. Additionally, the utilization of smart materials, like hydrogels and electroactive polymers, in wound dressings offers dynamic functionalities to promote tissue regeneration. Emerging concepts such as bio-fabrication, microfluidic systems, bio-responsive scaffolds, and personalized therapeutics show promise in expediting wound healing and minimizing scarring. Through an in-depth exploration of these advancements, this review aims to catalyze a paradigm shift in wound care strategies, promoting a patient-centric approach to therapeutic interventions.
Collapse
Affiliation(s)
- Simran Nasra
- Biological and Life Sciences, School of Arts a Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad, Gujarat, 380009, India
| | - Sanjali Pramanik
- Biological and Life Sciences, School of Arts a Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad, Gujarat, 380009, India
| | - Vidhi Oza
- Biological and Life Sciences, School of Arts a Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad, Gujarat, 380009, India
| | - Krupa Kansara
- Biological Engineering Discipline, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, 382355, India.
| | - Ashutosh Kumar
- Biological and Life Sciences, School of Arts a Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad, Gujarat, 380009, India.
| |
Collapse
|
38
|
Wang C, Su Y, Shahriar SMS, Li Y, Xie J. Emerging strategies for treating medical device and wound-associated biofilm infections. Microb Biotechnol 2024; 17:e70035. [PMID: 39431971 PMCID: PMC11492805 DOI: 10.1111/1751-7915.70035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/01/2024] [Indexed: 10/22/2024] Open
Abstract
Bacterial infections represent a significant global threat to human health, leading to considerable economic losses through increased healthcare costs and reduced productivity. One major challenge in treating these infections is the presence of biofilms - structured bacterial communities that form protective barriers, making traditional treatments less effective. Additionally, the rise of antibiotic-resistant bacteria has exacerbated treatment difficulties. To address these challenges, researchers are developing and exploring innovative approaches to combat biofilm-related infections. This mini-review highlights recent advancements in the following key areas: surface anti-adhesion technologies, electricity, photo/acoustic-active materials, endogenous mimicking agents, and innovative drug delivery systems. These strategies aim to prevent biofilm formation, disrupt existing biofilms, and enhance the efficacy of antimicrobial treatments. Currently, these approaches show great potential for applications in medical fields such as medical device and wound - associated biofilm infections. By summarizing these developments, this mini-review provides a comprehensive resource for researchers seeking to advance the management and treatment of biofilm-associated infections.
Collapse
Affiliation(s)
- Chenlong Wang
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of Medicine, University of Nebraska Medical CenterOmahaNebraskaUSA
| | - Yajuan Su
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of Medicine, University of Nebraska Medical CenterOmahaNebraskaUSA
| | - S. M. Shatil Shahriar
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of Medicine, University of Nebraska Medical CenterOmahaNebraskaUSA
| | - Yu Li
- Department of Emergency MedicineCollege of Medicine, University of Nebraska Medical CenterOmahaNebraskaUSA
| | - Jingwei Xie
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of Medicine, University of Nebraska Medical CenterOmahaNebraskaUSA
- Department of Mechanical and Materials EngineeringUniversity of Nebraska LincolnLincolnNebraskaUSA
| |
Collapse
|
39
|
Khan AS, Sahu SK, Dash SK, Mishra T, Padhan AR, Padhan D, Dash SL, Sarangi MK. The Exploration of Nanozymes for Biosensing of Pathological States Tailored to Clinical Theranostics. Chem Biodivers 2024; 21:e202401326. [PMID: 39041292 DOI: 10.1002/cbdv.202401326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/24/2024]
Abstract
The nanozymes (NZs) are the artificial catalyst deployed for biosensing with their uniqueness (high robustness, surface tenability, inexpensive, and stability) for obtaining a better response/miniaturization of the varied sensors than their traditional ancestors. Nowadays, nanomaterials with their broadened scale such as metal-organic frameworks (MOFs), and metals/metal oxides are widely engaged in generating NZ-based biosensors (BS). Diverse strategies like fluorescent, colorimetric, surface-enhanced Raman scattering (SERS), and electrochemical sensing principles were implemented for signal transduction of NZs. Despite broad advantages, numerous encounters (like specificity, feasibility, stability, and issues in scale-up) are affecting the potentialities of NZs-based BS, and thus need prior attention for a promising exploration for a revolutionary outcome in advanced theranostics. This review includes different types of NZs, and the progress of numerous NZs tailored bio-sensing techniques in detecting abundant bio analytes for theranostic purposes. Further, the discussion highlighted some recent challenges along with their progressive way of possibly overcoming followed by commercial outbreaks.
Collapse
Affiliation(s)
- Abdul Sayeed Khan
- The Pharmaceutical College, Tingipali, Barpali, Bargarh, Odisha, 768029, India
| | - Sudhir Kumar Sahu
- The Pharmaceutical College, Tingipali, Barpali, Bargarh, Odisha, 768029, India
| | - Santosh Kumar Dash
- The Pharmaceutical College, Tingipali, Barpali, Bargarh, Odisha, 768029, India
| | - Tankadhar Mishra
- The Pharmaceutical College, Tingipali, Barpali, Bargarh, Odisha, 768029, India
| | - Amiya Ranjan Padhan
- The Pharmaceutical College, Tingipali, Barpali, Bargarh, Odisha, 768029, India
| | - Damodar Padhan
- The Pharmaceutical College, Tingipali, Barpali, Bargarh, Odisha, 768029, India
| | | | - Manoj Kumar Sarangi
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Malhaur Railway Station Road, Gomti Nagar, Lucknow, Uttar Pradesh, 201313, India
| |
Collapse
|
40
|
Mehta D, Singh S. Nanozymes and their biomolecular conjugates as next-generation antibacterial agents: A comprehensive review. Int J Biol Macromol 2024; 278:134582. [PMID: 39122068 DOI: 10.1016/j.ijbiomac.2024.134582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/27/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Antimicrobial resistance (AMR), the ability of bacterial species to develop resistance against exposed antibiotics, has gained immense global attention in the past few years. Bacterial infections are serious health concerns affecting millions of people annually worldwide. Therefore, developing novel antibacterial agents that are highly effective and avoid resistance development is imperative. Among various strategies, recent developments in nanozyme technology have shown promising results as antibacterials in several antibiotic-sensitive and resistant bacterial species. Nanozymes offer several advantages over corresponding natural enzymes, such as inexpensive, stable, multifunctional, tunable catalytic properties, etc. Although the use of nanozymes as antibacterial agents has provided promising results, the specific biomolecule-conjugated nanozymes have shown further improvement in catalytic performance and associated antibacterial efficacy. The exclusive design of functional nanozymes with theranostic potential is found to simultaneously inhibit the growth and image of AMR bacterial species. This review comprehensively summarizes the history of nanozymes, their classification, biomolecules conjugated nanozyme, and their mechanism of enzyme-mimetic activity and associated antibacterial activity in antibiotic-sensitive and resistant species. The futureneeds to effectively engineer the existing or new nanozymes to curb AMR have also been discussed.
Collapse
Affiliation(s)
- Divya Mehta
- National Institute of Animal Biotechnology (NIAB), Opposite Journalist Colony, Near Gowlidoddy, Extended Q-City Road, Gachibowli, Hyderabad 500032, Telangana, India; Regional Centre for Biotechnology (RCB), Faridabad 121001, Haryana, India
| | - Sanjay Singh
- National Institute of Animal Biotechnology (NIAB), Opposite Journalist Colony, Near Gowlidoddy, Extended Q-City Road, Gachibowli, Hyderabad 500032, Telangana, India; Regional Centre for Biotechnology (RCB), Faridabad 121001, Haryana, India.
| |
Collapse
|
41
|
Zhao K, Zhao Y, Wang Y, Han B, Lian M. Progress in antibacterial applications of nanozymes. Front Chem 2024; 12:1478273. [PMID: 39376729 PMCID: PMC11456495 DOI: 10.3389/fchem.2024.1478273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 09/05/2024] [Indexed: 10/09/2024] Open
Abstract
Bacterial infections are a growing problem, and antibiotic drugs can be widely used to fight bacterial infections. However, the overuse of antibiotics and the evolution of bacteria have led to the emergence of drug-resistant bacteria, severely reducing the effectiveness of treatment. Therefore, it is very important to develop new effective antibacterial strategies to fight multi-drug resistant bacteria. Nanozyme is a kind of enzyme-like catalytic nanomaterials with unique physical and chemical properties, high stability, structural diversity, adjustable catalytic activity, low cost, easy storage and so on. In addition, nanozymes also have excellent broad-spectrum antibacterial properties and good biocompatibility, showing broad application prospects in the field of antibacterial. In this paper, we reviewed the research progress of antibacterial application of nanozymes. At first, the antibacterial mechanism of nanozymes was summarized, and then the application of nanozymes in antibacterial was introduced. Finally, the challenges of the application of antibacterial nanozymes were discussed, and the development prospect of antibacterial nanozymes was clarified.
Collapse
Affiliation(s)
- Keyuan Zhao
- Tianjin Engineering Research Center of Civil Aviation Energy Environment and Green Development, School of Transportation Science and Engineering, Civil Aviation University of China, Tianjin, China
| | - Ye Zhao
- Tianjin Engineering Research Center of Civil Aviation Energy Environment and Green Development, School of Transportation Science and Engineering, Civil Aviation University of China, Tianjin, China
| | - Yuwei Wang
- Tianjin Fire Science and Technology Research Institute of MEM, Tianjin, China
| | - Bo Han
- Tianjin Engineering Research Center of Civil Aviation Energy Environment and Green Development, School of Transportation Science and Engineering, Civil Aviation University of China, Tianjin, China
| | - Meiling Lian
- Tianjin Engineering Research Center of Civil Aviation Energy Environment and Green Development, School of Transportation Science and Engineering, Civil Aviation University of China, Tianjin, China
| |
Collapse
|
42
|
Wu X, Xing Z, Huang H, Ding Z, Gao Y, Adeli M, Ma L, Ma T, Cheng C, Zhao C. Bacteriophage-like Nanobiocatalysts with Spiky Topography and Dual-Atom Sites for Treating Drug-Resistant Bacteria. ACS NANO 2024. [PMID: 39263719 DOI: 10.1021/acsnano.4c07406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Overuse of antibiotics leads to the proliferation of drug-resistant bacterial strains, worsening global morbidity, and mortality rates. Bioinspired nanomaterials present a promising avenue for developing nonantibiotic strategies against drug-resistant bacteria. Here, we engineer a bacteriophage-inspired artificial nanobiocatalyst via nonstoichiometric W18O49 that features a spiky topography and synergistic dual-atom sites for combating drug-resistant bacterial infection. Benefiting from the strong interaction within the synergistic Fe-O-Mo sites, the synthesized spiky artificial nanobiocatalyst exhibits superior reactive oxygen species (ROS)-catalytic activity, attributed to the regulated adsorption affinity between the reaction intermediates and catalytic sites. The experimental and theoretical investigations demonstrate that the bioinspired biocatalyst can effectively capture and kill bacteria through its spiky morphology and potent ROS-catalytic activity, which can enable a significant reduction in bacterial viability through downregulating genes associated with biosynthesis, cellular maintenance, and respiration. In vivo experiments demonstrate that the spiky artificial biocatalyst accelerates the reconstruction of drug-resistant bacteria-infected skin wounds in rabbits, exhibiting efficacy comparable to that of vancomycin. It is expected that this bioinspired study on spiky artificial nanobiocatalysts offers a straightforward path to facilitate the development of both bionic and nonantibiotic disinfection strategies.
Collapse
Affiliation(s)
- Xizheng Wu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
- Max Planck Institute for Chemical Physics of Solids, Dresden 01187, Germany
| | - Zhenyu Xing
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Haoju Huang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Zhiying Ding
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Yang Gao
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Mohsen Adeli
- Institute of Chemistry and Biochemistry, Freie Universitat Berlin, Takustr. 3, Berlin 14195, Germany
- Department of Organic Chemistry, Lorestan University, Khorramabad 68137-17133, Iran
| | - Lang Ma
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Tian Ma
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
- Department of Endodontics, Department of Orthodontics, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
43
|
Huang J, Hong X, Chen S, He Y, Xie L, Gao F, Zhu C, Jin X, Yan H, Ye Y, Shao M, Du X, Feng G. Biomimetic Metal-Organic Framework Gated Nanoplatform for Sonodynamic Therapy against Extensively Drug Resistant Bacterial Lung Infection. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402473. [PMID: 38962911 PMCID: PMC11434100 DOI: 10.1002/advs.202402473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/03/2024] [Indexed: 07/05/2024]
Abstract
Novel antimicrobial strategies are urgently needed to treat extensively drug-resistant (XDR) bacterial infections due to the high mortality rate and lack of effective therapeutic agents. Herein, nanoengineered human umbilical cord mesenchymal stem cells (hUC-MSCs), named PMZMU, are designed as a sonosensitizer for synergistic sonodynamic-nano-antimicrobial therapy against gram-negative XDR bacteria. PMZMU is composed of a bacterial targeting peptide (UBI29-41) modified hUC-MSCs membrane (MSCm), a sonosensitizer meso-tetra(4-car-boxyphenyl) porphine doped mesoporous organo-silica nanoparticle and an acidity-responsive metal-organic framework ZIF-8. This innovative formulation enables efficient loading of polymyxin B, reduces off-target drug release, increases circulation and targeting efficacy, and generates reactive oxygen species upon ultrasound irradiation. PMZMU exhibits remarkable in vitro inhibitory activity against four XDR bacteria: Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa (PA), and Escherichia coli. Taking advantage of the bacterial targeting ability of UBI29-41 and the inflammatory chemotaxis of hUC-MSC, PMZMU can be precisely delivered to lung infection sites thereby augmenting polymyxin B concentration. PMZMU-mediated sonodynamic therapy significantly reduces bacterial burden, relieves inflammatory damage by promoting the polarization of macrophages toward M2 phenotype, and improves survival rates without introducing adverse events. Overall, this study offers promising strategies for treating deep-tissue XDR bacterial infections, and guides the design and optimization of biomimetic nanomedicine.
Collapse
Affiliation(s)
- Jianling Huang
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, China
| | - Xiuwen Hong
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, China
| | - Sixi Chen
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, China
| | - Yucong He
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, China
| | - Lixu Xie
- Department of Pulmonary and Critical Care Medicine, Qi Lu Hospital of Shandong University, Wen hua xi Road 107#, Jinan, 250012, China
| | - Fenglin Gao
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, China
| | - Chenghua Zhu
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, China
| | - Xiao Jin
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, China
| | - Haihao Yan
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, China
| | - Yongxia Ye
- Department of Radiology, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, 210009, China
| | - Mingyue Shao
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, China
| | - Xingran Du
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, 211100, China
| | - Ganzhu Feng
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, China
| |
Collapse
|
44
|
Wang Z, Wang J, Xu W, Qiao L, Xie Y, Gao M, Wang D, Li C. Fasting-Mimicking Diet Facilitates Anti-tumor Therapeutic Effects by Nutrient-Sensitive Nanocomposites. Adv Healthc Mater 2024; 13:e2400943. [PMID: 38856967 DOI: 10.1002/adhm.202400943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/07/2024] [Indexed: 06/11/2024]
Abstract
Cancer cells support their uncontrolled proliferation primarily by regulating energy metabolism. Inhibiting tumor growth by blocking the supply of nutrients is an effective treatment strategy. Fasting-mimicking diet (FMD), as a low-calorie, low-protein, low-sugar, high-fat diet, can effectively reduce the nutrient supply to tumor cells. However, the significant biological barrier presented by the tumor microenvironment imposes greater demands and challenges for drug design. This study constructs the multifunctional nanocomposite ZnFe2O4@TiO2@CHC@Orl-FA (ZTCOF), which has great potential to overcome the aforementioned drawbacks. ZnFe2O4@TiO2 could produce 1O2 with ultrasound, and stimulate the Fenton-like conversion of endogenous H2O2 to ·OH, achieving a combined therapeutic effect of sonodynamic therapy (SDT) and chemodynamic therapy (CDT). Orl (Orlistat) and CHC (α-cyano-4-hydroxycinnamic acid) not only block tumor cell energy metabolism but also increase sensitivity to reactive oxygen species, enhancing the cytotoxic effect on tumor cells. Furthermore, combining the treatment strategies with FMD condition control can further inhibit cancer cell energy metabolism, achieving significant synergistic anti-tumor therapy. Both in vitro and in vivo experiments confirm that ZTCOF with SDT/CDT/starvation can achieve effective tumor suppression and destruction. This work provides theoretical and technical support for anti-tumor multimodal synergistic therapy.
Collapse
Affiliation(s)
- Zhifang Wang
- Shenzhen Research Institute of Shandong University, Shenzhen, 518057, China
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, Shandong, 266237, China
| | - Junrong Wang
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, Shandong, 266237, China
| | - Wencheng Xu
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, Shandong, 266237, China
| | - Luying Qiao
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, Shandong, 266237, China
| | - Yulin Xie
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, Shandong, 266237, China
| | - Minghong Gao
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, Shandong, 266237, China
| | - Dongmei Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Sciences, Zhejiang Normal University, Jinhua, 321004, P. R. China
| | - Chunxia Li
- Shenzhen Research Institute of Shandong University, Shenzhen, 518057, China
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, Shandong, 266237, China
| |
Collapse
|
45
|
Wang Y, Xu Y, Zhang R, Li J, Cong Y, Li R, Wang X, Shi H, Wang S, Feng L. Tuning molecular assembly behavior to amplify the sonodynamic activity of porphyrins for efficient antibacterial therapy. Biomater Sci 2024; 12:4440-4451. [PMID: 39044564 DOI: 10.1039/d4bm00706a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Sonodynamic therapy (SDT) is a promising strategy to treat deep-seated bacterial infections with good tissue penetration and spatiotemporal controllability. However, the low ROS generation efficiency of current sonosensitizers limits the development of SDT. Herein, we report a porphyrin derivative, TAPyPP-2, the sonodynamic activity of which is enhanced with less oxygen dependence by tuning its molecular assembly behavior. TAPyPP-2 can spontaneously form an ultra-small nano-assembly with a diameter of 6 nm in water by conjugation with primary amine salt-decorated pyridinium via π-π staking. The ultra-small assembly behavior can lower the energy gap between singlet and triplet states to 0.01 eV and promote the separation of holes and electrons, which facilitates ROS generation under ultrasound irradiation, in particular type I ROS. The unique hydrophilic ratio and positive charges endow TAPyPP-2 with superior abilities to interact with Staphylococcus aureus, resulting in extremely high sonodynamic antibacterial activity. Therefore, TAPyPP-2 successfully kills Staphylococcus aureus bacteria in the enclosed cavity of synovial joint and achieves effective SDT of septic arthritis. This work is anticipated to motivate enormous interest in the development of efficient SDT.
Collapse
Affiliation(s)
- Yunxia Wang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P.R. China.
| | - Yicheng Xu
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P.R. China.
| | - Rui Zhang
- Shanxi Key Lab of Bone and Soft Tissue Injury Repair, Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Taiyuan 030001, P.R. China.
| | - Jing Li
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P.R. China.
| | - Yujie Cong
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P.R China
| | - Ruipeng Li
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P.R. China.
| | - Xiaoyu Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P.R China
| | - Hu Shi
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P.R. China.
| | - Shaowei Wang
- Shanxi Key Lab of Bone and Soft Tissue Injury Repair, Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Taiyuan 030001, P.R. China.
| | - Liheng Feng
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P.R. China.
- Institute for Carbon-Based Thin Film Electronics, Peking University, Shanxi (ICTFE-PKU), Taiyuan 030012, China
| |
Collapse
|
46
|
Zhou C, Wang Q, Cao H, Jiang J, Gao L. Nanozybiotics: Advancing Antimicrobial Strategies Through Biomimetic Mechanisms. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403362. [PMID: 38874860 DOI: 10.1002/adma.202403362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/09/2024] [Indexed: 06/15/2024]
Abstract
Infectious diseases caused by bacterial, viral, and fungal pathogens present significant global health challenges. The rapid emergence of antimicrobial resistance exacerbates this issue, leading to a scenario where effective antibiotics are increasingly scarce. Traditional antibiotic development strategies are proving inadequate against the swift evolution of microbial resistance. Therefore, there is an urgent need to develop novel antimicrobial strategies with mechanisms distinct from those of existing antibiotics. Nanozybiotics, which are nanozyme-based antimicrobials, mimic the catalytic action of lysosomal enzymes in innate immune cells to kill infectious pathogens. This review reinforces the concept of nanozymes and provides a comprehensive summary of recent research advancements on potential antimicrobial candidates. Initially, nanozybiotics are categorized based on their activities, mimicking either oxidoreductase-like or hydrolase-like functions, thereby highlighting their superior mechanisms in combating antimicrobial resistance. The review then discusses the progress of nanozybiotics in treating bacterial, viral, and fungal infections, confirming their potential as novel antimicrobial candidates. The translational potential of nanozybiotic-based products, including hydrogels, nanorobots, sprays, bandages, masks, and protective clothing, is also considered. Finally, the current challenges and future prospects of nanozybiotic-related products are explored, emphasizing the design and antimicrobial capabilities of nanozybiotics for future applications.
Collapse
Affiliation(s)
- Caiyu Zhou
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang, Beijing, 100101, China
- School of Life Sciences, University of Chinese Academy of Sciences, Haidian, Beijing, 100049, China
| | - Qian Wang
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang, Beijing, 100101, China
- School of Life Sciences, University of Chinese Academy of Sciences, Haidian, Beijing, 100049, China
| | - Haolin Cao
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang, Beijing, 100101, China
- School of Life Sciences, University of Chinese Academy of Sciences, Haidian, Beijing, 100049, China
| | - Jing Jiang
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang, Beijing, 100101, China
| | - Lizeng Gao
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang, Beijing, 100101, China
- Nanozyme Laboratory in Zhongyuan, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, 450052, China
| |
Collapse
|
47
|
Han Q, Huang D, Li S, Xia B, Wang X. Multifunctional nanozymes for disease diagnosis and therapy. Biomed J 2024; 47:100699. [PMID: 38278414 PMCID: PMC11344012 DOI: 10.1016/j.bj.2024.100699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/03/2024] [Accepted: 01/15/2024] [Indexed: 01/28/2024] Open
Abstract
The development of nanotechnology has brought about groundbreaking advancements in diseases' diagnostics and therapeutics. Among them, multifunctional nanomaterials with enzyme-like activities (i.e., nanozymes) featured with high stability, large surface area for bioconjugation, and easy storage, offer unprecedented opportunities for disease diagnostics and treatment. Recent years have witnessed the great progress of nanozyme-based theranostics. To highlight these achievements, this review first introduces the recent advancements on nanozymes in biosensing and diagnostics. Then, it summarizes the applications of nanozymes in therapeutics including anti-tumor and antibacterial treatment, anti-inflammatory treatment, and other diseases treatment. In addition, several targeted strategies to improve the therapeutic efficacy of nanozyme are discussed. Finally, the opportunities and challenges in the field of diagnosis and therapy are summarized.
Collapse
Affiliation(s)
- Qingzhi Han
- Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing, China
| | - Di Huang
- Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing, China
| | - Sijie Li
- Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing, China
| | - Bing Xia
- Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing, China.
| | - Xiaoyu Wang
- Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing, China.
| |
Collapse
|
48
|
Cui Q, Gao Y, Wen Q, Wang T, Ren X, Cheng L, Bai M, Cheng C. Tunable Structured 2D Nanobiocatalysts: Synthesis, Catalytic Properties and New Horizons in Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311584. [PMID: 38566551 DOI: 10.1002/smll.202311584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/18/2024] [Indexed: 04/04/2024]
Abstract
2D materials have offered essential contributions to boosting biocatalytic efficiency in diverse biomedical applications due to the intrinsic enzyme-mimetic activity and massive specific surface area for loading metal catalytic centers. Since the difficulty of high-quality synthesis, the varied structure, and the tough choice of efficient surface loading sites with catalytic properties, the artificial building of 2D nanobiocatalysts still faces great challenges. Here, in this review, a timely and comprehensive summarization of the latest progress and future trends in the design and biotherapeutic applications of 2D nanobiocatalysts is provided, which is essential for their development. First, an overview of the synthesis-structure-fundamentals and structure-property relationships of 2D nanobiocatalysts, both metal-free and metal-based is provided. After that, the effective design of the active sites of nanobiocatalysts is discussed. Then, the progress of their applied research in recent years, including biomedical analysis, biomedical therapeutics, pharmacokinetics, and toxicology is systematically highlighted. Finally, future research directions of 2D nanobiocatalysts are prospected. Overall, this review to provide cutting-edge and multidisciplinary guidance for accelerating future developments and biomedical applications of 2D nanobiocatalysts is expected.
Collapse
Affiliation(s)
- Qiqi Cui
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Yang Gao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Department of Endodontics, State Key Laboratory of Oral Diseases & National Clinical Research, Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Qinlong Wen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Ting Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Xiancheng Ren
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Liang Cheng
- Department of Materials Science and Engineering, Center for Oral Diseases, The Macau University of Science and Technology, Taipa, Macau, China
| | - Mingru Bai
- Department of Endodontics, State Key Laboratory of Oral Diseases & National Clinical Research, Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Department of Endodontics, State Key Laboratory of Oral Diseases & National Clinical Research, Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
49
|
Lu R, Luo Z, Zhang Y, Chen J, Zhang Y, Zhang C. A Multifunctional Tissue-Engineering Hydrogel Aimed to Regulate Bacterial Ferroptosis-Like Death and Overcoming Infection Toward Bone Remodeling. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309820. [PMID: 38896799 PMCID: PMC11321691 DOI: 10.1002/advs.202309820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/12/2024] [Indexed: 06/21/2024]
Abstract
Infection is the most common complication after orthopedic surgery and can result in prolonged ailments such as chronic wounds, enlarged bone defects, and osteomyelitis. Iron, which is essential for bacterial metabolism and immune cell functions, is extremely important. Bacteria harness iron from nearby cells to promote biofilm formation, ensuring their survival. Iron deficiency within the infection microenvironment (IME) consequently hampers macrophage function, enabling further dissemination of the infection and hindering macrophage polarization to the M2 phenotype. Therefore, a novel approach is proposed to regulate macrophage polarization, aiming to restore the inflammatory immune environment. A composite hydrogel derived from natural polymers is developed to address infections and manage iron metabolism in macrophages. This IME-responsive hydrogel, named FCL-ECMH, is synthesized by encapsulating vermiculite functional core layers within a decellularized extracellular matrix hydrogel. It is noteworthy that FCL-ECMH can produce reactive oxygen species within the IME. Supplementary photothermal treatment enhances bacterial iron uptake, leading to ferroptosis-like death. This process also rejuvenates the iron-enriched macrophages around the IME, thereby enhancing their antibacterial and tissue repair functions. In vivo experiments confirmed the antibacterial and repair-promoting capabilities of FCL-ECMH, indicating its potential for clinical applications.
Collapse
Affiliation(s)
- Renjie Lu
- Department of Orthopedic Surgery, Shanghai Institute of Microsurgery on ExtremitiesShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine600 Yishan RoadShanghai200233China
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of MedicineTongji University301 Yanchang RoadShanghai200072China
| | - Zhiyuan Luo
- Department of Orthopedic Surgery, Shanghai Institute of Microsurgery on ExtremitiesShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine600 Yishan RoadShanghai200233China
| | - Yuanyuan Zhang
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of MedicineTongji University301 Yanchang RoadShanghai200072China
| | - Jiahao Chen
- Department of Orthopedic Surgery, Shanghai Institute of Microsurgery on ExtremitiesShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine600 Yishan RoadShanghai200233China
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of MedicineTongji University301 Yanchang RoadShanghai200072China
| | - Yang Zhang
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of MedicineTongji University301 Yanchang RoadShanghai200072China
- Precision Medicine CenterTaizhou Central Hospital999 Donghai RoadTaizhouZhejiang318000China
| | - Chi Zhang
- Department of Orthopedic Surgery, Shanghai Institute of Microsurgery on ExtremitiesShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine600 Yishan RoadShanghai200233China
| |
Collapse
|
50
|
Huang H, Zheng Y, Chang M, Song J, Xia L, Wu C, Jia W, Ren H, Feng W, Chen Y. Ultrasound-Based Micro-/Nanosystems for Biomedical Applications. Chem Rev 2024; 124:8307-8472. [PMID: 38924776 DOI: 10.1021/acs.chemrev.4c00009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Due to the intrinsic non-invasive nature, cost-effectiveness, high safety, and real-time capabilities, besides diagnostic imaging, ultrasound as a typical mechanical wave has been extensively developed as a physical tool for versatile biomedical applications. Especially, the prosperity of nanotechnology and nanomedicine invigorates the landscape of ultrasound-based medicine. The unprecedented surge in research enthusiasm and dedicated efforts have led to a mass of multifunctional micro-/nanosystems being applied in ultrasound biomedicine, facilitating precise diagnosis, effective treatment, and personalized theranostics. The effective deployment of versatile ultrasound-based micro-/nanosystems in biomedical applications is rooted in a profound understanding of the relationship among composition, structure, property, bioactivity, application, and performance. In this comprehensive review, we elaborate on the general principles regarding the design, synthesis, functionalization, and optimization of ultrasound-based micro-/nanosystems for abundant biomedical applications. In particular, recent advancements in ultrasound-based micro-/nanosystems for diagnostic imaging are meticulously summarized. Furthermore, we systematically elucidate state-of-the-art studies concerning recent progress in ultrasound-based micro-/nanosystems for therapeutic applications targeting various pathological abnormalities including cancer, bacterial infection, brain diseases, cardiovascular diseases, and metabolic diseases. Finally, we conclude and provide an outlook on this research field with an in-depth discussion of the challenges faced and future developments for further extensive clinical translation and application.
Collapse
Affiliation(s)
- Hui Huang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Yi Zheng
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P. R. China
| | - Meiqi Chang
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P. R. China
| | - Jun Song
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Lili Xia
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Chenyao Wu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Wencong Jia
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Hongze Ren
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Wei Feng
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Yu Chen
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| |
Collapse
|