1
|
Lin QK, Sun WQ, Zhang B, Ling Q, Qian Y, Huang CZ, Li CM, Wang N. A portable point-of-care testing platform for rapid and sensitive miRNA-21 detection for heart failure diagnosis. Anal Chim Acta 2025; 1361:344168. [PMID: 40414678 DOI: 10.1016/j.aca.2025.344168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/21/2025] [Accepted: 05/07/2025] [Indexed: 05/27/2025]
Abstract
BACKGROUND MicroRNAs (miRNAs) play a pivotal role in various physiological and pathological processes. In particular, miRNA-21 holds significant potential as a novel biomarker for the diagnosis of heart failure. The development of miRNA detection methods is rapidly advancing, with point-of-care testing (POCT) platforms garnering considerable attention. However, traditional methods are often hampered by their reliance on expensive instruments and complex procedures, limiting clinical applicability. Therefore, there is an urgent need to develop a simple, portable, sensitive, and rapid POCT platform for miRNA-21 detection. RESULTS In this work, we proposed a portable POCT platform using a colorimetric biosensor specifically sensitive for miRNA-21. The platform utilized 3,3',5,5'-tetramethylbenzidine as the signaling molecule, and a Linear G-quadruplex loaded with Blocker Nanostructures (LGBN) generated by the RCA reaction as the probe. Furthermore, changes in primary color channels (R/G/B) of TMB for miRNA-21 detection were analyzed via smartphone-based digital image recognition. Under optimal conditions, the platform showed a linear detection range between 0.01 nM and 1 nM, with limits of detection of 8.3 pM (colorimetric methods) and 9.5 pM (digital image colorimetry). Moreover, the colorimetric biosensor exhibited excellent specificity and resistance to interference, successfully detecting miRNA-21 in serum samples from heart failure patients. SIGNIFICANCE This detection method has an accuracy consistent with RT-qPCR results, providing a novel and practical approach with POCT for miRNA-21 detection.
Collapse
Affiliation(s)
- Qian Kai Lin
- Department of Pharmacy, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China
| | - Wen Qing Sun
- Department of Pharmacy, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China
| | - Bo Zhang
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China
| | - Qiao Ling
- Department of Pharmacy, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China
| | - Yan Qian
- Department of Pharmacy, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China
| | - Cheng Zhi Huang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, PR China
| | - Chun Mei Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, PR China.
| | - Na Wang
- Department of Pharmacy, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China.
| |
Collapse
|
2
|
Zhao T, Chen Y, Liu W, Mo X, Qin X, Yang Y, Fang M, Li X, Liu W, Yang F. Ultrasensitive Profiling of Plasma Extracellular Vesicles for Breast Cancer Subtyping with a High-Curvature Antifouling Nanoarray. NANO LETTERS 2025. [PMID: 40350620 DOI: 10.1021/acs.nanolett.5c01678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Profiling of plasma extracellular vesicles (EVs) has long been hampered by their insufficient capture and assay sensitivity due to the high background of complex matrices. To address this challenge, we develop a high-curvature antifouling nanoarray electrochemical assay (eCAN) to enable ultrasensitive and specific profiling of plasma EVs for the accurate subtyping of breast cancer. This assay leverages a three-in-one multifunctional hierarchical antifouling nanofilm to improve EV capture, minimize nonspecific adsorption, and facilitate three-dimensional deposition of tyramine for signal amplification. These advantages allow the eCAN to achieve a sensitivity of up to 56 particles/mL (near a single-EV level), showing high specificity and anti-interference. The eCAN can differentiate EV subpopulations across different breast cancer cells and monitor their phenotypic changes. This assay allows accurate diagnosis and subtyping of breast cancer (AUC = 1.000) through direct profiling of EVs in undiluted plasma from a pilot cohort and provides a promising tool for precise diagnosis of cancers in clinical settings.
Collapse
Affiliation(s)
- Tanglian Zhao
- Guangxi Key Laboratory of Pharmaceutical Precision Detection and Screening, Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Pharmaceutical College, State Key Laboratory of Targeting Oncology, Guangxi Medical University, Nanning 530021, China
| | - Yu Chen
- Guangxi Key Laboratory of Pharmaceutical Precision Detection and Screening, Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Pharmaceutical College, State Key Laboratory of Targeting Oncology, Guangxi Medical University, Nanning 530021, China
| | - Weifeng Liu
- Guangxi Key Laboratory of Pharmaceutical Precision Detection and Screening, Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Pharmaceutical College, State Key Laboratory of Targeting Oncology, Guangxi Medical University, Nanning 530021, China
| | - Xifeng Mo
- Guangxi Key Laboratory of Pharmaceutical Precision Detection and Screening, Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Pharmaceutical College, State Key Laboratory of Targeting Oncology, Guangxi Medical University, Nanning 530021, China
| | - Xiaojie Qin
- Guangxi Key Laboratory of Pharmaceutical Precision Detection and Screening, Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Pharmaceutical College, State Key Laboratory of Targeting Oncology, Guangxi Medical University, Nanning 530021, China
| | - Yu Yang
- Guangxi Key Laboratory of Pharmaceutical Precision Detection and Screening, Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Pharmaceutical College, State Key Laboratory of Targeting Oncology, Guangxi Medical University, Nanning 530021, China
| | - Min Fang
- Department of Clinical Laboratory, Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, China
| | - Xinchun Li
- Guangxi Key Laboratory of Pharmaceutical Precision Detection and Screening, Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Pharmaceutical College, State Key Laboratory of Targeting Oncology, Guangxi Medical University, Nanning 530021, China
| | - Wei Liu
- Guangxi Key Laboratory of Pharmaceutical Precision Detection and Screening, Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Pharmaceutical College, State Key Laboratory of Targeting Oncology, Guangxi Medical University, Nanning 530021, China
- Yulin Campus of Guangxi Medical University, Yulin 537000, China
| | - Fan Yang
- Guangxi Key Laboratory of Pharmaceutical Precision Detection and Screening, Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Pharmaceutical College, State Key Laboratory of Targeting Oncology, Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
3
|
Liu Y, Zhang Y, Ye C, He Y, Wang S, Zhang M, Fu H, Lu S, Wang L. Electrochemical biosensor based on strand displacement reaction for on-site detection of Skeletonema costatum. Mikrochim Acta 2025; 192:161. [PMID: 39948200 DOI: 10.1007/s00604-025-06966-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 01/08/2025] [Indexed: 03/15/2025]
Abstract
An electrochemical biosensor was constructed for quantitatively detecting Skeletonema costatum (S. costatum) by combining the electrode modification material (NC-Au) with a strand displacement reaction (SDR). The SDR process addresses the issues of steric hindrance and electrostatic repulsion resulting from the large size of genomic DNA. It enhances the efficiency of the interfacial hybridization reaction and endows the biosensor with remarkable sensitivity. The limit of detection (LOD) and limit of quantification (LOQ) were 33.43 fg/μL (831 cells/L) and 87.21 fg/μL (2112 cells/L), respectively. Additionally, the biosensor has demonstrated excellent accuracy compared to methods such as microscopy and ddPCR (P > 0.05). Subsequent assessment of the adjacent waters of the Beibu Gulf using biosensors indicated a low risk of S. costatum red tide outbreaks in the region, which is consistent with the findings of the ecological survey. Therefore, we believe that this biosensor can provide a completely new idea for the dynamic monitoring and early warning of S. costatum red tide.
Collapse
Affiliation(s)
- Yaling Liu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Yibo Zhang
- School of Resources, Environment and Materials; School of Chemistry and Chemical Engineering; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Changrui Ye
- School of Resources, Environment and Materials; School of Chemistry and Chemical Engineering; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Yayi He
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Shaopeng Wang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Man Zhang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Hao Fu
- School of Resources, Environment and Materials; School of Chemistry and Chemical Engineering; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Shan Lu
- Beibu Gulf Marine Ecological Environment Field Observation and Research Station of Guangxi, Marine Environmental Monitoring Centre of Guangxi, Beihai, 536000, China.
| | - Liwei Wang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China.
- School of Resources, Environment and Materials; School of Chemistry and Chemical Engineering; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
4
|
Liu Y, Peng Y, Zhang C, Chen R, Zhang K. Single-Molecule Detection of Serum MicroRNAs for Medulloblastoma with Biphasic Sandwich Hybridization-Assisted Plasmonic Resonant Scattering Imaging. Anal Chem 2024; 96:18655-18663. [PMID: 39534914 DOI: 10.1021/acs.analchem.4c02665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
MicroRNA (miRNA) dysregulation is closely related to the occurrence and progression of medulloblastoma (MB). However, the full potential of serum circulating miRNAs in MB diagnosis is restricted by their ultralow abundance in peripheral blood due to blood-brain barrier. Here, we report the direct preamplification-free detection of aberrant expression of oncogenic miRNAs in serum from MB patients by proposing a simple yet robust single-molecule assay that combines biphasic sandwich hybridization in nucleic acids and the dark-field single-particle plasmonic imaging (B2S2PI). In this strategy, signal DNA was prehybridized with target miRNA in homogeneous solution to form sDNA-RNA complexes. Then the captured DNA strands with rationally adjusted surface densities could efficiently capture the sDNA-RNA complexes to generate a well-separated DNA-RNA sandwich structure. The combination of homogeneous and heterogeneous reactions enabled interface-mediated hybridization reactions to maintain molecular stability with fewer bases, making it suitable for the direct amplification-free assays of short miRNA targets. Labeling the DNA-RNA hybrids with plasmatic gold nanotags allowed nondestructive recognition and imaging of individual miRNA targets under mild conditions with high signal-to-noise ratio. By digitally counting and analyzing the bright plasmonic resonant scattering spots, B2S2PI enabled both the measurement of a low femtomolar concentration of circulating miRNA-21 in 5 μL sample volume within a turnaround of 2 h and the discrimination of single base mismatches. Moreover, B2S2PI was universal for detecting miRNAs with different sequences and secondary structures. Further analysis of clinical serum samples revealed that B2S2PI was capable of accurately distinguishing MB patients from noncancer controls with an area under the curve (AUC) of 0.99, which was superior to that of qRT-PCR. B2S2PI holds promise as a novel alternative means for single-molecule miRNA assay and sheds light on the circulating nucleic acid-based liquid biopsy of intracranial malignant tumors.
Collapse
Affiliation(s)
- Yujie Liu
- Shanghai Institute for Pediatric Research, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| | - Yijia Peng
- Shanghai Institute for Pediatric Research, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Chenran Zhang
- Department of Pediatric Neurosurgery, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Ruoping Chen
- Department of Pediatric Neurosurgery, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Kun Zhang
- Shanghai Institute for Pediatric Research, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| |
Collapse
|
5
|
Sindhu P, Magotra A, Sindhu V, Chaudhary P. Unravelling the impact of epigenetic mechanisms on offspring growth, production, reproduction and disease susceptibility. ZYGOTE 2024; 32:190-206. [PMID: 39291610 DOI: 10.1017/s0967199424000224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Epigenetic mechanisms, such as DNA methylation, histone modifications and non-coding RNA molecules, play a critical role in gene expression and regulation in livestock species, influencing development, reproduction and disease resistance. DNA methylation patterns silence gene expression by blocking transcription factor binding, while histone modifications alter chromatin structure and affect DNA accessibility. Livestock-specific histone modifications contribute to gene expression and genome stability. Non-coding RNAs, including miRNAs, piRNAs, siRNAs, snoRNAs, lncRNAs and circRNAs, regulate gene expression post-transcriptionally. Transgenerational epigenetic inheritance occurs in livestock, with environmental factors impacting epigenetic modifications and phenotypic traits across generations. Epigenetic regulation revealed significant effect on gene expression profiling that can be exploited for various targeted traits like muscle hypertrophy, puberty onset, growth, metabolism, disease resistance and milk production in livestock and poultry breeds. Epigenetic regulation of imprinted genes affects cattle growth and metabolism while epigenetic modifications play a role in disease resistance and mastitis in dairy cattle, as well as milk protein gene regulation during lactation. Nutri-epigenomics research also reveals the influence of maternal nutrition on offspring's epigenetic regulation of metabolic homeostasis in cattle, sheep, goat and poultry. Integrating cyto-genomics approaches enhances understanding of epigenetic mechanisms in livestock breeding, providing insights into chromosomal structure, rearrangements and their impact on gene regulation and phenotypic traits. This review presents potential research areas to enhance production potential and deepen our understanding of epigenetic changes in livestock, offering opportunities for genetic improvement, reproductive management, disease control and milk production in diverse livestock species.
Collapse
Affiliation(s)
- Pushpa Sindhu
- Department of Animal Genetics and Breeding, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Ankit Magotra
- Department of Animal Genetics and Breeding, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Vikas Sindhu
- Department of Animal Nutrition, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Pradeep Chaudhary
- Department of Animal Genetics and Breeding, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| |
Collapse
|
6
|
Mousazadeh M, Daneshpour M, Rafizadeh Tafti S, Shoaie N, Jahanpeyma F, Mousazadeh F, Khosravi F, Khashayar P, Azimzadeh M, Mostafavi E. Nanomaterials in electrochemical nanobiosensors of miRNAs. NANOSCALE 2024; 16:4974-5013. [PMID: 38357721 DOI: 10.1039/d3nr03940d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Nanomaterial-based biosensors have received significant attention owing to their unique properties, especially enhanced sensitivity. Recent advancements in biomedical diagnosis have highlighted the role of microRNAs (miRNAs) as sensitive prognostic and diagnostic biomarkers for various diseases. Current diagnostics methods, however, need further improvements with regards to their sensitivity, mainly due to the low concentration levels of miRNAs in the body. The low limit of detection of nanomaterial-based biosensors has turned them into powerful tools for detecting and quantifying these biomarkers. Herein, we assemble an overview of recent developments in the application of different nanomaterials and nanostructures as miRNA electrochemical biosensing platforms, along with their pros and cons. The techniques are categorized based on the nanomaterial used.
Collapse
Affiliation(s)
- Marziyeh Mousazadeh
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maryam Daneshpour
- Biotechnology Department, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Livogen Pharmed, Research and Innovation Center, Tehran, Iran
| | - Saeed Rafizadeh Tafti
- Medical Nanotechnology & Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, 89195-999, Yazd, Iran.
| | - Nahid Shoaie
- Department of Biotechnology, Tarbiat Modares University of Medical Science, Tehran, Iran
| | - Fatemeh Jahanpeyma
- Department of Biotechnology, Tarbiat Modares University of Medical Science, Tehran, Iran
| | - Faezeh Mousazadeh
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Khosravi
- Medical Nanotechnology & Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, 89195-999, Yazd, Iran.
| | - Patricia Khashayar
- Center for Microsystems Technology, Imec and Ghent University, 9050, Ghent, Belgium.
| | - Mostafa Azimzadeh
- Medical Nanotechnology & Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, 89195-999, Yazd, Iran.
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, 89195-999, Yazd, Iran
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd 89165-887, Iran
| | - Ebrahim Mostafavi
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
7
|
Cheng L, He Y, Yang Y, Su C, He H, You M, Chen J, Lin Z, Hong G. Highly specific and sensitive sandwich-type electrochemiluminescence biosensor for HPV16 DNA detection based on the base-stacking effect and bovine serum albumin carrier platform. Biosens Bioelectron 2023; 241:115706. [PMID: 37757512 DOI: 10.1016/j.bios.2023.115706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/17/2023] [Accepted: 09/21/2023] [Indexed: 09/29/2023]
Abstract
The detection of specific DNA sequences and the identification of single nucleotide polymorphisms are important for disease diagnosis. Herein, by combining the high specificity of the base-stacking effect with the high reproducibility of bovine serum albumin (BSA) modified electrodes and the high loading performance of DNA nanoclews (DNA NCs), a novel sandwich-type electrochemiluminescence (ECL) biosensor is reported for the highly specific detection of HPV16 (chosen as the model target). The capture probes are loaded by BSA carrier platforms modified on the gold electrode surface to improve reproducibility. DNA NCs loaded with a large amount of Ru(phen)32+ worked as signal probes. The template probe is composed of the complementary strand of the target and two free nucleic acid anchors at the head and tail. In the presence of the target DNA, the template probes can form stacked base pairs with target, generating high base-stacking energy. This results in the shorter free anchors of template probes being able to bind to the capture and signal probes. This eventually forms a sandwich structure that allows Ru(phen)32+ to be near the electrode surface, producing an ECL signal. There is a linear relationship between the signal and the target concentration range from 10 fM to 100 pM, with a detection limit of 5.03 fM (S/N=3). Moreover, the base-stacking effect has single base recognition ability for base pairs, effectively avoiding false positive signals. The results of this strategy for clinical samples are consistent with classical methods.
Collapse
Affiliation(s)
- Lingjun Cheng
- Department of Laboratory Medicine, Xiamen Key Laboratory of Genetic Testing, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Yinghao He
- Department of Laboratory Medicine, Xiamen Key Laboratory of Genetic Testing, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Yuanyuan Yang
- Department of Laboratory Medicine, Xiamen Key Laboratory of Genetic Testing, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Canping Su
- Department of Laboratory Medicine, Xiamen Key Laboratory of Genetic Testing, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Hongzhang He
- Department of Laboratory Medicine, Xiamen Key Laboratory of Genetic Testing, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Mingming You
- Department of Laboratory Medicine, Xiamen Key Laboratory of Genetic Testing, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Jiaming Chen
- Department of Laboratory Medicine, Xiamen Key Laboratory of Genetic Testing, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361005, People's Republic of China.
| | - Zhenyu Lin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Department of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, People's Republic of China.
| | - Guolin Hong
- Department of Laboratory Medicine, Xiamen Key Laboratory of Genetic Testing, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361005, People's Republic of China.
| |
Collapse
|
8
|
Chen G, Yang N, Xu L, Lu S, Chen Z, Wu F, Chen J, Zhang X. Base-Stacking-Driven Catalytic Hairpin Assembly: A Nucleic Acid Amplification Reaction Using Electrode Interface as a "Booster" for SARS-CoV-2 Point-of-Care Testing. Anal Chem 2023; 95:15595-15605. [PMID: 37820038 DOI: 10.1021/acs.analchem.3c02577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Electrochemical DNA (E-DNA) biosensors based on interface-mediated hybridization reactions are promising for point-of-care testing (POCT). However, the low efficiency of target recycle amplification and the steric hindrance at the electrode interface limit their sensing performance. Herein, we propose a base-stacking-driven catalytic hairpin assembly (BDCHA), a nucleic acid amplification reaction strategy, for POCT. The introduction of the base-stacking effect in this strategy increases the thermodynamic stability of the product, thereby effectively improving the recycling efficiency. Also, it enables the interface-mediated hybridization to maintain stability with even fewer bases in the reaction-binding domain, hence minimizing DNA secondary structure formation or intertwining at the electrode surface and ameliorating the steric hindrance limitation. The introduced base-stacking effect makes the electrode serve as a "booster" by integrating the advantages of homogeneous and heterogeneous reactions, giving BDCHA an increased reaction rate of about 20-fold, compared to the conventional catalytic hairpin assembly. As a proof of concept, our BDCHA was applied in constructing a portable E-DNA biosensor for the detection of a SARS-CoV-2 N gene sequence fragment. A simple 30 min one-pot incubation is required, and the results can be readily read on a smartphone, making it portable and user-friendly for POCT.
Collapse
Affiliation(s)
- Guanyu Chen
- Department of Pharmaceutical Analysis, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province 350122, P. R. China
- Innovative Drug Research Institute, Fujian Medical University, Fuzhou, Fujian Province 350122, P. R. China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province 350122, P. R. China
| | - Ning Yang
- Department of Pharmaceutical Analysis, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province 350122, P. R. China
- Innovative Drug Research Institute, Fujian Medical University, Fuzhou, Fujian Province 350122, P. R. China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province 350122, P. R. China
| | - Lilan Xu
- Department of Pharmaceutical Analysis, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province 350122, P. R. China
- Innovative Drug Research Institute, Fujian Medical University, Fuzhou, Fujian Province 350122, P. R. China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province 350122, P. R. China
| | - Shi Lu
- Department of Pharmaceutical Analysis, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province 350122, P. R. China
- Innovative Drug Research Institute, Fujian Medical University, Fuzhou, Fujian Province 350122, P. R. China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province 350122, P. R. China
| | - Zhuhua Chen
- Department of Pharmaceutical Analysis, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province 350122, P. R. China
- Innovative Drug Research Institute, Fujian Medical University, Fuzhou, Fujian Province 350122, P. R. China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province 350122, P. R. China
| | - Fang Wu
- Department of Pharmaceutical Analysis, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province 350122, P. R. China
- Innovative Drug Research Institute, Fujian Medical University, Fuzhou, Fujian Province 350122, P. R. China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province 350122, P. R. China
| | - Jinghua Chen
- Department of Pharmaceutical Analysis, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province 350122, P. R. China
- Innovative Drug Research Institute, Fujian Medical University, Fuzhou, Fujian Province 350122, P. R. China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province 350122, P. R. China
| | - Xi Zhang
- Innovative Drug Research Institute, Fujian Medical University, Fuzhou, Fujian Province 350122, P. R. China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province 350122, P. R. China
- Department of Clinical Pharmacy and Pharmacy Administration, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province 350122, P. R. China
| |
Collapse
|
9
|
Wang L, Wu X, Chen G, Chen Y, Xu L, Wang J, Chen J. Dual amplified electrochemical sensing coupling of ternary hybridization-based exosomal microRNA recognition and perchlorate-assisted electrocatalytic cycle. Biosens Bioelectron 2023; 243:115783. [PMID: 39492379 DOI: 10.1016/j.bios.2023.115783] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/14/2023] [Accepted: 10/22/2023] [Indexed: 11/05/2024]
Abstract
Exosomal microRNA (miRNA) are important biomarkers for liquid biopsy, and display clinical molecular signatures for cancer diagnosis. Although advanced detection methods have been established to detect exosomal miRNAs, they are faced with certain challenges. Therefore, we aimed to establish a dual amplification-based electrochemical method for detecting exosomal miRNA. This method combined a two-hairpins-based ternary hybridization structure (thTHS)-initiated single-stranded DNA (ssDNA) amplification reaction (ssDAR) and sodium perchlorate (NaClO4)-assisted electrocatalytic cycle. Two DNA hairpins were designed to hybridize with target miRNA, forming thTHS. Next, ssDAR was triggered by thTHS to produce long ssDNA on magnetic beads. The long ssDNA, complementary to the signal probes, was subsequently released onto a methylene blue (MB)-labeled double-stranded DNA-modified electrode for strand displacement reaction. This led to a quantitative change in MB and a change in electrocatalytic reduction current from the electrocatalytic cycle of MB-ferricyanide. An amplified electrocatalytic reduction current was produced by adding NaClO4 to the electrocatalytic system, which substantially improved the signal response range and detection sensitivity. Ultimately, exosomal miRNA detection was achieved by recording changes in the electrocatalytic reduction current before and after miRNA addition. This electrochemical method exhibited a sensitive concentration response with a detection limit of 45 aM and selective miRNA recognition, and successfully used to detect exosomal miRNA derived from cells and serum. Additionally, this method exhibited better discrimination ability between patients with breast cancer (BC) and those people without BC (patients with benign breast disease and healthy people), providing a promising strategy for detecting and monitoring cancer biomarkers.
Collapse
Affiliation(s)
- Liangliang Wang
- Innovation Center for Cancer Research, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, 350014, China; Key Laboratory of Advanced Technology for Cancer Screening and Early Diagnosis, Fuzhou, Fujian Province, 350014, China
| | - Xiufeng Wu
- Department of Breast Surgical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, 350014, China
| | - Guanyu Chen
- Department of Pharmaceutical Analysis, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, 350122, China; Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, 350122, China; Innovative Drug Research Institute, Fujian Medical University, Fuzhou, Fujian Province, 350122, China
| | - Yawen Chen
- Innovation Center for Cancer Research, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, 350014, China; Key Laboratory of Advanced Technology for Cancer Screening and Early Diagnosis, Fuzhou, Fujian Province, 350014, China
| | - Lilan Xu
- Department of Pharmaceutical Analysis, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, 350122, China; Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, 350122, China; Innovative Drug Research Institute, Fujian Medical University, Fuzhou, Fujian Province, 350122, China
| | - Jianmin Wang
- Innovation Center for Cancer Research, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, 350014, China; Key Laboratory of Advanced Technology for Cancer Screening and Early Diagnosis, Fuzhou, Fujian Province, 350014, China.
| | - Jinghua Chen
- Department of Pharmaceutical Analysis, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, 350122, China; Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, 350122, China; Innovative Drug Research Institute, Fujian Medical University, Fuzhou, Fujian Province, 350122, China.
| |
Collapse
|
10
|
Liu J, Hu X, Hu Y, Chen P, Xu H, Hu W, Zhao Y, Wu P, Liu GL. Dual AuNPs detecting probe enhanced the NanoSPR effect for the high-throughput detection of the cancer microRNA21 biomarker. Biosens Bioelectron 2023; 225:115084. [PMID: 36693286 DOI: 10.1016/j.bios.2023.115084] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/18/2022] [Accepted: 01/14/2023] [Indexed: 01/18/2023]
Abstract
The microRNA21 (miR-21), a specific tumor biomarker, is crucial for the diagnosis of several cancer types, and investigation of its overexpression pattern is important for cancer diagnosis. Herein, we report a low-cost, rapid, ultrasensitive, and convenient biosensing strategy for the detection of miR-21 using a nanoplasmonic array chip coupled with gold nanoparticles (AuNPs). This sensing platform combines the surface plasmon resonance effect of nanoplasmonics (NanoSPR) and the localized surface plasmon resonance (LSPR) effect, which allows the real-time monitoring of the subtle optical density (OD) changes caused by the variations in the dielectric constant in the process of the hybridization of the target miRNA. Using this method, the miRNA achieves a broad detection range from 100 aM to 1 μM, and with a limit of detection (LoD) of 1.85 aM. Furthermore, this assay also has a single-base resolution to discriminate the highly homologous miRNAs. More importantly, this platform has high throughput characteristics (96 samples can be detected simultaneously). This strategy exhibits more than 86.5 times enhancement in terms of sensitivity compared to that of traditional biosensors.
Collapse
Affiliation(s)
- Juxiang Liu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luo Yu Road, Wuhan, 430074, China
| | - Xulong Hu
- Institute of Geophysics and Geomatics, China University of Geosciences, Wuhan, 430074, China
| | - Yinxia Hu
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ping Chen
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luo Yu Road, Wuhan, 430074, China
| | - Hao Xu
- Liangzhun (Shanghai) Industrial Co. Ltd., Shanghai, 200336, China
| | - Wenjun Hu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luo Yu Road, Wuhan, 430074, China
| | - Yanteng Zhao
- Department of Blood Transfusion, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Ping Wu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luo Yu Road, Wuhan, 430074, China; School of Pharmacy, Wenzhou Medical University, Wenzhou, 325035, China; Research Units of Clinical Translation of Cell Growth Factors and Diseases Research, Chinese Academy of Medical Science, Wenzhou, 325035, China.
| | - Gang L Liu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luo Yu Road, Wuhan, 430074, China.
| |
Collapse
|
11
|
Huang M, Xiang Y, Chen Y, Lu H, Zhang H, Liu F, Qin X, Qin X, Li X, Yang F. Bottom-Up Signal Boosting with Fractal Nanostructuring and Primer Exchange Reaction for Ultrasensitive Detection of Cancerous Exosomes. ACS Sens 2023; 8:1308-1317. [PMID: 36855267 DOI: 10.1021/acssensors.2c02819] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Exosomes are emerging as promising biomarkers for cancer diagnosis, yet sensitive and accurate quantification of tumor-derived exosomes remains a challenge. Here, we report an ultrasensitive and specific exosome sensor (NPExo) that initially leverages hierarchical nanostructuring array and primer exchange reaction (PER) for quantitation of cancerous exosomes. This NPExo uses a high-curvature nanostructuring array (bottom) fabricated by single-step electrodeposition to enhance capturing of the target exosomes. The immuno-captured exosome thus provides abundant membrane sites to insert numerous cholesterol-DNA probes with a density much higher than that by immune pairing, which further allows PER-based DNA extension to assemble enzyme concatemers (up) for signal amplification. Such a bottom-up signal-boosting design imparts NPExo with ultrahigh sensitivity up to 75 particles/mL (i.e., <1 exosome per 10 μL) and a broad dynamic range spanning 6 orders of magnitude. Furthermore, our sensor allows monitoring subtle exosomal phenotypic transition and shows high accuracy in discrimination of liver cancer patients from healthy donors via blood samples, suggesting the great potential of NPExo as a promising tool in clinical diagnostics.
Collapse
Affiliation(s)
- Minmin Huang
- Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Yuanhang Xiang
- Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Yu Chen
- Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Hao Lu
- Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Hui Zhang
- Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Fengfei Liu
- Department of Clinical Laboratory, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, China
| | - Xiaoling Qin
- Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Xiaojie Qin
- Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Xinchun Li
- Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Fan Yang
- Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
12
|
Su Z, Zhang L, Yu Y, Lin B, Wang Y, Guo M, Cao Y. An electrochemical determination strategy for miRNA based on bimetallic nanozyme and toehold-mediated DNA replacement procedure. Mikrochim Acta 2023; 190:149. [PMID: 36952059 DOI: 10.1007/s00604-023-05720-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 02/24/2023] [Indexed: 03/24/2023]
Abstract
An electrochemical strategy based on bimetallic nanozyme in collaboration with toehold-mediated DNA replacement effect is proposed for the sensitive determination of miRNA-21. The AuPt nanoparticles (AuPt NPs) are prepared as a catalytic beacon; it shows favorable peroxidase properties with a Michaelis contant (Km) of 0.072 mM for H2O2, which is capable of catalyzing H2O2 to induce an intense redox reaction, and causing a measurable electrochemical signal. To further enhance the strength of the signal response, a novel toehold-mediated DNA replacement strategy is employed. DNA strands with specific sequences are modified on electrodes and AuPt NPs, respectively. In the presence of miRNA-21, a cyclic substitution effect is subsequently activated via a specific toehold sequence and leads to a large accumulation of AuPt NPs on the electrodes. Subsequently, a strong signal depending on the amount of miRNA-21 is obtained after adding a small amount of H2O2. The analytical range of this determination method is from 0.1 pM to 1.0 nM, and the LOD is 84.1 fM. The spike recoveries for serum samples are 95.0 to 102.4% and the RSD values are 3.7 to 5.8%. The results suggests a promising application of the established method in clinical testing and disease diagnosis.
Collapse
Affiliation(s)
- Zhanying Su
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou, 510006, People's Republic of China
| | - Li Zhang
- School of Environmental and Chemical Engineering, Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, People's Republic of China.
| | - Ying Yu
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou, 510006, People's Republic of China.
| | - Bixia Lin
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou, 510006, People's Republic of China
| | - Yumin Wang
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou, 510006, People's Republic of China
| | - Manli Guo
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou, 510006, People's Republic of China
| | - Yujuan Cao
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou, 510006, People's Republic of China
| |
Collapse
|
13
|
Fang M, Liu F, Fang D, Chen Y, Xiang Y, Zhang H, Huang M, Qin X, Pan LH, Yang F. Primer exchange reaction-amplified protein-nucleic acid interactions for ultrasensitive and specific microRNA detection. Biosens Bioelectron 2023; 230:115274. [PMID: 37004284 DOI: 10.1016/j.bios.2023.115274] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/20/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023]
Abstract
Protein-nucleic acid interactions are not only fundamental to genetic regulation and cellular metabolism, but molecular basis to artificial biosensors. However, such interactions are generally weak and dynamic, making their specific and sensitive quantitative detection challenging. By using primer exchange reaction (PER)-amplified protein-nucleic acid interactions, we here design a universal and ultrasensitive electrochemical sensor to quantify microRNAs (miRNAs) in blood. This PER-miR sensor leverages specific recognition between S9.6 antibodies and miRNA/DNA hybrids to couple with PER-derived multi-enzyme catalysis for ultrasensitive miRNA detection. Surface binding kinetic analysis shows a rational Kd (8.9 nM) between the miRNA/DNA heteroduplex and electrode-attached S9.6 antibody. Based on such a favorable affinity, the programmable PER amplification enables the sensor to detect target miRNAs with sensitivity up to 90.5 aM, three orders of magnitude higher than that without PER in routine design, and with specificity of single-base resolution. Furthermore, the PER-miR sensor allows detecting multiple miRNAs in parallel, measuring target miRNA in lysates across four types of cell lines, and differentiating tumor patients from healthy individuals by directly analyzing the human blood samples (n = 40). These advantages make the sensor a promising tool to enable quantitative sensing of biomolecular interactions and precision diagnostics.
Collapse
|
14
|
Lu Z, Ni W, Liu N, Jin D, Li T, Li K, Zhang Y, Yao Q, Zhang GJ. CRISPR/Cas12a-based fluorescence biosensor for detection of exosomal miR-21 derived from lung cancer. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
15
|
FeMOF-based nanostructured platforms for T-2 toxin detection in beer by a “fence-type” aptasensing principle. Anal Bioanal Chem 2022; 414:7999-8008. [DOI: 10.1007/s00216-022-04330-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/30/2022] [Accepted: 09/07/2022] [Indexed: 11/01/2022]
|
16
|
You Z, Huang Q, Xu L, Liu X, Fu J, Li B, Yang Y, Li S, Qian H, Wang G. Framework nucleic acids enabled pulmonary artery endothelial cell growth inhibition by targeting microRNA-152. Chembiochem 2022; 23:e202200344. [PMID: 35904008 DOI: 10.1002/cbic.202200344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/28/2022] [Indexed: 11/11/2022]
Abstract
Pulmonary artery vascular endothelial dysfunction plays a pivotal role in the occurrence and progression of pulmonary vascular remodeling (PVR). To address this, aberrantly expressed non-coding microRNAs (miRNAs) are excellent therapeutic targets in human pulmonary artery endothelial cells (HPAECs). Here, we discovered and validated the overexpression of miRNA-152 in HPAECs under hypoxia and its role in endothelial cell dysfunction. We constructed a framework nucleic acids nanostructure that harbors six protruding single-stranded DNA segments that can fully hybridize with miRNA-152 (DNT-152). DNT-152 was efficiently taken up by HPAECs with increasing time and concentration; it markedly induced apoptosis, and inhibited HPAEC growth under hypoxic conditions. Mechanistically, DNT-152 silenced miRNA-152 expression and upregulated its target gene Meox2, which subsequently inhibited the AKT/mTOR signaling pathway. These results indicate that miRNA-152 in HPAECs may be an excellent therapeutic target against PVR, and that framework nucleic acids with carefully designed sequences are promising nanomedicines for noncancerous cells and diseases.
Collapse
Affiliation(s)
- Zaichun You
- Third Military Medical University Second Affiliated Hospital: Xinqiao Hospital, Institute of Respiratory Diseases,Department of General Practice, CHINA
| | - Qiuhong Huang
- Third Military Medical University Second Affiliated Hospital: Xinqiao Hospital, Department of General Practice, CHINA
| | - Lilin Xu
- Third Military Medical University Second Affiliated Hospital: Xinqiao Hospital, Department of General Practice, CHINA
| | - Xueping Liu
- Third Military Medical University Second Affiliated Hospital: Xinqiao Hospital, Institute of Respiratory Diseases, CHINA
| | - Juan Fu
- Third Military Medical University Second Affiliated Hospital: Xinqiao Hospital, Department of General Practice, CHINA
| | - Boxuan Li
- Changzhi Medical College, Department of Pharmacy, CHINA
| | - Yi Yang
- Third Military Medical University Second Affiliated Hospital: Xinqiao Hospital, Department of General Practice, CHINA
| | - Shuyi Li
- Third Military Medical University Second Affiliated Hospital: Xinqiao Hospital, Department of General Practice, CHINA
| | - Hang Qian
- Third Military Medical University, Institute of Respiratory Diseases, 183 Xinqiao Street, 400037, Chongqing, CHINA
| | - Guansong Wang
- Third Military Medical University Second Affiliated Hospital: Xinqiao Hospital, Institute of Respiratory Diseases, CHINA
| |
Collapse
|
17
|
Bioprobes-regulated precision biosensing of exosomes: From the nanovesicle surface to the inside. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214538] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
18
|
Guo T, Xiang Y, Lu H, Huang M, Liu F, Fang M, Liu J, Tang Y, Li X, Yang F. Interfacial DNA Framework-Enhanced Background-to-Signal Transition for Ultrasensitive and Specific Micro-RNA Detection. ACS APPLIED MATERIALS & INTERFACES 2022; 14:18209-18218. [PMID: 35416047 DOI: 10.1021/acsami.2c03075] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Interfacial DNA self-assembly is fundamental to solid nucleic acid biosensors, whereas how to improve the signal-to-noise ratio has always been a challenge, especially in the charge-based electrochemical DNA sensors because of the large noise from the negatively charged DNA capture probes. Here, we report a DNA framework-reversed signal-gain strategy through background-to-signal transition for ultrasensitive and highly specific electrical detection of microRNAs (miRNAs) in blood. By using a model of enzyme-catalyzed deposition of conductive molecules (polyaniline) targeting to DNA, we observed the highest signal contribution per unit area by the highly charged three-dimensional (3D) tetrahedral DNA framework probe, relative to the modest of two-dimensional (2D) polyA probe and the lowest of one-dimensional (1D) single-stranded (ss)DNA probe, suggesting the positive correlation of background DNA charge with signal enhancement. Using such an effective signal-transition design, the DNA framework-based electrochemical sensor achieves ultrasensitive miRNAs detection with sensitivity up to 0.29 fM (at least 10-fold higher than that with 1D ssDNA or 2D polyA probes) and high specificity with single-base resolution. More importantly, this high-performance sensor allows for a generalized sandwich detection of tumor-associated miRNAs in the complex matrices (multiple cell lysates and blood serum) and further distinguishes the tumor patients (e.g., breast, lung, and liver cancer) from the normal individuals. These advantages signify the promise of this miRNA sensor as a versatile tool in precision diagnosis.
Collapse
Affiliation(s)
- Tongtong Guo
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, School of Pharmacy, Guangxi Medical University, Nanning 530021, China
| | - Yuanhang Xiang
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, School of Pharmacy, Guangxi Medical University, Nanning 530021, China
- Center for Translational Medicine, Guangxi Beibu Gulf Marine Biomedicine Precision Development and High-Value Utilization Engineering Research Center, Guangxi Health Commission Key Laboratory of Basic Research on Antigeriatric Drugs, National Center for International Research of Bio-targeting Theranostics, Guangxi Medical University, Nanning 530021, China
| | - Hao Lu
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, School of Pharmacy, Guangxi Medical University, Nanning 530021, China
- Center for Translational Medicine, Guangxi Beibu Gulf Marine Biomedicine Precision Development and High-Value Utilization Engineering Research Center, Guangxi Health Commission Key Laboratory of Basic Research on Antigeriatric Drugs, National Center for International Research of Bio-targeting Theranostics, Guangxi Medical University, Nanning 530021, China
| | - Minmin Huang
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, School of Pharmacy, Guangxi Medical University, Nanning 530021, China
- Center for Translational Medicine, Guangxi Beibu Gulf Marine Biomedicine Precision Development and High-Value Utilization Engineering Research Center, Guangxi Health Commission Key Laboratory of Basic Research on Antigeriatric Drugs, National Center for International Research of Bio-targeting Theranostics, Guangxi Medical University, Nanning 530021, China
| | - Fengfei Liu
- Department of Clinical Laboratory, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, China
| | - Min Fang
- Department of Clinical Laboratory, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, China
| | - Jia Liu
- Guangxi Key Laboratory of Basic and Translational Research of Bone and Joint Degenerative Diseases, Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China
| | - Yujin Tang
- Guangxi Key Laboratory of Basic and Translational Research of Bone and Joint Degenerative Diseases, Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China
| | - Xinchun Li
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, School of Pharmacy, Guangxi Medical University, Nanning 530021, China
| | - Fan Yang
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, School of Pharmacy, Guangxi Medical University, Nanning 530021, China
- Center for Translational Medicine, Guangxi Beibu Gulf Marine Biomedicine Precision Development and High-Value Utilization Engineering Research Center, Guangxi Health Commission Key Laboratory of Basic Research on Antigeriatric Drugs, National Center for International Research of Bio-targeting Theranostics, Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
19
|
Blidar A, Hosu O, Feier B, Ştefan G, Bogdan D, Cristea C. Gold-based nanostructured platforms for oxytetracycline detection from milk by a "signal-on" aptasensing approach. Food Chem 2022; 371:131127. [PMID: 34649198 DOI: 10.1016/j.foodchem.2021.131127] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/09/2021] [Accepted: 09/09/2021] [Indexed: 02/09/2023]
Abstract
Several gold platforms of different morphologies were investigated in the elaboration of a new aptasensor for oxytetracycline. Au-nanostructures were electrochemically synthesized from solutions of different concentrations of HAuCl4 in different media by chronoamperometry, multipulse amperometry, and chronopotentiometry, respectively at carbon-based screen-printed electrodes (C-SPE). The nano-/micro-scale morphologies of the patterned surfaces and elemental composition were examined by scanning electron microscopy, atomic force microscopy, and X-ray photoelectron spectroscopy, respectively. The electrochemical properties of the obtained gold nanostructured platforms (AuNSs|C-SPE) were investigated to achieve optimal aptamer coverage. The results showed that the aptasensor developed using the platform with thistle-like AuNSs exhibited the highest conductivity in terms of ferrocene signal and the largest effective area. Under optimal conditions, a linear range from 5.0 × 10-8 M to 1.2 × 10-6 M, with a limit of detection (LOD) of 8.7 × 10-9 M OXT were obtained, which is about 20 times lower than the EU regulations for OXT residues in milk. The electrochemical aptasensor was able to discriminate other antibacterial agents, such as amoxicillin, ampicillin, gentamicin, tetracycline, and vancomycin and was successfully applied in milk samples. This "signal-on" aptasensing approach provides a simple and cost-effective disposable sensor that could be easily applied for the on-site determination of antibiotics.
Collapse
Affiliation(s)
- Adrian Blidar
- "Iuliu Haţieganu" University of Medicine and Pharmacy, Faculty of Pharmacy, Analytical Chemistry Department, 4 Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Oana Hosu
- "Iuliu Haţieganu" University of Medicine and Pharmacy, Faculty of Pharmacy, Analytical Chemistry Department, 4 Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Bogdan Feier
- "Iuliu Haţieganu" University of Medicine and Pharmacy, Faculty of Pharmacy, Analytical Chemistry Department, 4 Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Geanina Ştefan
- "Iuliu Haţieganu" University of Medicine and Pharmacy, Faculty of Pharmacy, Analytical Chemistry Department, 4 Pasteur Street, 400349 Cluj-Napoca, Romania; Robert Bosch SRL, Physical and Chemical Analysis Department (RBRO/EQV-A), Tetarom 3 Industrial Park, Jucu Herghelie 407352, Cluj, Romania
| | - Diana Bogdan
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donath Street, 400293 Cluj-Napoca, Romania
| | - Cecilia Cristea
- "Iuliu Haţieganu" University of Medicine and Pharmacy, Faculty of Pharmacy, Analytical Chemistry Department, 4 Pasteur Street, 400349 Cluj-Napoca, Romania.
| |
Collapse
|
20
|
Park HJ, Jung C, Yoo TH. Development of one-step isothermal methods to detect RNAs using hairpin-loop signal converters and proximity proteolysis reaction. Biosens Bioelectron 2022; 197:113769. [PMID: 34773751 DOI: 10.1016/j.bios.2021.113769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/27/2021] [Accepted: 11/02/2021] [Indexed: 11/28/2022]
Abstract
Ribonucleic acids (RNAs) provide valuable information for biological systems and act as important indicators of disease states. RNAs are diverse in size and structure, and various strategies have been proposed for the detection of nucleic acids; however, developing them into point-of-care (POC) tests has been challenging as most of them consist of complex time-consuming steps. Here, we propose a strategy to assay RNAs using a hairpin-loop (HP) converter and proximity proteolysis reaction (PPR). Interaction between the loop part of HP and its target exposes a single strand of nucleotides, which acts as the template for PPR. A pair of protease and zymogen-conjugated nucleic acids associates with the adjacent regions of the template, resulting in an enhanced proteolysis reaction between protease and zymogen. The activated zymogen then generates a color signal through the hydrolysis of a chromogenic substrate. The combination of HP converter and PPR allowed the same pair of protease- and zymogen-nucleic acids to be used for different RNAs. Guidelines were provided for designing HP converters based on computational analyses and experimental characterizations. This strategy using an HP converter and PPR has been successfully applied to develop simple isothermal methods for the detection of various RNAs, including several microRNAs and KRAS mRNA, in the picomolar range in 1 h. The simplicity of designing HP converters and the beneficial properties of PPR as POC tests would enable the development of novel methods to detect RNAs under low-resource conditions.
Collapse
Affiliation(s)
- Hyeon Ji Park
- Department of Molecular Science and Technology, Ajou University, 206 World Cup-ro, Yengtong-gu, Suwon, 16499, South Korea
| | - Cheulhee Jung
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Tae Hyeon Yoo
- Department of Molecular Science and Technology, Ajou University, 206 World Cup-ro, Yengtong-gu, Suwon, 16499, South Korea; Department of Applied Chemistry and Biological Engineering, Ajou University, 206 World Cup-ro, Yengtong-gu, Suwon, 16499, South Korea.
| |
Collapse
|
21
|
Yin F, Cai R, Gui S, Zhang Y, Wang X, Zhou N. A portable and quantitative detection of microRNA-21 based on cascade enzymatic reactions with dual signal outputs. Talanta 2021; 235:122802. [PMID: 34517660 DOI: 10.1016/j.talanta.2021.122802] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 07/23/2021] [Accepted: 08/11/2021] [Indexed: 02/05/2023]
Abstract
MicroRNAs (miRNAs) are physiological status-related molecules which can be used as biomarkers for diseases, such as cancers. The point-of-care testing (POCT) of miRNAs has great application potential in early diagnosis and process monitoring of diseases. In this paper, a fast and dual signal outputs detection for microRNA-21 (miRNA-21) was established by using both personal glucose meter (PGM) and fluorescence spectrometer. In such an assay protocol, a dual-functional hairpin structure was rationally designed to recognize miRNA-21 and serve as the carrier of the reporter adenosine monophosphate (AMP). The hairpin structure can be specifically degraded by exonuclease T (Exo T) after hybridization with the target miRNA-21, releasing a large amount of AMP as the reporter. Then a smart signal conversion machinery composed of four enzymes and the corresponding substrates was employed to produce dual output signals through enzymatic cascade reactions. The machinery includes two parts: an adenosine triphosphate (ATP) generation system and a glucose consumption/NADPH production system. The produced AMP in the former step triggers the production of ATP, and subsequently the consumption of glucose and the production of NADPH. The changes of both glucose and NADPH are proportional to the concentration of miRNA-21, and can be determined by PGM and fluorescence spectrometer, respectively. Besides, the build-in substrate-recycling mechanism achieves signal amplification of the cascade enzymatic reactions. Under the optimal experimental conditions, the PGM signal is linearly correlated with the concentration of miRNA-21 in the range from 5 to 150 nM, with the limit of detection (LOD) of 3.65 nM. The LOD of fluorescence detection mode is even lowered to 0.03 nM. The miRNA-21-spiked serum samples, as well as the actual serum samples from cancer patients, have been successfully detected by this detection strategy. Thus the established assay provides a POCT solution for cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Fan Yin
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Rongfeng Cai
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Shuhua Gui
- Department of Neurology, Affiliated Hospital of Jiangnan University, Wuxi, 214122, China.
| | - Yuting Zhang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Xiaoli Wang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Nandi Zhou
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
22
|
Usha SP, Manoharan H, Deshmukh R, Álvarez-Diduk R, Calucho E, Sai VVR, Merkoçi A. Attomolar analyte sensing techniques (AttoSens): a review on a decade of progress on chemical and biosensing nanoplatforms. Chem Soc Rev 2021; 50:13012-13089. [PMID: 34673860 DOI: 10.1039/d1cs00137j] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Detecting the ultra-low abundance of analytes in real-life samples, such as biological fluids, water, soil, and food, requires the design and development of high-performance biosensing modalities. The breakthrough efforts from the scientific community have led to the realization of sensing technologies that measure the analyte's ultra-trace level, with relevant sensitivity, selectivity, response time, and sampling efficiency, referred to as Attomolar Analyte Sensing Techniques (AttoSens) in this review. In an AttoSens platform, 1 aM detection corresponds to the quantification of 60 target analyte molecules in 100 μL of sample volume. Herein, we review the approaches listed for various sensor probe design, and their sensing strategies that paved the way for the detection of attomolar (aM: 10-18 M) concentration of analytes. A summary of the technological advances made by the diverse AttoSens trends from the past decade is presented.
Collapse
Affiliation(s)
- Sruthi Prasood Usha
- Biomedical Engineering, Department of Applied Mechanics, Indian Institute of Technology Madras (IITM), India.
| | - Hariharan Manoharan
- Biomedical Engineering, Department of Applied Mechanics, Indian Institute of Technology Madras (IITM), India.
| | - Rehan Deshmukh
- Biomedical Engineering, Department of Applied Mechanics, Indian Institute of Technology Madras (IITM), India.
| | - Ruslan Álvarez-Diduk
- Nanobioelectronics & Biosensors Group, Institut Català de Nanociència i Nanotecnologia (ICN2), Campus UAB, Barcelona, Spain.
| | - Enric Calucho
- Nanobioelectronics & Biosensors Group, Institut Català de Nanociència i Nanotecnologia (ICN2), Campus UAB, Barcelona, Spain.
| | - V V R Sai
- Biomedical Engineering, Department of Applied Mechanics, Indian Institute of Technology Madras (IITM), India.
| | - Arben Merkoçi
- Nanobioelectronics & Biosensors Group, Institut Català de Nanociència i Nanotecnologia (ICN2), Campus UAB, Barcelona, Spain. .,ICREA, Institució Catalana de Recercai Estudis Avançats, Barcelona, Spain
| |
Collapse
|
23
|
Zhang B, Chen M, Cao J, Liang Y, Tu T, Hu J, Li T, Cai Y, Li S, Liu B, Xu J, Liang B, Ye X, Cai X. An integrated electrochemical POCT platform for ultrasensitive circRNA detection towards hepatocellular carcinoma diagnosis. Biosens Bioelectron 2021; 192:113500. [PMID: 34280653 DOI: 10.1016/j.bios.2021.113500] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/09/2021] [Accepted: 07/11/2021] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC) is the fourth leading cause of cancer-related death. Circ-CDYL, one of the circular RNAs (circRNAs), is recognized as an independent marker for HCC early diagnosis. Point-of-care testing (POCT) of circRNA is essential and in great demand for clinical applications. Herein, we report a fully integrated electrochemical POCT platform for circRNA detection based on Au nanoflowers (AuNFs)/peptide nucleic acid (PNA) modified carbon-fiber microelectrode (CFME). PNA is applied as the recognition element, highly specified for a back-splice junction of circRNA. AuNFs increased active site for PNA probes, improving target-capturing efficiency at an ultralow level. The platform provides a linear range of 10 fM to 1 μM, with a detection limit as low as 3.29 fM. This biosensor demonstrates high specificity towards one-base mismatch and is stable for up to 24 days. The analytical performance has also been verified in human serum samples, demonstrating the potential utility in clinical POCT applications for HCC.
Collapse
Affiliation(s)
- Bin Zhang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China
| | - Mingyu Chen
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China
| | - Jiasheng Cao
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China
| | - Yitao Liang
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310027, China
| | - Tingting Tu
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310027, China
| | - Jiahao Hu
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China
| | - Tianyu Li
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China; Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310027, China
| | - Yu Cai
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310027, China
| | - Shijie Li
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China
| | - Boqiang Liu
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China
| | - Junjie Xu
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China
| | - Bo Liang
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310027, China.
| | - Xuesong Ye
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310027, China; Key Laboratory of Laparoscopic Technique Research of Zhejiang Province, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China.
| | - Xiujun Cai
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China; Key Laboratory of Laparoscopic Technique Research of Zhejiang Province, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China; Zhejiang Minimal Invasive Diagnosis and Treantment Thechnology Research Center of Severe Hepatobiliary Disease, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China; Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China.
| |
Collapse
|
24
|
Liu N, Lu H, Liu L, Ni W, Yao Q, Zhang GJ, Yang F. Ultrasensitive Exosomal MicroRNA Detection with a Supercharged DNA Framework Nanolabel. Anal Chem 2021; 93:5917-5923. [DOI: 10.1021/acs.analchem.1c00295] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Nian Liu
- School of Laboratory Medicine, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Hao Lu
- School of Laboratory Medicine, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Li Liu
- School of Laboratory Medicine, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Wei Ni
- School of Laboratory Medicine, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
- Hubei Provincial Hospital of Traditional Chinese Medicine, Hubei Province Academy of Traditional Chinese Medicine, Wuhan 430061, China
| | - Qunfeng Yao
- School of Laboratory Medicine, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Guo-Jun Zhang
- School of Laboratory Medicine, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Fan Yang
- School of Pharmacy, National Center for International Research of Bio-targeting Theranostics, Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
25
|
Abstract
Selective and sensitive detection of nucleic acid biomarkers is of great significance in early-stage diagnosis and targeted therapy. Therefore, the development of diagnostic methods capable of detecting diseases at the molecular level in biological fluids is vital to the emerging revolution in the early diagnosis of diseases. However, the vast majority of the currently available ultrasensitive detection strategies involve either target/signal amplification or involve complex designs. Here, using a p53 tumor suppressor gene whose mutation has been implicated in more than 50% of human cancers, we show a background-free ultrasensitive detection of this gene on a simple platform. The sensor exhibits a relatively static mid-FRET state in the absence of a target that can be attributed to the time-averaged fluorescence intensity of fast transitions among multiple states, but it undergoes continuous dynamic switching between a low- and a high-FRET state in the presence of a target, allowing a high-confidence detection. In addition to its simple design, the sensor has a detection limit down to low femtomolar (fM) concentration without the need for target amplification. We also show that this sensor is highly effective in discriminating against single-nucleotide polymorphisms (SNPs). Given the generic hybridization-based detection platform, the sensing strategy developed here can be used to detect a wide range of nucleic acid sequences enabling early diagnosis of diseases and screening genetic disorders.
Collapse
Affiliation(s)
- Anoja Megalathan
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Kalani M Wijesinghe
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Soma Dhakal
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| |
Collapse
|