1
|
Al-Rasheed M, Lam E, Jambar M, Ilogon JP, Gardner S, Eskandarian L, Toossi A. Industry-Scalable Reusable Textile Electrodes for Neurostimulation Applications. Adv Healthc Mater 2025; 14:e2401642. [PMID: 39440619 DOI: 10.1002/adhm.202401642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/16/2024] [Indexed: 10/25/2024]
Abstract
Neurostimulation delivers electrical pulses to modulate neuromuscular activity. Commonly used in medical interventions from pain relief to rehabilitation, neurostimulation typically uses manually placed hydrogel electrodes over the treated region. However, this method limits interventions requiring frequent, long-term daily use. To address this, novel fully textile electrodes are developed using industrial programmable knitting machines. These electrodes are designed to be washable, reusable, flexible, and breathable, with embedded interconnects. Textile electrodes are made of yarns with stainless steel and PEDOT-coated stainless steel conductive components. The electrodes' performance are compared with gel electrodes, characterizing impedance, sensorimotor stimulation thresholds, recruitment of induced movements, sensation levels, and perceived sensations. The effects of residential wash cycles and continuous use duration are also investigated. The proposed electrodes are found to perform similarly to hydrogel electrodes in all characterized metrics. No degradation in electrode performance is found after at least 30 wash cycles. Electrodes remained functionally intact after 1000 cycles of stretch loading at 50% of break strain. The textile electrodes consistently induced comfortable sensorimotor responses for at least six hours after donning. The proposed textile electrodes offer a novel and effective solution for neurostimulation interventions, paving the way for integration into smart garments and long-term wearable health technologies.
Collapse
Affiliation(s)
| | - Emily Lam
- MyantX Inc., Mississauga, Ontario, L5K 2L1, Canada
| | | | | | | | - Ladan Eskandarian
- MyantX Inc., Mississauga, Ontario, L5K 2L1, Canada
- Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, Ontario, M5S 1A1, Canada
| | - Amirali Toossi
- MyantX Inc., Mississauga, Ontario, L5K 2L1, Canada
- Division of Physical Medicine and Rehabilitation, Department of Medicine, University of Alberta, Edmonton, Alberta, T5G 0B7, Canada
- Institute for Smart Augmentative and Restorative Technologies and Health Innovations (iSMART), Edmonton, Alberta, T6G 1G7, Canada
| |
Collapse
|
2
|
Li W, Li Y, Song Z, Wang YX, Hu W. PEDOT-based stretchable optoelectronic materials and devices for bioelectronic interfaces. Chem Soc Rev 2024; 53:10575-10603. [PMID: 39254255 DOI: 10.1039/d4cs00541d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
The rapid development of wearable and implantable electronics has enabled the real-time transmission of electrophysiological signals in situ, thus allowing the precise monitoring and regulation of biological functions. Devices based on organic materials tend to have low moduli and intrinsic stretchability, making them ideal choices for the construction of seamless bioelectronic interfaces. In this case, as an organic ionic-electronic conductor, poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) has low impedance to offer a high signal-to-noise ratio for monitoring bioelectrical signals, which has become one of the most promising conductive polymers. However, the initial conductivity and stretchability of pristine PEDOT:PSS are insufficient to meet the application requirements, and there is a trade-off between their improvement. In addition, PEDOT:PSS has poor stability in aqueous environments due to the hygroscopicity of the PSS chains, which severely limits its long-term applications in water-rich bioelectronic interfaces. Considering the growing demands of multi-function integration, the high-resolution fabrication of electronic devices is urgent. It is a great challenge to maintain both electrical and mechanical performance after miniaturization, particularly at feature sizes below 100 μm. In this review, we focus on the combined improvement in the conductivity and stretchability of PEDOT:PSS, as well as the corresponding mechanisms in detail. Also, we summarize the effective strategies to improve the stability of PEDOT:PSS in aqueous environments, which plays a vital role in long-term applications. Finally, we introduce the reliable micropatterning technologies and PEDOT:PSS-based stretchable optoelectronic devices applied at bio-interfaces.
Collapse
Affiliation(s)
- Weizhen Li
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
| | - Yiming Li
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
| | - Ziyu Song
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
| | - Yi-Xuan Wang
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Wenping Hu
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| |
Collapse
|
3
|
Wang M, Hong Y, Fu X, Sun X. Advances and applications of biomimetic biomaterials for endogenous skin regeneration. Bioact Mater 2024; 39:492-520. [PMID: 38883311 PMCID: PMC11179177 DOI: 10.1016/j.bioactmat.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 06/18/2024] Open
Abstract
Endogenous regeneration is becoming an increasingly important strategy for wound healing as it facilitates skin's own regenerative potential for self-healing, thereby avoiding the risks of immune rejection and exogenous infection. However, currently applied biomaterials for inducing endogenous skin regeneration are simplistic in their structure and function, lacking the ability to accurately mimic the intricate tissue structure and regulate the disordered microenvironment. Novel biomimetic biomaterials with precise structure, chemical composition, and biophysical properties offer a promising avenue for achieving perfect endogenous skin regeneration. Here, we outline the recent advances in biomimetic materials induced endogenous skin regeneration from the aspects of structural and functional mimicry, physiological process regulation, and biophysical property design. Furthermore, novel techniques including in situ reprograming, flexible electronic skin, artificial intelligence, single-cell sequencing, and spatial transcriptomics, which have potential to contribute to the development of biomimetic biomaterials are highlighted. Finally, the prospects and challenges of further research and application of biomimetic biomaterials are discussed. This review provides reference to address the clinical problems of rapid and high-quality skin regeneration.
Collapse
Affiliation(s)
- Mengyang Wang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, 100853, PR China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100089, PR China
| | - Yiyue Hong
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, 100853, PR China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100089, PR China
| | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, 100853, PR China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100089, PR China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, PR China
| | - Xiaoyan Sun
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, 100853, PR China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100089, PR China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, PR China
| |
Collapse
|
4
|
Park B, Jeong C, Ok J, Kim TI. Materials and Structural Designs toward Motion Artifact-Free Bioelectronics. Chem Rev 2024; 124:6148-6197. [PMID: 38690686 DOI: 10.1021/acs.chemrev.3c00374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Bioelectronics encompassing electronic components and circuits for accessing human information play a vital role in real-time and continuous monitoring of biophysiological signals of electrophysiology, mechanical physiology, and electrochemical physiology. However, mechanical noise, particularly motion artifacts, poses a significant challenge in accurately detecting and analyzing target signals. While software-based "postprocessing" methods and signal filtering techniques have been widely employed, challenges such as signal distortion, major requirement of accurate models for classification, power consumption, and data delay inevitably persist. This review presents an overview of noise reduction strategies in bioelectronics, focusing on reducing motion artifacts and improving the signal-to-noise ratio through hardware-based approaches such as "preprocessing". One of the main stress-avoiding strategies is reducing elastic mechanical energies applied to bioelectronics to prevent stress-induced motion artifacts. Various approaches including strain-compliance, strain-resistance, and stress-damping techniques using unique materials and structures have been explored. Future research should optimize materials and structure designs, establish stable processes and measurement methods, and develop techniques for selectively separating and processing overlapping noises. Ultimately, these advancements will contribute to the development of more reliable and effective bioelectronics for healthcare monitoring and diagnostics.
Collapse
Affiliation(s)
- Byeonghak Park
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Chanho Jeong
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Jehyung Ok
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Tae-Il Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| |
Collapse
|
5
|
Yu H, Liu Y, Zhou G, Peng M. Multilayer Perceptron Algorithm-Assisted Flexible Piezoresistive PDMS/Chitosan/cMWCNT Sponge Pressure Sensor for Sedentary Healthcare Monitoring. ACS Sens 2023; 8:4391-4401. [PMID: 37939316 DOI: 10.1021/acssensors.3c01885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Recently, the health problems faced by sedentary workers have received increasing attention. In this study, a pressure sensor based on a poly(dimethylsiloxane) (PDMS)/carboxylated chitosan (CCS)/carboxylated multiwalled carbon nanotube (cMWCNT) sponge was prepared to realize a portable, sensitive, comfortable, and noninvasive healthcare monitoring system for sedentary workers. The proposed piezoresistive pressure sensor exhibited exceptional sensing performances with high sensitivity (147.74 kPa-1), an ultrawide detection range (22 Pa to 1.42 MPa), and reliable stability (over 3000 cycles). Furthermore, the obtained sensor displayed superior capability in detecting various human motion signals. Based on the 4 × 4 sensing array and multilayer perceptron (MLP) algorithm model, a smart cushion was developed to recognize five types of sitting postures and supply timely reminders to sedentary workers. The piezoresistive sponge pressure sensor proposed in this study reveals promising potential in the fields of wearable electronics, healthcare monitoring, and human-machine interface applications.
Collapse
Affiliation(s)
- He Yu
- School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Yubing Liu
- School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Guanya Zhou
- School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Mugen Peng
- School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China
| |
Collapse
|
6
|
Yang S, Cheng J, Shang J, Hang C, Qi J, Zhong L, Rao Q, He L, Liu C, Ding L, Zhang M, Chakrabarty S, Jiang X. Stretchable surface electromyography electrode array patch for tendon location and muscle injury prevention. Nat Commun 2023; 14:6494. [PMID: 37838683 PMCID: PMC10576757 DOI: 10.1038/s41467-023-42149-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 09/29/2023] [Indexed: 10/16/2023] Open
Abstract
Surface electromyography (sEMG) can provide multiplexed information about muscle performance. If current sEMG electrodes are stretchable, arrayed, and able to be used multiple times, they would offer adequate high-quality data for continuous monitoring. The lack of these properties delays the widespread use of sEMG in clinics and in everyday life. Here, we address these constraints by design of an adhesive dry electrode using tannic acid, polyvinyl alcohol, and PEDOT:PSS (TPP). The TPP electrode offers superior stretchability (~200%) and adhesiveness (0.58 N/cm) compared to current electrodes, ensuring stable and long-term contact with the skin for recording (>20 dB; >5 days). In addition, we developed a metal-polymer electrode array patch (MEAP) comprising liquid metal (LM) circuits and TPP electrodes. The MEAP demonstrated better conformability than commercial arrays, resulting in higher signal-to-noise ratio and more stable recordings during muscle movements. Manufactured using scalable screen-printing, these MEAPs feature a completely stretchable material and array architecture, enabling real-time monitoring of muscle stress, fatigue, and tendon displacement. Their potential to reduce muscle and tendon injuries and enhance performance in daily exercise and professional sports holds great promise.
Collapse
Grants
- We thank the National Key R&D Program of China (2021YFF1200800, 2021YFF1200100, 2022YFB3804700, and 2018YFA0902600), the National Natural Science Foundation of China (22234004), Shenzhen Science and Technology Program (JCYJ20200109141231365 and KQTD 20190929172743294), Shenzhen Key Laboratory of Smart Healthcare Engineering (ZDSYS20200811144003009), Guangdong Innovative and Entrepreneurial Research Team Program (2019ZT08Y191), Guangdong Provincial Key Laboratory of Advanced Biomaterials (2022B1212010003), Tencent Foundation through the XPLORER PRIZE, Guangdong Major Talent Introduction Project (2019CX01Y196). We also acknowledge the assistance of SUSTech Core Research Facilities.
Collapse
Affiliation(s)
- Shuaijian Yang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Jinhao Cheng
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Jin Shang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Chen Hang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Jie Qi
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Leni Zhong
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Qingyan Rao
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Lei He
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Chenqi Liu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Li Ding
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Mingming Zhang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Samit Chakrabarty
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| | - Xingyu Jiang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China.
| |
Collapse
|
7
|
Lee M, Kim J, Khine MT, Kim S, Gandla S. Facile Transfer of Spray-Coated Ultrathin AgNWs Composite onto the Skin for Electrophysiological Sensors. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2467. [PMID: 37686975 PMCID: PMC10489915 DOI: 10.3390/nano13172467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/26/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023]
Abstract
Disposable wearable sensors that ultrathin and conformable to the skin are of significant interest as affordable and easy-to-use devices for short-term recording. This study presents a facile and low-cost method for transferring spray-coated silver nanowire (AgNW) composite films onto human skin using glossy paper (GP) and liquid bandages (LB). Due to the moderately hydrophobic and rough surface of the GP, the ultrathin AgNWs composite film (~200 nm) was easily transferred onto human skin. The AgNW composite films conformally attached to the skin when applied with a LB, resulting in the stable and continuous recording of wearable electrophysiological signals, including electromyogram (EMG), electrocardiogram (ECG), and electrooculogram (EOG). The volatile LB, deposited on the skin via spray coating, promoted rapid adhesion of the transferred AgNW composite films, ensuring stability to the AgNWs in external environments. The AgNWs composite supported with the LB film exhibited high water vapor breathability (~28 gm-2h-1), which can avoid the accumulation of sweat at the skin-sensor interface. This approach facilitates the creation of rapid, low-cost, and disposable tattoo-like sensors that are practical for extended use.
Collapse
Affiliation(s)
| | | | | | - Sunkook Kim
- Multifunctional Nano Bio Electronics Lab, Department of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea; (M.L.); (J.K.); (M.T.K.)
| | - Srinivas Gandla
- Multifunctional Nano Bio Electronics Lab, Department of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea; (M.L.); (J.K.); (M.T.K.)
| |
Collapse
|
8
|
Yang J, Zhang Z, Zhou P, Zhang Y, Liu Y, Xu Y, Gu Y, Qin S, Haick H, Wang Y. Toward a new generation of permeable skin electronics. NANOSCALE 2023; 15:3051-3078. [PMID: 36723108 DOI: 10.1039/d2nr06236d] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Skin-mountable electronics are considered to be the future of the next generation of portable electronics, due to their softness and seamless integration with human skin. However, impermeable materials limit device comfort and reliability for long-term, continuous usage. The recent emergence of permeable skin-mountable electronics has attracted tremendous attention in the soft electronics field. Herein, we provide a comprehensive and systematic review of permeable skin-mountable electronics. Typical porous materials and structures are first highlighted, followed by discussion of important device properties. Then, we review the latest representative applications of breathable skin-mountable electronics, such as bioelectrical sensors, temperature sensors, humidity and hydration sensors, strain and pressure sensors, and energy harvesting and storage devices. Finally, a conclusion and future directions for permeable skin electronics are provided.
Collapse
Affiliation(s)
- Jiawei Yang
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong 515063, China.
- Department of Chemical Engineering, Technion-Israel Institute of Technology (IIT), Haifa 3200003, Israel
| | - Zongman Zhang
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong 515063, China.
| | - Pengcheng Zhou
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong 515063, China.
| | - Yujie Zhang
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong 515063, China.
- Department of Chemical Engineering, Technion-Israel Institute of Technology (IIT), Haifa 3200003, Israel
| | - Yi Liu
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong 515063, China.
- Department of Chemical Engineering, Technion-Israel Institute of Technology (IIT), Haifa 3200003, Israel
| | - Yumiao Xu
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong 515063, China.
| | - Yuheng Gu
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong 515063, China.
| | - Shenglin Qin
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong 515063, China.
| | - Hossam Haick
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel.
| | - Yan Wang
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong 515063, China.
- Department of Chemical Engineering, Technion-Israel Institute of Technology (IIT), Haifa 3200003, Israel
- Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion, Guangdong Technion-Israel Institute of Technology, Shantou, Guangdong 515063, China
| |
Collapse
|
9
|
Liu Q, Zhou J, Yang L, Xie J, Guo C, Li Z, Qi J, Shi S, Zhang Z, Yang H, Hu J, Wu J, Zhang Y. A reversible gel-free electrode for continuous noninvasive electrophysiological signal monitoring. JOURNAL OF MATERIALS CHEMISTRY C 2023; 11:8866-8875. [DOI: 10.1039/d3tc00948c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2024]
Abstract
PPEM gel-free electrode for continuous noninvasive electrophysiological signal monitoring.
Collapse
Affiliation(s)
- Qing Liu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jie Zhou
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- College of Optoelectronic Engineering, Chengdu University of Information Technology, Chengdu, 610225, China
| | - Liangtao Yang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jiajia Xie
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- College of Optoelectronic Engineering, Chengdu University of Information Technology, Chengdu, 610225, China
| | - Chenhui Guo
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Department of Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215127, China
| | - Zimo Li
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| | - Jun Qi
- Lu'an Branch, Anhui Institute of Innovation for Industrial Technology, Lu’an, 237100, China
| | - Shuo Shi
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong S.A.R, 999077, China
| | - Zhilin Zhang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Hui Yang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jinlian Hu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong S.A.R, 999077, China
| | - Jinglong Wu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yi Zhang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| |
Collapse
|
10
|
Fujisaki H, Matsumoto A, Miyahara Y, Goda T. Sialic acid biosensing by post-printing modification of PEDOT:PSS with pyridylboronic acid. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2022; 23:525-534. [PMID: 36147749 PMCID: PMC9487965 DOI: 10.1080/14686996.2022.2122867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/21/2022] [Accepted: 09/03/2022] [Indexed: 06/16/2023]
Abstract
A poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)-based conducting polymer, which has biorecognition capabilities, has promising biosensing applications. Previously, we developed a facile method for post-printing chemical modification of PEDOT:PSS thin films from commercial sources. Molecular recognition elements were directly introduced into the PSS side chain by a two-step chemical reaction: introduction of an ethylenediamine linker via an acid chloride reaction of the sulfonate moiety, and subsequent receptor attachment to the linker via amine coupling. In this study, the same method was used to introduce 6-carboxypyridine-3-boronic acid (carboxy-PyBA) into the linker for specifically detecting N-acetylneuraminic acid (sialic acid, SA), as a cancer biomarker. The surface-modified PEDOT:PSS films were characterized by X-ray photoelectron spectroscopy, attenuated total reflection Fourier-transform infrared spectroscopy, and static water contact angle and conductivity measurements. The specific interaction between PyBA and SA was detected by label-free reagent-free potentiometry. The SA-specific negative potential responses of modified PEDOT:PSS electrodes, which was ascribed to an SA carboxyl anion, were observed in a physiologically relevant SA range (1.6-2.9 mM) at pH 5, in a concentration-dependent manner even in the presence of 10% fetal bovine serum. The sensitivity was -2.9 mV/mM in 1-5 mM SA with a limit of detection of 0.7 mM. The sensing performances were almost equivalent to those of existing graphene-based electrical SA sensors. These results show that our chemical derivatization method for printing PEDOT:PSS thin films will have applications in SA clinical diagnostics.
Collapse
Affiliation(s)
- Hideki Fujisaki
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Akira Matsumoto
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
- Department of Research and Development, Kanagawa Institute of Industrial Science and Technology (KISTEC), Tokyo, Japan
| | - Yuji Miyahara
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tatsuro Goda
- Department of Biomedical Engineering, Faculty of Science and Engineering, Toyo University, Saitama, Japan
| |
Collapse
|
11
|
Lee DH, Park T, Yoo H. Biodegradable Polymer Composites for Electrophysiological Signal Sensing. Polymers (Basel) 2022; 14:polym14142875. [PMID: 35890650 PMCID: PMC9323782 DOI: 10.3390/polym14142875] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/09/2022] [Accepted: 07/13/2022] [Indexed: 12/23/2022] Open
Abstract
Electrophysiological signals are collected to characterize human health and applied in various fields, such as medicine, engineering, and pharmaceuticals. Studies of electrophysiological signals have focused on accurate signal acquisition, real-time monitoring, and signal interpretation. Furthermore, the development of electronic devices consisting of biodegradable and biocompatible materials has been attracting attention over the last decade. In this regard, this review presents a timely overview of electrophysiological signals collected with biodegradable polymer electrodes. Candidate polymers that can constitute biodegradable polymer electrodes are systemically classified by their essential properties for collecting electrophysiological signals. Moreover, electrophysiological signals, such as electrocardiograms, electromyograms, and electroencephalograms subdivided with human organs, are discussed. In addition, the evaluation of the biodegradability of various electrodes with an electrophysiology signal collection purpose is comprehensively revisited.
Collapse
Affiliation(s)
- Dong Hyun Lee
- Department of Electronic Engineering, Gachon University, 1342 Seongnam-daero, Seongnam 13120, Korea;
| | - Taehyun Park
- Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnam-daero, Seongnam 13120, Korea;
| | - Hocheon Yoo
- Department of Electronic Engineering, Gachon University, 1342 Seongnam-daero, Seongnam 13120, Korea;
- Correspondence:
| |
Collapse
|
12
|
Baek S, Lee JJ, Shin J, Kim JH, Hong S, Kim S. Resistive Water Level Sensors Based on AgNWs/PEDOT:PSS- g-PEGME Hybrid Film for Agricultural Monitoring Systems. ACS OMEGA 2022; 7:15459-15466. [PMID: 35571780 PMCID: PMC9096971 DOI: 10.1021/acsomega.2c00017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 02/24/2022] [Indexed: 06/15/2023]
Abstract
Recently, an agricultural monitoring system using the Internet of Things has been developed to realize smart farming. The high performance of various sensors in agricultural monitoring systems is essential for smart farming to automatically monitor and control agricultural environmental conditions such as temperature and water level. In this study, we propose resistive water level sensors based on an AgNWs/PEDOT:PSS-g-PEGME hybrid structure to improve the already high conductivity and water stability of PEDOT:PSS. After spin-coating the AgNWs/PEDOT:PSS-g-PEGME hybrid film, a laser treatment method successfully patterns the resistive water level sensor with areas of higher resistance. When water contacts the sensor, the variation in resistance caused by the water level changes the current flow of the sensor, allowing it to be used to detect the water level. Finally, we develop a water level sensor module as a component of the agricultural monitoring system by connecting the sensor to a microcontroller for water level monitoring in real time. The proposed water level sensors may be a new solution for detecting water levels in agricultural monitoring systems.
Collapse
Affiliation(s)
- Seungho Baek
- School
of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon 440-745, Republic of Korea
| | - Jung Joon Lee
- School
of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon 440-745, Republic of Korea
| | - Jonghwan Shin
- School
of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon 440-745, Republic of Korea
| | - Jung Ho Kim
- Institute
for Superconducting and Electronic Materials, Australian Institute
for Innovative Materials, University of
Wollongong, North Wollongong 2500 New South Wales, Australia
| | - Seongin Hong
- Department
of Physics, Gachon University, Seongnam 13120, Republic of Korea
| | - Sunkook Kim
- School
of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon 440-745, Republic of Korea
| |
Collapse
|
13
|
Zhang W, Xi Y, Wang E, Qu X, Yang Y, Fan Y, Shi B, Li Z. Self-Powered Force Sensors for Multidimensional Tactile Sensing. ACS APPLIED MATERIALS & INTERFACES 2022; 14:20122-20131. [PMID: 35452218 DOI: 10.1021/acsami.2c03812] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A tactile sensor is the centerpiece in human-machine interfaces, enabling robotics or prosthetics to manipulate objects dexterously. Specifically, it is crucial to endow the sensor with the ability to detect and distinguish normal and shear forces in real time, so that slip detection and more complex control could be achieved during the interaction with objects. Here, a self-powered multidirectional force sensor (SMFS) based on triboelectric nanogenerators with a three-dimensional structure is proposed for sensing and analysis of normal and shear forces in real time. Four polydimethylsiloxane (PDMS) cylinders act as the force sensing structure of the SMFS. A flexible tip array made of carbon black/MXene/PDMS composites is used to generate triboelectric signals when the SMFS is driven by an external force. The SMFS can sense multidimensional force due to the adaptability of the PDMS cylinders and detect tiny force due to the sensitivity of the flexible tips. A small shear force as low as 50 mN could be recognized using the SMFS. The direction of the externally applied force could be recognized by analyzing the location and output voltage amplitude of the SMFS. Moreover, the tactile sensing applications, including reagent weighing and force direction perception, are also achieved by using the SMFS, which demonstrates the potential in promoting developments of self-powered wearable sensors, human-machine interactions, electronic skin, and soft robotic applications.
Collapse
Affiliation(s)
- Weiyi Zhang
- Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School of Microelectronics, Tianjin University, Tianjin 300072, China
| | - Yuan Xi
- Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Engui Wang
- Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, China
| | - Xuecheng Qu
- Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Yang
- Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
- School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Bojing Shi
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Zhou Li
- Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
14
|
Brooks AK, Chakravarty S, Ali M, Yadavalli VK. Kirigami-Inspired Biodesign for Applications in Healthcare. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109550. [PMID: 35073433 DOI: 10.1002/adma.202109550] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/04/2022] [Indexed: 06/14/2023]
Abstract
Mechanically flexible and conformable materials and integrated devices have found diverse applications in personalized healthcare as diagnostics and therapeutics, tissue engineering and regenerative medicine constructs, surgical tools, secure systems, and assistive technologies. In order to impart optimal mechanical properties to the (bio)materials used in these applications, various strategies have been explored-from composites to structural engineering. In recent years, geometric cuts inspired by the art of paper-cutting, referred to as kirigami, have provided innovative opportunities for conferring precise mechanical properties via material removal. Kirigami-based approaches have been used for device design in areas ranging from soft bioelectronics to energy storage. In this review, the principles of kirigami-inspired engineering specifically for biomedical applications are discussed. Factors pertinent to their design, including cut geometry, materials, and fabrication, and the effect these parameters have on their properties and configurations are covered. Examples of kirigami designs in healthcare are presented, such as, various form factors of sensors (on skin, wearable), implantable devices, therapeutics, surgical procedures, and cellular scaffolds for regenerative medicine. Finally, the challenges and future scope for the successful translation of these biodesign concepts to broader deployment are discussed.
Collapse
Affiliation(s)
- Anne Katherine Brooks
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - Sudesna Chakravarty
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - Maryam Ali
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - Vamsi K Yadavalli
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA, 23284, USA
| |
Collapse
|
15
|
Xiao Y, Wang M, Li Y, Sun Z, Liu Z, He L, Liu R. High-Adhesive Flexible Electrodes and Their Manufacture: A Review. MICROMACHINES 2021; 12:1505. [PMID: 34945355 PMCID: PMC8704330 DOI: 10.3390/mi12121505] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 11/02/2021] [Accepted: 11/08/2021] [Indexed: 12/21/2022]
Abstract
All human activity is associated with the generation of electrical signals. These signals are collectively referred to as electrical physiology (EP) signals (e.g., electrocardiogram, electroencephalogram, electromyography, electrooculography, etc.), which can be recorded by electrodes. EP electrodes are not only widely used in the study of primary diseases and clinical practice, but also have potential applications in wearable electronics, human-computer interface, and intelligent robots. Various technologies are required to achieve such goals. Among these technologies, adhesion and stretchable electrode technology is a key component for rapid development of high-performance sensors. In last decade, remarkable efforts have been made in the development of flexible and high-adhesive EP recording systems and preparation technologies. Regarding these advancements, this review outlines the design strategies and related materials for flexible and adhesive EP electrodes, and briefly summarizes their related manufacturing techniques.
Collapse
Affiliation(s)
- Yingying Xiao
- Beijing Engineering Research Center of Printed Electronics, Beijing Institute of Graphic Communication, Beijing 102600, China; (Y.X.); (M.W.); (Y.L.); (Z.S.)
| | - Mengzhu Wang
- Beijing Engineering Research Center of Printed Electronics, Beijing Institute of Graphic Communication, Beijing 102600, China; (Y.X.); (M.W.); (Y.L.); (Z.S.)
| | - Ye Li
- Beijing Engineering Research Center of Printed Electronics, Beijing Institute of Graphic Communication, Beijing 102600, China; (Y.X.); (M.W.); (Y.L.); (Z.S.)
| | - Zhicheng Sun
- Beijing Engineering Research Center of Printed Electronics, Beijing Institute of Graphic Communication, Beijing 102600, China; (Y.X.); (M.W.); (Y.L.); (Z.S.)
| | - Zilong Liu
- Division of Optics, National Institute of Metrology, Beijing 100029, China;
| | - Liang He
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China;
| | - Ruping Liu
- Beijing Engineering Research Center of Printed Electronics, Beijing Institute of Graphic Communication, Beijing 102600, China; (Y.X.); (M.W.); (Y.L.); (Z.S.)
| |
Collapse
|
16
|
Gandla S, Song J, Shin J, Baek S, Lee M, Khan D, Lee KY, Kim JH, Kim S. Mechanically Stable Kirigami Deformable Resonant Circuits for Wireless Vibration and Pressure Sensor Applications. ACS APPLIED MATERIALS & INTERFACES 2021; 13:54162-54169. [PMID: 34748310 DOI: 10.1021/acsami.1c16240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Deformable 3D structures have emerged to revolutionize next-generation flexible electronics. In this study, a large out-of-plane deformable kirigami-based structure integrated with traditional functional materials has been successfully applied to wirelessly sense mechanical vibration and pressure. Unlike spiral inductor coils that lack mechanical stability, the inductor coils supported with polymer kirigami designs, comprising concentric circles with alternately connected hinges among the consecutive layers, offer exceptional mechanical stability. The wireless sensor shows a good linear response (Adj. R2 = 0.99) between the shift in resonant frequency as a function of extension. Moreover, the sensor device exhibits excellent cycling mechanical stability and minimal hysteresis, as confirmed by the experiments performed for over 5 d. An acceleration sensor (0-20 ms-2) with high linearity (Adj. R2 = 0.99) is introduced. Furthermore, a highly sensitive low-pressure sensor is demonstrated wirelessly in real time. Thus, the sensor can wirelessly monitor mechanical vibration and pressure. It can be applied for motion tracking, health monitoring, soft robotics, and deformation detection in battery-free deformable electronic devices.
Collapse
Affiliation(s)
- Srinivas Gandla
- Multifunctional Nano Bio Electronics Lab, Department of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jaewoo Song
- Multifunctional Nano Bio Electronics Lab, Department of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jonghwan Shin
- Multifunctional Nano Bio Electronics Lab, Department of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 16419, South Korea
| | - Seungho Baek
- Multifunctional Nano Bio Electronics Lab, Department of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 16419, South Korea
| | - Minwoo Lee
- Multifunctional Nano Bio Electronics Lab, Department of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 16419, South Korea
| | - Danial Khan
- Department of Electrical and Computer Engineering, Sungkyunkwan University College of Information and Communication Engineering, Suwon 16419, South Korea
| | - Kang-Yoon Lee
- Department of Electrical and Computer Engineering, Sungkyunkwan University College of Information and Communication Engineering, Suwon 16419, South Korea
| | - Jung Ho Kim
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Squires Way, North Wollongong 2500, New South Wales, Australia
| | - Sunkook Kim
- Multifunctional Nano Bio Electronics Lab, Department of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 16419, South Korea
| |
Collapse
|
17
|
Liang Y, Offenhäusser A, Ingebrandt S, Mayer D. PEDOT:PSS-Based Bioelectronic Devices for Recording and Modulation of Electrophysiological and Biochemical Cell Signals. Adv Healthc Mater 2021; 10:e2100061. [PMID: 33970552 PMCID: PMC11468774 DOI: 10.1002/adhm.202100061] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/31/2021] [Indexed: 12/16/2022]
Abstract
To understand the physiology and pathology of electrogenic cells and the corresponding tissue in their full complexity, the quantitative investigation of the transmission of ions as well as the release of chemical signals is important. Organic (semi-) conducting materials and in particular organic electrochemical transistor are gaining in importance for the investigation of electrophysiological and recently biochemical signals due to their synthetic nature and thus chemical diversity and modifiability, their biocompatible and compliant properties, as well as their mixed electronic and ionic conductivity featuring ion-to-electron conversion. Here, the aim is to summarize recent progress on the development of bioelectronic devices utilizing polymer polyethylenedioxythiophene: poly(styrene sulfonate) (PEDOT:PSS) to interface electronics and biological matter including microelectrode arrays, neural cuff electrodes, organic electrochemical transistors, PEDOT:PSS-based biosensors, and organic electronic ion pumps. Finally, progress in the material development is summarized for the improvement of polymer conductivity, stretchability, higher transistor transconductance, or to extend their field of application such as cation sensing or metabolite recognition. This survey of recent trends in PEDOT:PSS electrophysiological sensors highlights the potential of this multifunctional material to revolve current technology and to enable long-lasting, multichannel polymer probes for simultaneous recordings of electrophysiological and biochemical signals from electrogenic cells.
Collapse
Affiliation(s)
- Yuanying Liang
- Institute of Polymer Optoelectronic Materials and DevicesState Key Laboratory of Luminescent Materials and DevicesSouth China University of TechnologyGuangzhouGuangdong510640China
| | - Andreas Offenhäusser
- Institute of Biological Information ProcessingBioelectronics IBI‐3Forschungszentrum JülichJülich52425Germany
| | - Sven Ingebrandt
- Faculty of Electrical Engineering and Information TechnologyInstitute of Materials in Electrical Engineering 1RWTH Aachen UniversityAachen52074Germany
| | - Dirk Mayer
- Institute of Biological Information ProcessingBioelectronics IBI‐3Forschungszentrum JülichJülich52425Germany
| |
Collapse
|