1
|
Pedrosa TDL, de Araujo RE, Wachsmann-Hogiu S. On-Chip Polarization Light Microscopy. BIOSENSORS 2025; 15:79. [PMID: 39996981 PMCID: PMC11853662 DOI: 10.3390/bios15020079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/25/2025] [Accepted: 01/27/2025] [Indexed: 02/26/2025]
Abstract
Polarization light microscopy (PLM) enables detailed examination of birefringent materials and reveals unique features that cannot be observed under non-polarized light. Implementation of this technique for quantitative PLM (QPLM) assessment of samples is challenging and requires specialized components and equipment. Here, we demonstrate QPLM on a semiconductor imaging chip that is suitable for point-of-care/need applications. A white LED illumination was used with crossed polarizers and a full wave plate to perform on-chip, non-contact-mode QPLM. Polarization complexity is probed by assessing the multispectral phase shift experienced by white light through the distinct optical paths of the sample. This platform can achieve micrometer-scale spatial resolution with a Field of View determined by the size of the semiconductor sensor. Visualization of a biological sample (Euglena gracilis) was demonstrated, as well as the detection of Monosodium Urate crystals, where the presence of negative birefringence of crystals in synovial fluid is important for the diagnosis of gout.
Collapse
Affiliation(s)
- Túlio de L. Pedrosa
- Department of Bioengineering, McGill University, Montreal, QC H3A 0G4, Canada;
- Laboratory of Biomedical Optics and Imaging, Federal University of Pernambuco, Recife 50740-550, Brazil;
| | - Renato E. de Araujo
- Laboratory of Biomedical Optics and Imaging, Federal University of Pernambuco, Recife 50740-550, Brazil;
| | | |
Collapse
|
2
|
FitzGerald JD, Barrios C, Liu T, Rosenthal A, McCarthy GM, Chen L, Bai B, Ma G, Ozcan A. A Novel Polarized Light Microscope for the Examination of Birefringent Crystals in Synovial Fluid. GOUT, URATE, AND CRYSTAL DEPOSITION DISEASE 2024; 2:315-324. [PMID: 39840290 PMCID: PMC11750256 DOI: 10.3390/gucdd2040022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Background The gold standard for crystal arthritis diagnosis relies on the identification of either monosodium urate (MSU) or calcium pyrophosphate (CPP) crystals in synovial fluid. With the goal of enhanced crystal detection, we adapted a standard compensated polarized light microscope (CPLM) with a polarized digital camera and multi-focal depth imaging capabilities to create digital images from synovial fluid mounted on microscope slides. Using this single-shot computational polarized light microscopy (SCPLM) method, we compared rates of crystal detection and raters' preference for image. Methods Microscope slides from patients with either CPP, MSU, or no crystals in synovial fluid were acquired using CPLM and SCPLM methodologies. Detection rate, sensitivity, and specificity were evaluated by presenting expert crystal raters with (randomly sorted) CPLM and SCPLM digital images, from FOV above clinical samples. For each FOV and each method, each rater was asked to identify crystal suspects and their level of certainty for each crystal suspect and crystal type (MSU vs. CPP). Results For the 283 crystal suspects evaluated, SCPLM resulted in higher crystal detection rates than did CPLM, for both CPP (51%. vs. 28%) and MSU (78% vs. 46%) crystals. Similarly, sensitivity was greater for SCPLM for CPP (0.63 vs. 0.35) and MSU (0.88 vs. 0.52) without giving up much specificity resulting in higher AUC. Conclusions Subjective and objective measures of greater detection and higher certainty were observed for SCPLM over CPLM, particularly for CPP crystals. The digital data associated with these images can ultimately be incorporated into an automated crystal detection system that provides a quantitative report on crystal count, size, and morphology.
Collapse
Affiliation(s)
- John D. FitzGerald
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Chesca Barrios
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Tairan Liu
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA 90095, USA
- Bioengineering Department, University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles, CA 90095, USA
| | - Ann Rosenthal
- Will and Cava Ross Professor of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Geraldine M. McCarthy
- Mater Misericordiae University Hospital and School of Medicine, University College Dublin, D04 C1P1 Dublin, Ireland
| | - Lillian Chen
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Bijie Bai
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA 90095, USA
- Bioengineering Department, University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles, CA 90095, USA
| | - Guangdong Ma
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA 90095, USA
- Bioengineering Department, University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles, CA 90095, USA
| | - Aydogan Ozcan
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA 90095, USA
- Bioengineering Department, University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
3
|
Rosen J, Alford S, Allan B, Anand V, Arnon S, Arockiaraj FG, Art J, Bai B, Balasubramaniam GM, Birnbaum T, Bisht NS, Blinder D, Cao L, Chen Q, Chen Z, Dubey V, Egiazarian K, Ercan M, Forbes A, Gopakumar G, Gao Y, Gigan S, Gocłowski P, Gopinath S, Greenbaum A, Horisaki R, Ierodiaconou D, Juodkazis S, Karmakar T, Katkovnik V, Khonina SN, Kner P, Kravets V, Kumar R, Lai Y, Li C, Li J, Li S, Li Y, Liang J, Manavalan G, Mandal AC, Manisha M, Mann C, Marzejon MJ, Moodley C, Morikawa J, Muniraj I, Narbutis D, Ng SH, Nothlawala F, Oh J, Ozcan A, Park Y, Porfirev AP, Potcoava M, Prabhakar S, Pu J, Rai MR, Rogalski M, Ryu M, Choudhary S, Salla GR, Schelkens P, Şener SF, Shevkunov I, Shimobaba T, Singh RK, Singh RP, Stern A, Sun J, Zhou S, Zuo C, Zurawski Z, Tahara T, Tiwari V, Trusiak M, Vinu RV, Volotovskiy SG, Yılmaz H, De Aguiar HB, Ahluwalia BS, Ahmad A. Roadmap on computational methods in optical imaging and holography [invited]. APPLIED PHYSICS. B, LASERS AND OPTICS 2024; 130:166. [PMID: 39220178 PMCID: PMC11362238 DOI: 10.1007/s00340-024-08280-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/10/2024] [Indexed: 09/04/2024]
Abstract
Computational methods have been established as cornerstones in optical imaging and holography in recent years. Every year, the dependence of optical imaging and holography on computational methods is increasing significantly to the extent that optical methods and components are being completely and efficiently replaced with computational methods at low cost. This roadmap reviews the current scenario in four major areas namely incoherent digital holography, quantitative phase imaging, imaging through scattering layers, and super-resolution imaging. In addition to registering the perspectives of the modern-day architects of the above research areas, the roadmap also reports some of the latest studies on the topic. Computational codes and pseudocodes are presented for computational methods in a plug-and-play fashion for readers to not only read and understand but also practice the latest algorithms with their data. We believe that this roadmap will be a valuable tool for analyzing the current trends in computational methods to predict and prepare the future of computational methods in optical imaging and holography. Supplementary Information The online version contains supplementary material available at 10.1007/s00340-024-08280-3.
Collapse
Affiliation(s)
- Joseph Rosen
- School of Electrical and Computer Engineering, Ben-Gurion University of the Negev, 8410501 Beer-Sheva, Israel
- Institute of Physics, University of Tartu, W. Ostwaldi 1, 50411 Tartu, Estonia
| | - Simon Alford
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, 808 South Wood Street, Chicago, IL 60612 USA
| | - Blake Allan
- Faculty of Science Engineering and Built Environment, Deakin University, Princes Highway, Warrnambool, VIC 3280 Australia
| | - Vijayakumar Anand
- Institute of Physics, University of Tartu, W. Ostwaldi 1, 50411 Tartu, Estonia
- Optical Sciences Center and ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), School of Science, Computing and Engineering Technologies, Optical Sciences Center, Swinburne University of Technology, Hawthorn, Melbourne, VIC 3122 Australia
| | - Shlomi Arnon
- School of Electrical and Computer Engineering, Ben-Gurion University of the Negev, 8410501 Beer-Sheva, Israel
| | - Francis Gracy Arockiaraj
- School of Electrical and Computer Engineering, Ben-Gurion University of the Negev, 8410501 Beer-Sheva, Israel
- Institute of Physics, University of Tartu, W. Ostwaldi 1, 50411 Tartu, Estonia
| | - Jonathan Art
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, 808 South Wood Street, Chicago, IL 60612 USA
| | - Bijie Bai
- Electrical and Computer Engineering Department, Bioengineering Department, California NanoSystems Institute, University of California, Los Angeles (UCLA), Los Angeles, CA USA
| | - Ganesh M. Balasubramaniam
- School of Electrical and Computer Engineering, Ben-Gurion University of the Negev, 8410501 Beer-Sheva, Israel
| | - Tobias Birnbaum
- Department of Electronics and Informatics (ETRO), Vrije Universiteit Brussel VUB), Pleinlaan 2, 1050 Brussel, Belgium
- Swave BV, Gaston Geenslaan 2, 3001 Leuven, Belgium
| | - Nandan S. Bisht
- Applied Optics and Spectroscopy Laboratory, Department of Physics, Soban Singh Jeena University Campus Almora, Almora, Uttarakhand 263601 India
| | - David Blinder
- Department of Electronics and Informatics (ETRO), Vrije Universiteit Brussel VUB), Pleinlaan 2, 1050 Brussel, Belgium
- IMEC, Kapeldreef 75, 3001 Leuven, Belgium
- Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, Chiba Japan
| | - Liangcai Cao
- Department of Precision Instruments, Tsinghua University, Beijing, 100084 China
| | - Qian Chen
- Jiangsu Key Laboratory of Spectral Imaging and Intelligent Sense, Nanjing, 210094 Jiangsu China
| | - Ziyang Chen
- Fujian Provincial Key Laboratory of Light Propagation and Transformation, College of Information Science and Engineering, Huaqiao University, Xiamen, 361021 Fujian China
| | - Vishesh Dubey
- Department of Physics and Technology, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| | - Karen Egiazarian
- Computational Imaging Group, Faculty of Information Technology and Communication Sciences, Tampere University, 33100 Tampere, Finland
| | - Mert Ercan
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University, 06800 Ankara, Turkey
- Department of Physics, Bilkent University, 06800 Ankara, Turkey
| | - Andrew Forbes
- School of Physics, University of the Witwatersrand, Johannesburg, South Africa
| | - G. Gopakumar
- Department of Computer Science and Engineering, Amrita School of Computing, Amrita Vishwa Vidyapeetham, Amritapuri, Vallikavu, Kerala India
| | - Yunhui Gao
- Department of Precision Instruments, Tsinghua University, Beijing, 100084 China
| | - Sylvain Gigan
- Laboratoire Kastler Brossel, Centre National de la Recherche Scientifique (CNRS) UMR 8552, Sorbonne Universite ´, Ecole Normale Supe ´rieure-Paris Sciences et Lettres (PSL) Research University, Collège de France, 24 rue Lhomond, 75005 Paris, France
| | - Paweł Gocłowski
- Department of Physics and Technology, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| | | | - Alon Greenbaum
- Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, NC 27695 USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27695 USA
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27695 USA
| | - Ryoichi Horisaki
- Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656 Japan
| | - Daniel Ierodiaconou
- Faculty of Science Engineering and Built Environment, Deakin University, Princes Highway, Warrnambool, VIC 3280 Australia
| | - Saulius Juodkazis
- Optical Sciences Center and ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), School of Science, Computing and Engineering Technologies, Optical Sciences Center, Swinburne University of Technology, Hawthorn, Melbourne, VIC 3122 Australia
- World Research Hub Initiative (WRHI), Tokyo Institute of Technology, 2-12-1, Ookayama, Tokyo, 152-8550 Japan
| | - Tanushree Karmakar
- Laboratory of Information Photonics and Optical Metrology, Department of Physics, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh 221005 India
| | - Vladimir Katkovnik
- Computational Imaging Group, Faculty of Information Technology and Communication Sciences, Tampere University, 33100 Tampere, Finland
| | - Svetlana N. Khonina
- IPSI RAS-Branch of the FSRC “Crystallography and Photonics” RAS, 443001 Samara, Russia
- Samara National Research University, 443086 Samara, Russia
| | - Peter Kner
- School of Electrical and Computer Engineering, University of Georgia, Athens, GA 30602 USA
| | - Vladislav Kravets
- School of Electrical and Computer Engineering, Ben-Gurion University of the Negev, 8410501 Beer-Sheva, Israel
| | - Ravi Kumar
- Department of Physics, SRM University – AP, Amaravati, Andhra Pradesh 522502 India
| | - Yingming Lai
- Laboratory of Applied Computational Imaging, Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique, Université du Québec, Varennes, QC J3X1Pd7 Canada
| | - Chen Li
- Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, NC 27695 USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27695 USA
| | - Jiaji Li
- Jiangsu Key Laboratory of Spectral Imaging and Intelligent Sense, Nanjing, 210094 Jiangsu China
- Smart Computational Imaging Laboratory (SCILab), School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, 210094 Jiangsu China
- Smart Computational Imaging Research Institute (SCIRI), Nanjing, 210019 Jiangsu China
| | - Shaoheng Li
- School of Electrical and Computer Engineering, University of Georgia, Athens, GA 30602 USA
| | - Yuzhu Li
- Electrical and Computer Engineering Department, Bioengineering Department, California NanoSystems Institute, University of California, Los Angeles (UCLA), Los Angeles, CA USA
| | - Jinyang Liang
- Laboratory of Applied Computational Imaging, Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique, Université du Québec, Varennes, QC J3X1Pd7 Canada
| | - Gokul Manavalan
- School of Electrical and Computer Engineering, Ben-Gurion University of the Negev, 8410501 Beer-Sheva, Israel
| | - Aditya Chandra Mandal
- Laboratory of Information Photonics and Optical Metrology, Department of Physics, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh 221005 India
| | - Manisha Manisha
- Laboratory of Information Photonics and Optical Metrology, Department of Physics, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh 221005 India
| | - Christopher Mann
- Department of Applied Physics and Materials Science, Northern Arizona University, Flagstaff, AZ 86011 USA
- Center for Materials Interfaces in Research and Development, Northern Arizona University, Flagstaff, AZ 86011 USA
| | - Marcin J. Marzejon
- Institute of Micromechanics and Photonics, Warsaw University of Technology, 8 Sw. A. Boboli St., 02-525 Warsaw, Poland
| | - Chané Moodley
- School of Physics, University of the Witwatersrand, Johannesburg, South Africa
| | - Junko Morikawa
- World Research Hub Initiative (WRHI), Tokyo Institute of Technology, 2-12-1, Ookayama, Tokyo, 152-8550 Japan
| | - Inbarasan Muniraj
- LiFE Lab, Department of Electronics and Communication Engineering, Alliance School of Applied Engineering, Alliance University, Bangalore, Karnataka 562106 India
| | - Donatas Narbutis
- Institute of Theoretical Physics and Astronomy, Faculty of Physics, Vilnius University, Sauletekio 9, 10222 Vilnius, Lithuania
| | - Soon Hock Ng
- Optical Sciences Center and ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), School of Science, Computing and Engineering Technologies, Optical Sciences Center, Swinburne University of Technology, Hawthorn, Melbourne, VIC 3122 Australia
| | - Fazilah Nothlawala
- School of Physics, University of the Witwatersrand, Johannesburg, South Africa
| | - Jeonghun Oh
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 South Korea
- KAIST Institute for Health Science and Technology, KAIST, Daejeon, 34141 South Korea
| | - Aydogan Ozcan
- Electrical and Computer Engineering Department, Bioengineering Department, California NanoSystems Institute, University of California, Los Angeles (UCLA), Los Angeles, CA USA
| | - YongKeun Park
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 South Korea
- KAIST Institute for Health Science and Technology, KAIST, Daejeon, 34141 South Korea
- Tomocube Inc., Daejeon, 34051 South Korea
| | - Alexey P. Porfirev
- IPSI RAS-Branch of the FSRC “Crystallography and Photonics” RAS, 443001 Samara, Russia
| | - Mariana Potcoava
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, 808 South Wood Street, Chicago, IL 60612 USA
| | - Shashi Prabhakar
- Quantum Science and Technology Laboratory, Physical Research Laboratory, Navrangpura, Ahmedabad, 380009 India
| | - Jixiong Pu
- Fujian Provincial Key Laboratory of Light Propagation and Transformation, College of Information Science and Engineering, Huaqiao University, Xiamen, 361021 Fujian China
| | - Mani Ratnam Rai
- Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, NC 27695 USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27695 USA
| | - Mikołaj Rogalski
- Institute of Micromechanics and Photonics, Warsaw University of Technology, 8 Sw. A. Boboli St., 02-525 Warsaw, Poland
| | - Meguya Ryu
- Research Institute for Material and Chemical Measurement, National Metrology Institute of Japan (AIST), 1-1-1 Umezono, Tsukuba, 305-8563 Japan
| | - Sakshi Choudhary
- Department Chemical Engineering, Ben-Gurion University of the Negev, 8410501 Beer-Shiva, Israel
| | - Gangi Reddy Salla
- Department of Physics, SRM University – AP, Amaravati, Andhra Pradesh 522502 India
| | - Peter Schelkens
- Department of Electronics and Informatics (ETRO), Vrije Universiteit Brussel VUB), Pleinlaan 2, 1050 Brussel, Belgium
- IMEC, Kapeldreef 75, 3001 Leuven, Belgium
| | - Sarp Feykun Şener
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University, 06800 Ankara, Turkey
- Department of Physics, Bilkent University, 06800 Ankara, Turkey
| | - Igor Shevkunov
- Computational Imaging Group, Faculty of Information Technology and Communication Sciences, Tampere University, 33100 Tampere, Finland
| | - Tomoyoshi Shimobaba
- Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, Chiba Japan
| | - Rakesh K. Singh
- Laboratory of Information Photonics and Optical Metrology, Department of Physics, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh 221005 India
| | - Ravindra P. Singh
- Quantum Science and Technology Laboratory, Physical Research Laboratory, Navrangpura, Ahmedabad, 380009 India
| | - Adrian Stern
- School of Electrical and Computer Engineering, Ben-Gurion University of the Negev, 8410501 Beer-Sheva, Israel
| | - Jiasong Sun
- Jiangsu Key Laboratory of Spectral Imaging and Intelligent Sense, Nanjing, 210094 Jiangsu China
- Smart Computational Imaging Laboratory (SCILab), School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, 210094 Jiangsu China
- Smart Computational Imaging Research Institute (SCIRI), Nanjing, 210019 Jiangsu China
| | - Shun Zhou
- Jiangsu Key Laboratory of Spectral Imaging and Intelligent Sense, Nanjing, 210094 Jiangsu China
- Smart Computational Imaging Laboratory (SCILab), School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, 210094 Jiangsu China
- Smart Computational Imaging Research Institute (SCIRI), Nanjing, 210019 Jiangsu China
| | - Chao Zuo
- Jiangsu Key Laboratory of Spectral Imaging and Intelligent Sense, Nanjing, 210094 Jiangsu China
- Smart Computational Imaging Laboratory (SCILab), School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, 210094 Jiangsu China
- Smart Computational Imaging Research Institute (SCIRI), Nanjing, 210019 Jiangsu China
| | - Zack Zurawski
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, 808 South Wood Street, Chicago, IL 60612 USA
| | - Tatsuki Tahara
- Applied Electromagnetic Research Center, Radio Research Institute, National Institute of Information and Communications Technology (NICT), 4-2-1 Nukuikitamachi, Koganei, Tokyo 184-8795 Japan
| | - Vipin Tiwari
- Institute of Physics, University of Tartu, W. Ostwaldi 1, 50411 Tartu, Estonia
| | - Maciej Trusiak
- Institute of Micromechanics and Photonics, Warsaw University of Technology, 8 Sw. A. Boboli St., 02-525 Warsaw, Poland
| | - R. V. Vinu
- Fujian Provincial Key Laboratory of Light Propagation and Transformation, College of Information Science and Engineering, Huaqiao University, Xiamen, 361021 Fujian China
| | - Sergey G. Volotovskiy
- IPSI RAS-Branch of the FSRC “Crystallography and Photonics” RAS, 443001 Samara, Russia
| | - Hasan Yılmaz
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University, 06800 Ankara, Turkey
| | - Hilton Barbosa De Aguiar
- Laboratoire Kastler Brossel, Centre National de la Recherche Scientifique (CNRS) UMR 8552, Sorbonne Universite ´, Ecole Normale Supe ´rieure-Paris Sciences et Lettres (PSL) Research University, Collège de France, 24 rue Lhomond, 75005 Paris, France
| | - Balpreet S. Ahluwalia
- Department of Physics and Technology, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| | - Azeem Ahmad
- Department of Physics and Technology, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| |
Collapse
|
4
|
Hur SW, Kwon M, Manoharaan R, Mohammadi MH, Samuel AZ, Mulligan MP, Hergenrother PJ, Bhargava R. Capturing cell morphology dynamics with high temporal resolution using single-shot quantitative phase gradient imaging. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:S22712. [PMID: 39015510 PMCID: PMC11249975 DOI: 10.1117/1.jbo.29.s2.s22712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 07/18/2024]
Abstract
Significance Label-free quantitative phase imaging can potentially measure cellular dynamics with minimal perturbation, motivating efforts to develop faster and more sensitive instrumentation. We characterize fast, single-shot quantitative phase gradient microscopy (ss-QPGM) that simultaneously acquires multiple polarization components required to reconstruct phase images. We integrate a computationally efficient least squares algorithm to provide real-time, video-rate imaging (up to 75 frames / s ). The developed instrument was used to observe changes in cellular morphology and correlate these to molecular measures commonly obtained by staining. Aim We aim to characterize a fast approach to ss-QPGM and record morphological changes in single-cell phase images. We also correlate these with biochemical changes indicating cell death using concurrently acquired fluorescence images. Approach Here, we examine nutrient deprivation and anticancer drug-induced cell death in two different breast cell lines, viz., M2 and MCF7. Our approach involves in-line measurements of ss-QPGM and fluorescence imaging of the cells biochemically labeled for viability. Results We validate the accuracy of the phase measurement using a USAF1951 pattern phase target. The ss-QPGM system resolves 912.3 lp / mm , and our analysis scheme accurately retrieves the phase with a high correlation coefficient ( ∼ 0.99 ), as measured by calibrated sample thicknesses. Analyzing the contrast in phase, we estimate the spatial resolution achievable to be 0.55 μ m for this microscope. ss-QPGM time-lapse live-cell imaging reveals multiple intracellular and morphological changes during biochemically induced cell death. Inferences from co-registered images of quantitative phase and fluorescence suggest the possibility of necrosis, which agrees with previous findings. Conclusions Label-free ss-QPGM with high-temporal resolution and high spatial fidelity is demonstrated. Its application for monitoring dynamic changes in live cells offers promising prospects.
Collapse
Affiliation(s)
- Sun Woong Hur
- University of Illinois at Urbana-Champaign, Department of Bioengineering, Urbana, Illinois, United States
- University of Illinois at Urbana-Champaign, Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States
| | - Minsung Kwon
- University of Illinois at Urbana-Champaign, Department of Bioengineering, Urbana, Illinois, United States
- University of Illinois at Urbana-Champaign, Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States
| | - Revathi Manoharaan
- University of Illinois at Urbana-Champaign, Department of Bioengineering, Urbana, Illinois, United States
- University of Illinois at Urbana-Champaign, Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States
| | - Melika Haji Mohammadi
- University of Illinois at Urbana-Champaign, Department of Bioengineering, Urbana, Illinois, United States
- University of Illinois at Urbana-Champaign, Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States
| | - Ashok Zachariah Samuel
- University of Illinois at Urbana-Champaign, Department of Bioengineering, Urbana, Illinois, United States
| | - Michael P. Mulligan
- University of Illinois at Urbana-Champaign, Department of Chemistry, Urbana, Illinois, United States
- University of Illinois Urbana-Champaign, Carl R. Woese Institute for Genomic Biology, Urbana, Illinois, United States
| | - Paul J. Hergenrother
- University of Illinois at Urbana-Champaign, Department of Chemistry, Urbana, Illinois, United States
- University of Illinois Urbana-Champaign, Carl R. Woese Institute for Genomic Biology, Urbana, Illinois, United States
- University of Illinois Urbana-Champaign, Cancer Center at Illinois, Urbana, Illinois, United States
| | - Rohit Bhargava
- University of Illinois at Urbana-Champaign, Department of Bioengineering, Urbana, Illinois, United States
- University of Illinois at Urbana-Champaign, Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States
- University of Illinois Urbana-Champaign, Carl R. Woese Institute for Genomic Biology, Urbana, Illinois, United States
- University of Illinois Urbana-Champaign, Cancer Center at Illinois, Urbana, Illinois, United States
- University of Illinois Urbana-Champaign, Department of Chemical and Biomolecular Engineering, Electrical and Computer Engineering, Mechanical Science and Engineering and Chemistry, Urbana, Illinois, United States
| |
Collapse
|
5
|
Picazo-Bueno JÁ, Ketelhut S, Schnekenburger J, Micó V, Kemper B. Off-axis digital lensless holographic microscopy based on spatially multiplexed interferometry. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:S22715. [PMID: 39161785 PMCID: PMC11331263 DOI: 10.1117/1.jbo.29.s2.s22715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/23/2024] [Accepted: 07/17/2024] [Indexed: 08/21/2024]
Abstract
Significance Digital holographic microscopy (DHM) is a label-free microscopy technique that provides time-resolved quantitative phase imaging (QPI) by measuring the optical path delay of light induced by transparent biological samples. DHM has been utilized for various biomedical applications, such as cancer research and sperm cell assessment, as well as for in vitro drug or toxicity testing. Its lensless version, digital lensless holographic microscopy (DLHM), is an emerging technology that offers size-reduced, lightweight, and cost-effective imaging systems. These features make DLHM applicable, for example, in limited resource laboratories, remote areas, and point-of-care applications. Aim In addition to the abovementioned advantages, in-line arrangements for DLHM also include the limitation of the twin-image presence, which can restrict accurate QPI. We therefore propose a compact lensless common-path interferometric off-axis approach that is capable of quantitative imaging of fast-moving biological specimens, such as living cells in flow. Approach We suggest lensless spatially multiplexed interferometric microscopy (LESSMIM) as a lens-free variant of the previously reported spatially multiplexed interferometric microscopy (SMIM) concept. LESSMIM comprises a common-path interferometric architecture that is based on a single diffraction grating to achieve digital off-axis holography. From a series of single-shot off-axis holograms, twin-image free and time-resolved QPI is achieved by commonly used methods for Fourier filtering-based reconstruction, aberration compensation, and numerical propagation. Results Initially, the LESSMIM concept is experimentally demonstrated by results from a resolution test chart and investigations on temporal stability. Then, the accuracy of QPI and capabilities for imaging of living adherent cell cultures is characterized. Finally, utilizing a microfluidic channel, the cytometry of suspended cells in flow is evaluated. Conclusions LESSMIM overcomes several limitations of in-line DLHM and provides fast time-resolved QPI in a compact optical arrangement. In summary, LESSMIM represents a promising technique with potential biomedical applications for fast imaging such as in imaging flow cytometry or sperm cell analysis.
Collapse
Affiliation(s)
- José Ángel Picazo-Bueno
- University of Muenster, Biomedical Technology Center, Muenster, Germany
- University of Valencia, Department of Optics, Optometry and Vision Science, Burjassot, Spain
| | - Steffi Ketelhut
- University of Muenster, Biomedical Technology Center, Muenster, Germany
| | | | - Vicente Micó
- University of Valencia, Department of Optics, Optometry and Vision Science, Burjassot, Spain
| | - Björn Kemper
- University of Muenster, Biomedical Technology Center, Muenster, Germany
| |
Collapse
|
6
|
Yang K, Liu F, Liang S, Xiang M, Han P, Liu J, Dong X, Wei Y, Wang B, Shimizu K, Shao X. Data-driven polarimetric imaging: a review. OPTO-ELECTRONIC SCIENCE 2024; 3:230042-230042. [DOI: 10.29026/oes.2024.230042] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2025]
|
7
|
Samueli B, Aizenberg N, Shaco-Levy R, Katzav A, Kezerle Y, Krausz J, Mazareb S, Niv-Drori H, Peled HB, Sabo E, Tobar A, Asa SL. Complete digital pathology transition: A large multi-center experience. Pathol Res Pract 2024; 253:155028. [PMID: 38142526 DOI: 10.1016/j.prp.2023.155028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/08/2023] [Indexed: 12/26/2023]
Abstract
INTRODUCTION Transitioning from glass slide pathology to digital pathology for primary diagnostics requires an appropriate laboratory information system, an image management system, and slide scanners; it also reinforces the need for sophisticated pathology informatics including synoptic reporting. Previous reports have discussed the transition itself and relevant considerations for it, but not the selection criteria and considerations for the infrastructure. OBJECTIVE To describe the process used to evaluate slide scanners, image management systems, and synoptic reporting systems for a large multisite institution. METHODS Six network hospitals evaluated six slide scanners, three image management systems, and three synoptic reporting systems. Scanners were evaluated based on the quality of image, speed, ease of operation, and special capabilities (including z-stacking, fluorescence and others). Image management and synoptic reporting systems were evaluated for their ease of use and capacity. RESULTS Among the scanners evaluated, the Leica GT450 produced the highest quality images, while the 3DHistech Pannoramic provided fluorescence and superior z-stacking. The newest generation of scanners, released relatively recently, performed better than slightly older scanners from major manufacturers Although the Olympus VS200 was not fully vetted due to not meeting all inclusion criteria, it is discussed herein due to its exceptional versatility. For Image Management Software, the authors believe that Sectra is, at the time of writing the best developed option, but this could change in the very near future as other systems improve their capabilities. All synoptic reporting systems performed impressively. CONCLUSIONS Specifics regarding quality and abilities of different components will change rapidly with time, but large pathology practices considering such a transition should be aware of the issues discussed and evaluate the most current generation to arrive at appropriate conclusions.
Collapse
Affiliation(s)
- Benzion Samueli
- Department of Pathology, Soroka University Medical Center, P.O. Box 151, Be'er Sheva 8410101, Israel; Faculty of Health Sciences, Ben Gurion University of the Negev, P.O. Box 653, Be'er Sheva 8410501, Israel.
| | - Natalie Aizenberg
- Department of Pathology, Soroka University Medical Center, P.O. Box 151, Be'er Sheva 8410101, Israel; Faculty of Health Sciences, Ben Gurion University of the Negev, P.O. Box 653, Be'er Sheva 8410501, Israel
| | - Ruthy Shaco-Levy
- Department of Pathology, Soroka University Medical Center, P.O. Box 151, Be'er Sheva 8410101, Israel; Faculty of Health Sciences, Ben Gurion University of the Negev, P.O. Box 653, Be'er Sheva 8410501, Israel; Department of Pathology, Barzilai Medical Center, 2 Ha-Histadrut St, Ashkelon 7830604, Israel
| | - Aviva Katzav
- Pathology Institute, Meir Medical Center, Kfar Saba 4428164, Israel
| | - Yarden Kezerle
- Department of Pathology, Soroka University Medical Center, P.O. Box 151, Be'er Sheva 8410101, Israel; Faculty of Health Sciences, Ben Gurion University of the Negev, P.O. Box 653, Be'er Sheva 8410501, Israel
| | - Judit Krausz
- Department of Pathology, HaEmek Medical Center, 21 Yitzhak Rabin Ave, Afula 183411, Israel
| | - Salam Mazareb
- Department of Pathology, Carmel Medical Center, 7 Michal Street, Haifa 3436212, Israel
| | - Hagit Niv-Drori
- Department of Pathology, Rabin Medical Center, 39 Jabotinsky St, Petah Tikva 4941492, Israel; Faculty of Medicine, Tel Aviv University, P.O. Box 39040, Tel Aviv 6139001, Israel
| | - Hila Belhanes Peled
- Department of Pathology, HaEmek Medical Center, 21 Yitzhak Rabin Ave, Afula 183411, Israel
| | - Edmond Sabo
- Department of Pathology, Carmel Medical Center, 7 Michal Street, Haifa 3436212, Israel; Rappaport Faculty of Medicine, Technion Israel Institute of Technology, Haifa 3525433, Israel
| | - Ana Tobar
- Department of Pathology, Rabin Medical Center, 39 Jabotinsky St, Petah Tikva 4941492, Israel; Faculty of Medicine, Tel Aviv University, P.O. Box 39040, Tel Aviv 6139001, Israel
| | - Sylvia L Asa
- Institute of Pathology, University Hospitals Cleveland Medical Center, Case Western Reserve University, 11100 Euclid Avenue, Room 204, Cleveland, OH 44106, USA
| |
Collapse
|
8
|
Li Y, Li J, Zhao Y, Gan T, Hu J, Jarrahi M, Ozcan A. Universal Polarization Transformations: Spatial Programming of Polarization Scattering Matrices Using a Deep Learning-Designed Diffractive Polarization Transformer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303395. [PMID: 37633311 DOI: 10.1002/adma.202303395] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/09/2023] [Indexed: 08/28/2023]
Abstract
Controlled synthesis of optical fields having nonuniform polarization distributions presents a challenging task. Here, a universal polarization transformer is demonstrated that can synthesize a large set of arbitrarily-selected, complex-valued polarization scattering matrices between the polarization states at different positions within its input and output field-of-views (FOVs). This framework comprises 2D arrays of linear polarizers positioned between isotropic diffractive layers, each containing tens of thousands of diffractive features with optimizable transmission coefficients. After its deep learning-based training, this diffractive polarization transformer can successfully implement Ni No = 10 000 different spatially-encoded polarization scattering matrices with negligible error, where Ni and No represent the number of pixels in the input and output FOVs, respectively. This universal polarization transformation framework is experimentally validated in the terahertz spectrum by fabricating wire-grid polarizers and integrating them with 3D-printed diffractive layers to form a physical polarization transformer. Through this set-up, an all-optical polarization permutation operation of spatially-varying polarization fields is demonstrated, and distinct spatially-encoded polarization scattering matrices are simultaneously implemented between the input and output FOVs of a compact diffractive processor. This framework opens up new avenues for developing novel devices for universal polarization control and may find applications in, e.g., remote sensing, medical imaging, security, material inspection, and machine vision.
Collapse
Affiliation(s)
- Yuhang Li
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA, 90095, USA
- Bioengineering Department, University of California, Los Angeles, CA, 90095, USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles, CA, 90095, USA
| | - Jingxi Li
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA, 90095, USA
- Bioengineering Department, University of California, Los Angeles, CA, 90095, USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles, CA, 90095, USA
| | - Yifan Zhao
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA, 90095, USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles, CA, 90095, USA
| | - Tianyi Gan
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA, 90095, USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles, CA, 90095, USA
| | - Jingtian Hu
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA, 90095, USA
- Bioengineering Department, University of California, Los Angeles, CA, 90095, USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles, CA, 90095, USA
| | - Mona Jarrahi
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA, 90095, USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles, CA, 90095, USA
| | - Aydogan Ozcan
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA, 90095, USA
- Bioengineering Department, University of California, Los Angeles, CA, 90095, USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles, CA, 90095, USA
| |
Collapse
|
9
|
Kim J, Song S, Kim H, Kim B, Park M, Oh SJ, Kim D, Cense B, Huh YM, Lee JY, Joo C. Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor. Sci Rep 2023; 13:19263. [PMID: 37935759 PMCID: PMC10630341 DOI: 10.1038/s41598-023-46496-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/01/2023] [Indexed: 11/09/2023] Open
Abstract
Birefringence, an inherent characteristic of optically anisotropic materials, is widely utilized in various imaging applications ranging from material characterizations to clinical diagnosis. Polarized light microscopy enables high-resolution, high-contrast imaging of optically anisotropic specimens, but it is associated with mechanical rotations of polarizer/analyzer and relatively complex optical designs. Here, we present a form of lens-less polarization-sensitive microscopy capable of complex and birefringence imaging of transparent objects without an optical lens and any moving parts. Our method exploits an optical mask-modulated polarization image sensor and single-input-state LED illumination design to obtain complex and birefringence images of the object via ptychographic phase retrieval. Using a camera with a pixel size of 3.45 μm, the method achieves birefringence imaging with a half-pitch resolution of 2.46 μm over a 59.74 mm2 field-of-view, which corresponds to a space-bandwidth product of 9.9 megapixels. We demonstrate the high-resolution, large-area, phase and birefringence imaging capability of our method by presenting the phase and birefringence images of various anisotropic objects, including a monosodium urate crystal, and excised mouse eye and heart tissues.
Collapse
Affiliation(s)
- Jeongsoo Kim
- Department of Mechanical Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Seungri Song
- Department of Mechanical Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Hongseong Kim
- Department of Mechanical Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Bora Kim
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Mirae Park
- Department of Radiology, College of Medicine, Yonsei University, Seoul, 03722, Republic of Korea
| | - Seung Jae Oh
- Department of Radiology, College of Medicine, Yonsei University, Seoul, 03722, Republic of Korea
- YUHS-KRIBB Medical Convergence Research Institute, Seoul, 03722, Republic of Korea
| | - Daesuk Kim
- Department of Mechanical System Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Barry Cense
- Department of Mechanical Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Department of Electrical, Electronic and Computer Engineering, The University of Western Australia, Perth, WA, 6009, Australia
| | - Yong-Min Huh
- Department of Radiology, College of Medicine, Yonsei University, Seoul, 03722, Republic of Korea
- YUHS-KRIBB Medical Convergence Research Institute, Seoul, 03722, Republic of Korea
- Department of Biochemistry and Molecular Biology, College of Medicine, Yonsei University, Seoul, 03722, Republic of Korea
| | - Joo Yong Lee
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Chulmin Joo
- Department of Mechanical Engineering, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
10
|
Song S, Kim J, Moon T, Seong B, Kim W, Yoo CH, Choi JK, Joo C. Polarization-sensitive intensity diffraction tomography. LIGHT, SCIENCE & APPLICATIONS 2023; 12:124. [PMID: 37202421 PMCID: PMC10195819 DOI: 10.1038/s41377-023-01151-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 05/20/2023]
Abstract
Optical anisotropy, which is an intrinsic property of many materials, originates from the structural arrangement of molecular structures, and to date, various polarization-sensitive imaging (PSI) methods have been developed to investigate the nature of anisotropic materials. In particular, the recently developed tomographic PSI technologies enable the investigation of anisotropic materials through volumetric mappings of the anisotropy distribution of these materials. However, these reported methods mostly operate on a single scattering model, and are thus not suitable for three-dimensional (3D) PSI imaging of multiple scattering samples. Here, we present a novel reference-free 3D polarization-sensitive computational imaging technique-polarization-sensitive intensity diffraction tomography (PS-IDT)-that enables the reconstruction of 3D anisotropy distribution of both weakly and multiple scattering specimens from multiple intensity-only measurements. A 3D anisotropic object is illuminated by circularly polarized plane waves at various illumination angles to encode the isotropic and anisotropic structural information into 2D intensity information. These information are then recorded separately through two orthogonal analyzer states, and a 3D Jones matrix is iteratively reconstructed based on the vectorial multi-slice beam propagation model and gradient descent method. We demonstrate the 3D anisotropy imaging capabilities of PS-IDT by presenting 3D anisotropy maps of various samples, including potato starch granules and tardigrade.
Collapse
Affiliation(s)
- Seungri Song
- Department of Mechanical Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jeongsoo Kim
- Department of Mechanical Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Taegyun Moon
- Department of Mechanical Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Baekcheon Seong
- Department of Mechanical Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Woovin Kim
- Department of Mechanical Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Chang-Hyuk Yoo
- Small Machines Company, Ltd., Seoul, 04808, Republic of Korea
| | - Jun-Kyu Choi
- Small Machines Company, Ltd., Seoul, 04808, Republic of Korea
| | - Chulmin Joo
- Department of Mechanical Engineering, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
11
|
Bai B, Yang X, Li Y, Zhang Y, Pillar N, Ozcan A. Deep learning-enabled virtual histological staining of biological samples. LIGHT, SCIENCE & APPLICATIONS 2023; 12:57. [PMID: 36864032 PMCID: PMC9981740 DOI: 10.1038/s41377-023-01104-7] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Histological staining is the gold standard for tissue examination in clinical pathology and life-science research, which visualizes the tissue and cellular structures using chromatic dyes or fluorescence labels to aid the microscopic assessment of tissue. However, the current histological staining workflow requires tedious sample preparation steps, specialized laboratory infrastructure, and trained histotechnologists, making it expensive, time-consuming, and not accessible in resource-limited settings. Deep learning techniques created new opportunities to revolutionize staining methods by digitally generating histological stains using trained neural networks, providing rapid, cost-effective, and accurate alternatives to standard chemical staining methods. These techniques, broadly referred to as virtual staining, were extensively explored by multiple research groups and demonstrated to be successful in generating various types of histological stains from label-free microscopic images of unstained samples; similar approaches were also used for transforming images of an already stained tissue sample into another type of stain, performing virtual stain-to-stain transformations. In this Review, we provide a comprehensive overview of the recent research advances in deep learning-enabled virtual histological staining techniques. The basic concepts and the typical workflow of virtual staining are introduced, followed by a discussion of representative works and their technical innovations. We also share our perspectives on the future of this emerging field, aiming to inspire readers from diverse scientific fields to further expand the scope of deep learning-enabled virtual histological staining techniques and their applications.
Collapse
Affiliation(s)
- Bijie Bai
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA, 90095, USA
- Bioengineering Department, University of California, Los Angeles, 90095, USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles, CA, USA
| | - Xilin Yang
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA, 90095, USA
- Bioengineering Department, University of California, Los Angeles, 90095, USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles, CA, USA
| | - Yuzhu Li
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA, 90095, USA
- Bioengineering Department, University of California, Los Angeles, 90095, USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles, CA, USA
| | - Yijie Zhang
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA, 90095, USA
- Bioengineering Department, University of California, Los Angeles, 90095, USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles, CA, USA
| | - Nir Pillar
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA, 90095, USA
- Bioengineering Department, University of California, Los Angeles, 90095, USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles, CA, USA
| | - Aydogan Ozcan
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA, 90095, USA.
- Bioengineering Department, University of California, Los Angeles, 90095, USA.
- California NanoSystems Institute (CNSI), University of California, Los Angeles, CA, USA.
| |
Collapse
|
12
|
Computational Portable Microscopes for Point-of-Care-Test and Tele-Diagnosis. Cells 2022; 11:cells11223670. [PMID: 36429102 PMCID: PMC9688637 DOI: 10.3390/cells11223670] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/11/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
In bio-medical mobile workstations, e.g., the prevention of epidemic viruses/bacteria, outdoor field medical treatment and bio-chemical pollution monitoring, the conventional bench-top microscopic imaging equipment is limited. The comprehensive multi-mode (bright/dark field imaging, fluorescence excitation imaging, polarized light imaging, and differential interference microscopy imaging, etc.) biomedical microscopy imaging systems are generally large in size and expensive. They also require professional operation, which means high labor-cost, money-cost and time-cost. These characteristics prevent them from being applied in bio-medical mobile workstations. The bio-medical mobile workstations need microscopy systems which are inexpensive and able to handle fast, timely and large-scale deployment. The development of lightweight, low-cost and portable microscopic imaging devices can meet these demands. Presently, for the increasing needs of point-of-care-test and tele-diagnosis, high-performance computational portable microscopes are widely developed. Bluetooth modules, WLAN modules and 3G/4G/5G modules generally feature very small sizes and low prices. And industrial imaging lens, microscopy objective lens, and CMOS/CCD photoelectric image sensors are also available in small sizes and at low prices. Here we review and discuss these typical computational, portable and low-cost microscopes by refined specifications and schematics, from the aspect of optics, electronic, algorithms principle and typical bio-medical applications.
Collapse
|
13
|
Chen H, Huang L, Liu T, Ozcan A. Fourier Imager Network (FIN): A deep neural network for hologram reconstruction with superior external generalization. LIGHT, SCIENCE & APPLICATIONS 2022; 11:254. [PMID: 35970839 PMCID: PMC9378708 DOI: 10.1038/s41377-022-00949-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 07/30/2022] [Accepted: 08/01/2022] [Indexed: 05/25/2023]
Abstract
Deep learning-based image reconstruction methods have achieved remarkable success in phase recovery and holographic imaging. However, the generalization of their image reconstruction performance to new types of samples never seen by the network remains a challenge. Here we introduce a deep learning framework, termed Fourier Imager Network (FIN), that can perform end-to-end phase recovery and image reconstruction from raw holograms of new types of samples, exhibiting unprecedented success in external generalization. FIN architecture is based on spatial Fourier transform modules that process the spatial frequencies of its inputs using learnable filters and a global receptive field. Compared with existing convolutional deep neural networks used for hologram reconstruction, FIN exhibits superior generalization to new types of samples, while also being much faster in its image inference speed, completing the hologram reconstruction task in ~0.04 s per 1 mm2 of the sample area. We experimentally validated the performance of FIN by training it using human lung tissue samples and blindly testing it on human prostate, salivary gland tissue and Pap smear samples, proving its superior external generalization and image reconstruction speed. Beyond holographic microscopy and quantitative phase imaging, FIN and the underlying neural network architecture might open up various new opportunities to design broadly generalizable deep learning models in computational imaging and machine vision fields.
Collapse
Affiliation(s)
- Hanlong Chen
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA, 90095, USA
- Bioengineering Department, University of California, Los Angeles, CA, 90095, USA
- California Nano Systems Institute (CNSI), University of California, Los Angeles, CA, 90095, USA
| | - Luzhe Huang
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA, 90095, USA
- Bioengineering Department, University of California, Los Angeles, CA, 90095, USA
- California Nano Systems Institute (CNSI), University of California, Los Angeles, CA, 90095, USA
| | - Tairan Liu
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA, 90095, USA
- Bioengineering Department, University of California, Los Angeles, CA, 90095, USA
- California Nano Systems Institute (CNSI), University of California, Los Angeles, CA, 90095, USA
| | - Aydogan Ozcan
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA, 90095, USA.
- Bioengineering Department, University of California, Los Angeles, CA, 90095, USA.
- California Nano Systems Institute (CNSI), University of California, Los Angeles, CA, 90095, USA.
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
14
|
Niu Y, Zheng Y, Fu X, Zeng D, Liu H. A novel characterization of starch gelatinization using microscopy observation with deep learning methodology. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2022.111057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Li J, Hung YC, Kulce O, Mengu D, Ozcan A. Polarization multiplexed diffractive computing: all-optical implementation of a group of linear transformations through a polarization-encoded diffractive network. LIGHT, SCIENCE & APPLICATIONS 2022; 11:153. [PMID: 35614046 PMCID: PMC9133014 DOI: 10.1038/s41377-022-00849-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 05/15/2023]
Abstract
Research on optical computing has recently attracted significant attention due to the transformative advances in machine learning. Among different approaches, diffractive optical networks composed of spatially-engineered transmissive surfaces have been demonstrated for all-optical statistical inference and performing arbitrary linear transformations using passive, free-space optical layers. Here, we introduce a polarization-multiplexed diffractive processor to all-optically perform multiple, arbitrarily-selected linear transformations through a single diffractive network trained using deep learning. In this framework, an array of pre-selected linear polarizers is positioned between trainable transmissive diffractive materials that are isotropic, and different target linear transformations (complex-valued) are uniquely assigned to different combinations of input/output polarization states. The transmission layers of this polarization-multiplexed diffractive network are trained and optimized via deep learning and error-backpropagation by using thousands of examples of the input/output fields corresponding to each one of the complex-valued linear transformations assigned to different input/output polarization combinations. Our results and analysis reveal that a single diffractive network can successfully approximate and all-optically implement a group of arbitrarily-selected target transformations with a negligible error when the number of trainable diffractive features/neurons (N) approaches [Formula: see text], where Ni and No represent the number of pixels at the input and output fields-of-view, respectively, and Np refers to the number of unique linear transformations assigned to different input/output polarization combinations. This polarization-multiplexed all-optical diffractive processor can find various applications in optical computing and polarization-based machine vision tasks.
Collapse
Affiliation(s)
- Jingxi Li
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA, 90095, USA
- Bioengineering Department, University of California, Los Angeles, CA, 90095, USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles, CA, 90095, USA
| | - Yi-Chun Hung
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA, 90095, USA
| | - Onur Kulce
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA, 90095, USA
- Bioengineering Department, University of California, Los Angeles, CA, 90095, USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles, CA, 90095, USA
| | - Deniz Mengu
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA, 90095, USA
- Bioengineering Department, University of California, Los Angeles, CA, 90095, USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles, CA, 90095, USA
| | - Aydogan Ozcan
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA, 90095, USA.
- Bioengineering Department, University of California, Los Angeles, CA, 90095, USA.
- California NanoSystems Institute (CNSI), University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
16
|
Vaghashiya R, Shin S, Chauhan V, Kapadiya K, Sanghavi S, Seo S, Roy M. Machine Learning Based Lens-Free Shadow Imaging Technique for Field-Portable Cytometry. BIOSENSORS 2022; 12:144. [PMID: 35323414 PMCID: PMC8946550 DOI: 10.3390/bios12030144] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
The lens-free shadow imaging technique (LSIT) is a well-established technique for the characterization of microparticles and biological cells. Due to its simplicity and cost-effectiveness, various low-cost solutions have been developed, such as automatic analysis of complete blood count (CBC), cell viability, 2D cell morphology, 3D cell tomography, etc. The developed auto characterization algorithm so far for this custom-developed LSIT cytometer was based on the handcrafted features of the cell diffraction patterns from the LSIT cytometer, that were determined from our empirical findings on thousands of samples of individual cell types, which limit the system in terms of induction of a new cell type for auto classification or characterization. Further, its performance suffers from poor image (cell diffraction pattern) signatures due to their small signal or background noise. In this work, we address these issues by leveraging the artificial intelligence-powered auto signal enhancing scheme such as denoising autoencoder and adaptive cell characterization technique based on the transfer of learning in deep neural networks. The performance of our proposed method shows an increase in accuracy >98% along with the signal enhancement of >5 dB for most of the cell types, such as red blood cell (RBC) and white blood cell (WBC). Furthermore, the model is adaptive to learn new type of samples within a few learning iterations and able to successfully classify the newly introduced sample along with the existing other sample types.
Collapse
Affiliation(s)
- Rajkumar Vaghashiya
- Department of Computer Engineering, Pandit Deendayal Energy University, Gandhinagar 382007, India; (R.V.); (V.C.); (K.K.); (S.S.)
| | - Sanghoon Shin
- Department of Electronics and Information Engineering, Korea University, Sejong 30019, Korea;
| | - Varun Chauhan
- Department of Computer Engineering, Pandit Deendayal Energy University, Gandhinagar 382007, India; (R.V.); (V.C.); (K.K.); (S.S.)
| | - Kaushal Kapadiya
- Department of Computer Engineering, Pandit Deendayal Energy University, Gandhinagar 382007, India; (R.V.); (V.C.); (K.K.); (S.S.)
| | - Smit Sanghavi
- Department of Computer Engineering, Pandit Deendayal Energy University, Gandhinagar 382007, India; (R.V.); (V.C.); (K.K.); (S.S.)
| | - Sungkyu Seo
- Department of Electronics and Information Engineering, Korea University, Sejong 30019, Korea;
| | - Mohendra Roy
- Department of Information and Communication Technology, Pandit Deendayal Energy University, Gandhinagar 38207, India
| |
Collapse
|
17
|
Yolalmaz A, Yüce E. Comprehensive deep learning model for 3D color holography. Sci Rep 2022; 12:2487. [PMID: 35169161 PMCID: PMC8847588 DOI: 10.1038/s41598-022-06190-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 01/20/2022] [Indexed: 12/04/2022] Open
Abstract
Holography is a vital tool used in various applications from microscopy, solar energy, imaging, display to information encryption. Generation of a holographic image and reconstruction of object/hologram information from a holographic image using the current algorithms are time-consuming processes. Versatile, fast in the meantime, accurate methodologies are required to compute holograms performing color imaging at multiple observation planes and reconstruct object/sample information from a holographic image for widely accommodating optical holograms. Here, we focus on design of optical holograms for generation of holographic images at multiple observation planes and colors via a deep learning model, the CHoloNet. The CHoloNet produces optical holograms which show multitasking performance as multiplexing color holographic image planes by tuning holographic structures. Furthermore, our deep learning model retrieves an object/hologram information from an intensity holographic image without requiring phase and amplitude information from the intensity image. We show that reconstructed objects/holograms show excellent agreement with the ground-truth images. The CHoloNet does not need iteratively reconstruction of object/hologram information while conventional object/hologram recovery methods rely on multiple holographic images at various observation planes along with the iterative algorithms. We openly share the fast and efficient framework that we develop in order to contribute to the design and implementation of optical holograms, and we believe that the CHoloNet based object/hologram reconstruction and generation of holographic images will speed up wide-area implementation of optical holography in microscopy, data encryption, and communication technologies.
Collapse
Affiliation(s)
- Alim Yolalmaz
- Programmable Photonics Group, Department of Physics, Middle East Technical University, 06800, Ankara, Turkey. .,Micro and Nanotechnology Program, Middle East Technical University, 06800, Ankara, Turkey.
| | - Emre Yüce
- Programmable Photonics Group, Department of Physics, Middle East Technical University, 06800, Ankara, Turkey.,Micro and Nanotechnology Program, Middle East Technical University, 06800, Ankara, Turkey
| |
Collapse
|
18
|
Xing Z, Zhao S, Guo W, Guo X, Wang S, Ma J, He H. Coal Wall and Roof Segmentation in the Coal Mine Working Face Based on Dynamic Graph Convolution Neural Networks. ACS OMEGA 2021; 6:31699-31715. [PMID: 34869994 PMCID: PMC8638012 DOI: 10.1021/acsomega.1c04393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
The intersection line information of the point cloud between the coal wall and the roof can not only accurately reflect the direction information of the scraper conveyor but also provide a preliminary basis for realizing the intelligent coal mine. However, the indirect method of using deep learning to segment the point cloud of coal mine working face cannot make full use of the rich information provided by the point cloud data. The direct method of using deep learning to segment the point cloud ignores the local feature relationship between points. Therefore, we propose to use dynamic graph convolution neural networks (DGCNNs) to segment the point cloud of the coal wall and roof so as to obtain the intersection line between them. First, in view of the characteristics of heavy dust and strong electromagnetic interference in the environment of the coal mine working face, we have installed an underground inspection robot so that we use light detection and ranging to obtain the point cloud of the coal mine working face. At the same time, we put forward a fast labeling method of the point cloud of the coal mine working face and an efficient training method of the depth neural network. Second, on the basis of edge convolution, being the greatest innovation of DGCNNs, we analyze the influence of the number of layers, K value, and output feature dimension of edge convolution on the effect of DGCNNs segmenting the point cloud of the coal mine working face and obtaining the intersection line of the coal wall and roof. Finally, we compare DGCNNs with PointNet and PointNet++. The results show that the DGCNN exhibits the best performance. What is more, the results provide a research foundation for the application of DGCNNs in the field of energy. Last but not least, the research results provide a direct and key basis for the adjustment of the scraper conveyor, which is of great significance for an intelligent coal mine working face and accurate construction of a geological information model.
Collapse
Affiliation(s)
- Zhizhong Xing
- College
of Mechanical Engineering, Xi’an
University of Science and Technology, Xi’an 710054, China
| | - Shuanfeng Zhao
- College
of Mechanical Engineering, Xi’an
University of Science and Technology, Xi’an 710054, China
| | - Wei Guo
- College
of Mechanical Engineering, Xi’an
University of Science and Technology, Xi’an 710054, China
| | - Xiaojun Guo
- School
of Mechanical & Automotive Engineering, South China University of Technology, Guangzhou 510641, China
| | - Shenquan Wang
- College
of Mechanical Engineering, Xi’an
University of Science and Technology, Xi’an 710054, China
| | - Junjie Ma
- College
of Mechanical Engineering, Xi’an
University of Science and Technology, Xi’an 710054, China
| | - Haitao He
- College
of Mechanical Engineering, Xi’an
University of Science and Technology, Xi’an 710054, China
- Shendong
Coal Group Co., Ltd. of National Energy Group, Yulin 719315, China
| |
Collapse
|
19
|
Luo Y, Joung HA, Esparza S, Rao J, Garner O, Ozcan A. Quantitative particle agglutination assay for point-of-care testing using mobile holographic imaging and deep learning. LAB ON A CHIP 2021; 21:3550-3558. [PMID: 34292287 DOI: 10.1039/d1lc00467k] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Particle agglutination assays are widely adopted immunological tests that are based on antigen-antibody interactions. Antibody-coated microscopic particles are mixed with a test sample that potentially contains the target antigen, as a result of which the particles form clusters, with a size that is a function of the antigen concentration and the reaction time. Here, we present a quantitative particle agglutination assay that combines mobile lens-free microscopy and deep learning for rapidly measuring the concentration of a target analyte; as its proof-of-concept, we demonstrate high-sensitivity C-reactive protein (hs-CRP) testing using human serum samples. A dual-channel capillary lateral flow device is designed to host the agglutination reaction using 4 μL of serum sample with a material cost of 1.79 cents per test. A mobile lens-free microscope records time-lapsed inline holograms of the lateral flow device, monitoring the agglutination process over 3 min. These captured holograms are processed, and at each frame the number and area of the particle clusters are automatically extracted and fed into shallow neural networks to predict the CRP concentration. 189 measurements using 88 unique patient serum samples were utilized to train, validate and blindly test our platform, which matched the corresponding ground truth concentrations in the hs-CRP range (0-10 μg mL-1) with an R2 value of 0.912. This computational sensing platform was also able to successfully differentiate very high CRP concentrations (e.g., >10-500 μg mL-1) from the hs-CRP range. This mobile, cost-effective and quantitative particle agglutination assay can be useful for various point-of-care sensing needs and global health related applications.
Collapse
Affiliation(s)
- Yi Luo
- Electrical & Computer Engineering Department, University of California, Los Angeles, California 90095, USA.
- California NanoSystems Institute (CNSI), University of California, Los Angeles, California 90095, USA
- Bioengineering Department, University of California, Los Angeles, California 90095, USA
| | - Hyou-Arm Joung
- Electrical & Computer Engineering Department, University of California, Los Angeles, California 90095, USA.
- California NanoSystems Institute (CNSI), University of California, Los Angeles, California 90095, USA
- Bioengineering Department, University of California, Los Angeles, California 90095, USA
| | - Sarah Esparza
- Bioengineering Department, University of California, Los Angeles, California 90095, USA
| | - Jingyou Rao
- Computer Science Department, University of California, Los Angeles, California 90095, USA
| | - Omai Garner
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, California 90095, USA
| | - Aydogan Ozcan
- Electrical & Computer Engineering Department, University of California, Los Angeles, California 90095, USA.
- California NanoSystems Institute (CNSI), University of California, Los Angeles, California 90095, USA
- Bioengineering Department, University of California, Los Angeles, California 90095, USA
| |
Collapse
|
20
|
Zhang Y, Liu T, Singh M, Çetintaş E, Luo Y, Rivenson Y, Larin KV, Ozcan A. Neural network-based image reconstruction in swept-source optical coherence tomography using undersampled spectral data. LIGHT, SCIENCE & APPLICATIONS 2021; 10:155. [PMID: 34326306 PMCID: PMC8322159 DOI: 10.1038/s41377-021-00594-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 05/13/2023]
Abstract
Optical coherence tomography (OCT) is a widely used non-invasive biomedical imaging modality that can rapidly provide volumetric images of samples. Here, we present a deep learning-based image reconstruction framework that can generate swept-source OCT (SS-OCT) images using undersampled spectral data, without any spatial aliasing artifacts. This neural network-based image reconstruction does not require any hardware changes to the optical setup and can be easily integrated with existing swept-source or spectral-domain OCT systems to reduce the amount of raw spectral data to be acquired. To show the efficacy of this framework, we trained and blindly tested a deep neural network using mouse embryo samples imaged by an SS-OCT system. Using 2-fold undersampled spectral data (i.e., 640 spectral points per A-line), the trained neural network can blindly reconstruct 512 A-lines in 0.59 ms using multiple graphics-processing units (GPUs), removing spatial aliasing artifacts due to spectral undersampling, also presenting a very good match to the images of the same samples, reconstructed using the full spectral OCT data (i.e., 1280 spectral points per A-line). We also successfully demonstrate that this framework can be further extended to process 3× undersampled spectral data per A-line, with some performance degradation in the reconstructed image quality compared to 2× spectral undersampling. Furthermore, an A-line-optimized undersampling method is presented by jointly optimizing the spectral sampling locations and the corresponding image reconstruction network, which improved the overall imaging performance using less spectral data points per A-line compared to 2× or 3× spectral undersampling results. This deep learning-enabled image reconstruction approach can be broadly used in various forms of spectral-domain OCT systems, helping to increase their imaging speed without sacrificing image resolution and signal-to-noise ratio.
Collapse
Affiliation(s)
- Yijie Zhang
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California, Los Angeles, CA, 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
| | - Tairan Liu
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California, Los Angeles, CA, 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
| | - Manmohan Singh
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Ege Çetintaş
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California, Los Angeles, CA, 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
| | - Yilin Luo
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California, Los Angeles, CA, 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
| | - Yair Rivenson
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California, Los Angeles, CA, 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
| | - Kirill V Larin
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, University of Houston, Houston, TX, 77204, USA
| | - Aydogan Ozcan
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA, 90095, USA.
- Department of Bioengineering, University of California, Los Angeles, CA, 90095, USA.
- California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA.
- Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
21
|
Kandel ME, Kim E, Lee YJ, Tracy G, Chung HJ, Popescu G. Multiscale Assay of Unlabeled Neurite Dynamics Using Phase Imaging with Computational Specificity. ACS Sens 2021; 6:1864-1874. [PMID: 33882232 PMCID: PMC8815662 DOI: 10.1021/acssensors.1c00100] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Primary neuronal cultures have been widely used to study neuronal morphology, neurophysiology, neurodegenerative processes, and molecular mechanism of synaptic plasticity underlying learning and memory. However, the unique behavioral properties of neurons make them challenging to study, with phenotypic differences expressed as subtle changes in neuronal arborization rather than easy-to-assay features such as cell count. The need to analyze morphology, growth, and intracellular transport has motivated the development of increasingly sophisticated microscopes and image analysis techniques. Due to its high-contrast, high-specificity output, many assays rely on confocal fluorescence microscopy, genetic methods, or antibody staining techniques. These approaches often limit the ability to measure quantitatively dynamic activity such as intracellular transport and growth. In this work, we describe a method for label-free live-cell cell imaging with antibody staining specificity by estimating the associated fluorescence signals via quantitative phase imaging and deep convolutional neural networks. This computationally inferred fluorescence image is then used to generate a semantic segmentation map, annotating subcellular compartments of live unlabeled neural cultures. These synthetic fluorescence maps were further applied to study the time-lapse development of hippocampal neurons, highlighting the relationships between the cellular dry mass production and the dynamic transport activity within the nucleus and neurites. Our implementation provides a high-throughput strategy to analyze neural network arborization dynamically, with high specificity and without the typical phototoxicity and photobleaching limitations associated with fluorescent markers.
Collapse
Affiliation(s)
- Mikhail E Kandel
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Eunjae Kim
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Young Jae Lee
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Gregory Tracy
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana Champaign, Urbana, Illinois 61801, United States
| | - Hee Jung Chung
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana Champaign, Urbana, Illinois 61801, United States
| | - Gabriel Popescu
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
22
|
Zell M, Aung T, Kaldas M, Rosenthal AK, Bai B, Liu T, Ozcan A, FitzGerald JD. Calcium pyrophosphate crystal size and characteristics. OSTEOARTHRITIS AND CARTILAGE OPEN 2021; 3. [PMID: 34386778 PMCID: PMC8356773 DOI: 10.1016/j.ocarto.2020.100133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Objective: To describe the characteristics of calcium pyrophosphate (CPP) crystal size and morphology under compensated polarized light microscopy (CPLM). Secondarily, to describe CPP crystals seen only with digital enhancement of CPLM images, confirmed with advanced imaging techniques. Methods: Clinical lab-identified CPP-positive synovial fluid samples were collected from 16 joint aspirates. Four raters used a standardized protocol to describe crystal shape, birefringence strength and color. A crystal expert confirmed CPLM-visualized crystal identification. For crystal measurement, a high-pass linear light filter was used to enhance resolution and line discrimination of digital images. This process identified additional enhanced crystals not seen by raters under CPLM. Single-shot computational polarized light microscopy (SCPLM) provided further confirmation of the enhanced crystals’ presence. Results: Of 932 suspected crystals identified by CPLM, 569 met our inclusion criteria, and 293 (51%) were confirmed as CPP crystals. Of 175 unique confirmed crystals, 118 (67%) were rods (median area 3.6 μm2 [range, 1.0–22.9 μm2]), and 57 (33%) were rhomboids (median area 4.8 μm2 [range, 0.9–16.7 μm2]). Crystals visualized only after digital image enhancement were smaller and less birefringent than CPLM-identified crystals. Conclusions: CPP crystals that are smaller and weakly birefringent are more difficult to identify. There is likely a population of smaller, less birefringent CPP crystals that routinely goes undetected by CPLM. Describing the characteristics of poorly visible crystals may be of use for future development of novel crystal identification methods.
Collapse
Affiliation(s)
- Monica Zell
- Department of Medicine, David Geffen School of Medicine, UCLA Medical Center, USA
- Corresponding author. UCLA Department of Medicine Ronald Reagan UCLA Medical Center, 757 Westwood Plaza, Suite 7501, Los Angeles, CA, 90095, USA.
| | - Thanda Aung
- Division of Rheumatology, Department of Medicine, David Geffen School of Medicine, UCLA Medical Center, USA
| | - Marian Kaldas
- Division of Rheumatology, Department of Medicine, David Geffen School of Medicine, UCLA Medical Center, USA
| | - Ann K. Rosenthal
- Division of Rheumatology, Department of Medicine, Medical College of Wisconsin, USA
| | - Bijie Bai
- Department of Electrical and Computer Engineering, University of California Los Angeles, USA
- Department of Bioengineering, University of California Los Angeles, USA
- California NanoSystems Institute, University of California Los Angeles, USA
| | - Tairan Liu
- Department of Electrical and Computer Engineering, University of California Los Angeles, USA
- Department of Bioengineering, University of California Los Angeles, USA
- California NanoSystems Institute, University of California Los Angeles, USA
| | - Aydogan Ozcan
- Department of Electrical and Computer Engineering, University of California Los Angeles, USA
- Department of Bioengineering, University of California Los Angeles, USA
- California NanoSystems Institute, University of California Los Angeles, USA
| | - John D. FitzGerald
- Division of Rheumatology, Department of Medicine, David Geffen School of Medicine, UCLA Medical Center, USA
| |
Collapse
|