1
|
Fuchs S, Fiedler MK, Heiduk N, Wanisch A, Mibus C, Singh D, Debowski AW, Marshall BJ, Vieth M, Josenhans C, Suerbaum S, Sieber SA, Gerhard M, Mejías-Luque R. Helicobacter pylori γ-glutamyltransferase is linked to proteomic adaptions important for colonization. Gut Microbes 2025; 17:2488048. [PMID: 40205659 PMCID: PMC11988274 DOI: 10.1080/19490976.2025.2488048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 03/18/2025] [Accepted: 03/28/2025] [Indexed: 04/11/2025] Open
Abstract
Helicobacter pylori γ-glutamyltransferase (gGT) is a virulence factor that promotes bacterial colonization and immune tolerance. Although some studies addressed potential functional mechanisms, the supportive role of gGT for in vivo colonization remains unclear. Additionally, it is unknown how different gGT expression levels may lead to compensatory mechanisms ensuring infection and persistence. Hence, it is crucial to unravel the in vivo function of gGT. We assessed acid survival under conditions mimicking the human gastric fluid and elevated the pH in the murine stomach prior to H. pylori infection to link gGT-mediated acid resistance to colonization. By comparing proteomes of gGT-proficient and -deficient isolates before and after infecting mice, we investigated proteomic adaptations of gGT-deficient bacteria during infection. Our data indicate that gGT is crucial to sustain urease activity in acidic environments, thereby supporting survival and successful colonization. Absence of gGT triggers expression of proteins involved in the nitrogen and iron metabolism and boosts the expression of adhesins and flagellar proteins during infection, resulting in increased motility and adhesion capacity. In summary, gGT-dependent mechanisms confer a growth advantage to the bacterium in the gastric environment, which renders gGT a valuable target for the development of new treatments against H. pylori infection.
Collapse
Affiliation(s)
- Sonja Fuchs
- Institute for Medical Microbiology, Immunology and Hygiene, Department of Preclinical Medicine, TUM School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Michaela K. Fiedler
- Center for Functional Protein Assemblies (CPA), Chair of Organic Chemistry II, Department Biosciences, TUM School of Natural Sciences, Technical University of Munich (TUM), Garching, Germany
| | - Nicole Heiduk
- Institute for Medical Microbiology, Immunology and Hygiene, Department of Preclinical Medicine, TUM School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Andreas Wanisch
- Institute for Medical Microbiology, Immunology and Hygiene, Department of Preclinical Medicine, TUM School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Cora Mibus
- Institute for Medical Microbiology, Immunology and Hygiene, Department of Preclinical Medicine, TUM School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Dharmesh Singh
- Institute for Medical Microbiology, Immunology and Hygiene, Department of Preclinical Medicine, TUM School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Aleksandra W. Debowski
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, The University of Western Australia, Nedlands, Australia
- School of Molecular Sciences, The University of Western Australia, Crawley, Australia
| | - Barry J. Marshall
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, The University of Western Australia, Nedlands, Australia
| | - Michael Vieth
- Institute of Pathology, Friedrich-Alexander-University Erlangen-Nuremberg, Klinikum Bayreuth, Bayreuth, Germany
| | - Christine Josenhans
- Max von Pettenkofer Institute, Faculty of Medicine, Medical Microbiology and Hospital Epidemiology, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
- DZIF - German Center for Infection Research, Partner Site Munich, Munich, Germany
| | - Sebastian Suerbaum
- Max von Pettenkofer Institute, Faculty of Medicine, Medical Microbiology and Hospital Epidemiology, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
- DZIF - German Center for Infection Research, Partner Site Munich, Munich, Germany
| | - Stephan A. Sieber
- Center for Functional Protein Assemblies (CPA), Chair of Organic Chemistry II, Department Biosciences, TUM School of Natural Sciences, Technical University of Munich (TUM), Garching, Germany
| | - Markus Gerhard
- Institute for Medical Microbiology, Immunology and Hygiene, Department of Preclinical Medicine, TUM School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Raquel Mejías-Luque
- Institute for Medical Microbiology, Immunology and Hygiene, Department of Preclinical Medicine, TUM School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| |
Collapse
|
2
|
Hill M, Meloni GN, Frenguelli BG, Unwin PR. Transient Single Cell Hypoxia Induced by Localized Galvanostatic Oxygen Challenge. ACS MEASUREMENT SCIENCE AU 2025; 5:234-241. [PMID: 40255598 PMCID: PMC12006948 DOI: 10.1021/acsmeasuresciau.4c00100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 02/25/2025] [Accepted: 02/25/2025] [Indexed: 04/22/2025]
Abstract
Studying cells exposed to low and controllable oxygen levels is key to investigating various fundamental aspects of pathological states, such as stroke and cancer. At present, available methodologies applied in vitro focus on large groups of cells exposed to low oxygen conditions through slow-time approaches, such as environmental incubators or microfluidic devices. Here, we demonstrate a novel approach for titrating the local oxygen concentration around individual adhered PC12 cells, enabling single cells within a population to be exposed to hypoxic-like conditions. A 25 μm diameter platinum disk microelectrode performing the oxygen reduction reaction (ORR) at constant current (galvanostatic control) is used as a microscale oxygen scavenger that can be positioned precisely over individual cells. By coupling the galvanostatic oxygen challenge with confocal laser scanning microscopy (CLSM) and a commercially available hypoxia dye (Image-iT Green hypoxia reagent), we monitor the response of single cells when exposed to depleted oxygen concentrations over time. Numerical simulations are used to characterize the oxygen and pH gradient imposed by the microelectrode at different cathodic currents, revealing that within seconds, the oxygen depletion zone reaches a steady-state condition, extending a few microelectrode radii into solution, while the corresponding pH gradient is strongly compressed by the buffer solution. Cells under the microelectrode show a marked increase in average fluorescence rate relative to control, reporting their hypoxic conditions and demonstrating the effectiveness of the proposed method. Heterogenous cell response in a challenged group is also observed, highlighting the ability of this approach to investigate the natural heterogeneity in cell populations. This work provides a platform and roadmap for future studies of cellular systems where the ability to control and vary oxygen concentration on a rapid time scale would be beneficial.
Collapse
Affiliation(s)
- Marlene
H. Hill
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
- Molecular
Analytical Science Centre for Doctoral Training (MAS CDT), University of Warwick, Coventry CV4 7AL, U.K.
| | - Gabriel N. Meloni
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
- Institute
of Chemistry, Department of Fundamental Chemistry, University of São Paulo, São Paulo, São Paulo 05508-000, Brazil
| | | | - Patrick R. Unwin
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| |
Collapse
|
3
|
Mendes B, Brissos V, Martins LO, Conzuelo F. Enzyme-Modified Microelectrode for Simultaneous Local Measurements of O 2 and pH. Anal Chem 2024; 96:16244-16251. [PMID: 39353585 PMCID: PMC11485092 DOI: 10.1021/acs.analchem.4c03150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/20/2024] [Accepted: 09/09/2024] [Indexed: 10/04/2024]
Abstract
The use of miniaturized probes opens a new dimension in the analysis of (bio)chemical processes, enabling the possibility to perform measurements with local resolution. In addition, multiparametric measurements are highly valuable for a holistic understanding of the investigated process. Therefore, different strategies have been suggested for simultaneous local measurements of various parameters. Electroanalytical methods are a powerful strategy in this direction. However, they have been mainly restricted to coupling concurrent independent measurements with different miniaturized probes. Here, we present an enzymatic microbiosensor for the simultaneous detection of O2 and pH. The sensing strategy is based on the pH-dependent bioelectrocatalytic process associated with O2 reduction at a gold microelectrode modified with a multicopper oxidase. After initial investigations of the bioelectrocatalytic reaction over gold macroelectrodes, the fabrication and characterization of micrometer-sized probes are presented. The microbioelectrode exhibits a linear current increase with O2 concentration extending to 17.2 mg L-1, with a sensitivity of (5.56 ± 0.13) nA L mg-1 and a limit of detection of (0.5 ± 0.3) mg L-1. Moreover, a linear response allowing pH detection is obtained between pH 5.2 and 7.5 with a slope of -(47 ± 8) mV per pH unit. In addition, two proof-of-concept analytical examples are shown, demonstrating the capability of the developed sensing system for simultaneous local measurements of O2 and pH. Compared with other miniaturized probes reported before for simultaneous detection, our strategy stands out as the two investigated parameters are acquired from the very same measurement. This strategy greatly simplifies the analytical setup and for the first time provides truly simultaneous local detection in the micrometer scale.
Collapse
Affiliation(s)
- Bárbara Mendes
- Instituto de Tecnologia Química
e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras 2780-157, Portugal
| | - Vânia Brissos
- Instituto de Tecnologia Química
e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras 2780-157, Portugal
| | - Lígia O. Martins
- Instituto de Tecnologia Química
e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras 2780-157, Portugal
| | - Felipe Conzuelo
- Instituto de Tecnologia Química
e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras 2780-157, Portugal
| |
Collapse
|
4
|
Asci C, Sharma A, Del-Rio-Ruiz R, Sonkusale S. Ingestible pH sensing device for gastrointestinal health monitoring based on thread-based electrochemical sensors. Mikrochim Acta 2023; 190:385. [PMID: 37698743 DOI: 10.1007/s00604-023-05946-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/11/2023] [Indexed: 09/13/2023]
Abstract
There exists a strong correlation between the pH levels of the gastrointestinal (GI) tract and GI diseases such as inflammatory bowel disease (IBS), ulcerative colitis, and pancreatis. Existing methods for diagnosing many GI diseases predominantly rely on invasive, expensive, and time-consuming techniques such as colonoscopy and endoscopy. In this study, an autonomous ingestible smart biosensing system in a pill format with integrated pH sensors is reported. The smart sensing pills will measure the pH profile as they transit through the GI tract. The data is then downloaded from the pills after they are collected from the feces. The sensor is based on electrodeposited PANI on carbon-coated conductive threads providing high pH sensitivity. Engineering innovations allowed integration of thread-based sensors on 3D-printed pill surfaces with front-end readout electronics, memory, and microcontroller assembled on mm-size circular printed circuit boards. The entire smart sensing pill possesses an overall length of 22.1 mm and an outer diameter of 9 mm. The modular biosensing system allows integration of thread-based biosensors to monitor other biomarkers in GI tract that mitigates the complex sensor fabrication process as well as overall pill assembly.
Collapse
Affiliation(s)
- Cihan Asci
- Department of Electrical and Computer Engineering, Tufts University, 161 College Ave, Medford, 02155, MA, USA
| | - Atul Sharma
- Department of Electrical and Computer Engineering, Tufts University, 161 College Ave, Medford, 02155, MA, USA
| | - Ruben Del-Rio-Ruiz
- Department of Electrical and Computer Engineering, Tufts University, 161 College Ave, Medford, 02155, MA, USA
| | - Sameer Sonkusale
- Department of Electrical and Computer Engineering, Tufts University, 161 College Ave, Medford, 02155, MA, USA.
| |
Collapse
|
5
|
Dai S, Tao M, Zhong Y, Li Z, Liang J, Chen D, Liu K, Wei B, Situ B, Gao M, Tang BZ. In Situ Generation of Red-to-NIR Emissive Radical Cations in the Stomach for Gastrointestinal Imaging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209940. [PMID: 36670538 DOI: 10.1002/adma.202209940] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/16/2023] [Indexed: 06/17/2023]
Abstract
Red-to-near-infrared (NIR) fluorescent probes, with advantages such as high spatiotemporal resolution and in situ sensing abilities, are highly attractive for diagnosis of gastrointestinal diseases and targeted drug development. However, conventional red-to-NIR fluorophores with electron closed-shell structures require tedious synthetic procedures for preparation, and it is difficult to further decorate them with sensing groups. In this study, a series of easily prepared pyrroles with simple structures that can quickly be transformed into red-to-NIR emissive radical cations in acidic buffer solution and in vivo stomachs is developed. The in-situ-generated red-to-NIR emissive pyrrole radical cations in the stomach have excellent biocompatibility and stability and can be used not only for intravital gastrointestinal imaging with high spatiotemporal resolution, but also for dynamic monitoring of the gastric emptying process and assessment of anti-gastric-acid therapy. The acidity-induced generation of pyrrole radical cations is believed to provide a facile strategy for developing red-to-NIR fluorophores and studying gastrointestinal diseases.
Collapse
Affiliation(s)
- Shuhui Dai
- National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Innovation Center for Tissue Restoration and Reconstruction, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Maliang Tao
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yuan Zhong
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zixiong Li
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jianshu Liang
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Dongcheng Chen
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Kai Liu
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Binbin Wei
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Bo Situ
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Meng Gao
- National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Innovation Center for Tissue Restoration and Reconstruction, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| |
Collapse
|
6
|
Asci C, Del-Rio-Ruiz R, Sharma A, Sonkusale S. Ingestible pH Sensing Capsule with Thread-Based Electrochemical Sensors. PROCEEDINGS OF IEEE SENSORS. IEEE INTERNATIONAL CONFERENCE ON SENSORS 2022; 2022:10.1109/sensors52175.2022.9967347. [PMID: 37415919 PMCID: PMC10324471 DOI: 10.1109/sensors52175.2022.9967347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Existing techniques for diagnosing gastrointestinal disorders in stomach, small and large intestines, and colon depend on biopsy, endoscopy or colonoscopy methods which are invasive, expensive and time-consuming. In fact, such methods also lack the ability to access large parts of the small intestine. In this article, we demonstrate a smart ingestible biosensing capsule that is capable of monitoring pH activity in small and large intestines. pH is a known biomarker for several gastrointestinal disorders such as inflammatory bowel disease. Functionalized threads utilized as pH sensing mechanism are integrated with front-end readout electronics and 3D-printed case. This paper demonstrates a modular sensing system design that alleviates the sensor fabrication difficulties as well as the overall assembly of the ingestible capsule.
Collapse
Affiliation(s)
- Cihan Asci
- Nanolab, Advanced Technology Laboratory, Electrical and Computer Engineering, Tufts University, Medford, MA, USA 02155
| | - Ruben Del-Rio-Ruiz
- Nanolab, Advanced Technology Laboratory, Electrical and Computer Engineering, Tufts University, Medford, MA, USA 02155
| | - Atul Sharma
- Nanolab, Advanced Technology Laboratory, Electrical and Computer Engineering, Tufts University, Medford, MA, USA 02155
| | - Sameer Sonkusale
- Nanolab, Advanced Technology Laboratory, Electrical and Computer Engineering, Tufts University, Medford, MA, USA 02155
| |
Collapse
|
7
|
Darmawan BA, Lee SB, Nan M, Nguyen VD, Park JO, Choi E. Shape-Tunable UV-Printed Solid Drugs for Personalized Medicine. Polymers (Basel) 2022; 14:polym14132714. [PMID: 35808759 PMCID: PMC9269401 DOI: 10.3390/polym14132714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/17/2022] [Accepted: 06/29/2022] [Indexed: 02/04/2023] Open
Abstract
Several recent advances have emerged in biotherapy and the development of personal drugs. However, studies exploring effective manufacturing methods of personal drugs remain limited. In this study, solid drugs based on poly(ethylene glycol)diacrylate (PEGDA) hydrogel and doxorubicin were fabricated, and their final geometry was varied through UV-light patterning. The results suggested that the final drug concentration was affected by the geometrical volume as well as the UV-light exposure time. The analysis of PEGDA showed no effect on the surrounding cells, indicating its high biocompatibility. However, with the addition of doxorubicin, it showed an excellent therapeutic effect, indicating that drugs inside the PEGDA structure could be successfully released. This approach enables personal drugs to be fabricated in a simple, fast, and uniform manner, with perfectly tuned geometry.
Collapse
Affiliation(s)
- Bobby Aditya Darmawan
- School of Mechanical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea; (B.A.D.); (M.N.); (V.D.N.)
- Korea Institute of Medical Microrobotics, 43-26, Cheomdangwagi-ro 208-beon-gil, Buk-gu, Gwangju 61011, Korea
| | - Sang Bong Lee
- THERABEST, Co., Ltd., Seocho-daero 40-gil, Seoul 06657, Korea;
| | - Minghui Nan
- School of Mechanical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea; (B.A.D.); (M.N.); (V.D.N.)
- Korea Institute of Medical Microrobotics, 43-26, Cheomdangwagi-ro 208-beon-gil, Buk-gu, Gwangju 61011, Korea
| | - Van Du Nguyen
- School of Mechanical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea; (B.A.D.); (M.N.); (V.D.N.)
- Korea Institute of Medical Microrobotics, 43-26, Cheomdangwagi-ro 208-beon-gil, Buk-gu, Gwangju 61011, Korea
| | - Jong-Oh Park
- Korea Institute of Medical Microrobotics, 43-26, Cheomdangwagi-ro 208-beon-gil, Buk-gu, Gwangju 61011, Korea
- Correspondence: (J.-O.P.); (E.C.)
| | - Eunpyo Choi
- School of Mechanical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea; (B.A.D.); (M.N.); (V.D.N.)
- Korea Institute of Medical Microrobotics, 43-26, Cheomdangwagi-ro 208-beon-gil, Buk-gu, Gwangju 61011, Korea
- Correspondence: (J.-O.P.); (E.C.)
| |
Collapse
|
8
|
Nguyen AT, Goswami S, Ferracane J, Koley D. Real-time monitoring of the pH microenvironment at the interface of multispecies biofilm and dental composites. Anal Chim Acta 2022; 1201:339589. [PMID: 35300800 PMCID: PMC9167049 DOI: 10.1016/j.aca.2022.339589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 02/06/2022] [Accepted: 02/07/2022] [Indexed: 12/19/2022]
Abstract
Bacterial-mediated local pH change plays an important role in altering the integrity of resin dental composite materials in a dynamic environment such as the oral cavity. To address this, we developed a 300-μm-diameter, flexible, solid-state potentiometric pH microsensor capable of detecting and quantifying the local pH microenvironment at the interface of multispecies biofilm and dental resin in real time over 10 days. We used fluorinated poly(3,4-ethylenedioxythiophene) as the back contact in our newly developed pH sensor, along with a PVC-based ion-selective membrane and PTFE-AF coating. The high temporal resolution pH data demonstrated pH changes from 7 to 6 and 7 to 5.8 for the first 2 days and then fluctuated between 6.5 to 6 and 6 to 5.5 for the remaining 8 days with the resin composite or glass slide substrate respectively. We could observe the fluctuations in pH mediated by lactic acid production within the biofilm and the re-establishment of pH back to 7. However, acid production started to overwhelm buffering capacity with the continuous feed of sucrose cycles and reduced the local pH nearer to 5.5. No such changes or fluctuations were observed above the biofilm, as the pH remained at 7.0 ± 0.2 for 10 days. The localized real-time monitoring of the pH within the biofilm showed that the pH shift underneath the biofilm could lead to damage to the underlying material and their interface but cannot be sensed external to the biofilm.
Collapse
|
9
|
Koga N, Tanioka M, Kamino S, Sawada D. Morpholine-Substituted Rhodamine Analogue with Multi-Configurational Switches for Optical Sensing of pH Gradient under Extreme Acidic Environments. Chemistry 2021; 27:3761-3765. [PMID: 33205525 DOI: 10.1002/chem.202004254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 11/10/2020] [Indexed: 12/19/2022]
Abstract
Superior pH-responsive molecules are required for the development of functional materials applicable to advanced molecular technologies. Despite having been widely developed, many rhodamine-based pH-responsive molecules exhibit a single configurational switch for "turn-on". Herein, we report a new type of rhodamine-based pH-responsive molecule with multi-configurational switches displaying stable two-step structural and color conversion in response to pH. This rhodamine analogue could be successfully applied to optical sensing of pH gradient under extreme acidic environments both in solution and on hydrogel through high-contrast color change. We demonstrated that this multi-responsive character enabled optical memory of different pH information.
Collapse
Affiliation(s)
- Natsumi Koga
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushimanaka, Kita-ku, Okayama-shi, Okayama, 700-8530, Japan
| | - Masaru Tanioka
- School of Pharmaceutical Sciences, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, 464-8650, Japan
| | - Shinichiro Kamino
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushimanaka, Kita-ku, Okayama-shi, Okayama, 700-8530, Japan.,School of Pharmaceutical Sciences, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, 464-8650, Japan
| | - Daisuke Sawada
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushimanaka, Kita-ku, Okayama-shi, Okayama, 700-8530, Japan
| |
Collapse
|
10
|
Santos CS, Macedo F, Kowaltowski AJ, Bertotti M, Unwin PR, Marques da Cunha F, Meloni GN. Unveiling the contribution of the reproductive system of individual Caenorhabditis elegans on oxygen consumption by single-point scanning electrochemical microscopy measurements. Anal Chim Acta 2021; 1146:88-97. [PMID: 33461723 PMCID: PMC7836392 DOI: 10.1016/j.aca.2020.12.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/11/2020] [Accepted: 12/17/2020] [Indexed: 01/03/2023]
Abstract
Metabolic analysis in animals is usually either evaluated as whole-body measurements or in isolated tissue samples. To reveal tissue specificities in vivo, this study uses scanning electrochemical microscopy (SECM) to provide localized oxygen consumption rates (OCRs) in different regions of single adult Caenorhabditis elegans individuals. This is achieved by measuring the oxygen reduction current at the SECM tip electrode and using a finite element method model of the experiment that defines oxygen concentration and flux at the surface of the organism. SECM mapping measurements uncover a marked heterogeneity of OCR along the worm, with high respiration rates at the reproductive system region. To enable sensitive and quantitative measurements, a self-referencing approach is adopted, whereby the oxygen reduction current at the SECM tip is measured at a selected point on the worm and in bulk solution (calibration). Using genetic and pharmacological approaches, our SECM measurements indicate that viable eggs in the reproductive system are the main contributors in the total oxygen consumption of adult Caenorhabditis elegans. The finding that large regional differences in OCR exist within the animal provides a new understanding of oxygen consumption and metabolic measurements, paving the way for tissue-specific metabolic analyses and toxicity evaluation within single organisms.
Collapse
Affiliation(s)
- Carla S Santos
- Departamento de Química Fundamental, Av. Professor Lineu Prestes, 748, 05508-000, São Paulo, SP, Brazil.
| | - Felipe Macedo
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua três de Maio, 100, 04044-020, São Paulo, Brazil
| | - Alicia J Kowaltowski
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Professor Lineu Prestes, 748, 05508-000, São Paulo, SP, Brazil
| | - Mauro Bertotti
- Departamento de Química Fundamental, Av. Professor Lineu Prestes, 748, 05508-000, São Paulo, SP, Brazil
| | - Patrick R Unwin
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom; Bio-Electrical Engineering Innovation Hub, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Fernanda Marques da Cunha
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua três de Maio, 100, 04044-020, São Paulo, Brazil
| | - Gabriel N Meloni
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom; Bio-Electrical Engineering Innovation Hub, University of Warwick, Coventry, CV4 7AL, United Kingdom.
| |
Collapse
|
11
|
Rajan TS, Read TL, Abdalla A, Patel BA, Macpherson JV. Ex Vivo Electrochemical pH Mapping of the Gastrointestinal Tract in the Absence and Presence of Pharmacological Agents. ACS Sens 2020; 5:2858-2865. [PMID: 32633120 DOI: 10.1021/acssensors.0c01020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Ex vivo pH profiling of the upper gastrointestinal (GI) tract (of a mouse), using an electrochemical pH probe, in both the absence and presence of pharmacological agents aimed at altering acid/bicarbonate production, is reported. Three pH electrodes were first assessed for suitability using a GI tract biological mimic buffer solution containing 0.5% mucin. These include a traditional glass pH probe, an iridium oxide (IrOx)-coated electrode (both operated potentiometrically), and a quinone (Q) surface-integrated boron-doped diamond (BDD-Q) electrode (voltammetric). In mucin, the time scale for both IrOx and glass to provide a representative pH reading was in the ∼100's of s, most likely due to mucin adsorption, in contrast to 6 s with the BDD-Q electrode. Both the glass and IrOx pH electrodes were also compromised on robustness due to fragility and delamination (IrOx) issues; contact with the GI tissue was an experimental requirement. BDD-Q was deemed the most appropriate. Ten measurements were made along the GI tract, esophagus (1), stomach (5), and duodenum (4). Under buffer only conditions, the BDD-Q probe tracked the pH from neutral in the esophagus to acidic in the stomach and rising to more alkaline in the duodenum. In the presence of omeprazole, a proton pump inhibitor, the body regions of the stomach exhibited elevated pH levels. Under melatonin treatment (a bicarbonate agonist and acid inhibitor), both the body of the stomach and the duodenum showed elevated pH levels. This study demonstrates the versatility of the BDD-Q pH electrode for real-time ex vivo biological tissue measurements.
Collapse
Affiliation(s)
- Teena S. Rajan
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K
- Diamond Science and Technology CDT, University of Warwick, Coventry CV4 7AL, U.K
| | - Tania L. Read
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K
| | - Aya Abdalla
- School of Pharmacy and Biomolecular Science, University of Brighton, Brighton BN2 4AT, U.K
| | - Bhavik A. Patel
- School of Pharmacy and Biomolecular Science, University of Brighton, Brighton BN2 4AT, U.K
| | - Julie V. Macpherson
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K
| |
Collapse
|