1
|
Xu Y, Chan MTJ, Yang M, Meng H, Chen CH. Time-resolved single-cell secretion analysis via microfluidics. LAB ON A CHIP 2025; 25:1282-1295. [PMID: 39789982 DOI: 10.1039/d4lc00904e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Revealing how individual cells alter their secretions over time is crucial for understanding their responses to environmental changes. Key questions include: When do cells modify their functions and states? What transitions occur? Insights into the kinetic secretion trajectories of various cell types are essential for unraveling complex biological systems. This review highlights seven microfluidic technologies for time-resolved single-cell secretion analysis: 1. Microwell real-time electrical detection: uses microelectrodes for precise, cell-specific, real-time measurement of secreted molecules. 2. Microwell real-time optical detection: employs advanced optical systems for real-time, multiplexed monitoring of cellular secretions. 3. Microvalve real-time optical detection: dynamically analyzes secretions under controlled in situ stimuli, enabling detailed kinetic studies at the single-cell level. 4. Droplet real-time optical detection: provides superior throughput by generating droplets containing single cells and sensors for high-throughput screening. 5. Microwell time-barcoded optical detection: utilizes sequential barcoding techniques to facilitate scalable assays for tracking multiple secretions over time. 6. Microvalve time-barcoded optical detection: incorporates automated time-barcoding via micro-valves for robust and scalable analysis. 7. Microwell time-barcoded sequencing: captures and labels secretions for sequencing, enabling multidimensional analysis, though currently limited to a few time points and extended intervals. This review specifically addresses the challenges of achieving high-resolution timing measurements with short intervals while maintaining scalability for single-cell screening. Future advancements in microfluidic devices, integrating innovative barcoding technologies, advanced imaging technologies, artificial intelligence-powered decoding and analysis, and automations are anticipated to enable highly sensitive, scalable, high-throughput single-cell dynamic analysis. These developments hold great promise for deepening our understanding of biosystems by exploring single-cell timing responses on a larger scale.
Collapse
Affiliation(s)
- Ying Xu
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong, China.
| | - Mei Tsz Jewel Chan
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong, China.
| | - Ming Yang
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong, China.
| | - Heixu Meng
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong, China.
| | - Chia-Hung Chen
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong, China.
| |
Collapse
|
2
|
Wang H, Zhang L, Fan C, Huang J, Zhao W, Yang Z, Tian L, Zhao H, Yao C. Refractive Index Morphology Imaging Microscope System Utilizing Polarization Multiplexing for Label-Free Single Living Cells. ACS Sens 2024; 9:6759-6767. [PMID: 39652671 DOI: 10.1021/acssensors.4c02484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Detections of internal substances and morphologies for label-free living cells are crucial for revealing malignant diseases. With the phase serving as a coupling of refractive index (RI) (marker for substances) and thickness (morphology), existing decoupling methods mainly rely on complex integrated systems or extensive optical field information. Developing simple and rapid decoupling methods remains a challenge. This study introduces a refractive index morphology imaging microscope (RIMIM) system utilizing polarization multiplexing for label-free single living cells. By simultaneous degree of circular polarization (DOCP) imaging and noninterferometric quantitative phase imaging (QPI), the intracellular refractive index distribution (IRID) and morphology can be decoupled. The optical thickness calculated from the phase is input into the circular depolarization decay model (CDDM) of degree of circular polarization to retrieve IRID. Subsequently, the thickness can be decoupled from phase result using retrieved IRID. Experiments conducted on mouse forestomach carcinoma (MFC) cells and human kidney-2 cells (HK-2) demonstrated the RIMIM system's ability to retrieve IRID and decouple fine morphology. Additionally, the RIMIM system effectively detected membrane damage and changes in erastin-induced ferroptotic HK-2 cells, with average and root-mean-square of surface folds 65.5% and 70.0% higher than those of normal HK-2 cells. Overall, the RIMIM system provides a simple and rapid method for decoupling RI and fine morphology, showing great potential for label-free live cells' cytopathology detection.
Collapse
Affiliation(s)
- Huijun Wang
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Lu Zhang
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Chen Fan
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jie Huang
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Weihao Zhao
- Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zewen Yang
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Lifang Tian
- Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hong Zhao
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Cuiping Yao
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
3
|
Chisanga M, Masson JF. Machine Learning-Driven SERS Nanoendoscopy and Optophysiology. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2024; 17:313-338. [PMID: 38701442 DOI: 10.1146/annurev-anchem-061622-012448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
A frontier of analytical sciences is centered on the continuous measurement of molecules in or near cells, tissues, or organs, within the biological context in situ, where the molecular-level information is indicative of health status, therapeutic efficacy, and fundamental biochemical function of the host. Following the completion of the Human Genome Project, current research aims to link genes to functions of an organism and investigate how the environment modulates functional properties of organisms. New analytical methods have been developed to detect chemical changes with high spatial and temporal resolution, including minimally invasive surface-enhanced Raman scattering (SERS) nanofibers using the principles of endoscopy (SERS nanoendoscopy) or optical physiology (SERS optophysiology). Given the large spectral data sets generated from these experiments, SERS nanoendoscopy and optophysiology benefit from advances in data science and machine learning to extract chemical information from complex vibrational spectra measured by SERS. This review highlights new opportunities for intracellular, extracellular, and in vivo chemical measurements arising from the combination of SERS nanosensing and machine learning.
Collapse
Affiliation(s)
- Malama Chisanga
- Département de Chimie, Institut Courtois, Quebec Center for Advanced Materials, Regroupement Québécois sur les Matériaux de Pointe, and Centre Interdisciplinaire de Recherche sur le Cerveau et l'Apprentissage, Université de Montréal, Montréal, Québec, Canada;
| | - Jean-Francois Masson
- Département de Chimie, Institut Courtois, Quebec Center for Advanced Materials, Regroupement Québécois sur les Matériaux de Pointe, and Centre Interdisciplinaire de Recherche sur le Cerveau et l'Apprentissage, Université de Montréal, Montréal, Québec, Canada;
| |
Collapse
|
4
|
AK N, Kumar S. Integration of 2D Nanoporous Membranes in Microfluidic Devices. ACS OMEGA 2024; 9:22305-22312. [PMID: 38799317 PMCID: PMC11112725 DOI: 10.1021/acsomega.4c01688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/22/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024]
Abstract
2D material-based membranes have emerged as promising candidates for next-generation separation technology due to their exceptional permeability and selectivity. Integration of these membranes into microfluidic devices has offered significant potential for improving the efficiency, throughput, and precision. However, designing compact and reliable microfluidic devices with membranes has many challenges, including complexities in membrane integration, analyte measurement, and contamination issues. Addressing these challenges is critical for unlocking the full potential of membrane-integrated devices. This paper proposes a systematic procedure for integrating membranes into a microfluidic device by creating a pore in the middle layer. Furthermore, an ion transport experiment is carried out across various stacked graphene and poly carbonate track etch membranes in an Ostemer-based device. The resulting device is capable of facilitating the concurrent measurement, a task that is cumbersome in standard macroscopic diffusion cells. The transparency and compactness of the microfluidic device allowed for the in situ and real-time optical characterization of analytes. The integration of microfluidic devices with 2D nanoporous membranes has enabled the incorporation of several analytical modalities, resulting in a highly versatile platform with numerous applications.
Collapse
|
5
|
Wang B, Weng J, Zhang TY, Xu YT, Ye D, Xu JJ, Zhao WW. Single-Cell Caspase-3 Measurement Using a Biomimetic Nanochannel. Anal Chem 2024; 96:2094-2099. [PMID: 38258322 DOI: 10.1021/acs.analchem.3c04782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Direct single-cell caspase-3 (Casp-3) analysis has remained challenging. A study of single-cell Casp-3 could contribute to revealing the fundamental pathogenic mechanisms in Casp-3-associated diseases. Here, a biomimetic nanochannel capable of single-cell sampling and ionic detection of intracellular Casp-3 is devised, which is established upon the installment of target-specific organic molecules (luc-DEVD) within the orifice of a glass nanopipette. The specific cleavage of luc-DEVD by Casp-3 could induce changes of inner-surface chemical groups and charge properties, thus altering the ionic response of the biomimetic nanochannel for direct Casp-3 detection. The practical applicability of this biomimetic nanochannel is confirmed by probing intracellular Casp-3 fluctuation upon drug stimulation and quantifying the Casp-3 evolution during induced apoptosis. This work realizes ionic single-cell Casp-3 analysis and provides a different perspective for single-cell protein analysis.
Collapse
Affiliation(s)
- Bing Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jianhui Weng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Tian-Yang Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yi-Tong Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Deju Ye
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
6
|
Hou Y, Yao H, Lin JM. Recent advancements in single-cell metabolic analysis for pharmacological research. J Pharm Anal 2023; 13:1102-1116. [PMID: 38024859 PMCID: PMC10658044 DOI: 10.1016/j.jpha.2023.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/12/2023] [Accepted: 08/18/2023] [Indexed: 12/01/2023] Open
Abstract
Cellular heterogeneity is crucial for understanding tissue biology and disease pathophysiology. Pharmacological research is being advanced by single-cell metabolic analysis, which offers a technique to identify variations in RNA, proteins, metabolites, and drug molecules in cells. In this review, the recent advancement of single-cell metabolic analysis techniques and their applications in drug metabolism and drug response are summarized. High-precision and controlled single-cell isolation and manipulation are provided by microfluidics-based methods, such as droplet microfluidics, microchamber, open microfluidic probe, and digital microfluidics. They are used in tandem with variety of detection techniques, including optical imaging, Raman spectroscopy, electrochemical detection, RNA sequencing, and mass spectrometry, to evaluate single-cell metabolic changes in response to drug administration. The advantages and disadvantages of different techniques are discussed along with the challenges and future directions for single-cell analysis. These techniques are employed in pharmaceutical analysis for studying drug response and resistance pathway, therapeutic targets discovery, and in vitro disease model evaluation.
Collapse
Affiliation(s)
- Ying Hou
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Hongren Yao
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jin-Ming Lin
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
7
|
Sailor MJ. The Future of Engineered Living Sensors ─ I Hope It Is Not the Thing with Feathers. ACS Sens 2022; 7:2795-2796. [DOI: 10.1021/acssensors.2c02178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|