1
|
Gregor A, Distel L, Ekici AB, Kirchner P, Uebe S, Krumbiegel M, Turan S, Winner B, Zweier C. Proteasomal activation ameliorates neuronal phenotypes linked to FBXO11-deficiency. HGG ADVANCES 2025; 6:100425. [PMID: 40114442 PMCID: PMC11999343 DOI: 10.1016/j.xhgg.2025.100425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 03/13/2025] [Accepted: 03/13/2025] [Indexed: 03/22/2025] Open
Abstract
Haploinsufficiency of FBXO11, encoding a ubiquitin ligase complex subunit, is associated with a variable neurodevelopmental disorder. So far, the underlying nervous system-related pathomechanisms are poorly understood, and specific therapies are lacking. Using a combined approach, we established an FBXO11-deficient human stem cell-based neuronal model using CRISPR-Cas9 and a Drosophila model using tissue-specific knockdown techniques. We performed transcriptomic analyses on iPSC-derived neurons and molecular phenotyping in both models. RNA sequencing revealed disrupted transcriptional networks related to processes important for neuronal development, such as differentiation, migration, and cell signaling. Consistently, we found that loss of FBXO11 leads to neuronal phenotypes such as impaired neuronal migration and abnormal proliferation/differentiation balance in human cultured neurons and impaired dendritic development and behavior in Drosophila. Interestingly, application of three different proteasome-activating substances could alleviate FBXO11-deficiency-associated phenotypes in both human neurons and flies. One of these substances is the long-approved drug Verapamil, opening the possibility of drug repurposing in the future. Our study shows the importance of FBXO11 for neurodevelopment and highlights the reversibility of related phenotypes, opening an avenue for potential development of therapeutic approaches through drug repurposing.
Collapse
Affiliation(s)
- Anne Gregor
- Department of Human Genetics, Inselspital University Hospital Bern, University of Bern, 3010 Bern, Switzerland; Department for Biomedical Research (DBMR), University of Bern, 3010 Bern, Switzerland.
| | - Laila Distel
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Arif B Ekici
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Philipp Kirchner
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; Institute of Tissue Medicine and Pathology, University of Bern, 3010 Bern, Switzerland
| | - Steffen Uebe
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Mandy Krumbiegel
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Soeren Turan
- Department of Stem Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Beate Winner
- Department of Stem Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; Centre for Rare Diseases Erlangen (ZSEER), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Christiane Zweier
- Department of Human Genetics, Inselspital University Hospital Bern, University of Bern, 3010 Bern, Switzerland; Department for Biomedical Research (DBMR), University of Bern, 3010 Bern, Switzerland
| |
Collapse
|
2
|
Cekała K, Trepczyk K, Witkowska J, Jankowska E, Wieczerzak E. Rpt5-Derived Analogs Stimulate Human Proteasome Activity in Cells and Degrade Proteins Forming Toxic Aggregates in Age-Related Diseases. Int J Mol Sci 2024; 25:4663. [PMID: 38731881 PMCID: PMC11082943 DOI: 10.3390/ijms25094663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/15/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Aging and age-related diseases are associated with a decline in the capacity of protein turnover. Intrinsically disordered proteins, as well as proteins misfolded and oxidatively damaged, prone to aggregation, are preferentially digested by the ubiquitin-independent proteasome system (UIPS), a major component of which is the 20S proteasome. Therefore, boosting 20S activity constitutes a promising strategy to counteract a decrease in total proteasome activity during aging. One way to enhance the proteolytic removal of unwanted proteins appears to be the use of peptide-based activators of the 20S. In this study, we synthesized a series of peptides and peptidomimetics based on the C-terminus of the Rpt5 subunit of the 19S regulatory particle. Some of them efficiently stimulated human 20S proteasome activity. The attachment of the cell-penetrating peptide TAT allowed them to penetrate the cell membrane and stimulate proteasome activity in HEK293T cells, which was demonstrated using a cell-permeable substrate of the proteasome, TAS3. Furthermore, the best activator enhanced the degradation of aggregation-prone α-synuclein and Tau-441. The obtained compounds may therefore have the potential to compensate for the unbalanced proteostasis found in aging and age-related diseases.
Collapse
Affiliation(s)
| | | | | | - Elżbieta Jankowska
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (K.C.)
| | - Ewa Wieczerzak
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (K.C.)
| |
Collapse
|
3
|
Nelson S, Harris TJ, Muli CS, Maresch ME, Baker B, Smith C, Neumann C, Trader DJ, Parkinson EI. Discovery and Development of Cyclic Peptide Proteasome Stimulators. Chembiochem 2024; 25:e202300671. [PMID: 38055197 PMCID: PMC10993313 DOI: 10.1002/cbic.202300671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 12/07/2023]
Abstract
The proteasome degrades proteins, which is essential for cellular homeostasis. Ubiquitin independent proteolysis degrades highly disordered and misfolded proteins. A decline of proteasomal activity has been associated with multiple neurodegenerative diseases due to the accumulation of misfolded proteins. In this work, cyclic peptide proteasome stimulators (CyPPSs) that enhance the clearance of misfolded proteins were discovered. In the initial screen of predicted natural products (pNPs), several cyclic peptides were found to stimulate the 20S core particle (20S CP). Development of a robust structural activity relationship led to the identification of potent, cell permeable CyPPSs. In vitro assays revealed that CyPPSs stimulate degradation of highly disordered and misfolded proteins without affecting ordered proteins. Furthermore, using a novel flow-based assay for proteasome activity, several CyPPSs were found to stimulate the 20S CP in cellulo. Overall, this work describes the development of CyPPSs as chemical tools capable of stimulating the proteasome and provides strong support for proteasome stimulation as a therapeutic strategy for neurodegenerative diseases.
Collapse
Affiliation(s)
- Samantha Nelson
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47906, United States
| | - Timothy J. Harris
- Department of Pharmaceutical Sciences, University of California-Irvine, Irvine, California, 92697, United States
| | - Christine S. Muli
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47906, United States
| | - Marianne E. Maresch
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47906, United States
| | - Braden Baker
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47906, United States
| | - Chloe Smith
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47906, United States
| | - Chris Neumann
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47906, United States
| | - Darci J. Trader
- Department of Pharmaceutical Sciences, University of California-Irvine, Irvine, California, 92697, United States
| | - Elizabeth I. Parkinson
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47906, United States
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47906, United States
| |
Collapse
|
4
|
Kinger S, Jagtap YA, Dubey AR, Kumar P, Choudhary A, Dhiman R, Prajapati VK, Chitkara D, Poluri KM, Mishra A. Lanosterol elevates cytoprotective response through induced-proteasomal degradation of aberrant proteins. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119631. [PMID: 37967794 DOI: 10.1016/j.bbamcr.2023.119631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 11/07/2023] [Accepted: 11/07/2023] [Indexed: 11/17/2023]
Abstract
Efficient protein synthesis is a basic requirement of our cells to replace the old or defective proteins from the intrinsic crowded biomolecular environment. The interconnection among synthesis, folding, and degradation of proteins represents central paradigm to proteostasis. Failure of protein quality control (PQC) mechanisms results in the disturbance and inadequate functions of proteome. The consequent misfolded protein accumulation can form the basis of neurodegeneration onset and largely represents imperfect aging. Understanding how cells improve the function of deregulated PQC mechanisms to establish and maintain proteostasis against the unwanted sequestration of normal proteins with misfolded proteinaceous inclusions is a major challenge. Here we show that treatment of Lanosterol, a cholesterol synthesis pathway intermediate, induces Proteasome proteolytic activities and, therefore, supports the PQC mechanism for the elimination of intracellular aberrant proteins. The exposure of Lanosterol not only promotes Proteasome catalytic functions but also elevates the removal of both bona fide and neurodegenerative diseases associated toxic proteins. Our current study suggests that increasing Proteasome functions with the help of small molecules such as Lanosterol could serve as a cytoprotective therapeutic approach against abnormal protein accumulation. Cumulatively, based on findings in this study, we can understand the critical importance of small molecules and their potential therapeutic influence in re-establishing disturbed proteostasis linked with neurodegeneration.
Collapse
Affiliation(s)
- Sumit Kinger
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan 342037, India
| | - Yuvraj Anandrao Jagtap
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan 342037, India
| | - Ankur Rakesh Dubey
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan 342037, India
| | - Prashant Kumar
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan 342037, India
| | - Akash Choudhary
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan 342037, India
| | - Rohan Dhiman
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela 769008, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi 110021, India
| | - Deepak Chitkara
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-Pilani), Vidya Vihar Campus, Pilani 333031, India
| | - Krishna Mohan Poluri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan 342037, India.
| |
Collapse
|
5
|
Halder S, Macatangay NJ, Zerfas BL, Salazar-Chaparro AF, Trader DJ. Oleic amide derivatives as small molecule stimulators of the human proteasome's core particle. RSC Med Chem 2022; 13:1077-1081. [PMID: 36324496 PMCID: PMC9491356 DOI: 10.1039/d2md00133k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/15/2022] [Indexed: 07/28/2023] Open
Abstract
A series of oleic acid amide derivatives were synthesized based on our previous and continuing endeavors towards stimulation of the 20S core particle of the proteasome (20S CP) with the goal of increasing the protein degradation rate via the ubiquitin-independent pathway. The designed compounds were tested in a variety of biochemical and cell-based assays to assess their ability to increase the rate of hydrolysis of the 20S CP, and compared to a known fatty acid amide stimulator of the 20S CP, AM-404. AM-404 was previously described to stimulate the activity of the 20S CP, however, it does negatively affect viability of cells after prolonged dosing. Here we report the development of several small molecules with a similar ability to enhance the activity of the 20S CP as AM-404. While one molecule (17) was just as potent as AM-404, it still caused significant unwanted cytotoxicity. Molecules such as these are compatible with biochemical assays and short-term cell-based proteasome activity assays, but their unwanted toxicity limits their use in prolonged cell assays or in vivo studies.
Collapse
Affiliation(s)
- Saayak Halder
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University 575 W Stadium Ave West Lafayette IN 47907 USA
| | - Nathaniel J Macatangay
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University 575 W Stadium Ave West Lafayette IN 47907 USA
| | - Breanna L Zerfas
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University 575 W Stadium Ave West Lafayette IN 47907 USA
| | - Andres F Salazar-Chaparro
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University 575 W Stadium Ave West Lafayette IN 47907 USA
| | - Darci J Trader
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University 575 W Stadium Ave West Lafayette IN 47907 USA
| |
Collapse
|
6
|
Staerz SD, Jones CL, Tepe JJ. Design, Synthesis, and Biological Evaluation of Potent 20S Proteasome Activators for the Potential Treatment of α-Synucleinopathies. J Med Chem 2022; 65:6631-6642. [PMID: 35476454 DOI: 10.1021/acs.jmedchem.1c02158] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
While neurodegenerative diseases affect millions of patients worldwide, there are insufficient available therapeutics to halt or slow down the progression of these diseases. A key pathological feature of several neurodegenerative diseases is the oligomerization and aggregation of specific intrinsically disordered proteins (IDPs) creating neuronal deposits, such as Lewy bodies in Parkinson's disease. Clearance of these pathogenic, aggregation-prone IDPs is mediated by the 20S isoform of the human proteasome. Thus, enhancing the 20S proteasome-mediated proteolysis could be a very useful therapeutic pathway to prevent neurotoxicity. Here, we report the successful development of sub-microM 20S proteasome activators based on a phenothiazine scaffold. This class of compounds prevented the accumulation of pathologically relevant IDPs, such as the pathogenic A53T mutated α-synuclein, in vitro and in mammalian cell lines.
Collapse
Affiliation(s)
- Sophia D Staerz
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48823, United States
| | - Corey L Jones
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48823, United States
| | - Jetze J Tepe
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48823, United States
| |
Collapse
|
7
|
Njomen E, Vanecek A, Lansdell TA, Yang YT, Schall PZ, Harris CM, Bernard MP, Isaac D, Alkharabsheh O, Al-Janadi A, Giletto MB, Ellsworth E, Taylor C, Tang T, Lau S, Bailie M, Bernard JJ, Yuzbasiyan-Gurkan V, Tepe JJ. Small Molecule 20S Proteasome Enhancer Regulates MYC Protein Stability and Exhibits Antitumor Activity in Multiple Myeloma. Biomedicines 2022; 10:biomedicines10050938. [PMID: 35625675 PMCID: PMC9138505 DOI: 10.3390/biomedicines10050938] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/12/2022] [Accepted: 04/17/2022] [Indexed: 01/27/2023] Open
Abstract
Despite the addition of several new agents to the armamentarium for the treatment of multiple myeloma (MM) in the last decade and improvements in outcomes, the refractory and relapsing disease continues to take a great toll, limiting overall survival. Therefore, additional novel approaches are needed to improve outcomes for MM patients. The oncogenic transcription factor MYC drives cell growth, differentiation and tumor development in many cancers. MYC protein levels are tightly regulated by the proteasome and an increase in MYC protein expression is found in more than 70% of all human cancers, including MM. In addition to the ubiquitin-dependent degradation of MYC by the 26S proteasome, MYC levels are also regulated in a ubiquitin-independent manner through the REGγ activation of the 20S proteasome. Here, we demonstrate that a small molecule activator of the 20S proteasome, TCH-165, decreases MYC protein levels, in a manner that parallels REGγ protein-mediated MYC degradation. TCH-165 enhances MYC degradation and reduces cancer cell growth in vitro and in vivo models of multiple myeloma by enhancing apoptotic signaling, as assessed by targeted gene expression analysis of cancer pathways. Furthermore, 20S proteasome enhancement is well tolerated in mice and dogs. These data support the therapeutic potential of small molecule-driven 20S proteasome activation for the treatments of MYC-driven cancers, especially MM.
Collapse
Affiliation(s)
- Evert Njomen
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA; (E.N.); (A.V.); (C.M.H.)
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI 48824, USA; (T.A.L.); (M.P.B.); (M.B.G.); (E.E.); (M.B.); (J.J.B.)
| | - Allison Vanecek
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA; (E.N.); (A.V.); (C.M.H.)
| | - Theresa A. Lansdell
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI 48824, USA; (T.A.L.); (M.P.B.); (M.B.G.); (E.E.); (M.B.); (J.J.B.)
| | - Ya-Ting Yang
- Comparative Medicine and Integrative Biology Program, Michigan State University, East Lansing, MI 48824, USA; (Y.-T.Y.); (P.Z.S.)
| | - Peter Z. Schall
- Comparative Medicine and Integrative Biology Program, Michigan State University, East Lansing, MI 48824, USA; (Y.-T.Y.); (P.Z.S.)
| | - Christi M. Harris
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA; (E.N.); (A.V.); (C.M.H.)
| | - Matthew P. Bernard
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI 48824, USA; (T.A.L.); (M.P.B.); (M.B.G.); (E.E.); (M.B.); (J.J.B.)
| | - Daniel Isaac
- Breslin Cancer Center, Division of Hematology/Oncology, Michigan State University, Lansing, MI 48910, USA; (D.I.); (O.A.); (A.A.-J.)
| | - Omar Alkharabsheh
- Breslin Cancer Center, Division of Hematology/Oncology, Michigan State University, Lansing, MI 48910, USA; (D.I.); (O.A.); (A.A.-J.)
| | - Anas Al-Janadi
- Breslin Cancer Center, Division of Hematology/Oncology, Michigan State University, Lansing, MI 48910, USA; (D.I.); (O.A.); (A.A.-J.)
| | - Matthew B. Giletto
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI 48824, USA; (T.A.L.); (M.P.B.); (M.B.G.); (E.E.); (M.B.); (J.J.B.)
| | - Edmund Ellsworth
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI 48824, USA; (T.A.L.); (M.P.B.); (M.B.G.); (E.E.); (M.B.); (J.J.B.)
| | - Catherine Taylor
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (C.T.); (T.T.); (S.L.)
| | - Terence Tang
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (C.T.); (T.T.); (S.L.)
| | - Sarah Lau
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (C.T.); (T.T.); (S.L.)
| | - Marc Bailie
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI 48824, USA; (T.A.L.); (M.P.B.); (M.B.G.); (E.E.); (M.B.); (J.J.B.)
| | - Jamie J. Bernard
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI 48824, USA; (T.A.L.); (M.P.B.); (M.B.G.); (E.E.); (M.B.); (J.J.B.)
| | - Vilma Yuzbasiyan-Gurkan
- Comparative Medicine and Integrative Biology Program, Michigan State University, East Lansing, MI 48824, USA; (Y.-T.Y.); (P.Z.S.)
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
- Department of Small Animal Clinical Sciences, Michigan State University, East Lansing, MI 48824, USA
- Correspondence: (V.Y.-G.); (J.J.T.)
| | - Jetze J. Tepe
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA; (E.N.); (A.V.); (C.M.H.)
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI 48824, USA; (T.A.L.); (M.P.B.); (M.B.G.); (E.E.); (M.B.); (J.J.B.)
- Correspondence: (V.Y.-G.); (J.J.T.)
| |
Collapse
|
8
|
Fiolek TJ, Keel KL, Tepe JJ. Fluspirilene Analogs Activate the 20S Proteasome and Overcome Proteasome Impairment by Intrinsically Disordered Protein Oligomers. ACS Chem Neurosci 2021; 12:1438-1448. [PMID: 33788542 DOI: 10.1021/acschemneuro.1c00099] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Oligomerization of aggregation-prone intrinsically disordered proteins (IDPs), such as α-synuclein, amyloid β, and tau, has been shown to be associated with the pathogenesis of several neurodegenerative diseases, including Parkinson's and Alzheimer's disease. The proteasome is charged with regulating cellular levels of IDPs, but this degradation pathway can become dysregulated leading to their accumulation and subsequent aggregation. Although the pathogenesis of these neurodegenerative diseases is still under intense investigation, it has been shown that the oligomeric forms of IDPs, including α-synuclein and amyloid β, can impair proteasome function. This leads to additional accumulation of the IDPs, further promoting disease progression. Herein, we report the use of small molecule activators of the 20S subcomplex of the proteasome to restore impaired 20S proteasome activity and prevent IDP accumulation and oligomerization. We found that fluspirilene and its new synthetic analog (16) show strong 20S proteasome enhancement (doubling 20S proteolytic activity at ∼2 μM, with maximum fold enhancement of ∼1000%), overcome impaired proteasome function, and prevent the accumulation of pathogenic IDPs. These findings provide support for the use of 20S enhancers as a possible therapeutic strategy to combat neurodegenerative diseases.
Collapse
Affiliation(s)
- Taylor J. Fiolek
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Katarina L. Keel
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Jetze J. Tepe
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
9
|
Coleman RA, Mohallem R, Aryal UK, Trader DJ. Protein degradation profile reveals dynamic nature of 20S proteasome small molecule stimulation. RSC Chem Biol 2021; 2:636-644. [PMID: 34458805 PMCID: PMC8341874 DOI: 10.1039/d0cb00191k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/21/2020] [Indexed: 11/21/2022] Open
Abstract
Small molecules have been discovered to stimulate the 20S core particle (CP) of the proteasome to degrade proteins. However, the impact a 20S CP stimulator can have on the regulation of protein levels has not been fully characterized. Previous studies have focused on using one kind of stimulator to enhance the degradation of specific 20S CP substrates. We present here a study that utilizes several 20S CP stimulators to determine how each can affect the degradation of proteins in a biochemical assay with purified proteins and of an overexpressed GFP-fusion protein in cells. We also evaluate the effects of two stimulators on the whole cellular proteome in HEK-293T cells using label-free quantitative proteomic analysis for a broader understanding on their impact. Our studies demonstrate that 20S CP stimulation is likely to promote the degradation of significantly disordered proteins; however, the specific effect on the regulation of protein levels appears to be dependent on the mechanism of action of each stimulator due to the dynamic nature of the 20S CP. Our results reveal the potential of tailoring small molecule stimulators to influence the degradation of certain protein types and 20S CP substrates. Small molecule stimulators of the 20S core particle of the proteasome can lead to the degradation of a variety of protein substrates.![]()
Collapse
Affiliation(s)
- Rachel A Coleman
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University 575 West Stadium Avenue West Lafayette Indiana 47907 USA
| | - Rodrigo Mohallem
- Purdue Proteomics Facility, Bindley Bioscience Center and Department of Comparative Pathobiology, Purdue University West Lafayette Indiana 47907 USA
| | - Uma K Aryal
- Purdue Proteomics Facility, Bindley Bioscience Center and Department of Comparative Pathobiology, Purdue University West Lafayette Indiana 47907 USA
| | - Darci J Trader
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University 575 West Stadium Avenue West Lafayette Indiana 47907 USA
| |
Collapse
|
10
|
Tian W, Maresh ME, Trader DJ. Approaches to Evaluate the Impact of a Small-Molecule Binder to a Noncatalytic Site of the Proteasome. Chembiochem 2021; 22:1961-1965. [PMID: 33617657 DOI: 10.1002/cbic.202100023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/11/2021] [Indexed: 11/11/2022]
Abstract
Proteasome activity is crucial for cell survival and proliferation. In recent years, small molecules have been discovered that can affect the catalytic activity of the proteasome. Rather than targeting the active sites of the proteasome, it might be possible to affect ubiquitin-dependent degradation of proteins by limiting the association of the 19S regulatory particle (19S RP) with the 20S core particle (20S CP) of the proteasome. We recently described the discovery of TXS-8, a peptoid that binds to Rpn-6. Rpn-6 is a proteasome-associated protein that makes critical contacts with the 19S RP and the 20S CP. Herein, we present a general workflow to evaluate the impact of a small-molecule binder on proteasome activity by using TXS-8 as an example. This workflow contains three steps in which specific probes or overexpressed proteins in cells are used to determine whether the hydrolysis activity of the proteasome is affected. Although, in our case, TXS-8 did not affect proteasome activity, our workflow is highly amenable to studying a variety of small-molecule-proteasome subunit interactions.
Collapse
Affiliation(s)
- Wenzhi Tian
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Marianne E Maresh
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Darci J Trader
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, 47907, USA
| |
Collapse
|
11
|
Maresh ME, Salazar-Chaparro AF, Trader DJ. Methods for the discovery of small molecules to monitor and perturb the activity of the human proteasome. Future Med Chem 2021; 13:99-116. [PMID: 33275045 PMCID: PMC7857359 DOI: 10.4155/fmc-2020-0288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022] Open
Abstract
Regulating protein production and degradation is critical to maintaining cellular homeostasis. The proteasome is a key player in keeping proteins at the proper levels. However, proteasome activity can be altered in certain disease states, such as blood cancers and neurodegenerative diseases. Cancers often exhibit enhanced proteasomal activity, as protein synthesis is increased in these cells compared with normal cells. Conversely, neurodegenerative diseases are characterized by protein accumulation, leading to reduced proteasome activity. As a result, the proteasome has emerged as a target for therapeutic intervention. The potential of the proteasome as a therapeutic target has come from studies involving chemical stimulators and inhibitors, and the development of a suite of assays and probes that can be used to monitor proteasome activity with purified enzyme and in live cells.
Collapse
Affiliation(s)
- Marianne E Maresh
- Department of Medicinal Chemistry & Molecular Pharmacology, Purdue University, 575 West Stadium Avenue, West Lafayette, IN 47907, USA
| | - Andres F Salazar-Chaparro
- Department of Medicinal Chemistry & Molecular Pharmacology, Purdue University, 575 West Stadium Avenue, West Lafayette, IN 47907, USA
| | - Darci J Trader
- Department of Medicinal Chemistry & Molecular Pharmacology, Purdue University, 575 West Stadium Avenue, West Lafayette, IN 47907, USA
| |
Collapse
|
12
|
Zerfas BL, Coleman RA, Salazar-Chaparro AF, Macatangay NJ, Trader DJ. Fluorescent Probes with Unnatural Amino Acids to Monitor Proteasome Activity in Real-Time. ACS Chem Biol 2020; 15:2588-2596. [PMID: 32786259 PMCID: PMC8319958 DOI: 10.1021/acschembio.0c00634] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The proteasome is an essential protein complex that, when dysregulated, can result in various diseases in eukaryotic cells. As such, understanding the enzymatic activity of the proteasome and what can alter it is crucial to elucidating its roles in these diseases. This can be done effectively by using activity-based fluorescent substrate probes, of which there are many commercially available that target the individual protease-like subunits in the 20S CP of the proteasome. Unfortunately, these probes have not displayed appropriate characteristics for their use in live cell-based assays. In the work presented here, we have developed a set of probes which have shown improved fluorescence properties and selectivity toward the proteasome compared to other cellular proteases. By including unnatural amino acids, we have found probes which can be utilized in various applications, including monitoring the effects of small molecule stimulators of the proteasome in live cells and comparing the relative proteasome activity across different cancer cell types. In future studies, we expect the fluorescent probes presented here will serve as tools to support the discovery and characterization of small molecule modulators of proteasome activity.
Collapse
Affiliation(s)
- Breanna L. Zerfas
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575 West Stadium Avenue, West Lafayette, Indiana 47907, United States
| | - Rachel A. Coleman
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575 West Stadium Avenue, West Lafayette, Indiana 47907, United States
| | - Andres F. Salazar-Chaparro
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575 West Stadium Avenue, West Lafayette, Indiana 47907, United States
| | - Nathaniel J. Macatangay
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575 West Stadium Avenue, West Lafayette, Indiana 47907, United States
| | - Darci J. Trader
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575 West Stadium Avenue, West Lafayette, Indiana 47907, United States
| |
Collapse
|
13
|
Tian W, Trader DJ. Discovery of a Small Molecule Probe of Rpn-6, an Essential Subunit of the 26S Proteasome. ACS Chem Biol 2020; 15:554-561. [PMID: 31877015 DOI: 10.1021/acschembio.9b01019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A considerable number of essential cellular proteins have no catalytic activity and serve instead as structural components to aid in assembling protein complexes. For example, the assembly and function of the 26S proteasome, the major enzymatic complex necessary for ubiquitin-dependent protein degradation, require a number of essential protein contacts to associate the 19S regulatory particle with the 20S core particle. Previously, small molecule inhibitors of the active sites of the 20S core particle have been developed, but the activity of the 26S proteasome could also be altered via the disruption of its assembly. We were interested in discovering a small molecule binder of Rpn-6, as it is among several essential proteins that facilitate 26S assembly, which could be used to further our understanding of the association of the 19S regulatory particle with the 20S core particle. Additionally, we were interested in whether a small molecule-Rpn-6 interaction could potentially be cytotoxic to cancer cells that rely heavily on proteasome activity for survival. A workflow for utilizing a one-bead, one-compound library and a thermal shift assay was developed to discover such a molecule. TXS-8, our lead hit, was discovered to have a low micromolar binding affinity for Rpn-6 as well as very limited binding to other proteins. The cytotoxicity of TXS-8 was evaluated in several cell lines, revealing increased cytotoxicity to hematological cancers. Discovery of this peptoid binder of Rpn-6 provides the initial evidence that Rpn-6 could be a druggable target to affect protein degradation and serves as a primary scaffold from which to design more potent binders. We suspect that Rpn-6 could have additional essential roles beyond that of a molecular clamp of the proteasome to help hematological cancer cells survive and that TXS-8 can serve as a useful tool for further elucidating its roles.
Collapse
Affiliation(s)
- Wenzhi Tian
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575 West Stadium Avenue, West Lafayette, Indiana 47907, United States
| | - Darci J. Trader
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575 West Stadium Avenue, West Lafayette, Indiana 47907, United States
| |
Collapse
|
14
|
Zerfas BL, Maresh ME, Trader DJ. The Immunoproteasome: An Emerging Target in Cancer and Autoimmune and Neurological Disorders. J Med Chem 2019; 63:1841-1858. [PMID: 31670954 DOI: 10.1021/acs.jmedchem.9b01226] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The immunoproteasome (iCP) is an isoform of the 20S proteasome that is expressed when cells are stressed or receive an inflammatory signal. The primary role of the iCP is to hydrolyze proteins into peptides that are compatible with being loaded into a MHC-I complex. When the activity of the iCP is dysregulated or highly expressed, it can lead to unwanted cell death. Some cancer types express the iCP rather than the standard proteasome, and selective inhibitors have been developed to exploit this difference. Here, we describe diseases known to be influenced by iCP activity and the current status for targeting the iCP to elicit a therapeutic response. We also describe a variety of chemical tools that have been developed to monitor the activity of the iCP in cells. Finally, we present the future outlook for targeting the iCP in a variety of disease types and with mechanisms besides inhibition.
Collapse
Affiliation(s)
- Breanna L Zerfas
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575 West Stadium Avenue, West Lafayette, Indiana 47907, United States
| | - Marianne E Maresh
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575 West Stadium Avenue, West Lafayette, Indiana 47907, United States
| | - Darci J Trader
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575 West Stadium Avenue, West Lafayette, Indiana 47907, United States
| |
Collapse
|
15
|
Abstract
Proteasomes are multienzyme complexes that maintain protein homeostasis (proteostasis) and important cellular functions through the degradation of misfolded, redundant, and damaged proteins. It is well established that aging is associated with the accumulation of damaged and misfolded proteins. This phenomenon is paralleled by declined proteasome activity. When the accumulation of redundant proteins exceed degradation, undesirable signaling and/or aggregation occurs and are the hallmarks of neurodegenerative diseases and many cancers. Thus, increasing proteasome activity has been recognized as a new approach to delay the onset or ameliorate the symptoms of neurodegenerative and other proteotoxic disorders. Enhancement of proteasome activity has many therapeutic potentials but is still a relatively unexplored field. In this perspective, we review current approaches, genetic manipulation, posttranslational modification, and small molecule proteasome agonists used to increase proteasome activity, challenges facing the field, and applications beyond aging and neurodegenerative diseases.
Collapse
Affiliation(s)
- Evert Njomen
- Department of Chemistry, and Pharmacology & Toxicology, Michigan State University, East Lansing, Michigan 48824, United States
| | - Jetze J. Tepe
- Department of Chemistry, and Pharmacology & Toxicology, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
16
|
Muli CS, Tian W, Trader DJ. Small-Molecule Inhibitors of the Proteasome's Regulatory Particle. Chembiochem 2019; 20:1739-1753. [PMID: 30740849 PMCID: PMC6765334 DOI: 10.1002/cbic.201900017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Indexed: 12/11/2022]
Abstract
Cells need to synthesize and degrade proteins consistently. Maintaining a balanced level of protein in the cell requires a carefully controlled system and significant energy. Degradation of unwanted or damaged proteins into smaller peptide units can be accomplished by the proteasome. The proteasome is composed of two main subunits. The first is the core particle (20S CP), and within this core particle are three types of threonine proteases. The second is the regulatory complex (19S RP), which has a myriad of activities including recognizing proteins marked for degradation and shuttling the protein into the 20S CP to be degraded. Small-molecule inhibitors of the 20S CP have been developed and are exceptional treatments for multiple myeloma (MM). 20S CP inhibitors disrupt the protein balance, leading to cellular stress and eventually to cell death. Unfortunately, the 20S CP inhibitors currently available have dose-limiting off-target effects and resistance can be acquired rapidly. Herein, we discuss small molecules that have been discovered to interact with the 19S RP subunit or with a protein closely associated with 19S RP activity. These molecules still elicit their toxicity by preventing the proteasome from degrading proteins, but do so through different mechanisms of action.
Collapse
Affiliation(s)
- Christine S. Muli
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575 West Stadium Avenue, West Lafayette, Indiana 47907, United States
| | - Wenzhi Tian
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575 West Stadium Avenue, West Lafayette, Indiana 47907, United States
| | - Darci J. Trader
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575 West Stadium Avenue, West Lafayette, Indiana 47907, United States
| |
Collapse
|
17
|
Zerfas BL, Trader DJ. Monitoring the Immunoproteasome in Live Cells Using an Activity-Based Peptide-Peptoid Hybrid Probe. J Am Chem Soc 2019; 141:5252-5260. [PMID: 30862160 DOI: 10.1021/jacs.8b12873] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Activity-based probes have greatly improved our understanding of the intrinsic roles and expression levels of various proteins within cells. To be useful in live cells, probes must be cell permeable and provide a read-out that can be measured without disrupting the cells or the activity of the target. Unfortunately, probes for the various forms of the proteasome that can be utilized in intact cells are limited; commercially available probes are most effectively used with purified protein or cell lysate. The proteasome, both the 26S and various isoforms of the 20S CP, is an important target with reported roles in cancer, autoimmune disorders, and neurodegenerative diseases. Here, we present the development of a selective probe for the immunoproteasome, a specialized isoform of the 20S proteasome, that becomes expressed in cells that encounter an inflammatory signal. Using a one-bead, one-compound library of small peptides, we discovered a trimer sequence efficiently cleaved by the immunoproteasome with significant selectivity over the standard proteasome. Upon conjugating this sequence to rhodamine 110 and a peptoid, we generated a probe with a considerable improvement in sensitivity compared to that of current aminomethylcoumarin-based proteasome probes. Importantly, our probe was capable of labeling immunoproteasome-expressing cells while maintaining its selectivity over other cellular proteases in live cell cultures. We anticipate this probe to find wide utility for those that wish to study the immunoproteasome's activity in a variety of cell lines and to be used as a reporter to discover small molecules that can perturb the activity of this proteasome isoform.
Collapse
Affiliation(s)
- Breanna L Zerfas
- Department of Medicinal Chemistry and Molecular Pharmacology , Purdue University , 575 West Stadium Avenue , West Lafayette , Indiana 47907 , United States
| | - Darci J Trader
- Department of Medicinal Chemistry and Molecular Pharmacology , Purdue University , 575 West Stadium Avenue , West Lafayette , Indiana 47907 , United States
| |
Collapse
|
18
|
Coleman RA, Muli CS, Zhao Y, Bhardwaj A, Newhouse TR, Trader DJ. Analysis of chain length, substitution patterns, and unsaturation of AM-404 derivatives as 20S proteasome stimulators. Bioorg Med Chem Lett 2019; 29:420-423. [PMID: 30587447 PMCID: PMC6348054 DOI: 10.1016/j.bmcl.2018.12.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/10/2018] [Accepted: 12/13/2018] [Indexed: 11/30/2022]
Abstract
Proteasome-mediated degradation of proteins is a vital cellular process and is performed by the ubiquitin-dependent proteasome system (UPS) and the ubiquitin-independent proteasome system (UIPS). While both systems are necessary to maintain healthy cell function, many disease states are characterized by reduced activity of the UPS, and the UIPS cannot by itself maintain proper protein levels. It has been suggested that the 20S core particle (20S CP), the isoform of the proteasome in the UIPS that can degrade proteins without a ubiquitin tag, can be stimulated with a small molecule to assist the 20S CP to accept and hydrolyze substrates more rapidly. Several small molecule stimulators of the 20S CP have since been discovered, including AM-404, an arachidonic acid derivative. AM-404 has previously been shown to inhibit fatty acid amide hydrolase activity. We wished to evaluate what structural components of AM-404 are required to stimulate the 20S CP with the long-term goal of using this information to design a stimulator with better drug-like qualities. We synthesized numerous derivatives of AM-404, varying the chain length, substitutions, and degree of unsaturation. Through this endeavor, we obtained several molecules capable of stimulating the 20S CP to various degrees. We discovered that though chain length is important, the presence of a cis-alkene in a specific location in the aliphatic chain has the greatest impact on the ability to stimulate the 20S CP. Two of the derivatives maintain modest stimulatory activity, and have improved toxicity over AM-404.
Collapse
Affiliation(s)
- Rachel A Coleman
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575 W. Stadium Ave, West Lafayette, IN 47907, United States
| | - Christine S Muli
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575 W. Stadium Ave, West Lafayette, IN 47907, United States
| | - Yizhou Zhao
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT 06520-8107, United States
| | - Atul Bhardwaj
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575 W. Stadium Ave, West Lafayette, IN 47907, United States
| | - Timothy R Newhouse
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT 06520-8107, United States
| | - Darci J Trader
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575 W. Stadium Ave, West Lafayette, IN 47907, United States.
| |
Collapse
|