1
|
Jeon J, Choi H, Han GR, Ghosh R, Palanisamy B, Di Carlo D, Ozcan A, Park S. Paper-Based Vertical Flow Assays for in Vitro Diagnostics and Environmental Monitoring. ACS Sens 2025; 10:3317-3339. [PMID: 40372939 PMCID: PMC12117607 DOI: 10.1021/acssensors.5c00668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/22/2025] [Accepted: 05/06/2025] [Indexed: 05/17/2025]
Abstract
Microfluidic paper-based analytical devices (μPADs) are powerful tools for diagnostic and environmental monitoring. Being affordable and portable, μPADs enable rapid detection of small molecules, heavy metals, and biomolecules, thereby decentralizing diagnostics and expanding biosensor accessibility. However, the reliance on two-dimensional fluid flow restricts the utility of conventional μPADs, presenting challenges for applications that require simultaneous multibiomarker analysis from a single sample. Vertical flow paper-based analytical devices (VF-μPADs) overcome this challenge by allowing axial fluid movement through paper stacks, offering several advantages, including (1) enhanced multiplexing capabilities, (2) reduced hook effect for improved accuracy, and (3) shorter assay times. This review provides an overview of VF-μPADs technologies, exploring structural and functional performance trade-offs between VF-μPADs and conventional lateral flow systems. The sensing performance, fabrication methods, and applications in in vitro diagnostics and environmental monitoring are discussed. Furthermore, critical challenges─such as fabrication complexity, data analysis, and scalability─are addressed, along with proposed strategies for mitigating these barriers to facilitate broader adoption. By examining these strengths and challenges, this review presents the potential of VF-μPADs to advance point-of-care testing, particularly in resource-limited settings.
Collapse
Affiliation(s)
- Jaehyung Jeon
- School
of Mechanical Engineering, Sungkyunkwan
University (SKKU), Suwon16419, Korea
- Department
of Electrical & Computer Engineering, University of California, Los
Angeles, California90095, United States
| | - Heeseon Choi
- School
of Mechanical Engineering, Sungkyunkwan
University (SKKU), Suwon16419, Korea
| | - Gyeo-Re Han
- Department
of Electrical & Computer Engineering, University of California, Los
Angeles, California90095, United States
| | - Rajesh Ghosh
- Department
of Bioengineering, University of California, Los Angeles, California90095, United States
| | - Barath Palanisamy
- Department
of Bioengineering, University of California, Los Angeles, California90095, United States
| | - Dino Di Carlo
- Department
of Bioengineering, University of California, Los Angeles, California90095, United States
- California
NanoSystems Institute (CNSI), University
of California, Los Angeles, California90095, United States
| | - Aydogan Ozcan
- Department
of Electrical & Computer Engineering, University of California, Los
Angeles, California90095, United States
- Department
of Bioengineering, University of California, Los Angeles, California90095, United States
- California
NanoSystems Institute (CNSI), University
of California, Los Angeles, California90095, United States
| | - Sungsu Park
- School
of Mechanical Engineering, Sungkyunkwan
University (SKKU), Suwon16419, Korea
- Department
of Biophysics, Institute of Quantum Biophysics (IQB), Sungkyunkwan University (SKKU), Suwon16419, Korea
- Department
of Metabiohealth, Sungkyunkwan University
(SKKU), Suwon16419, Korea
| |
Collapse
|
2
|
Bridges M, Marin E, Banik A, Henry CS. Simplifying the Incorporation of Laser-Induced Graphene into Microfluidic Devices. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 40391764 DOI: 10.1021/acsami.5c04078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
Laser-induced graphene (LIG) electrodes have many attractive properties that make them promising platforms for many electrochemical applications. However, their fabrication is currently limited to a small number of substrates, with the most widely used being polyimide. Incorporating LIG electrodes into microfluidic devices is challenging because it requires transfer onto other substrates compatible with microfluidics. Transferring LIG electrodes to other substrates has been demonstrated, but it requires complicated mechanical procedures that impact electrode performance. Here, a simple transfer process has been developed that maintains the structural and electrochemical integrity of the LIG electrodes. The transferred LIG electrodes were characterized using morphological and electrochemical techniques, revealing comparable performance to nontransferred LIG in both surface-sensitive and surface-insensitive redox processes. The transferred electrodes were then incorporated into a microfluidic device, and their performance as a sensing platform was verified using the detection of dopamine in the presence of uric acid and ascorbic acid. This simple and versatile method of integrating LIG electrodes into microfluidic systems offers many opportunities for future applications.
Collapse
Affiliation(s)
- Maxwell Bridges
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Emie Marin
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Avishek Banik
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Charles S Henry
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
3
|
Mak D, Meffan C, Menges J, Marchant-Ludlow R, Hashemi A, Moore CP, Dobson RCJ, Nock V. The reversible capillary field effect transistor: a capillaric element for autonomous flow switching. LAB ON A CHIP 2025; 25:1993-2003. [PMID: 39820164 DOI: 10.1039/d4lc00706a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
New flow control elements in capillaric circuits are key to achieving ever more complex lab-on-a-chip functionality while maintaining their autonomous and easy-to-use nature. Capillary field effect transistors valves allow for flow in channels to be restricted and cut off utilising a high pressure triggering channel and occluding air bubble. The reversible capillary field effect transistor presented here provides a new element that can restore fluid flow in closed microchannels via autonomous circuit feedback. This allows new flow switching functionality without the need for direct user input. The valve design utilises new circuitry that draws on competing capillary pressures to withdraw liquid from a reservoir connected to the valve, creating a suction pressure that removes the occluding bubble from the channel to allow flow past the valve. The resulting reopening restores flow to the closed channel and allows for enhanced autonomous control over fluid flows. This new functionality is flexible and has the potential to be applied in a wide variety of situations, as shown here by use in several extended proof of concept arrangements. Firstly, we demonstrate how to reopen one valve while closing another using the same trigger to achieve simultaneous flow switching. We then show how a single trigger can be used for the parallel reopening of multiple valves for simultaneous release of liquids. Finally, we show the reversible capillary field effect transistor used to achieve autonomous transient mixing ratios between multiple liquids utilising a series of triggering events to determine which liquid channels are open or closed as flow progresses. The functionality this valve adds to the capillaric toolbox opens up new possibilities for applications in the creation of fully automatic diagnostic capillaric devices.
Collapse
Affiliation(s)
- Daniel Mak
- Electrical and Computer Engineering, University of Canterbury, 20 Kirkwood Avenue, Ilam, Christchurch, New Zealand.
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand.
- MacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand
| | - Claude Meffan
- Electrical and Computer Engineering, University of Canterbury, 20 Kirkwood Avenue, Ilam, Christchurch, New Zealand.
- MacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand
- School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Julian Menges
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand.
| | - Rhys Marchant-Ludlow
- Electrical and Computer Engineering, University of Canterbury, 20 Kirkwood Avenue, Ilam, Christchurch, New Zealand.
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand.
- MacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand
| | - Azadeh Hashemi
- Electrical and Computer Engineering, University of Canterbury, 20 Kirkwood Avenue, Ilam, Christchurch, New Zealand.
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand.
- MacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand
| | - Ciaran P Moore
- Electrical and Computer Engineering, University of Canterbury, 20 Kirkwood Avenue, Ilam, Christchurch, New Zealand.
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand.
| | - Renwick C J Dobson
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand.
- MacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Volker Nock
- Electrical and Computer Engineering, University of Canterbury, 20 Kirkwood Avenue, Ilam, Christchurch, New Zealand.
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand.
- MacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand
| |
Collapse
|
4
|
Baker DV, Bernal-Escalante J, Traaseth C, Wang Y, Tran MV, Keenan S, Algar WR. Smartphones as a platform for molecular analysis: concepts, methods, devices and future potential. LAB ON A CHIP 2025; 25:884-955. [PMID: 39918205 DOI: 10.1039/d4lc00966e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Over the past 15 years, smartphones have had a transformative effect on everyday life. These devices also have the potential to transform molecular analysis over the next 15 years. The cameras of a smartphone, and its many additional onboard features, support optical detection and other aspects of engineering an analytical device. This article reviews the development of smartphones as platforms for portable chemical and biological analysis. It is equal parts conceptual overview, technical tutorial, critical summary of the state of the art, and outlook on how to advance smartphones as a tool for analysis. It further discusses the motivations for adopting smartphones as a portable platform, summarizes their enabling features and relevant optical detection methods, then highlights complementary technologies and materials such as 3D printing, microfluidics, optoelectronics, microelectronics, and nanoparticles. The broad scope of research and key advances from the past 7 years are reviewed as a prelude to a perspective on the challenges and opportunities for translating smartphone-based lab-on-a-chip devices from prototypes to authentic applications in health, food and water safety, environmental monitoring, and beyond. The convergence of smartphones with smart assays and smart apps powered by machine learning and artificial intelligence holds immense promise for realizing a future for molecular analysis that is powerful, versatile, democratized, and no longer just the stuff of science fiction.
Collapse
Affiliation(s)
- Daina V Baker
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada.
| | - Jasmine Bernal-Escalante
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada.
| | - Christine Traaseth
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada.
| | - Yihao Wang
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada.
| | - Michael V Tran
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada.
| | - Seth Keenan
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada.
| | - W Russ Algar
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada.
| |
Collapse
|
5
|
Zhang S, Wu S, Chen L, Guo P, Jiang X, Pan H, Li Y. Multi-Task Water Quality Colorimetric Detection Method Based on Deep Learning. SENSORS (BASEL, SWITZERLAND) 2024; 24:7345. [PMID: 39599121 PMCID: PMC11598497 DOI: 10.3390/s24227345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/14/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024]
Abstract
The colorimetric method, due to its rapid and low-cost characteristics, demonstrates a wide range of application prospects in on-site water quality testing. Current research on colorimetric detection using deep learning algorithms predominantly focuses on single-target classification. To address this limitation, we propose a multi-task water quality colorimetric detection method based on YOLOv8n, leveraging deep learning techniques to achieve a fully automated process of "image input and result output". Initially, we constructed a dataset that encompasses colorimetric sensor data under varying lighting conditions to enhance model generalization. Subsequently, to effectively improve detection accuracy while reducing model parameters and computational load, we implemented several improvements to the deep learning algorithm, including the MGFF (Multi-Scale Grouped Feature Fusion) module, the LSKA-SPPF (Large Separable Kernel Attention-Spatial Pyramid Pooling-Fast) module, and the GNDCDH (Group Norm Detail Convolution Detection Head). Experimental results demonstrate that the optimized deep learning algorithm excels in precision (96.4%), recall (96.2%), and mAP50 (98.3), significantly outperforming other mainstream models. Furthermore, compared to YOLOv8n, the parameter count and computational load were reduced by 25.8% and 25.6%, respectively. Additionally, precision improved by 2.8%, recall increased by 3.5%, mAP50 enhanced by 2%, and mAP95 rose by 1.9%. These results affirm the substantial potential of our proposed method for rapid on-site water quality detection, offering new technological insights for future water quality monitoring.
Collapse
Affiliation(s)
- Shenlan Zhang
- Key Laboratory of Advanced Manufacturing and Automation Technology, Education Department of Guangxi Zhuang Autonomous Region, Guilin University of Technology, Guilin 541006, China; (S.Z.); (S.W.); (L.C.); (P.G.); (X.J.)
- College of Mechanical and Control Engineering, Guilin University of Technology, Guilin 541006, China
- College of Environment and Science, Guilin University of Technology, Guilin 541006, China
| | - Shaojie Wu
- Key Laboratory of Advanced Manufacturing and Automation Technology, Education Department of Guangxi Zhuang Autonomous Region, Guilin University of Technology, Guilin 541006, China; (S.Z.); (S.W.); (L.C.); (P.G.); (X.J.)
- College of Mechanical and Control Engineering, Guilin University of Technology, Guilin 541006, China
| | - Liqiang Chen
- Key Laboratory of Advanced Manufacturing and Automation Technology, Education Department of Guangxi Zhuang Autonomous Region, Guilin University of Technology, Guilin 541006, China; (S.Z.); (S.W.); (L.C.); (P.G.); (X.J.)
- College of Mechanical and Control Engineering, Guilin University of Technology, Guilin 541006, China
| | - Pengxin Guo
- Key Laboratory of Advanced Manufacturing and Automation Technology, Education Department of Guangxi Zhuang Autonomous Region, Guilin University of Technology, Guilin 541006, China; (S.Z.); (S.W.); (L.C.); (P.G.); (X.J.)
- College of Mechanical and Control Engineering, Guilin University of Technology, Guilin 541006, China
| | - Xincheng Jiang
- Key Laboratory of Advanced Manufacturing and Automation Technology, Education Department of Guangxi Zhuang Autonomous Region, Guilin University of Technology, Guilin 541006, China; (S.Z.); (S.W.); (L.C.); (P.G.); (X.J.)
- College of Mechanical and Control Engineering, Guilin University of Technology, Guilin 541006, China
| | - Hongcheng Pan
- College of Environment and Science, Guilin University of Technology, Guilin 541006, China
| | - Yuhong Li
- Guilin Center for Agricultural Science & Technology Research, Guilin 541006, China
| |
Collapse
|
6
|
Hefner CE, Aryal P, Brack E, Alexander T, Henry CS. Capillary-flow driven microfluidic sensor based on tyrosinase for fast user-friendly assessment of pesticide exposures. Analyst 2024; 149:5684-5692. [PMID: 39495064 DOI: 10.1039/d4an01203h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Pesticides are primarily used in agriculture to protect crops and extend their longevity. However, pesticide exposure has been linked to various acute and chronic health effects, raising significant environmental concerns. Current detection methods are often expensive and time-consuming, relying on complex instruments. Although enzyme-inhibition-based microfluidic paper-based analytical device (mPAD) platforms offer an easier alternative, they suffer from slow analyte transport and analyte adsorption issues in microchannels. Consequently, there is a need for a fast, simple, and cost-effective point-of-need platform for pesticide sensing. In this study, we present a rapid microfluidic platform for on-site pesticide residue detection. Unlike traditional mPAD platforms, our system transports pesticide samples through hollow capillary channels within seconds without adsorption of pesticides in the microchannels. While much research has focused on acetylcholinesterase inhibition on paper, this study is the first to introduce a tyrosinase inhibition-based assay on a paper platform for pesticide detection. Ziram, a representative dithiocarbamate pesticide, was detected using a colorimetric enzymatic inhibition assay. A limit of detection (LoD) of 1.5 ppm was obtained. In this study, we optimized the fast-flow device, assessed its stability and susceptibility to various interferences, and conducted real-sample tests using glove extraction to evaluate its capability in real-world settings. Spike recovery analysis revealed an extraction efficiency of 82.5% to 87.5% for leather gloves and 68.9% to 71.9% for nitrile gloves. This platform demonstrates strong selectivity against interferences, with the enzyme retaining 90% activity even after a week under the established storage protocols with room for further investigation. While primarily a proof of concept, this device shows promise as an additional tool for pesticide detection, with potential future integration into multiplexed devices.
Collapse
Affiliation(s)
- Claire E Hefner
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA.
| | - Prakash Aryal
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA.
| | - Eric Brack
- U.S. Army Combat Capabilities Development Command (DEVCOM)-Soldier Center, 10 General Greene Avenue, Natick, Massachusetts 01760, USA
| | - Todd Alexander
- U.S. Army Combat Capabilities Development Command (DEVCOM)-Soldier Center, 10 General Greene Avenue, Natick, Massachusetts 01760, USA
| | - Charles S Henry
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA.
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, Colorado 80523, USA
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado 80523, USA
| |
Collapse
|
7
|
Zhang Y, Lv W, Kang Z, Guo A, Li J, Dai C, Zhang M, Gao S, Li S, Miao Z, Chen S, Feng X, Li Y, Chen P, Liu BF. Drip-Dry Strategy Assisted Blu-Ray Disc Biosensor for Fast Point of Care Testing. Anal Chem 2024. [PMID: 39269278 DOI: 10.1021/acs.analchem.4c02651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Discs and numerous other consumer products have been developed for point of care testing (POCT) to replace traditional large and expensive biochemical devices in certain scenarios. Herein, we propose a drip-dry strategy (2D strategy) assisted Blu-ray disc (BD) biosensor, termed BDB, for rapid and portable POCT within 30 min with the cost of a single test < $1. The platform utilizes the covered area formed by the deposition of the substance to be measured on the activated BD surface after the evaporation of water and realizes the quantitative detection of the target through the error readout of free disc quality diagnosis software. As a proof of concept, we first demonstrated the feasibility of direct quantitative detection of substances in solution in a single system through the detection of pure proteins avoiding colorimetric reagent used in traditional optical detection. For the complex mixed systems, we then innovatively utilize the principle that soluble targets promote/inhibit the dissolution of insoluble precipitates to achieve specific detection of targets and successfully apply BDB to the indirect quantitative detection of glutathione (GSH) with LOD of 0.447 mM in the range of 2-16 mM and organophosphorus pesticides (OPs) with LOD of 2.122 × 10-7 M in the range of 1.289 × 10-7-1.289 × 10-4 M. The BDB is widely applicable, easy to operate, and less time-consuming, which is anticipated to provide an alternative method for early, on-site detection or screening.
Collapse
Affiliation(s)
- Yunhao Zhang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wenjie Lv
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zixin Kang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Anxin Guo
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Junming Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Chenxi Dai
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Mingyu Zhang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Siyu Gao
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shunji Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zeyu Miao
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Sihan Chen
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaojun Feng
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yiwei Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Peng Chen
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
8
|
Xu L, EL-ATY AABD, Li P, Li J, Zhao J, Lei X, Gao S, Zhao Y, She Y, Jin F, Wang J, Wang S, Zheng L, Hammock BD, Jin M. Smartphone-integrated visual inspection for enhancing agricultural product quality and safety: a review. Crit Rev Food Sci Nutr 2024:1-23. [PMID: 39230393 PMCID: PMC11876467 DOI: 10.1080/10408398.2024.2398630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
The increasing emphasis on the quality and safety of agricultural products, which are vital to global trade and consumer health, has driven the innovation of cost-effective, convenient, and rapid smart detection technologies. Smartphones, with their interdisciplinary functionalities, have become valuable tools in quantification and analysis research. Acting as portable, affordable, and user-friendly analytical devices, smartphones are equipped with high-resolution cameras, displays, memory, communication modules, sensors, and operating systems (Android or IOS), making them powerful, palm-sized remote computers. This review delves into how visual inspection technology and smartphones have enhanced the quality and safety of agricultural products over the past decade. It also evaluates the key features and limitations of existing smart rapid inspection methods for agricultural products and anticipates future advancements, offering insights into the application of smart rapid inspection technology in agriculture.
Collapse
Affiliation(s)
- Lingyuan Xu
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - A.M. ABD EL-ATY
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum 25240, Turkey
| | - Peipei Li
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jia Li
- Jinhua Miaozhidizhi Agricultural Technology Co., Ltd., Jinhua 321000, China
| | - Jing Zhao
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xingmei Lei
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Song Gao
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yun Zhao
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yongxin She
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fen Jin
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jing Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shuting Wang
- Hangzhou Municipal Center for Disease Control and Prevention, Zhejiang Hangzhou 310021, China
| | - Lufei Zheng
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Bruce D. Hammock
- Department of Entomology & Nematology and UC Davis Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | - Maojun Jin
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
9
|
Bezinge L, Shih CJ, Richards DA, deMello AJ. Electrochemical Paper-Based Microfluidics: Harnessing Capillary Flow for Advanced Diagnostics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401148. [PMID: 38801400 DOI: 10.1002/smll.202401148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/29/2024] [Indexed: 05/29/2024]
Abstract
Electrochemical paper-based microfluidics has attracted much attention due to the promise of transforming point-of-care diagnostics by facilitating quantitative analysis with low-cost and portable analyzers. Such devices harness capillary flow to transport samples and reagents, enabling bioassays to be executed passively. Despite exciting demonstrations of capillary-driven electrochemical tests, conventional methods for fabricating electrodes on paper impede capillary flow, limit fluidic pathways, and constrain accessible device architectures. This account reviews recent developments in paper-based electroanalytical devices and offers perspective by revisiting key milestones in lateral flow tests and paper-based microfluidics engineering. The study highlights the benefits associated with electrochemical sensing and discusses how the detection modality can be leveraged to unlock novel functionalities. Particular focus is given to electrofluidic platforms that embed electrodes into paper for enhanced biosensing applications. Together, these innovations pave the way for diagnostic technologies that offer portability, quantitative analysis, and seamless integration with digital healthcare, all without compromising the simplicity of commercially available rapid diagnostic tests.
Collapse
Affiliation(s)
- Léonard Bezinge
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zürich, Vladimir-Prelog-Weg 1, Zürich, 8093, Switzerland
| | - Chih-Jen Shih
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zürich, Vladimir-Prelog-Weg 1, Zürich, 8093, Switzerland
| | - Daniel A Richards
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zürich, Vladimir-Prelog-Weg 1, Zürich, 8093, Switzerland
| | - Andrew J deMello
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zürich, Vladimir-Prelog-Weg 1, Zürich, 8093, Switzerland
| |
Collapse
|
10
|
Smith S, Sypabekova M, Kim S. Double-Sided Tape in Microfluidics: A Cost-Effective Method in Device Fabrication. BIOSENSORS 2024; 14:249. [PMID: 38785723 PMCID: PMC11118809 DOI: 10.3390/bios14050249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/17/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
The demand for easy-to-use, affordable, accessible, and reliable technology is increasing in biological, chemical, and medical research. Microfluidic devices have the potential to meet these standards by offering cost-effective, highly sensitive, and highly specific diagnostic tests with rapid performance and minimal sample volumes. Traditional microfluidic device fabrication methods, such as photolithography and soft lithography, are time-consuming and require specialized equipment and expertise, making them costly and less accessible to researchers and clinicians and limiting the applicability and potential of microfluidic devices. To address this, researchers have turned to using new low-cost materials, such as double-sided tape for microfluidic device fabrication, which offers simple and low-cost processes. The innovation of low-cost and easy-to-make microfluidic devices improves the potential for more devices to be transitioned from laboratories to commercialized products found in stores, offices, and homes. This review serves as a comprehensive summary of the growing interest in and use of double-sided tape-based microfluidic devices in the last 20 years. It discusses the advantages of using double-sided tape, the fabrication techniques used to create and bond microfluidic devices, and the limitations of this approach in certain applications.
Collapse
Affiliation(s)
| | | | - Seunghyun Kim
- Department of Electrical & Computer Engineering, Baylor University, Waco, TX 76798, USA; (S.S.); (M.S.)
| |
Collapse
|
11
|
Aryal P, Hefner C, Martinez B, Henry CS. Microfluidics in environmental analysis: advancements, challenges, and future prospects for rapid and efficient monitoring. LAB ON A CHIP 2024; 24:1175-1206. [PMID: 38165815 DOI: 10.1039/d3lc00871a] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Microfluidic devices have emerged as advantageous tools for detecting environmental contaminants due to their portability, ease of use, cost-effectiveness, and rapid response capabilities. These devices have wide-ranging applications in environmental monitoring of air, water, and soil matrices, and have also been applied to agricultural monitoring. Although several previous reviews have explored microfluidic devices' utility, this paper presents an up-to-date account of the latest advancements in this field for environmental monitoring, looking back at the past five years. In this review, we discuss devices for prominent contaminants such as heavy metals, pesticides, nutrients, microorganisms, per- and polyfluoroalkyl substances (PFAS), etc. We cover numerous detection methods (electrochemical, colorimetric, fluorescent, etc.) and critically assess the current state of microfluidic devices for environmental monitoring, highlighting both their successes and limitations. Moreover, we propose potential strategies to mitigate these limitations and offer valuable insights into future research and development directions.
Collapse
Affiliation(s)
- Prakash Aryal
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA.
| | - Claire Hefner
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA.
| | - Brandaise Martinez
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA.
| | - Charles S Henry
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA.
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, Colorado 80523, USA
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado 80523, USA
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
12
|
Xue J, Mao K, Cao H, Feng R, Chen Z, Du W, Zhang H. Portable sensors equipped with smartphones for organophosphorus pesticides detection. Food Chem 2024; 434:137456. [PMID: 37716150 DOI: 10.1016/j.foodchem.2023.137456] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/03/2023] [Accepted: 09/10/2023] [Indexed: 09/18/2023]
Abstract
Organophosphorus pesticides (OPs) play an important role in agricultural production and the accurate detection of OP residues is essential to ensure food safety. Portable sensors are expected to be a potential device due to their high detection efficiency, easy-to-use processes and low cost. Due to the widespread popularity and powerful capabilities of smartphones, smartphone-based sensing systems have rapidly developed into ideal tools for portable detection, however, a systematic review on the detection of OPs is still lacking. Therefore, a comprehensive overview of sensors equipped with smartphones for OP detection in recent year is provided; this overview includes their sensing signals (colorimetric, fluorescent, chemiluminescent and electrochemical signals), detection mechanism, analysis applications, advantages/disadvantages and perspectives. Moreover, the progress of sensors equipped with smartphones for the detection of OPs in food is thoroughly summarized. This review contributes to food safety and the development of efficient and reliable methods for smartphone-based OPs detection.
Collapse
Affiliation(s)
- Jiaqi Xue
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kang Mao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| | - Haorui Cao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rida Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Zhuo Chen
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Wei Du
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China
| | - Hua Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| |
Collapse
|
13
|
Zhao X, Ding Z, Chen H, Xiao Y, Hou J, Huang L, Wu J, Hao N. Acoustofluidics-Assisted Multifunctional Paper-Based Analytical Devices. Anal Chem 2024; 96:496-504. [PMID: 38153375 DOI: 10.1021/acs.analchem.3c04603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Microfluidic paper-based analytical devices (μPADs) feature an economic and sensitive nature, while acoustofluidics displays contactless and versatile virtue, and both of them gained tremendous interest in the past decades. Integrating μPADs with acoustofluidic techniques provides great potential to overcome the inherent shortcomings and make appealing achievements. Here, we present acoustofluidics-assisted multifunctional paper-based analytical devices that leverage bulk acoustic waves to realize multiple applications on paper substrates, including uniform colorimetric detection, microparticle/cell enrichment, fluorescence amplification, homogeneous mixing, and nanomaterial synthesis. The glucose detection in the range of 5-15 mM was conducted to perform uniform colorimetric detection. Various types (brass powder, copper powder, diamond powder, and yeast cells) and sizes (5-200 μm) of solid particles and biological cells can be enriched on paper in a few seconds or minutes; thus, fluorescence amplification by 3 times was realized with the enrichment. The high-throughput and homogeneous mixing of two fluids can be achieved, and based on the mixing, nanomaterials (ZnO nanosheets) were synthesized on paper. We analyzed the underlying mechanisms of these applications in the devices, which are attributed to Faraday waves and Chladni patterns. With their simple fabrication and prominent effectiveness, the devices open up new possibilities for paper-based microfluidic devices.
Collapse
Affiliation(s)
- Xiong Zhao
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an, Shaanxi 710049, P.R. China
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road, Shanghai 200050, P.R. China
| | - Zihan Ding
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an, Shaanxi 710049, P.R. China
| | - Hongqiang Chen
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an, Shaanxi 710049, P.R. China
| | - Yaxuan Xiao
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an, Shaanxi 710049, P.R. China
- Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an, Shaanxi 710049, P.R. China
| | - Junsheng Hou
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an, Shaanxi 710049, P.R. China
| | - Lei Huang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an, Shaanxi 710049, P.R. China
| | - Junjie Wu
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an, Shaanxi 710049, P.R. China
| | - Nanjing Hao
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an, Shaanxi 710049, P.R. China
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road, Shanghai 200050, P.R. China
| |
Collapse
|
14
|
Pungjunun K, Praphairaksit N, Chailapakul O. A facile and automated microfluidic electrochemical platform for the in-field speciation analysis of inorganic arsenic. Talanta 2023; 265:124906. [PMID: 37451117 DOI: 10.1016/j.talanta.2023.124906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/28/2023] [Accepted: 07/01/2023] [Indexed: 07/18/2023]
Abstract
An automated microfluidic electrochemical platform was developed for the rapid in-field analysis of arsenic speciation. Herein, we integrated an electrochemical sensing and microfluidic channel for the simultaneous determination of As(III) and total inorganic As (total iAs) within a single device. The platform was fabricated by assembling a gold nanoparticle-modified screen-printed graphene electrode (AuNP/SPGE) on a hydrophilic polyethylene terephthalate (PET) sheet that was specially designed to enclose a microfluidic channel with dual flow channels for separate determination of the two species. While As(III) can be promptly detected with the AuNP/SPGE on one end, thioglycolic acid stored in glass fiber is employed on the other end to reduce As(V) before being electrochemically analyzed on the AuNP/SPGE as total iAs; the difference represents the amount of As(V). With a wireless potentiostat and a smartphone equipped with Bluetooth technology, the overall procedure can be fully automated and accomplished merely within 9 min. The linear ranges for the determination of As(III) and total iAs were found to be 50-1000 and 100-1500 ng/mL with detection limits of 3.7 and 17 ng/mL, respectively. The proposed method was validated and applied for the inorganic As speciation of various food samples with satisfactory results compared to those obtained with the standard HPLC-ICP‒MS protocol. This novel microfluidic electrochemical platform offers numerous advantages, notably for its simplicity, speed, low cost, and portability for on-site analysis, which conclusively makes it a highly promising analytical device for the speciation of inorganic arsenic.
Collapse
Affiliation(s)
- Kingkan Pungjunun
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Narong Praphairaksit
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330, Thailand.
| | - Orawon Chailapakul
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
15
|
Link JS, Carrell CS, Jang I, Barstis EJO, Call ZD, Bellows RA, O'Donnell-Sloan JJ, Terry JS, Anderson LBR, Panraksa Y, Geiss BJ, Dandy DS, Henry CS. Capillary flow-driven immunoassay platform for COVID-19 antigen diagnostics. Anal Chim Acta 2023; 1277:341634. [PMID: 37604607 PMCID: PMC10476143 DOI: 10.1016/j.aca.2023.341634] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/14/2023] [Accepted: 07/15/2023] [Indexed: 08/23/2023]
Abstract
Over the last few years, the SARS-CoV-2 pandemic has made the need for rapid, affordable diagnostics more compelling than ever. While traditional laboratory diagnostics like PCR and well-plate ELISA are sensitive and specific, they can be costly and take hours to complete. Diagnostic tests that can be used at the point-of-care or at home, like lateral flow assays (LFAs) are a simple, rapid alternative, but many commercially available LFAs have been criticized for their lack of sensitivity compared to laboratory methods like well-plate ELISAs. The Capillary-Driven Immunoassay (CaDI) device described in this work uses microfluidic channels and capillary action to passively automate the steps of a traditional well-plate ELISA for visual read out. This work builds on prior capillary-flow devices by further simplifying operation and use of colorimetric detection. Upon adding sample, an enzyme-conjugated secondary antibody, wash steps, and substrate are sequentially delivered to test and control lines on a nitrocellulose strip generating a colorimetric response. The end user can visually detect SARS-CoV-2 antigen in 15-20 min by naked eye, or results can be quantified using a smartphone and software such as ImageJ. An analytical detection limit of 83 PFU/mL for SARS-CoV-2 was determined for virus in buffer, and 222 PFU/mL for virus spiked into nasal swabs using image analysis, similar to the LODs determined by traditional well-plate ELISA. Additionally, a visual detection limit of 100 PFU/mL was determined in contrived nasal swab samples by polling 20 untrained end-users. While the CaDI device was used for detecting clinically relevant levels of SARS-CoV-2 in this study, the CaDI device can be easily adapted to other immunoassay applications by changing the reagents and antibodies.
Collapse
Affiliation(s)
- Jeremy S Link
- Department of Chemistry, Colorado State University, USA
| | | | - Ilhoon Jang
- Department of Chemistry, Colorado State University, USA; Institute of Nano Science and Technology, Hanyang University, South Korea
| | | | | | - Rae A Bellows
- Department of Chemistry, Colorado State University, USA
| | | | - James S Terry
- Department of Microbiology, Immunology and Pathology, Colorado State University, USA
| | - Loran B R Anderson
- Department of Microbiology, Immunology and Pathology, Colorado State University, USA
| | - Yosita Panraksa
- Department of Microbiology, Immunology and Pathology, Colorado State University, USA; Myobacteria Research Laboratories, Colorado State University, USA
| | - Brian J Geiss
- Department of Microbiology, Immunology and Pathology, Colorado State University, USA; School of Biomedical Engineering, Colorado State University, USA
| | - David S Dandy
- Department of Chemical and Biological Engineering, Colorado State University, USA; School of Biomedical Engineering, Colorado State University, USA
| | - Charles S Henry
- Department of Chemistry, Colorado State University, USA; Department of Chemical and Biological Engineering, Colorado State University, USA; School of Biomedical Engineering, Colorado State University, USA; Metalluragy and Materials Research Institute, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
16
|
Khalaf EM, Sanaan Jabbar H, Mireya Romero-Parra R, Raheem Lateef Al-Awsi G, Setia Budi H, Altamimi AS, Abdulfadhil Gatea M, Falih KT, Singh K, Alkhuzai KA. Smartphone-assisted microfluidic sensor as an intelligent device for on-site determination of food contaminants: Developments and applications. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
17
|
Carrell C, Jang I, Link J, Terry JS, Call Z, Panraksa Y, Chailapakul O, Dandy DS, Geiss BJ, Henry CS. Capillary driven microfluidic sequential flow device for point-of-need ELISA: COVID-19 serology testing. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:2721-2728. [PMID: 37099406 PMCID: PMC10249653 DOI: 10.1039/d3ay00225j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 04/16/2023] [Indexed: 06/09/2023]
Abstract
A capillary-driven microfluidic sequential flow device, designed for eventual at-home or doctor's office use, was developed to perform an enzyme-linked immunosorbent assay (ELISA) for serology assays. Serology assays that detect SARS-CoV-2 antibodies can be used to determine prior infection, immunity status, and/or individual vaccination status and are typically run using well-plate ELISAs in centralized laboratories, but in this format SARs-CoV-2 serology tests are too expensive and/or slow for most situations. Instead, a point-of-need device that can be used at home or in doctor's offices for COVID-19 serology testing would provide critical information for managing infections and determining immune status. Lateral flow assays are common and easy to use, but lack the sensitivity needed to reliably detect SARS-CoV-2 antibodies in clinical samples. This work describes a microfluidic sequential flow device that is as simple to use as a lateral flow assay, but as sensitive as a well-plate ELISA through sequential delivery of reagents to the detection area using only capillary flow. The device utilizes a network of microfluidic channels made of transparency film and double-sided adhesive combined with paper pumps to drive flow. The geometry of the channels and storage pads enables automated sequential washing and reagent addition steps with two simple end-user steps. An enzyme label and colorimetric substrate produce an amplified, visible signal for increased sensitivity, while the integrated washing steps decrease false positives and increase reproducibility. Naked-eye detection can be used for qualitative results or a smartphone camera for quantitative analysis. The device detected antibodies at 2.8 ng mL-1 from whole blood, while a well-plate ELISA using the same capture and detection antibodies could detect 1.2 ng mL-1. The performance of the capillary-driven immunoassay (CaDI) system developed here was confirmed by demonstrating SARS-CoV-2 antibody detection, and we believe that the device represents a fundamental step forward in equipment-free point-of-care technology.
Collapse
Affiliation(s)
- Cody Carrell
- Department of Chemistry, Colorado State University, CO, 80523, USA.
| | - Ilhoon Jang
- Department of Chemistry, Colorado State University, CO, 80523, USA.
- Department of Mechanical Engineering, Hanyang University, Seoul, 04763, Korea
| | - Jeremy Link
- Department of Chemistry, Colorado State University, CO, 80523, USA.
| | - James S Terry
- Department of Microbiology, Immunology and Pathology, Colorado State University, CO, 80523, USA
| | - Zachary Call
- Department of Chemistry, Colorado State University, CO, 80523, USA.
| | - Yosita Panraksa
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Orawon Chailapakul
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - David S Dandy
- Department of Chemical and Biological Engineering, Colorado State University, CO, 80523, USA
- School of Biomedical Engineering, Colorado State University, CO, 80523, USA
| | - Brian J Geiss
- Department of Microbiology, Immunology and Pathology, Colorado State University, CO, 80523, USA
- School of Biomedical Engineering, Colorado State University, CO, 80523, USA
| | - Charles S Henry
- Department of Chemistry, Colorado State University, CO, 80523, USA.
- Department of Chemical and Biological Engineering, Colorado State University, CO, 80523, USA
- School of Biomedical Engineering, Colorado State University, CO, 80523, USA
| |
Collapse
|
18
|
Clark K, Schenkel MS, Pittman TW, Samper IC, Anderson LBR, Khamcharoen W, Elmegerhi S, Perera R, Siangproh W, Kennan AJ, Geiss BJ, Dandy DS, Henry CS. Electrochemical Capillary Driven Immunoassay for Detection of SARS-CoV-2. ACS MEASUREMENT SCIENCE AU 2022; 2:584-594. [PMID: 36570470 PMCID: PMC9469961 DOI: 10.1021/acsmeasuresciau.2c00037] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/09/2022] [Accepted: 08/16/2022] [Indexed: 05/28/2023]
Abstract
The COVID-19 pandemic focused attention on a pressing need for fast, accurate, and low-cost diagnostic tests. This work presents an electrochemical capillary driven immunoassay (eCaDI) developed to detect SARS-CoV-2 nucleocapsid (N) protein. The low-cost flow device is made of polyethylene terephthalate (PET) and adhesive films. Upon addition of a sample, reagents and washes are sequentially delivered to an integrated screen-printed carbon electrode for detection, thus automating a full sandwich immunoassay with a single end-user step. The modified electrodes are sensitive and selective for SARS-CoV-2 N protein and stable for over 7 weeks. The eCaDI was tested with influenza A and Sindbis virus and proved to be selective. The eCaDI was also successfully applied to detect nine different SARS-CoV-2 variants, including Omicron.
Collapse
Affiliation(s)
- Kaylee
M. Clark
- Department
of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Melissa S. Schenkel
- Department
of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Trey W. Pittman
- Department
of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Isabelle C. Samper
- Department
of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
- Department
of Chemical and Biological Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Loran B. R. Anderson
- Department
of Microbiology, Immunology, and Pathology, Colorado State University, Fort
Collins, Colorado 80523, United States
| | - Wisarut Khamcharoen
- Department
of Chemistry, Faculty of Science, Srinakharinwirot
University, Bangkok 10110, Thailand
| | - Suad Elmegerhi
- Department
of Microbiology, Immunology, and Pathology, Colorado State University, Fort
Collins, Colorado 80523, United States
| | - Rushika Perera
- Department
of Microbiology, Immunology, and Pathology, Colorado State University, Fort
Collins, Colorado 80523, United States
| | - Weena Siangproh
- Department
of Chemistry, Faculty of Science, Srinakharinwirot
University, Bangkok 10110, Thailand
| | - Alan J. Kennan
- Department
of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Brian J. Geiss
- Department
of Microbiology, Immunology, and Pathology, Colorado State University, Fort
Collins, Colorado 80523, United States
- School
of Biomedical Engineering, Colorado State
University, Fort Collins, Colorado 80523, United States
| | - David S. Dandy
- Department
of Chemical and Biological Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
- School
of Biomedical Engineering, Colorado State
University, Fort Collins, Colorado 80523, United States
| | - Charles S. Henry
- Department
of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
- Department
of Chemical and Biological Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
- School
of Biomedical Engineering, Colorado State
University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
19
|
Xiong X, Guo C, Yan G, Han B, Wu Z, Chen Y, Xu S, Shao P, Song H, Xu X, Han J. Simultaneous Cross-type Detection of Water Quality Indexes via a Smartphone-App Integrated Microfluidic Paper-Based Platform. ACS OMEGA 2022; 7:44338-44345. [PMID: 36506192 PMCID: PMC9730490 DOI: 10.1021/acsomega.2c05938] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/09/2022] [Indexed: 06/17/2023]
Abstract
Water quality guarantee in remote areas necessitates the development of portable, sensitive, fast, cost-effective, and easy-to-use water quality detection methods. The current work reports on a microfluidic paper-based analytical device (μPAD) integrated with a smartphone app for the simultaneous detection of cross-type water quality parameters including pH, Cu(II), Ni(II), Fe(III), and nitrite. The shapes, baking time, amount, and ratios of reaction reagent mixtures of wax μPAD were optimized to improve the color uniformity and intensity effectively. An easy-to-use smartphone app was established for recording, analyzing, and directly reading the colorimetric signals and target concentrations on μPAD. The results showed that under the optimum conditions, the current analytical platform has reached the detection limits of 0.4, 1.9, 2.9, and 1.1 ppm for nitrite, Cu(II), Ni(II), and Fe(III), respectively, and the liner ranges are 2.3-90 ppm (nitrite), 3.8-400 ppm (Cu(II)), 2.9-1000 ppm (Ni(II)), 2.8-500 ppm (Fe(III)), and 5-9 (pH). The proposed portable smartphone-app integrated μPAD detection system was successfully applied to real industrial wastewater and river water quality monitoring. The proposed method has great potential for field water quality detection.
Collapse
Affiliation(s)
- Xiaolu Xiong
- Centre
for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum
Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing100081, China
- Yangtze
Delta Region Academy of Beijing Institute of Technology, Jiaxing314000, China
| | - Chengwang Guo
- Centre
for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum
Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing100081, China
| | - Gengyang Yan
- School
of Computer Science and Technology, Beijing
Institute of Technology, Beijing100081, China
| | - Bingxin Han
- Centre
for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum
Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing100081, China
| | - Zan Wu
- Institute
of Analysis and Testing, Beijing Academy
of Science and Technology, Beijing Center for Physical and Chemical
Analysis, Beijing100089, China
| | - Yueqian Chen
- Centre
for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum
Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing100081, China
| | - Shiqi Xu
- Centre
for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum
Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing100081, China
- Yangtze
Delta Region Academy of Beijing Institute of Technology, Jiaxing314000, China
| | - Peng Shao
- Institute
of Analysis and Testing, Beijing Academy
of Science and Technology, Beijing Center for Physical and Chemical
Analysis, Beijing100089, China
| | - Hong Song
- School
of Computer Science and Technology, Beijing
Institute of Technology, Beijing100081, China
| | - Xiyan Xu
- School
of Chemistry and Chemical Engineering, Beijing
Institute of Technology, Beijing102488, China
| | - Junfeng Han
- Centre
for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum
Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing100081, China
- Yangtze
Delta Region Academy of Beijing Institute of Technology, Jiaxing314000, China
| |
Collapse
|
20
|
Xing G, Ai J, Wang N, Pu Q. Recent progress of smartphone-assisted microfluidic sensors for point of care testing. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
21
|
Li H, Deng R, Tavakoli H, Li X, Li X. Ultrasensitive detection of acephate based on carbon quantum dot-mediated fluorescence inner filter effects. Analyst 2022; 147:5462-5469. [PMID: 36318045 PMCID: PMC9733495 DOI: 10.1039/d2an01552h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Acephate is an organophosphorus pesticide (OP) that is widely used to control insects in agricultural fields such as in vegetables and fruits. Toxic OPs can enter human and animal bodies and eventually lead to chronic or acute poisoning. However, traditional enzyme inhibition and colorimetric methods for OPs detection usually require complicated detection procedures and prolonged time and have low detection sensitivity. High-sensitivity monitoring of trace levels of acephate residues is of great significance to food safety and human health. Here, we developed a simple method for ultrasensitive quantitative detection of acephate based on the carbon quantum dot (CQD)-mediated fluorescence inner filter effect (IFE). In this method, the fluorescence from CQDs at 460 nm is quenched by 2,3-diaminophenazine (DAP) and the resulting fluorescence from DAP at 558 nm is through an IFE mechanism between CQDs and DAP, producing ratiometric responses. The ratiometric signal I558/I460 was found to exhibit a linear relationship with the concentration of acephate. The detection limit of this method was 0.052 ppb, which is far lower than the standards for acephate from China and EU in food safety administration. The ratiometric fluorescence sensor was further validated by testing spiked samples of tap water and pear, indicating its great potential for sensitive detection of trace OPs in complex matrixes of real samples.
Collapse
Affiliation(s)
- Haiqin Li
- Institute of Biomedical Precision Testing and Instrumentation, College of Biomedical Engineering, Taiyuan University of Technology, Jinzhong 030600, P.R. China.
| | - Rong Deng
- Institute of Biomedical Precision Testing and Instrumentation, College of Biomedical Engineering, Taiyuan University of Technology, Jinzhong 030600, P.R. China.
| | - Hamed Tavakoli
- Department of Chemistry and Biochemistry, Forensic Science, & Environmental Science & Engineering, University of Texas at El Paso, 500 W University Ave, El Paso, Texas 79968, USA.
| | - Xiaochun Li
- Institute of Biomedical Precision Testing and Instrumentation, College of Biomedical Engineering, Taiyuan University of Technology, Jinzhong 030600, P.R. China.
| | - XiuJun Li
- Department of Chemistry and Biochemistry, Forensic Science, & Environmental Science & Engineering, University of Texas at El Paso, 500 W University Ave, El Paso, Texas 79968, USA.
| |
Collapse
|
22
|
Ghasemi F, Fahimi-Kashani N, Bigdeli A, Alshatteri AH, Abbasi-Moayed S, Al-Jaf SH, Merry MY, Omer KM, Hormozi-Nezhad MR. Paper-based optical nanosensors – A review. Anal Chim Acta 2022; 1238:340640. [DOI: 10.1016/j.aca.2022.340640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022]
|
23
|
Saadati A, Farshchi F, Hasanzadeh M, Liu Y, Seidi F. Colorimetric and naked-eye detection of arsenic(iii) using a paper-based microfluidic device decorated with silver nanoparticles. RSC Adv 2022; 12:21836-21850. [PMID: 36091189 PMCID: PMC9358409 DOI: 10.1039/d2ra02820d] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/11/2022] [Indexed: 01/14/2023] Open
Abstract
Arsenic (As) as a metal ion has long-term toxicity and its presence in water poses a serious threat to the environment and human health. So, rapid and accurate recognition of traces of As is of particular importance in environmental and natural resources. In this study, a fast and sensitive colorimetric method was developed using silver nano prisms (Ag NPrs), cysteine-capped Ag NPrs, and methionine-capped Ag NPrs for accurate detection of arsenic-based on transforming the morphology of silver nanoparticles (AgNPs). The generated Ag atoms from the redox reaction of silver nitrate and As(iii) were deposited on the surface of Ag NPrs and their morphology changed to a circle. The morphological changes resulted in a change in the color of the nanoparticles from blue to purple, which was detectable by the naked eye. The rate of change was proportional to the concentration of arsenic. The changes were also confirmed using UV-Vis absorption spectra and showed a linear relationship between the change in adsorption peak and the concentration of arsenic in the range of 0.0005 to 1 ppm with a lower limit of quantification (LLOQ) of 0.0005 ppm. The proposed probes were successfully used to determine the amount of As(iii) in human urine samples. In addition, modified microfluidic substrates were fabricated with Ag NPrs, Cys-capped Ag NPrs, and methionine-capped Ag NPrs nanoparticles that are capable of arsenic detection in the long-time and can be used in the development of on-site As(iii) detection kits. In addition, silver nanowires (AgNWs) were used as a probe to detect arsenic, but good results were not obtained in human urine specimens and paper microfluidic platforms. In this study, for the first time, AgNPs were developed for optical colorimetric detection of arsenic using paper-based microfluidics. Ag NPrs performed best in both optical and colorimetric techniques. Therefore, they can be a promising option for the development of sensitive, inexpensive, and portable tools in the environmental and biomedical diagnosis of As(iii).
Collapse
Affiliation(s)
- Arezoo Saadati
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University Nanjing 210037 China
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences Tabriz Iran
- Central European Institute of Technology, Brno University of Technology Brno CZ-612 00 Czech Republic
| | - Fatemeh Farshchi
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Biologia Molecular e Doenças Endêmicas Avenida Brasil No. 4365 - Manguinhos Rio de Janeiro 21040-900 RJ Brazil
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences Tabriz Iran
- Nutrition Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | - Yuqian Liu
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University Nanjing 210037 China
| | - Farzad Seidi
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University Nanjing 210037 China
| |
Collapse
|
24
|
Wang M, Cui J, Wang Y, Yang L, Jia Z, Gao C, Zhang H. Microfluidic Paper-Based Analytical Devices for the Determination of Food Contaminants: Developments and Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8188-8206. [PMID: 35786878 DOI: 10.1021/acs.jafc.2c02366] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Food safety is an issue that cannot be ignored at any time because of the great impact of food contaminants on people's daily life, social production, and the economy. Because of the extensive demand for high-quality food, it is necessary to develop rapid, reliable, and efficient devices for food contaminant detection. Microfluidic paper-based analytical devices (μPADs) have been applied in a variety of detection fields owing to the advantages of low-cost, ease of handling, and portability. This review systematically discusses the latest progress of μPADs, including the fundamentals of fabrication as well as applications in the detection of chemical and biological hazards in foods, hoping to provide suitable screening strategies for contaminants in foods and accelerating the technology transformation of μPADs from the lab into the field.
Collapse
Affiliation(s)
- Minglu Wang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan 250014, PR China
| | - Jiarui Cui
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan 250014, PR China
| | - Ying Wang
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, PR China
| | - Liu Yang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan 250014, PR China
| | - Zhenzhen Jia
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan 250014, PR China
| | - Chuanjie Gao
- Shandong Province Institute for the Control of Agrochemicals, Jinan, 250131, PR China
| | - Hongyan Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan 250014, PR China
| |
Collapse
|
25
|
Jara MDL, Alvarez LAC, Guimarães MCC, Antunes PWP, de Oliveira JP. Lateral flow assay applied to pesticides detection: recent trends and progress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:46487-46508. [PMID: 35507227 PMCID: PMC9067001 DOI: 10.1007/s11356-022-20426-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
Devices based on lateral flow assay (LFA) have been gaining more and more space in the detection market mainly due to their simplicity, speed, and low cost. These devices have excellent sensing format versatility and make these strips an ideal choice for field applications. The COVID-19 pandemic boosted the democratization of this method as a "point of care testing" (POCT), and the trend is that these devices become protagonists for the monitoring of pesticides in the environment. However, designing LFA devices for detecting and monitoring pesticides in the environment is still a challenge. This is because analytes are small molecules and have only one antigenic determinant, which makes it difficult to apply direct immunoassays. Furthermore, most LFA devices provide only qualitative or semi-quantitative results and have a limited number of applications in multi-residue analysis. Here, we present the state of the art on the use of LFA in the environmental monitoring of pesticides. Based on well-documented results, we review all available LFA formats and strategies for pesticide detection, which may have important implications for the future of monitoring pesticides in the environment. The main advances, challenges, and perspectives of these devices for a direction in this field of study are also presented.
Collapse
Affiliation(s)
- Marcia Daniela Lazo Jara
- Department of Morphology, Federal University of Espirito Santo, Av Marechal Campos1468, Vitória, ES, 29.040-090, Brazil
| | | | - Marco C C Guimarães
- Department of Morphology, Federal University of Espirito Santo, Av Marechal Campos1468, Vitória, ES, 29.040-090, Brazil
| | - Paulo Wagnner Pereira Antunes
- Bioengen Consulting, Engineering and Environmental Planning, R. Belo Horizonte, Lote 05-Quadra W - Alterosas, Serra, ES, 29168-068, Brazil
| | - Jairo Pinto de Oliveira
- Department of Morphology, Federal University of Espirito Santo, Av Marechal Campos1468, Vitória, ES, 29.040-090, Brazil.
| |
Collapse
|
26
|
Qi W, Zheng L, Hou Y, Duan H, Wang L, Wang S, Liu Y, Li Y, Liao M, Lin J. A finger-actuated microfluidic biosensor for colorimetric detection of foodborne pathogens. Food Chem 2022; 381:131801. [DOI: 10.1016/j.foodchem.2021.131801] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/19/2021] [Accepted: 12/03/2021] [Indexed: 01/13/2023]
|
27
|
Panraksa Y, Jang I, Carrell CS, Amin AG, Chailapakul O, Chatterjee D, Henry CS. Simple manipulation of enzyme-linked immunosorbent assay (ELISA) using an automated microfluidic interface. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:1774-1781. [PMID: 35481474 PMCID: PMC9119197 DOI: 10.1039/d2ay00326k] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Among lateral flow immunoassay (LFIA) platforms, enzyme-based LFIAs provide signal amplification to improve sensitivity. However, most enzyme-based LFIAs require multiple timed steps, complicating their utility in point-of-care testing (POCT). Here, we report a microfluidic interface for LFIAs that automates sample, buffer, and reagent addition, greatly simplifying operation while achieving the high analytical stringency associated with more complex assays. The microfluidic interface also maintains the low cost and small footprint of standard LFIAs. The platform is fabricated from a combination of polyester film, double-sided adhesive tape, and nitrocellulose, and fits in the palm of your hand. All reagents are dried on the nitrocellulose to facilitate sequential reagent delivery, and the sample is used as the wash buffer to minimize steps. After the sample addition, a user simply waits 15 min for a colorimetric result. This manuscript discusses the development and optimization of the channel geometry to achieve a simple step enzyme amplified immunoassay. As a proof-of-concept target, we selected lipoarabinomannan (LAM), a WHO identified urinary biomarker of active tuberculosis, to demonstrate the device feasibility and reliability. The results revealed that the device successfully detected LAM in phosphate buffer (PBS) as well as spiked urine samples within 15 min after sample loading. The minimum concentration of color change was achieved at 25 ng mL-1.
Collapse
Affiliation(s)
- Yosita Panraksa
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, 1682 Campus Delivery, Fort Collins, CO, 80523, USA.
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Patumwan, Bangkok, 10330, Thailand
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Patumwan, Bangkok, 10330, Thailand.
| | - Ilhoon Jang
- Department of Chemistry, Colorado State University, CO, USA, 80523.
- Institute of Nano Science and Technology, Hanyang University, Seoul, Korea, 04763
| | - Cody S Carrell
- Department of Chemistry, Colorado State University, CO, USA, 80523.
| | - Anita G Amin
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, 1682 Campus Delivery, Fort Collins, CO, 80523, USA.
| | - Orawon Chailapakul
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Patumwan, Bangkok, 10330, Thailand.
| | - Delphi Chatterjee
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, 1682 Campus Delivery, Fort Collins, CO, 80523, USA.
| | - Charles S Henry
- Department of Chemistry, Colorado State University, CO, USA, 80523.
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Soi Chula 12, Phayathai Road, Pathumwan, Bangkok 10330, Thailand
| |
Collapse
|
28
|
Prabowo BA, Fernandes E, Freitas P. A pump-free microfluidic device for fast magnetic labeling of ischemic stroke biomarkers. Anal Bioanal Chem 2022; 414:2571-2583. [PMID: 35088131 DOI: 10.1007/s00216-022-03915-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 11/01/2022]
Abstract
This research proposes a low-cost and simple operation microfluidic chip to enhance the magnetic labeling efficiency of two ischemic stroke biomarkers: cellular fibronectin (c-Fn) and matrix metallopeptidase 9 (MMP9). This fully portable and pump-free microfluidic chip is operated based on capillary attractions without any external power source and battery. It uses an integrated cellulose sponge to absorb the samples. At the same time, a magnetic field is aligned to hold the target labeled by the magnetic nanoparticles (MNPs) in the pre-concentrated chamber. By using this approach, the specific targets are labeled from the beginning of the sampling process without preliminary sample purification. The proposed study enhanced the labeling efficiency from 1 h to 15 min. The dynamic interactions occur in the serpentine channel, while the crescent formation of MNPs in the pre-concentrated chamber, acting as a magnetic filter, improves the biomarker-MNP interaction. The labeling optimization by the proposed device influences the dynamic range by optimizing the MNP ratio to fit the linear range across the clinical cutoff value. The limits of detection (LODs) of 2.8 ng/mL and 54.6 ng/mL of c-Fn measurement were achieved for undiluted and four times dilutions of MNP, respectively. While for MMP9, the LODs were 11.5 ng/mL for undiluted functionalized MNP and 132 ng/mL for four times dilutions of functionalized MNP. The results highlight the potential use of this device for clinical sample preparation and specific magnetic target labeling. When combined with a detection system, it could also be used as an integrated component of a point-of-care platform.
Collapse
Affiliation(s)
- Briliant Adhi Prabowo
- INL - International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, s/n 4715-330, Braga, Portugal
| | - Elisabete Fernandes
- INL - International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, s/n 4715-330, Braga, Portugal.
| | - Paulo Freitas
- INL - International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, s/n 4715-330, Braga, Portugal.
| |
Collapse
|
29
|
Samper IC, Sánchez-Cano A, Khamcharoen W, Jang I, Siangproh W, Baldrich E, Geiss BJ, Dandy DS, Henry CS. Electrochemical Capillary-Flow Immunoassay for Detecting Anti-SARS-CoV-2 Nucleocapsid Protein Antibodies at the Point of Care. ACS Sens 2021; 6:4067-4075. [PMID: 34694794 PMCID: PMC8565458 DOI: 10.1021/acssensors.1c01527] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022]
Abstract
Rapid and inexpensive serological tests for SARS-CoV-2 antibodies are needed to conduct population-level seroprevalence surveillance studies and can improve diagnostic reliability when used in combination with viral tests. Here, we report a novel low-cost electrochemical capillary-flow device to quantify IgG antibodies targeting SARS-CoV-2 nucleocapsid proteins (anti-N antibody) down to 5 ng/mL in low-volume (10 μL) human whole blood samples in under 20 min. No sample preparation is needed as the device integrates a blood-filtration membrane for on-board plasma extraction. The device is made of stacked layers of a hydrophilic polyester and double-sided adhesive films, which create a passive microfluidic circuit that automates the steps of an enzyme-linked immunosorbent assay (ELISA). The sample and reagents are sequentially delivered to a nitrocellulose membrane that is modified with a recombinant SARS-CoV-2 nucleocapsid protein. When present in the sample, anti-N antibodies are captured on the nitrocellulose membrane and detected via chronoamperometry performed on a screen-printed carbon electrode. As a result of this quantitative electrochemical readout, no result interpretation is required, making the device ideal for point-of-care (POC) use by non-trained users. Moreover, we show that the device can be coupled to a near-field communication potentiostat operated from a smartphone, confirming its true POC potential. The novelty of this work resides in the integration of sensitive electrochemical detection with capillary-flow immunoassay, providing accuracy at the point of care. This novel electrochemical capillary-flow device has the potential to aid the diagnosis of infectious diseases at the point of care.
Collapse
Affiliation(s)
- Isabelle C. Samper
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | - Ana Sánchez-Cano
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
- Diagnostic Nanotools Group, Institut de Recerca, Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
- Universitat Autònoma de Barcelona, Barcelona 08193, Spain
| | - Wisarut Khamcharoen
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
- Department of Chemistry, Faculty of Science, Srinakharinwirot University, Bangkok 10110, Thailand
| | - Ilhoon Jang
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
- Institute of Nano Science and Technology, Hanyang University, Seoul 04763, South Korea
| | - Weena Siangproh
- Department of Chemistry, Faculty of Science, Srinakharinwirot University, Bangkok 10110, Thailand
| | - Eva Baldrich
- Diagnostic Nanotools Group, Institut de Recerca, Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
| | - Brian J. Geiss
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | - David S. Dandy
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO 80523, USA
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | - Charles S. Henry
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO 80523, USA
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
30
|
Sierra T, Jang I, Noviana E, Crevillen AG, Escarpa A, Henry CS. Pump-Free Microfluidic Device for the Electrochemical Detection of α 1-Acid Glycoprotein. ACS Sens 2021; 6:2998-3005. [PMID: 34350757 DOI: 10.1021/acssensors.1c00864] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
α1-Acid glycoprotein (AGP) is a glycoprotein present in serum, which is associated with the modulation of the immune system in response to stress or injuries, and a biomarker for inflammatory diseases and cancers. Here, we propose a pump-free microfluidic device for the electrochemical determination of AGP. The microfluidic device utilizes capillary-driven flow and a passive mixing system to label the AGP with the Os (VI) complex (an electrochemical tag) inside the main channel, before delivering the products to the electrode surface. Furthermore, thanks to the resulting geometry, all the analytical steps can be carried out inside the device: labeling, washing, and detection by adsorptive transfer stripping square wave voltammetry. The microfluidic device exhibited a linear range from 500 to 2000 mg L-1 (R2 = 0.990) and adequate limit of detection (LOD = 231 mg L-1). Commercial serum samples were analyzed to demonstrate the success of the method, yielding recoveries around 83%. Due to its simplicity, low sample consumption, low cost, short analysis time, disposability, and portability, the proposed method can serve as a point-of-care/need testing device for AGP.
Collapse
Affiliation(s)
- Tania Sierra
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80526, United States
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcala,
Alcala de Henares, Madrid E-28871, Spain
| | - Ilhoon Jang
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80526, United States
- Institute of Nano Science and Technology, Hanyang University, Seoul 04763, Korea
| | - Eka Noviana
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80526, United States
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Agustín G. Crevillen
- Department of Analytical Sciences, Faculty of Sciences, Universidad Nacional de Educación a Distancia (UNED), Madrid E-28040, Spain
| | - Alberto Escarpa
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcala,
Alcala de Henares, Madrid E-28871, Spain
- Chemical Research Institute “Andrés M. del Río” (IQAR), University of Alcala, Alcala de Henares, Madrid E-28805, Spain
| | - Charles S. Henry
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80526, United States
| |
Collapse
|
31
|
Fully integrated sampler and dilutor in an electrochemical paper-based device for glucose sensing. Mikrochim Acta 2021; 188:302. [PMID: 34417662 PMCID: PMC8379134 DOI: 10.1007/s00604-021-04946-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 07/15/2021] [Indexed: 11/17/2022]
Abstract
An electroanalytical platform capable to take and dilute the sample has been designed in order to fully integrate the different steps of the analytical process in only one device. The concept is based on the addition of glass-fiber pads for sampling and diluting to an electrochemical cell combining a paper-based working electrode with low-cost connector headers as counter and reference electrodes. In order to demonstrate the feasibility of this all-in-one platform for biosensing applications, an enzymatic sensor for glucose determination (requiring a potential as low as −0.1 V vs. gold-plated wire by using ferrocyanide as mediator) was developed. Real food samples, such as cola beverages and orange juice, have been analyzed with the bioelectroanalytical lab-on-paper platform. As a proof-of-concept, and trying to go further in the integration of steps, sucrose was successfully detected by depositing invertase in the sampling strip. This enzyme hydrolyzes sucrose into fructose and glucose, which was determined using the enzymatic biosensor. This approach opens the pathway for the development of devices applying the lab-on-paper concept, saving costs and time, and making possible to perform decentralized analysis with high accuracy.
Collapse
|
32
|
Noviana E, Ozer T, Carrell CS, Link JS, McMahon C, Jang I, Henry CS. Microfluidic Paper-Based Analytical Devices: From Design to Applications. Chem Rev 2021; 121:11835-11885. [DOI: 10.1021/acs.chemrev.0c01335] [Citation(s) in RCA: 262] [Impact Index Per Article: 65.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Eka Noviana
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia 55281
| | - Tugba Ozer
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul, Turkey 34220
| | - Cody S. Carrell
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Jeremy S. Link
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Catherine McMahon
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Ilhoon Jang
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
- Institute of Nano Science and Technology, Hanyang University, Seoul, South Korea 04763
| | - Charles S. Henry
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
33
|
Jang I, Kang H, Song S, Dandy DS, Geiss BJ, Henry CS. Flow control in a laminate capillary-driven microfluidic device. Analyst 2021; 146:1932-1939. [PMID: 33492316 PMCID: PMC7990706 DOI: 10.1039/d0an02279a] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Capillary-driven microfluidic devices are of significant interest for on-site analysis because they do not require external pumps and can be made from inexpensive materials. Among capillary-driven devices, those made from paper and polyester film are among the most common and have been used in a wide array of applications. However, since capillary forces are the only driving force, flow is difficult to control, and passive flow control methods such as changing the geometry must be used to accomplish various analytical applications. This study presents several new flow control methods that can be utilized in a laminate capillary-driven microfluidic device to increase available functionality. First, we introduce push and burst valve systems that can stop and start flow. These valves can stop flow for >30 min and be opened by either pressing the channel or inflowing other fluids to the valve region. Next, we propose flow control methods for Y-shaped channels that enable more functions. In one example, we demonstrate the ability to accurately control concentration to create laminar, gradient, and fully mixed flows. In a second example, flow velocity in the main channel is controlled by adjusting the length of the inlet channel. In addition, the flow velocity is constant as the inlet length increases. Finally, the flow velocity in the Y-shaped device as a function of channel height and fluid properties such as viscosity and surface tension was examined. As in previous studies on capillary-driven channels, the flow rate was affected by each parameter. The fluidic control tools presented here will enable new designs and functions for low cost point of need assays across a variety of fields.
Collapse
Affiliation(s)
- Ilhoon Jang
- Institute of Nano Science and Technology, Hanyang University, Seoul, Korea, 04763
- Department of Chemistry, Colorado State University, CO, USA, 80523
| | - Hyunwoong Kang
- Department of Mechanical Engineering, Hanyang University, Seoul, Korea, 04763
| | - Simon Song
- Institute of Nano Science and Technology, Hanyang University, Seoul, Korea, 04763
- Department of Mechanical Engineering, Hanyang University, Seoul, Korea, 04763
| | - David S. Dandy
- Department of Chemical and Biological Engineering, Colorado State University, CO, USA, 80523
| | - Brian J. Geiss
- Department of Microbiology, Immunology and Pathology, Colorado State University, CO, USA, 80523
| | - Charles S. Henry
- Department of Chemistry, Colorado State University, CO, USA, 80523
| |
Collapse
|
34
|
Tsagkaris AS, Pulkrabova J, Hajslova J. Optical Screening Methods for Pesticide Residue Detection in Food Matrices: Advances and Emerging Analytical Trends. Foods 2021; 10:E88. [PMID: 33466242 PMCID: PMC7824741 DOI: 10.3390/foods10010088] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/23/2020] [Accepted: 12/25/2020] [Indexed: 12/12/2022] Open
Abstract
Pesticides have been extensively used in agriculture to protect crops and enhance their yields, indicating the need to monitor for their toxic residues in foodstuff. To achieve that, chromatographic methods coupled to mass spectrometry is the common analytical approach, combining low limits of detection, wide linear ranges, and high accuracy. However, these methods are also quite expensive, time-consuming, and require highly skilled personnel, indicating the need to seek for alternatives providing simple, low-cost, rapid, and on-site results. In this study, we critically review the available screening methods for pesticide residues on the basis of optical detection during the period 2016-2020. Optical biosensors are commonly miniaturized analytical platforms introducing the point-of-care (POC) era in the field. Various optical detection principles have been utilized, namely, colorimetry, fluorescence (FL), surface plasmon resonance (SPR), and surface enhanced Raman spectroscopy (SERS). Nanomaterials can significantly enhance optical detection performance and handheld platforms, for example, handheld SERS devices can revolutionize testing. The hyphenation of optical assays to smartphones is also underlined as it enables unprecedented features such as one-click results using smartphone apps or online result communication. All in all, despite being in an early stage facing several challenges, i.e., long sample preparation protocols or interphone variation results, such POC diagnostics pave a new road into the food safety field in which analysis cost will be reduced and a more intensive testing will be achieved.
Collapse
Affiliation(s)
- Aristeidis S. Tsagkaris
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technická 5, Prague 6—Dejvice, 166 28 Prague, Czech Republic; (J.P.); (J.H.)
| | | | | |
Collapse
|
35
|
Dabbagh SR, Becher E, Ghaderinezhad F, Havlucu H, Ozcan O, Ozkan M, Yetisen AK, Tasoglu S. Increasing the packing density of assays in paper-based microfluidic devices. BIOMICROFLUIDICS 2021; 15:011502. [PMID: 33569089 PMCID: PMC7864678 DOI: 10.1063/5.0042816] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 05/04/2023]
Abstract
Paper-based devices have a wide range of applications in point-of-care diagnostics, environmental analysis, and food monitoring. Paper-based devices can be deployed to resource-limited countries and remote settings in developed countries. Paper-based point-of-care devices can provide access to diagnostic assays without significant user training to perform the tests accurately and timely. The market penetration of paper-based assays requires decreased device fabrication costs, including larger packing density of assays (i.e., closely packed features) and minimization of assay reagents. In this review, we discuss fabrication methods that allow for increasing packing density and generating closely packed features in paper-based devices. To ensure that the paper-based device is low-cost, advanced fabrication methods have been developed for the mass production of closely packed assays. These emerging methods will enable minimizing the volume of required samples (e.g., liquid biopsies) and reagents in paper-based microfluidic devices.
Collapse
Affiliation(s)
| | - Elaina Becher
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Fariba Ghaderinezhad
- Department of Mechanical Engineering, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Hayati Havlucu
- Koç University Arçelik Research Center for Creative Industries (KUAR), Koç University, Sariyer, Istanbul 34450, Turkey
| | - Oguzhan Ozcan
- Koç University Arçelik Research Center for Creative Industries (KUAR), Koç University, Sariyer, Istanbul 34450, Turkey
| | - Mehmed Ozkan
- Boğaziçi Institute of Biomedical Engineering, Boğaziçi University, Çengelköy, Istanbul 34684, Turkey
| | - Ali Kemal Yetisen
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | | |
Collapse
|
36
|
Etxebarria-Elezgarai J, Alvarez-Braña Y, Garoz-Sanchez R, Benito-Lopez F, Basabe-Desmonts L. Large-Volume Self-Powered Disposable Microfluidics by the Integration of Modular Polymer Micropumps with Plastic Microfluidic Cartridges. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c03398] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Jaione Etxebarria-Elezgarai
- Microfluidics Cluster UPV/EHU, BIOMICs Microfluidics Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Avenida Miguel de Unamuno, 3, Vitoria-Gasteiz 01006, Spain
| | - Yara Alvarez-Braña
- Microfluidics Cluster UPV/EHU, BIOMICs Microfluidics Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Avenida Miguel de Unamuno, 3, Vitoria-Gasteiz 01006, Spain
- Microfluidics Cluster UPV/EHU, Analytical Microsystems & Materials for Lab-on-a-Chip (AMMa-LOAC) Group Analytical Chemistry Department, University of the Basque Country UPV/EHU, Barrio Sarriena s/n, Leioa 48940, Spain
| | - Rosa Garoz-Sanchez
- Microfluidics Cluster UPV/EHU, BIOMICs Microfluidics Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Avenida Miguel de Unamuno, 3, Vitoria-Gasteiz 01006, Spain
- Microfluidics Cluster UPV/EHU, Analytical Microsystems & Materials for Lab-on-a-Chip (AMMa-LOAC) Group Analytical Chemistry Department, University of the Basque Country UPV/EHU, Barrio Sarriena s/n, Leioa 48940, Spain
| | - Fernando Benito-Lopez
- Microfluidics Cluster UPV/EHU, Analytical Microsystems & Materials for Lab-on-a-Chip (AMMa-LOAC) Group Analytical Chemistry Department, University of the Basque Country UPV/EHU, Barrio Sarriena s/n, Leioa 48940, Spain
- Microfluidics Cluster UPV/EHU, Bioaraba Health Research Institute, Vitoria-Gasteiz 01006, Spain
- BCMaterials, Basque Centre for Materials, Micro and Nanodevices, UPV/EHU Science Park, Leioa 48940, Spain
| | - Lourdes Basabe-Desmonts
- Microfluidics Cluster UPV/EHU, BIOMICs Microfluidics Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Avenida Miguel de Unamuno, 3, Vitoria-Gasteiz 01006, Spain
- Microfluidics Cluster UPV/EHU, Bioaraba Health Research Institute, Vitoria-Gasteiz 01006, Spain
- BCMaterials, Basque Centre for Materials, Micro and Nanodevices, UPV/EHU Science Park, Leioa 48940, Spain
- Basque Foundation of Science, IKERBASQUE, María Díaz Haroko Kalea, 3, Bilbao 48013, Spain
| |
Collapse
|