1
|
Piccinini C, Paralikis A, Neto JF, Madigawa AA, Wyborski P, Remesh V, Vannucci L, Gregersen N, Munkhbat B. High-purity and stable single-photon emission in bilayer WSe 2 via phonon-assisted excitation. COMMUNICATIONS PHYSICS 2025; 8:158. [PMID: 40241875 PMCID: PMC11996677 DOI: 10.1038/s42005-025-02080-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Accepted: 03/31/2025] [Indexed: 04/18/2025]
Abstract
The excitation scheme is essential for single-photon sources, as it governs exciton preparation, decay dynamics, and the spectral diffusion of emitted photons. While phonon-assisted excitation has shown promise in other quantum emitter platforms, its proper implementation and systematic comparison with alternative excitation schemes have not yet been demonstrated in transition metal dichalcogenide (TMD) quantum emitters. Here, we investigate the impact of various optical excitation strategies on the single-photon emission properties of bilayer WSe2 quantum emitters. Based on our theoretical predictions for the exciton preparation fidelity, we compare the excitation via the longitudinal acoustic and breathing phonon modes to conventional above-band and near-resonance excitations. Under acoustic phonon-assisted excitation, we achieve narrow single-photon emission with a reduced spectral diffusion of 0.0129 nm, a 1.8-fold improvement over above-band excitation. Additionally, excitation through breathing-phonon mode yields a high purity of 0.947 ± 0.079 and reduces the decay time by over an order of magnitude, reaching (1.33 ± 0.04) ns. Our comprehensive study demonstrates the crucial role of phonon-assisted excitation in optimizing the performance of WSe2-based quantum emitters, providing valuable insights for the development of single-photon sources for quantum photonics applications.
Collapse
Affiliation(s)
- Claudia Piccinini
- Department of Electrical and Photonics Engineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Athanasios Paralikis
- Department of Electrical and Photonics Engineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - José Ferreira Neto
- Department of Electrical and Photonics Engineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Abdulmalik A. Madigawa
- Department of Electrical and Photonics Engineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Paweł Wyborski
- Department of Electrical and Photonics Engineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Vikas Remesh
- Institut für Experimentalphysik, Universität Innsbruck, 6020 Innsbruck, Austria
| | - Luca Vannucci
- Department of Electrical and Photonics Engineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Niels Gregersen
- Department of Electrical and Photonics Engineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Battulga Munkhbat
- Department of Electrical and Photonics Engineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
2
|
Paralikis A, Piccinini C, Madigawa AA, Metuh P, Vannucci L, Gregersen N, Munkhbat B. Tailoring polarization in WSe 2 quantum emitters through deterministic strain engineering. NPJ 2D MATERIALS AND APPLICATIONS 2024; 8:59. [PMID: 39268029 PMCID: PMC11387192 DOI: 10.1038/s41699-024-00497-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024]
Abstract
Quantum emitters in transition metal dichalcogenides (TMDs) have recently emerged as a promising platform for generating single photons for optical quantum information processing. In this work, we present an approach for deterministically controlling the polarization of fabricated quantum emitters in a tungsten diselenide (WSe2) monolayer. We employ novel nanopillar geometries with long and sharp tips to induce a controlled directional strain in the monolayer, and we report on fabricated WSe2 emitters producing single photons with a high degree of polarization (99 ± 4%) and high purity (g (2)(0) = 0.030 ± 0.025). Our work paves the way for the deterministic integration of TMD-based quantum emitters for future photonic quantum technologies.
Collapse
Affiliation(s)
- Athanasios Paralikis
- Department of Electrical and Photonics Engineering, Technical University of Denmark, Ørsteds Plads, 2800 Kongens Lyngby, Denmark
| | - Claudia Piccinini
- Department of Electrical and Photonics Engineering, Technical University of Denmark, Ørsteds Plads, 2800 Kongens Lyngby, Denmark
| | - Abdulmalik A Madigawa
- Department of Electrical and Photonics Engineering, Technical University of Denmark, Ørsteds Plads, 2800 Kongens Lyngby, Denmark
| | - Pietro Metuh
- Department of Electrical and Photonics Engineering, Technical University of Denmark, Ørsteds Plads, 2800 Kongens Lyngby, Denmark
| | - Luca Vannucci
- Department of Electrical and Photonics Engineering, Technical University of Denmark, Ørsteds Plads, 2800 Kongens Lyngby, Denmark
| | - Niels Gregersen
- Department of Electrical and Photonics Engineering, Technical University of Denmark, Ørsteds Plads, 2800 Kongens Lyngby, Denmark
| | - Battulga Munkhbat
- Department of Electrical and Photonics Engineering, Technical University of Denmark, Ørsteds Plads, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
3
|
Blundo E, Polimeni A. Alice (and Bob) in Flatland. NANO LETTERS 2024; 24:9777-9783. [PMID: 39088739 DOI: 10.1021/acs.nanolett.4c02702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
2D quantum materials have opened infinite doors, hosting intriguing phenomena and featuring incredible engineering potential. Whether these qualities can boost the use of 2D crystals for quantum applications remains an open field with yet unexplored paths.
Collapse
Affiliation(s)
- Elena Blundo
- Physics Department, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Antonio Polimeni
- Physics Department, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
4
|
Groll M, Bürger J, Caltzidis I, Jöns KD, Schmidt WG, Gerstmann U, Lindner JKN. DFT-Assisted Investigation of the Electric Field and Charge Density Distribution of Pristine and Defective 2D WSe 2 by Differential Phase Contrast Imaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311635. [PMID: 38703033 DOI: 10.1002/smll.202311635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/02/2024] [Indexed: 05/06/2024]
Abstract
Most properties of solid materials are defined by their internal electric field and charge density distributions which so far are difficult to measure with high spatial resolution. Especially for 2D materials, the atomic electric fields influence the optoelectronic properties. In this study, the atomic-scale electric field and charge density distribution of WSe2 bi- and trilayers are revealed using an emerging microscopy technique, differential phase contrast (DPC) imaging in scanning transmission electron microscopy (STEM). For pristine material, a higher positive charge density located at the selenium atomic columns compared to the tungsten atomic columns is obtained and tentatively explained by a coherent scattering effect. Furthermore, the change in the electric field distribution induced by a missing selenium atomic column is investigated. A characteristic electric field distribution in the vicinity of the defect with locally reduced magnitudes compared to the pristine lattice is observed. This effect is accompanied by a considerable inward relaxation of the surrounding lattice, which according to first principles DFT calculation is fully compatible with a missing column of Se atoms. This shows that DPC imaging, as an electric field sensitive technique, provides additional and remarkable information to the otherwise only structural analysis obtained with conventional STEM imaging.
Collapse
Affiliation(s)
- Maja Groll
- Department of Physics, University of Paderborn, Warburger Straße 100, 33098, Paderborn, Germany
| | - Julius Bürger
- Department of Physics, University of Paderborn, Warburger Straße 100, 33098, Paderborn, Germany
| | - Ioannis Caltzidis
- Department of Physics, University of Paderborn, Warburger Straße 100, 33098, Paderborn, Germany
| | - Klaus D Jöns
- Department of Physics, University of Paderborn, Warburger Straße 100, 33098, Paderborn, Germany
| | - Wolf Gero Schmidt
- Department of Physics, University of Paderborn, Warburger Straße 100, 33098, Paderborn, Germany
| | - Uwe Gerstmann
- Department of Physics, University of Paderborn, Warburger Straße 100, 33098, Paderborn, Germany
| | - Jörg K N Lindner
- Department of Physics, University of Paderborn, Warburger Straße 100, 33098, Paderborn, Germany
| |
Collapse
|
5
|
Hlushchenko D, Olszewski J, Martynkien T, Łukomski M, Gemza K, Karasiński P, Zięba M, Baraniecki T, Duda Ł, Bachmatiuk A, Guzik M, Kudrawiec R. Waveguide-Coupled Light Photodetector Based on Two-Dimensional Molybdenum Disulfide. ACS APPLIED MATERIALS & INTERFACES 2024; 16:28874-28885. [PMID: 38795034 PMCID: PMC11163399 DOI: 10.1021/acsami.4c04854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2024]
Abstract
The integration of transition metal dichalcogenides with photonic structures such as sol-gel SiOx:TiOy optical waveguides (WGs) makes possible the fabrication of photonic devices with the desired characteristics in the visible spectral range. In this study, we propose and experimentally demonstrate a MoS2-based photodetector integrated with a sol-gel SiOx:TiOy WG. Based on the spectroscopic measurements performed for our device, we concluded that the light entering the WG is almost completely channeled out from the WG and absorbed by the MoS2 flake, which is deposited on the WG. Therefore, this device works as a photodetector. The light coupling into the MoS2 region in this device construction is due to the high contrast of refractive index between the van der Waals crystal and the sol-gel WG, which is ∼4 and ∼1.8, respectively. The obtained MoS2-based photodetectors exhibit a photoresponsivity of 0.3 A W-1 (n-type MoS2) and 7.53 mA W-1 (p-type MoS2) at a bias voltage of 2 V. These results reveal great potential in the integration of sol-gel WGs with van der Waals crystals in optoelectronic applications.
Collapse
Affiliation(s)
- Daria Hlushchenko
- Łukasiewicz
Research Network-PORT Polish Center for Technology Development, ul. Stabłowicka 147, 54-066 Wrocław, Poland
- Faculty
of Fundamental Problems of Science and Technology, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego
27, 50-370 Wrocław, Poland
| | - Jacek Olszewski
- Faculty
of Fundamental Problems of Science and Technology, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego
27, 50-370 Wrocław, Poland
| | - Tadeusz Martynkien
- Faculty
of Fundamental Problems of Science and Technology, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego
27, 50-370 Wrocław, Poland
| | - Michał Łukomski
- Faculty
of Fundamental Problems of Science and Technology, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego
27, 50-370 Wrocław, Poland
| | - Karolina Gemza
- Faculty
of Fundamental Problems of Science and Technology, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego
27, 50-370 Wrocław, Poland
| | - Pawel Karasiński
- Department
of Optoelectronics, Silesian University
of Technology, ul. B. Krzywoustego 2, 44-100 Gliwice, Poland
| | - Magdalena Zięba
- Department
of Optoelectronics, Silesian University
of Technology, ul. B. Krzywoustego 2, 44-100 Gliwice, Poland
| | - Tomasz Baraniecki
- Łukasiewicz
Research Network-PORT Polish Center for Technology Development, ul. Stabłowicka 147, 54-066 Wrocław, Poland
| | - Łukasz Duda
- Łukasiewicz
Research Network-PORT Polish Center for Technology Development, ul. Stabłowicka 147, 54-066 Wrocław, Poland
- Faculty
of Chemistry, University of Wrocław, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Alicja Bachmatiuk
- Łukasiewicz
Research Network-PORT Polish Center for Technology Development, ul. Stabłowicka 147, 54-066 Wrocław, Poland
| | - Małgorzata Guzik
- Łukasiewicz
Research Network-PORT Polish Center for Technology Development, ul. Stabłowicka 147, 54-066 Wrocław, Poland
- Faculty
of Chemistry, University of Wrocław, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Robert Kudrawiec
- Łukasiewicz
Research Network-PORT Polish Center for Technology Development, ul. Stabłowicka 147, 54-066 Wrocław, Poland
- Faculty
of Fundamental Problems of Science and Technology, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego
27, 50-370 Wrocław, Poland
| |
Collapse
|
6
|
Sun X, Suriyage M, Khan AR, Gao M, Zhao J, Liu B, Hasan MM, Rahman S, Chen RS, Lam PK, Lu Y. Twisted van der Waals Quantum Materials: Fundamentals, Tunability, and Applications. Chem Rev 2024; 124:1992-2079. [PMID: 38335114 DOI: 10.1021/acs.chemrev.3c00627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Twisted van der Waals (vdW) quantum materials have emerged as a rapidly developing field of two-dimensional (2D) semiconductors. These materials establish a new central research area and provide a promising platform for studying quantum phenomena and investigating the engineering of novel optoelectronic properties such as single photon emission, nonlinear optical response, magnon physics, and topological superconductivity. These captivating electronic and optical properties result from, and can be tailored by, the interlayer coupling using moiré patterns formed by vertically stacking atomic layers with controlled angle misorientation or lattice mismatch. Their outstanding properties and the high degree of tunability position them as compelling building blocks for both compact quantum-enabled devices and classical optoelectronics. This paper offers a comprehensive review of recent advancements in the understanding and manipulation of twisted van der Waals structures and presents a survey of the state-of-the-art research on moiré superlattices, encompassing interdisciplinary interests. It delves into fundamental theories, synthesis and fabrication, and visualization techniques, and the wide range of novel physical phenomena exhibited by these structures, with a focus on their potential for practical device integration in applications ranging from quantum information to biosensors, and including classical optoelectronics such as modulators, light emitting diodes, lasers, and photodetectors. It highlights the unique ability of moiré superlattices to connect multiple disciplines, covering chemistry, electronics, optics, photonics, magnetism, topological and quantum physics. This comprehensive review provides a valuable resource for researchers interested in moiré superlattices, shedding light on their fundamental characteristics and their potential for transformative applications in various fields.
Collapse
Affiliation(s)
- Xueqian Sun
- School of Engineering, College of Engineering and Computer Science, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Manuka Suriyage
- School of Engineering, College of Engineering and Computer Science, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Ahmed Raza Khan
- School of Engineering, College of Engineering and Computer Science, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
- Department of Industrial and Manufacturing Engineering, University of Engineering and Technology (Rachna College Campus), Gujranwala, Lahore 54700, Pakistan
| | - Mingyuan Gao
- School of Engineering, College of Engineering and Computer Science, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
- College of Engineering and Technology, Southwest University, Chongqing 400716, China
| | - Jie Zhao
- Department of Quantum Science & Technology, Research School of Physics, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
- Australian Research Council Centre of Excellence for Quantum Computation and Communication Technology, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Boqing Liu
- School of Engineering, College of Engineering and Computer Science, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Md Mehedi Hasan
- School of Engineering, College of Engineering and Computer Science, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Sharidya Rahman
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
- ARC Centre of Excellence in Exciton Science, Monash University, Clayton, Victoria 3800, Australia
| | - Ruo-Si Chen
- School of Engineering, College of Engineering and Computer Science, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Ping Koy Lam
- Department of Quantum Science & Technology, Research School of Physics, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- Australian Research Council Centre of Excellence for Quantum Computation and Communication Technology, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Yuerui Lu
- School of Engineering, College of Engineering and Computer Science, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
- Australian Research Council Centre of Excellence for Quantum Computation and Communication Technology, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
7
|
Wang J, He L, Zhang Y, Nong H, Li S, Wu Q, Tan J, Liu B. Locally Strained 2D Materials: Preparation, Properties, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2314145. [PMID: 38339886 DOI: 10.1002/adma.202314145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/28/2024] [Indexed: 02/12/2024]
Abstract
2D materials are promising for strain engineering due to their atomic thickness and exceptional mechanical properties. In particular, non-uniform and localized strain can be induced in 2D materials by generating out-of-plane deformations, resulting in novel phenomena and properties, as witnessed in recent years. Therefore, the locally strained 2D materials are of great value for both fundamental studies and practical applications. This review discusses techniques for introducing local strains to 2D materials, and their feasibility, advantages, and challenges. Then, the unique effects and properties that arise from local strain are explored. The representative applications based on locally strained 2D materials are illustrated, including memristor, single photon emitter, and photodetector. Finally, concluding remarks on the challenges and opportunities in the emerging field of locally strained 2D materials are provided.
Collapse
Affiliation(s)
- Jingwei Wang
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Liqiong He
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Yunhao Zhang
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Huiyu Nong
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Shengnan Li
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Qinke Wu
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Junyang Tan
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Bilu Liu
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| |
Collapse
|
8
|
Guo S, Germanis S, Taniguchi T, Watanabe K, Withers F, Luxmoore IJ. Electrically Driven Site-Controlled Single Photon Source. ACS PHOTONICS 2023; 10:2549-2555. [PMID: 37602287 PMCID: PMC10436352 DOI: 10.1021/acsphotonics.3c00097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Indexed: 08/22/2023]
Abstract
Single photon sources are fundamental building blocks for quantum communication and computing technologies. In this work, we present a device geometry consisting of gold pillars embedded in a van der Waals heterostructure of graphene, hexagonal boron nitride, and tungsten diselenide. The gold pillars serve to both generate strain and inject charge carriers, allowing us to simultaneously demonstrate the positional control and electrical pumping of a single photon emitter. Moreover, increasing the thickness of the hexagonal boron nitride tunnel barriers restricts electroluminescence but enables electrical control of the emission energy of the site-controlled single photon emitters, with measured energy shifts reaching 40 meV.
Collapse
Affiliation(s)
- Shi Guo
- Department
of Physics and Astronomy, University of
Exeter, Exeter EX4 4QL, United
Kingdom
| | - Savvas Germanis
- Department
of Engineering, University of Exeter, Exeter EX4 4QF, United Kingdom
| | - Takashi Taniguchi
- International
Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Kenji Watanabe
- Research
Center for Functional Materials, National
Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Freddie Withers
- Department
of Physics and Astronomy, University of
Exeter, Exeter EX4 4QL, United
Kingdom
| | - Isaac J. Luxmoore
- Department
of Engineering, University of Exeter, Exeter EX4 4QF, United Kingdom
| |
Collapse
|
9
|
Montblanch ARP, Barbone M, Aharonovich I, Atatüre M, Ferrari AC. Layered materials as a platform for quantum technologies. NATURE NANOTECHNOLOGY 2023:10.1038/s41565-023-01354-x. [PMID: 37322143 DOI: 10.1038/s41565-023-01354-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 02/17/2023] [Indexed: 06/17/2023]
Abstract
Layered materials are taking centre stage in the ever-increasing research effort to develop material platforms for quantum technologies. We are at the dawn of the era of layered quantum materials. Their optical, electronic, magnetic, thermal and mechanical properties make them attractive for most aspects of this global pursuit. Layered materials have already shown potential as scalable components, including quantum light sources, photon detectors and nanoscale sensors, and have enabled research of new phases of matter within the broader field of quantum simulations. In this Review we discuss opportunities and challenges faced by layered materials within the landscape of material platforms for quantum technologies. In particular, we focus on applications that rely on light-matter interfaces.
Collapse
Affiliation(s)
- Alejandro R-P Montblanch
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
- QuTech and Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Matteo Barbone
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
- Cambridge Graphene Centre, University of Cambridge, Cambridge, UK
- Munich Center for Quantum Science and Technology, (MCQST), Munich, Germany
- Walter Schottky Institut and Department of Electrical and Computer Engineering, Technische Universität München, Garching, Germany
| | - Igor Aharonovich
- School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, New South Wales, Sydney, Australia
- Australian Research Council Centre of Excellence for Transformative Meta-Optical Systems, University of Technology Sydney, Ultimo, New South Wales, Sydney, Australia
| | - Mete Atatüre
- Cavendish Laboratory, University of Cambridge, Cambridge, UK.
| | - Andrea C Ferrari
- Cambridge Graphene Centre, University of Cambridge, Cambridge, UK.
| |
Collapse
|
10
|
Azzam SI, Parto K, Moody G. Purcell enhancement and polarization control of single-photon emitters in monolayer WSe 2 using dielectric nanoantennas. NANOPHOTONICS (BERLIN, GERMANY) 2023; 12:477-484. [PMID: 39635399 PMCID: PMC11501704 DOI: 10.1515/nanoph-2022-0628] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/06/2022] [Accepted: 12/23/2022] [Indexed: 12/07/2024]
Abstract
Two-dimensional (2D) materials have shown great promise as hosts for high-purity deterministic single-photon sources. In the last few years, the underlying physics of single photon emission in 2D materials have been uncovered, and their optical properties have been improved to meet criteria for a variety of quantum technologies and applications. In this work, we take advantage of the unique characteristics of dielectric nanoantennas in manipulating the electromagnetic response on a sub-wavelength scale to localize and control defect-based single-photon emitters (SPEs) in 2D layered materials. We show that dielectric nanoantennas are capable of inducing high Purcell enhancement >20 and therefore brighter single-photon emission, which is characterized by a reduction of the emitters' radiative lifetimes and enhancement of their brightness by more than an order of magnitude. We demonstrate that the sub-wavelength-scale dielectric nanoantennas can be designed to also impose a predetermined strain profile that determines the confinement potential of the SPE, leading to robust control over the optical polarization with up to 94% extinction ratio. The combination of large Purcell enhancement, polarization orientation, and site control through strain engineering demonstrates the advantages and unique capabilities of dielectric nanoantennas for enhancing the quantum optical properties of 2D SPEs for quantum information technologies.
Collapse
Affiliation(s)
- Shaimaa I. Azzam
- Electrical and Computer Engineering Department, University of California, Santa Barbara, CA93106, USA
- California Nanosystems Institute, University of California, Santa Barbara, CA93106, USA
| | - Kamyar Parto
- Electrical and Computer Engineering Department, University of California, Santa Barbara, CA93106, USA
| | - Galan Moody
- Electrical and Computer Engineering Department, University of California, Santa Barbara, CA93106, USA
- California Nanosystems Institute, University of California, Santa Barbara, CA93106, USA
| |
Collapse
|
11
|
Wang W, Jones LO, Chen JS, Schatz GC, Ma X. Utilizing Ultraviolet Photons to Generate Single-Photon Emitters in Semiconductor Monolayers. ACS NANO 2022; 16:21240-21247. [PMID: 36516862 DOI: 10.1021/acsnano.2c09209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The understanding and controlled creation of atomic defects in semiconductor transition metal dichalcogenides (TMDs) are highly relevant to their applications in high-performance quantum optics and nanoelectronic devices. Here, we demonstrate a versatile approach in generating single-photon emitters in MoS2 monolayers using widely attainable UV light. We discover that only defects engendered by UV photons in vacuum exhibit single-photon-emitter characteristics, whereas those created in air lack quantum emission attributes. In combination with theoretical calculations, we assign the defects generated in vacuum to unpassivated sulfur vacancies, whose highly localized midgap states give rise to single-photon emission. In contrast, UV irradiation of the MoS2 monolayers in air results in oxygen-passivated sulfur vacancies, whose optical properties are likely governed by their pristine band-to-defect band optical transitions. These findings suggest that widely available light sources such as UV light can be utilized for creating quantum photon sources in TMDs.
Collapse
Affiliation(s)
- Wei Wang
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Consortium for Advanced Science and Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Leighton O Jones
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Jia-Shiang Chen
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Center for Molecular Quantum Transduction, Northwestern-Argonne Institute of Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - George C Schatz
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Center for Molecular Quantum Transduction, Northwestern-Argonne Institute of Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Xuedan Ma
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Consortium for Advanced Science and Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Center for Molecular Quantum Transduction, Northwestern-Argonne Institute of Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
12
|
Parto K, Azzam SI, Lewis N, Patel SD, Umezawa S, Watanabe K, Taniguchi T, Moody G. Cavity-Enhanced 2D Material Quantum Emitters Deterministically Integrated with Silicon Nitride Microresonators. NANO LETTERS 2022; 22:9748-9756. [PMID: 36318636 PMCID: PMC9756340 DOI: 10.1021/acs.nanolett.2c03151] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/26/2022] [Indexed: 05/25/2023]
Abstract
Optically active defects in 2D materials, such as hexagonal boron nitride (hBN) and transition-metal dichalcogenides (TMDs), are an attractive class of single-photon emitters with high brightness, operation up to room temperature, site-specific engineering of emitter arrays with strain and irradiation techniques, and tunability with external electric fields. In this work, we demonstrate a novel approach to precisely align and embed hBN and TMDs within background-free silicon nitride microring resonators. Through the Purcell effect, high-purity hBN emitters exhibit a cavity-enhanced spectral coupling efficiency of up to 46% at room temperature, exceeding the theoretical limit (up to 40%) for cavity-free waveguide-emitter coupling and demonstrating nearly a 1 order of magnitude improvement over previous work. The devices are fabricated with a CMOS-compatible process and exhibit no degradation of the 2D material optical properties, robustness to thermal annealing, and 100 nm positioning accuracy of quantum emitters within single-mode waveguides, opening a path for scalable quantum photonic chips with on-demand single-photon sources.
Collapse
Affiliation(s)
- K. Parto
- Electrical
and Computer Engineering Department, University
of California, Santa
Barbara, California93106, United States
| | - S. I. Azzam
- Electrical
and Computer Engineering Department, University
of California, Santa
Barbara, California93106, United States
- California
Nanosystems Institute, University of California, Santa Barbara, California93106, United States
| | - N. Lewis
- Electrical
and Computer Engineering Department, University
of California, Santa
Barbara, California93106, United States
| | - S. D. Patel
- Electrical
and Computer Engineering Department, University
of California, Santa
Barbara, California93106, United States
| | - S. Umezawa
- Electrical
and Computer Engineering Department, University
of California, Santa
Barbara, California93106, United States
| | - K. Watanabe
- Research
Center for Functional Materials, National
Institute for Materials Science, 1-1 Namiki, Tsukuba305-0044, Japan
| | - T. Taniguchi
- International
Center for Materials Nanoarchitectures, National Institute for Materials Science, 1-1 Namiki, Tsukuba305-0044, Japan
| | - G. Moody
- Electrical
and Computer Engineering Department, University
of California, Santa
Barbara, California93106, United States
- California
Nanosystems Institute, University of California, Santa Barbara, California93106, United States
| |
Collapse
|
13
|
Chanana A, Larocque H, Moreira R, Carolan J, Guha B, Melo EG, Anant V, Song J, Englund D, Blumenthal DJ, Srinivasan K, Davanco M. Ultra-low loss quantum photonic circuits integrated with single quantum emitters. Nat Commun 2022; 13:7693. [PMID: 36509782 PMCID: PMC9744872 DOI: 10.1038/s41467-022-35332-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022] Open
Abstract
The scaling of many photonic quantum information processing systems is ultimately limited by the flux of quantum light throughout an integrated photonic circuit. Source brightness and waveguide loss set basic limits on the on-chip photon flux. While substantial progress has been made, separately, towards ultra-low loss chip-scale photonic circuits and high brightness single-photon sources, integration of these technologies has remained elusive. Here, we report the integration of a quantum emitter single-photon source with a wafer-scale, ultra-low loss silicon nitride photonic circuit. We demonstrate triggered and pure single-photon emission into a Si3N4 photonic circuit with ≈ 1 dB/m propagation loss at a wavelength of ≈ 930 nm. We also observe resonance fluorescence in the strong drive regime, showing promise towards coherent control of quantum emitters. These results are a step forward towards scaled chip-integrated photonic quantum information systems in which storing, time-demultiplexing or buffering of deterministically generated single-photons is critical.
Collapse
Affiliation(s)
- Ashish Chanana
- grid.94225.38000000012158463XMicrosystems and Nanotechnology Division, Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD USA ,grid.164295.d0000 0001 0941 7177Institute for Research in Electronics and Applied Physics and Maryland NanoCenter, University of Maryland, College Park, MD USA ,grid.421663.40000 0004 7432 9327Theiss Research, La Jolla, CA USA
| | - Hugo Larocque
- grid.116068.80000 0001 2341 2786Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Renan Moreira
- grid.133342.40000 0004 1936 9676Department of Electrical and Computer Engineering, University of California Santa Barbara, Santa Barbara, CA USA
| | - Jacques Carolan
- grid.116068.80000 0001 2341 2786Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA USA ,grid.83440.3b0000000121901201Present Address: Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Biswarup Guha
- grid.94225.38000000012158463XMicrosystems and Nanotechnology Division, Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD USA ,grid.94225.38000000012158463XJoint Quantum Institute, NIST/University of Maryland, College Park, MD USA
| | - Emerson G. Melo
- grid.94225.38000000012158463XMicrosystems and Nanotechnology Division, Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD USA ,grid.11899.380000 0004 1937 0722Materials Engineering Department, Lorena School of Engineering, University of São Paulo, Lorena, SP Brazil
| | - Vikas Anant
- grid.505023.1Photon Spot, Inc., Monrovia, CA USA
| | - Jindong Song
- grid.35541.360000000121053345Center for Opto-Electronic Materials and Devices, Korea Institute of Science and Technology, Seoul, 02792 South Korea
| | - Dirk Englund
- grid.116068.80000 0001 2341 2786Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Daniel J. Blumenthal
- grid.133342.40000 0004 1936 9676Department of Electrical and Computer Engineering, University of California Santa Barbara, Santa Barbara, CA USA
| | - Kartik Srinivasan
- grid.94225.38000000012158463XMicrosystems and Nanotechnology Division, Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD USA ,grid.94225.38000000012158463XJoint Quantum Institute, NIST/University of Maryland, College Park, MD USA
| | - Marcelo Davanco
- grid.94225.38000000012158463XMicrosystems and Nanotechnology Division, Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD USA
| |
Collapse
|
14
|
On-chip generation and dynamic piezo-optomechanical rotation of single photons. Nat Commun 2022; 13:6998. [DOI: 10.1038/s41467-022-34372-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 10/24/2022] [Indexed: 11/17/2022] Open
Abstract
AbstractIntegrated photonic circuits are key components for photonic quantum technologies and for the implementation of chip-based quantum devices. Future applications demand flexible architectures to overcome common limitations of many current devices, for instance the lack of tuneabilty or built-in quantum light sources. Here, we report on a dynamically reconfigurable integrated photonic circuit comprising integrated quantum dots (QDs), a Mach-Zehnder interferometer (MZI) and surface acoustic wave (SAW) transducers directly fabricated on a monolithic semiconductor platform. We demonstrate on-chip single photon generation by the QD and its sub-nanosecond dynamic on-chip control. Two independently applied SAWs piezo-optomechanically rotate the single photon in the MZI or spectrally modulate the QD emission wavelength. In the MZI, SAWs imprint a time-dependent optical phase and modulate the qubit rotation to the output superposition state. This enables dynamic single photon routing with frequencies exceeding one gigahertz. Finally, the combination of the dynamic single photon control and spectral tuning of the QD realizes wavelength multiplexing of the input photon state and demultiplexing it at the output. Our approach is scalable to multi-component integrated quantum photonic circuits and is compatible with hybrid photonic architectures and other key components for instance photonic resonators or on-chip detectors.
Collapse
|
15
|
Liu H, Mendelson N, Abidi IH, Li S, Liu Z, Cai Y, Zhang K, You J, Tamtaji M, Wong H, Ding Y, Chen G, Aharonovich I, Luo Z. Rational Control on Quantum Emitter Formation in Carbon-Doped Monolayer Hexagonal Boron Nitride. ACS APPLIED MATERIALS & INTERFACES 2022; 14:3189-3198. [PMID: 34989551 DOI: 10.1021/acsami.1c21781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Single-photon emitters (SPEs) in hexagonal boron nitride (hBN) are promising candidates for quantum light generation. Despite this, techniques to control the formation of hBN SPEs down to the monolayer limit are yet to be demonstrated. Recent experimental and theoretical investigations have suggested that the visible wavelength single-photon emitters in hBN originate from carbon-related defects. Here, we demonstrate a simple strategy for controlling SPE creation during the chemical vapor deposition growth of monolayer hBN via regulating surface carbon concentration. By increasing the surface carbon concentration during hBN growth, we observe increases in carbon doping levels by 2.4-fold for B-C bonds and 1.6-fold for N-C bonds. For the same samples, we observe an increase in the SPE density from 0.13 to 0.30 emitters/μm2. Our simple method enables the reliable creation of hBN SPEs in monolayer samples for the first time, opening the door to advanced two-dimensional (2D) quantum state engineering.
Collapse
Affiliation(s)
- Hongwei Liu
- Department of Chemical and Biological Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, William Mong Institute of Nano Science and Technology, and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, P. R. China
| | - Noah Mendelson
- School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Irfan H Abidi
- Department of Chemical and Biological Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, William Mong Institute of Nano Science and Technology, and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, P. R. China
- Centre for Advanced 2D Materials, National University of Singapore, 117542 Singapore
| | - Shaobo Li
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Zhenjing Liu
- Department of Chemical and Biological Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, William Mong Institute of Nano Science and Technology, and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, P. R. China
| | - Yuting Cai
- Department of Chemical and Biological Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, William Mong Institute of Nano Science and Technology, and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, P. R. China
| | - Kenan Zhang
- Department of Chemical and Biological Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, William Mong Institute of Nano Science and Technology, and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, P. R. China
| | - Jiawen You
- Department of Chemical and Biological Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, William Mong Institute of Nano Science and Technology, and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, P. R. China
| | - Mohsen Tamtaji
- Department of Chemical and Biological Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, William Mong Institute of Nano Science and Technology, and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, P. R. China
| | - Hoilun Wong
- Department of Chemical and Biological Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, William Mong Institute of Nano Science and Technology, and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, P. R. China
| | - Yao Ding
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Guojie Chen
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, Foshan University, Foshan 528225, P. R. China
- School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528225, P. R. China
| | - Igor Aharonovich
- School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
- ARC Centre of Excellence for Transformative Meta-Optical Systems (TMOS), University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Zhengtang Luo
- Department of Chemical and Biological Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, William Mong Institute of Nano Science and Technology, and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, P. R. China
| |
Collapse
|
16
|
Fröch JE, Li C, Chen Y, Toth M, Kianinia M, Kim S, Aharonovich I. Purcell Enhancement of a Cavity-Coupled Emitter in Hexagonal Boron Nitride. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104805. [PMID: 34837313 DOI: 10.1002/smll.202104805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/03/2021] [Indexed: 06/13/2023]
Abstract
Integration of solid-state quantum emitters into nanophotonic circuits is a critical step towards fully on-chip quantum photonic-based technologies. Among potential materials platforms, quantum emitters in hexagonal boron nitride (hBN) have emerged as a viable candidate over the last years. While the fundamental physical properties have been intensively studied, only a few works have focused on the emitter integration into photonic resonators. Yet, for a potential quantum photonic material platform, the integration with nanophotonic cavities is an important cornerstone, as it enables the deliberate tuning of the spontaneous emission and the improved readout of distinct transitions for a quantum emitter. In this work, the resonant tuning of a monolithic cavity integrated hBN quantum emitter is demonstrated through gas condensation at cryogenic temperature. In resonance, an emission enhancement and lifetime reduction are observed, with an estimate for the Purcell factor of ≈15.
Collapse
Affiliation(s)
- Johannes E Fröch
- School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, New South Wales, 2007, Australia
| | - Chi Li
- School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, New South Wales, 2007, Australia
| | - Yongliang Chen
- School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, New South Wales, 2007, Australia
| | - Milos Toth
- School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, New South Wales, 2007, Australia
- ARC Centre of Excellence for Transformative Meta-Optical Systems (TMOS), University of Technology Sydney, Ultimo, New South Wales, 2007, Australia
| | - Mehran Kianinia
- School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, New South Wales, 2007, Australia
- ARC Centre of Excellence for Transformative Meta-Optical Systems (TMOS), University of Technology Sydney, Ultimo, New South Wales, 2007, Australia
| | - Sejeong Kim
- Department of Electrical and Electronic Engineering, University of Melbourne, Victoria, 3010, Australia
| | - Igor Aharonovich
- School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, New South Wales, 2007, Australia
- ARC Centre of Excellence for Transformative Meta-Optical Systems (TMOS), University of Technology Sydney, Ultimo, New South Wales, 2007, Australia
| |
Collapse
|
17
|
Anantharaman SB, Jo K, Jariwala D. Exciton-Photonics: From Fundamental Science to Applications. ACS NANO 2021; 15:12628-12654. [PMID: 34310122 DOI: 10.1021/acsnano.1c02204] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Semiconductors in all dimensionalities ranging from 0D quantum dots and molecules to 3D bulk crystals support bound electron-hole pair quasiparticles termed excitons. Over the past two decades, the emergence of a variety of low-dimensional semiconductors that support excitons combined with advances in nano-optics and photonics has burgeoned an advanced area of research that focuses on engineering, imaging, and modulating the coupling between excitons and photons, resulting in the formation of hybrid quasiparticles termed exciton-polaritons. This advanced area has the potential to bring about a paradigm shift in quantum optics, as well as classical optoelectronic devices. Here, we present a review on the coupling of light in excitonic semiconductors and previous investigations of the optical properties of these hybrid quasiparticles via both far-field and near-field imaging and spectroscopy techniques. Special emphasis is given to recent advances with critical evaluation of the bottlenecks that plague various materials toward practical device implementations including quantum light sources. Our review highlights a growing need for excitonic material development together with optical engineering and imaging techniques to harness the utility of excitons and their host materials for a variety of applications.
Collapse
Affiliation(s)
- Surendra B Anantharaman
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Kiyoung Jo
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Deep Jariwala
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|