1
|
Moonla C, Khan MI, Akgonullu S, Saha T, Wang J. Touch-based uric acid sweat biosensor towards personal health and nutrition. Biosens Bioelectron 2025; 277:117289. [PMID: 39993347 DOI: 10.1016/j.bios.2025.117289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/11/2025] [Accepted: 02/19/2025] [Indexed: 02/26/2025]
Abstract
Monitoring uric acid (UA) levels is critical since elevated UA levels are associated with diverse conditions, such as gout, kidney disorders, kidney stones, hypertension, cardiovascular diseases, and metabolic syndrome. Maintaining balanced UA levels demands reliable and regular monitoring. Traditionally, such frequent UA measurements rely on blood-based UA self-testing strips. Developing sensitive and reliable noninvasive sweat-based UA sensors presents challenges, including the low UA sweat concentrations and interpersonal variations. We present here an attractive on-site UA self-testing approach utilizing a touch-enabled fingertip sweat UA electrochemical biosensor based on a uricase-enzyme electrode and sweat wicking hydrogel. This noninvasive method is rapid, simple, convenient, and painless, leveraging the high sweat rate on the fingertip at rest without any sweat stimulation. The touch-based protocol exhibits a wide linear range of UA concentrations from 10 to 1000 μM, covering normal and elevated UA sweat levels with high selectivity, reproducibility (RSD = 4.94%), good storage stability (1 week), and significant tolerance to temperature and humidity variations. The performance of the UA-touch sweat biosensor was evaluated and validated by parallel blood meter measurements by monitoring dynamically-changing sweat UA levels in healthy subjects after consuming purine-rich meals. The distinct sweat UA temporal profiles among individuals highlight the potential of the touch-based UA biosensor for personal health and nutrition. The speed and simplicity of this sweat UA assay thus encourage frequent self-testing and enhance user's compliance towards dietary interventions and lifestyle changes in connection to diverse healthcare and nutrition applications.
Collapse
Affiliation(s)
- Chochanon Moonla
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Muhammad Inam Khan
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Semra Akgonullu
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Tamoghna Saha
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Joseph Wang
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
2
|
Wang CL, Cai X, Zhao YH, Liu ZH, Xia RZ, Tang LJ, Song ZY, Chen SH, Li Y, Yang M, Li PH, Huang XJ. Integrated Headband for Monitoring Chloride Anions in Sweat Using Developed Flexible Patches. ACS Sens 2025; 10:3441-3449. [PMID: 40014548 DOI: 10.1021/acssensors.4c03366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Flexible wearable potentiometric ion sensors for continuous monitoring of electrolyte cations have made significant advances in bioanalysis for personal healthcare and diagnostics. However, less attention is paid to the most abundant extracellular anion, chloride ion (Cl-) as a mark of electrolyte imbalance and an important diagnostic indicator of cystic fibrosis, which has important significance for accurate monitoring in complex biological fluids. An all-solid-state Cl--selective electrode is constructed utilizing oxygen vacancies reinforced vanadium oxide with a nitrogen-doped carbon shield as the solid contact (V2O3-x@NC/Cl--ISE). The prepared V2O3-x@NC/Cl--ISE exhibits a low detection limit of 10-5.45 M without an interfacial water layer and shows a highly stable potential with 7.24 μV/h during 24 h, which is attributed to the rapid interfacial electron transfer of the conductive carbon layers and the valence state transition of the polyvalent vanadium center in charge storage processes. Additionally, the custom flexible sensing patch presents an excellent sensitivity retention rate under bending (95%) and twisting (93%) strains and possesses good anti-interference performance (ΔE < 8 mV) against common interfering ions and organic substances in sweat. Real-time monitoring of the Cl- concentration in sweat aligns with ion chromatography analysis results. This study presents a compact wearable Cl- monitoring platform for the easy tracking of exercise-induced dehydration and cystic fibrosis screening with promising applications in smart healthcare.
Collapse
Affiliation(s)
- Chen-Lu Wang
- Key Laboratory of Environmental Optics and Technology, And Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Xin Cai
- Key Laboratory of Environmental Optics and Technology, And Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yong-Huan Zhao
- Key Laboratory of Environmental Optics and Technology, And Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Zi-Hao Liu
- Key Laboratory of Environmental Optics and Technology, And Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Rui-Ze Xia
- Key Laboratory of Environmental Optics and Technology, And Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Li-Jun Tang
- Key Laboratory of Environmental Optics and Technology, And Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Zong-Yin Song
- Key Laboratory of Environmental Optics and Technology, And Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China
- Hefei Comprehensive National Science Center, Institute of Environment, Hefei 230088, P. R. China
| | - Shi-Hua Chen
- Key Laboratory of Environmental Optics and Technology, And Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China
- Hefei Comprehensive National Science Center, Institute of Environment, Hefei 230088, P. R. China
| | - Yixiang Li
- Institute of Brain-Inspired Intelligence, School of Physics, Nanjing University, Nanjing 210093, P. R. China
| | - Meng Yang
- Key Laboratory of Environmental Optics and Technology, And Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China
- Hefei Comprehensive National Science Center, Institute of Environment, Hefei 230088, P. R. China
| | - Pei-Hua Li
- Key Laboratory of Environmental Optics and Technology, And Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China
- Hefei Comprehensive National Science Center, Institute of Environment, Hefei 230088, P. R. China
| | - Xing-Jiu Huang
- Key Laboratory of Environmental Optics and Technology, And Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
- Hefei Comprehensive National Science Center, Institute of Environment, Hefei 230088, P. R. China
| |
Collapse
|
3
|
Xue T, Shen J, Lin W, Zhou J, Zhang X, Chen CJ, Liu JT, Zhu G. Integrated microfluidic colorimetric patch with auto-framing APP for multiplex temporal detection of ketone bodies in sweat. LAB ON A CHIP 2025; 25:2436-2448. [PMID: 40275760 DOI: 10.1039/d5lc00189g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Ketone bodies are key products of fat metabolism, primarily consisting of acetoacetate (AcAc), β-hydroxybutyrate (BHB), and acetone (acetone). Monitoring the concentration of ketone bodies in sweat can reflect the metabolic status of the body; it is also particularly significant in areas such as diabetes management, exercise monitoring, and the evaluation of the ketogenic diet. This paper presents a microfluidic patch for sweat collection and multiplex detection of AcAc, BHB and glucose. The microfluidic patch can achieve time-sequential sensing through Tesla valves, hydrophilic coatings, and unique chamber structural design. The concentrations of the three substances are quantified using colorimetric methods. Additionally, this study has designed a colorimetric app which can achieve automatic framing and detect the grayscale value of the colored area. Experimental results show that the patch can accurately detect changes in the concentrations of the three substances within specific ranges. The linear detection range for AcAc is 0.25 mM to 8 mM, the limit of detection (LOD) is 0.08 mM; for BHB, the linear detection range is 0.05 mM to 0.80 mM, the LOD is 0.02 mM; and for glucose, the linear detection range is 62.50 μM to 1000 μM, the LOD is 20.83 μM. In the future, this technology is expected to be applied to portable metabolic monitoring devices, offering a convenient solution for personal health management.
Collapse
Affiliation(s)
- Tianhao Xue
- School of Instrumentation Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, No. 12 Xiaoying Road, Beijing 100192, China.
| | - Jianing Shen
- School of Instrumentation Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, No. 12 Xiaoying Road, Beijing 100192, China.
| | - Wanting Lin
- School of Instrumentation Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, No. 12 Xiaoying Road, Beijing 100192, China.
| | - Jiahui Zhou
- School of Instrumentation Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, No. 12 Xiaoying Road, Beijing 100192, China.
| | - Xiaofang Zhang
- Department of Clinical Laboratory, Tianjin Medical University General Hospital, Tianjin, China
| | - Ching-Jung Chen
- Research Center for Materials Science and Opti-Electronic Technology, School of Optoelectronics, University of Chinese Academy of Sciences, Beijing, China.
| | - Jen-Tsai Liu
- Research Center for Materials Science and Opti-Electronic Technology, College of Materials Science and Opti-Electronic Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Guixian Zhu
- School of Instrumentation Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, No. 12 Xiaoying Road, Beijing 100192, China.
| |
Collapse
|
4
|
Djassemi O, Saha T, Nandhakumar P, Khan MI, Fishman H, Earney S, Moonla C, Xu Y, Thai H, Morales-Fermin S, Kim G, Park R, Acot B, Wu O, Wurster C, Chang AY, Cheung C, Silberman J, Ding S, Wang J. A Touch Enabled Hemodynamic and Metabolic Monitor. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2502138. [PMID: 40244899 DOI: 10.1002/advs.202502138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 02/28/2025] [Indexed: 04/19/2025]
Abstract
Accurate health analysis demands real-time tracking of multiple biomarkers and vital signs under dynamic physiological conditions. Current multimodal hybrid platforms provide biochemical and biophysical data but are limited by active sweat collection for biochemical sensing and bulky designs for biophysical sensing. Here a touch-enabled platform is presented that simultaneously monitors vitals and metabolic markers. With a simple tri-finger touch, the platform measures mean arterial pressure and heart rate using photoplethysmography, and glucose, uric acid, and cortisol at rest by leveraging the natural perspiration at the fingertip. Extended studies involving diverse activities reveal strong dynamic interplay among the metabolic and vital profiles, with mean arterial pressure showing the highest sensitivity to cortisol fluctuations. The platform delivers comprehensive health information linking diet, lifestyle, metabolism, and serves as an early metabolic or hormonal stress indicator. Valuable insights gained through the platform position it as a promising tool for personalized health and wellness management.
Collapse
Affiliation(s)
- Omeed Djassemi
- Aiiso Yufeng Li Family Department of Chemical and Nanoengineering, University of California San Diego, La Jolla, CA, 92093, USA
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Tamoghna Saha
- Aiiso Yufeng Li Family Department of Chemical and Nanoengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Ponnusamy Nandhakumar
- Aiiso Yufeng Li Family Department of Chemical and Nanoengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Muhammad Inam Khan
- Aiiso Yufeng Li Family Department of Chemical and Nanoengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Hannah Fishman
- Aiiso Yufeng Li Family Department of Chemical and Nanoengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Sara Earney
- Aiiso Yufeng Li Family Department of Chemical and Nanoengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Chochanon Moonla
- Aiiso Yufeng Li Family Department of Chemical and Nanoengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Yuchen Xu
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Henry Thai
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Sofia Morales-Fermin
- Aiiso Yufeng Li Family Department of Chemical and Nanoengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Gyeongho Kim
- Aiiso Yufeng Li Family Department of Chemical and Nanoengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Rhea Park
- Aiiso Yufeng Li Family Department of Chemical and Nanoengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Beya Acot
- Aiiso Yufeng Li Family Department of Chemical and Nanoengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Oscar Wu
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, 92092, USA
| | - Cannon Wurster
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, 92092, USA
| | - An-Yi Chang
- Aiiso Yufeng Li Family Department of Chemical and Nanoengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Christopher Cheung
- Aiiso Yufeng Li Family Department of Chemical and Nanoengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Julia Silberman
- Aiiso Yufeng Li Family Department of Chemical and Nanoengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Shichao Ding
- Aiiso Yufeng Li Family Department of Chemical and Nanoengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Joseph Wang
- Aiiso Yufeng Li Family Department of Chemical and Nanoengineering, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
5
|
Su C, Wang P, Foo N, Ho D. Optimizing metabolic health with digital twins. NPJ AGING 2025; 11:20. [PMID: 40128254 PMCID: PMC11933362 DOI: 10.1038/s41514-025-00211-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 03/07/2025] [Indexed: 03/26/2025]
Abstract
A hallmark of subclinical metabolic decline is impaired metabolic flexibility, which refers to the ability to switch fuel utilization between glucose and fat according to energy demand and substrate availability. Herein, we propose optimizing metabolic health with digital twins that model an individual's metabolic flexibility profile to gamify the process of health optimization and predict long-term health outcomes. We explore key characteristics of this approach from technological and socioeconomical perspectives, with the objective of reducing the burden from metabolic disorders through driving behavior change and early detection of metabolic decline.
Collapse
Affiliation(s)
- Chengxun Su
- The Institute for Digital Medicine (WisDM), National University of Singapore, Singapore, Singapore
- The N.1 Institute for Health (N.1), National University of Singapore, Singapore, Singapore
| | - Peter Wang
- The Institute for Digital Medicine (WisDM), National University of Singapore, Singapore, Singapore
- The N.1 Institute for Health (N.1), National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
| | - Nigel Foo
- The Institute for Digital Medicine (WisDM), National University of Singapore, Singapore, Singapore
- The N.1 Institute for Health (N.1), National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
| | - Dean Ho
- The Institute for Digital Medicine (WisDM), National University of Singapore, Singapore, Singapore.
- The N.1 Institute for Health (N.1), National University of Singapore, Singapore, Singapore.
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore.
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- The Bia-Echo Asia Centre for Reproductive Longevity and Equality (ACRLE), National University of Singapore, Singapore, Singapore.
- Singapore's Health District @ Queenstown, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
6
|
Xu Y, Uppal A, Lee MS, Mahato K, Wuerstle BL, Lin M, Djassemi O, Chen T, Lin R, Paul A, Jain S, Chapotot F, Tasali E, Mercier P, Xu S, Wang J, Cauwenberghs G. Earable Multimodal Sensing and Stimulation: A Prospective Towards Unobtrusive Closed-Loop Biofeedback. IEEE Rev Biomed Eng 2024; PP:5-25. [PMID: 40030565 DOI: 10.1109/rbme.2024.3508713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
The human ear has emerged as a bidirectional gateway to the brain's and body's signals. Recent advances in around-the-ear and in-ear sensors have enabled the assessment of biomarkers and physiomarkers derived from brain and cardiac activity using ear-electroencephalography (ear-EEG), photoplethysmography (ear-PPG), and chemical sensing of analytes from the ear, with ear-EEG having been taken beyond-the-lab to outer space. Parallel advances in non-invasive and minimally invasive brain stimulation techniques have leveraged the ear's access to two cranial nerves to modulate brain and body activity. The vestibulocochlear nerve stimulates the auditory cortex and limbic system with sound, while the auricular branch of the vagus nerve indirectly but significantly couples to the autonomic nervous system and cardiac output. Acoustic and current mode stimuli delivered using discreet and unobtrusive earables are an active area of research, aiming to make biofeedback and bioelectronic medicine deliverable outside of the clinic, with remote and continuous monitoring of therapeutic responsivity and long-term adaptation. Leveraging recent advances in ear-EEG, transcutaneous auricular vagus nerve stimulation (taVNS), and unobtrusive acoustic stimulation, we review accumulating evidence that combines their potential into an integrated earable platform for closed-loop multimodal sensing and neuromodulation, towards personalized and holistic therapies that are near, in- and around-the-ear.
Collapse
|
7
|
Song Z, Li R, Li Z, Luo X. Antifouling and antimicrobial wearable electrochemical sweat sensors for accurate dopamine monitoring based on amyloid albumin composite hydrogels. Biosens Bioelectron 2024; 264:116640. [PMID: 39146769 DOI: 10.1016/j.bios.2024.116640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/04/2024] [Accepted: 08/06/2024] [Indexed: 08/17/2024]
Abstract
Wearable electrochemical sweat sensors are potentially promising for health monitoring in a continuous and non-invasive mode with high sensitivity. However, due to the complexity of sweat composition and the growth of skin bacteria, the wearable sweat sensors may gradually lose their sensitivity or even fail over time. To deal with this issue, herein, we proposed a new strategy to construct wearable sweat sensors with antifouling and antimicrobial capabilities. Amyloid albumin hydrogels (ABSAG) were doped with two-dimensional (2D) nanomaterial MXene and CeO2 nanorods to obtain the antifouling and antimicrobial amyloid albumin composite hydrogels (ABSACG, CeO2/MXene/ABSAG), and the wearable sensors were prepared by modifying flexible screen-printed electrodes with the ABSACG. Within this sensing system, the hydrophilic ABSAG possesses strong hydration capability, and it can form a hydration layer on the electrode surface to resist biofouling in sweat. The 2D nanomaterial MXene dispersed in the hydrogel endows the hydrogel with good conductivity and electrocatalytic capability, while the doping of CeO2 nanorods further improves the electrocatalytic performance of the hydrogel and also provides excellent antimicrobial capability. The designed wearable electrochemical sensors based on the ABSACG demonstrated satisfying antifouling and antimicrobial abilities, and they were capable of detecting dopamine accurately in human sweat. It is expected that wearable sensors utilizing the antifouling and antimicrobial ABSACG may find practical applications in human body fluids analysis and health monitoring.
Collapse
Affiliation(s)
- Zhen Song
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Rong Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Zhuowang Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Xiliang Luo
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| |
Collapse
|
8
|
Zhou Y, Muhammad I, Qiu L, Wang Y, Qiao Y, Meng Z. β-Hydroxybutyrate dehydrogenase functionalized two-dimensional photonic crystals for quantitative and visual sensing of ketone bodies. Biosens Bioelectron 2024; 264:116647. [PMID: 39173338 DOI: 10.1016/j.bios.2024.116647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 07/31/2024] [Accepted: 08/07/2024] [Indexed: 08/24/2024]
Abstract
β-Hydroxybutyrate (BHB) is a substantial physiological ketone body. Its elevated concentration causes ketoacidosis, which is a disorder with a high mortality rate. Therefore, there is an urgent need to develop a simple method for the in-situ monitoring of BHB in urine. In this study, a photonic crystal hydrogel (PCH) sensing material for the detection of urinary ketones was prepared by embedding a two-dimensional polystyrene photonic crystal array (PCA) in a hydrogel functionalized with β-hydroxybutyrate dehydrogenase (BHBDH). BHBDH catalyzes the interconversion between β-hydroxybutyrate and acetoacetic acid and relies on the cofactor nicotinamide adenine dinucleotide (NAD+) to participate in the reaction process. The catalytic cycle of converting β-hydroxybutyrate to acetoacetate generates H+, which reduces the electrostatic repulsion between the carboxyl groups in the hydrogel network, ultimately leading to the shrinkage of the hydrogel volume. The hydrogel volume change was detected by measuring the diameter of the Debye diffraction ring, thus reflecting the concentration of BHB. When the concentration of BHB was increased from 0 to 10 mM, the reflection spectrum of PCH shifted for 117 nm within 60 min, consequently, the structural color of PCH changed from red to green and finally to blue. The material was used for quantitative detection of BHB with a detection limit of 48.94 μM. Then it was used for detection in artificial urine samples. While, this smart and reusable sensing material could provide a more convenient and efficient strategy for the ketone body detection in clinical diagnosis and point-of-care monitoring.
Collapse
Affiliation(s)
- Yuji Zhou
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Irfan Muhammad
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Lili Qiu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Yifei Wang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Yu Qiao
- School of Design and Art, Beijing Institute of Technology, Beijing, 100081, China
| | - Zihui Meng
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China; Yangtze Delta Region Academy, Bejing Institute of Technology, Jiaxing, 314000, China.
| |
Collapse
|
9
|
Saha T, Khan MI, Sandhu SS, Yin L, Earney S, Zhang C, Djassemi O, Wang Z, Han J, Abdal A, Srivatsa S, Ding S, Wang J. A Passive Perspiration Inspired Wearable Platform for Continuous Glucose Monitoring. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405518. [PMID: 39264314 PMCID: PMC11538657 DOI: 10.1002/advs.202405518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/30/2024] [Indexed: 09/13/2024]
Abstract
The demand for glucose monitoring devices has witnessed continuous growth from the rising diabetic population. The traditional approach of blood glucose (BG) sensor strip testing generates only intermittent glucose readings. Interstitial fluid-based devices measure glucose dynamically, but their sensing approaches remain either minimally invasive or prone to skin irritation. Here, a sweat glucose monitoring system is presented, which completely operates under rest with no sweat stimulation and can generate real-time BG dynamics. Osmotically driven hydrogels, capillary action with paper microfluidics, and self-powered enzymatic biochemical sensor are used for simultaneous sweat extraction, transport, and glucose monitoring, respectively. The osmotic forces facilitate greater flux inflow and minimize sweat rate fluctuations compared to natural perspiration-based sampling. The epidermal platform is tested on fingertip and forearm under varying physiological conditions. Personalized calibration models are developed and validated to obtain real-time BG information from sweat. The estimated BG concentration showed a good correlation with measured BG concentration, with all values lying in the A+B region of consensus error grid (MARD = 10.56% (fingertip) and 13.17% (forearm)). Overall, the successful execution of such osmotically driven continuous BG monitoring system from passive sweat can be a useful addition to the next-generation continuous sweat glucose monitors.
Collapse
Affiliation(s)
- Tamoghna Saha
- Aiiso Yufeng Li Family Department of Chemical and NanoengineeringUniversity of California San DiegoLa JollaCA92093USA
| | - Muhammad Inam Khan
- Aiiso Yufeng Li Family Department of Chemical and NanoengineeringUniversity of California San DiegoLa JollaCA92093USA
| | - Samar Singh Sandhu
- Aiiso Yufeng Li Family Department of Chemical and NanoengineeringUniversity of California San DiegoLa JollaCA92093USA
| | - Lu Yin
- Aiiso Yufeng Li Family Department of Chemical and NanoengineeringUniversity of California San DiegoLa JollaCA92093USA
| | - Sara Earney
- Aiiso Yufeng Li Family Department of Chemical and NanoengineeringUniversity of California San DiegoLa JollaCA92093USA
| | - Chenyang Zhang
- Aiiso Yufeng Li Family Department of Chemical and NanoengineeringUniversity of California San DiegoLa JollaCA92093USA
| | - Omeed Djassemi
- Aiiso Yufeng Li Family Department of Chemical and NanoengineeringUniversity of California San DiegoLa JollaCA92093USA
- Department of BioengineeringUniversity of California San DiegoLa JollaCA92093USA
| | - Zongnan Wang
- Department of Mechanical EngineeringUniversity of California San DiegoLa JollaCA92093USA
| | - Jintong Han
- Department of Mechanical EngineeringUniversity of California San DiegoLa JollaCA92093USA
| | - Abdulhameed Abdal
- Department of Mechanical EngineeringUniversity of California San DiegoLa JollaCA92093USA
| | - Samarth Srivatsa
- Department of BioengineeringUniversity of California San DiegoLa JollaCA92093USA
| | - Shichao Ding
- Aiiso Yufeng Li Family Department of Chemical and NanoengineeringUniversity of California San DiegoLa JollaCA92093USA
| | - Joseph Wang
- Aiiso Yufeng Li Family Department of Chemical and NanoengineeringUniversity of California San DiegoLa JollaCA92093USA
| |
Collapse
|
10
|
Liu X, Zhang W, Yang M, Jiang X. Amorphous PtO x-engineered Pt@WO 3 nanozymes with efficient NAD + generation for an electrochemical cascade biosensor. Chem Commun (Camb) 2024; 60:10966-10969. [PMID: 39263697 DOI: 10.1039/d4cc03438d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Bioactive NAD+ mediated multiple biocatalytic pathways in metabolic networks. Refining the structure of NADH oxidase-like (NOX) mimics to efficiently replenish NAD+ has been promising but challenging in NAD+-dependent dehydrogenase electrochemical cascade biosensing. Herein, we discovered that PtOx structures, formed via lattice oxygen translocation from WO3 to Pt NPs at the interface, potentially activate and modulate the NOX-like functionality in Pt@WO3 nanosheets. Incorporating PtOx leads to a more positive valence of Pt species within Pt/PtOx@WO3-x, where the PtO2 species serve as preeminent reaction sites for NADH coordination, activation, and dehydrogenation. Consequently, such nanozymes display enhanced NOX-like activity towards NADH oxidation in comparison to Pt@WO3. Ultimately, the 650-Pt/PtOx@WO3-x nanozyme is employed in an electrochemical cascade biosensor for β-hydroxybutyrate (HB) detection, achieving a calculated detection limit of 25 μM. This study offers insights into PtOx activation in Pt-based NOX mimics and supports the future development of NAD+/NADH-dependent electrochemical biosensors.
Collapse
Affiliation(s)
- Xinting Liu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| | - Wanyi Zhang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| | - Minghui Yang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
- Furong Laboratory, Changsha, 410083, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, 410083, China
| | - Xingxing Jiang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China.
- Furong Laboratory, Changsha, 410083, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, 410083, China
| |
Collapse
|
11
|
Childs A, Mayol B, Lasalde-Ramírez JA, Song Y, Sempionatto JR, Gao W. Diving into Sweat: Advances, Challenges, and Future Directions in Wearable Sweat Sensing. ACS NANO 2024; 18:24605-24616. [PMID: 39185844 DOI: 10.1021/acsnano.4c10344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Sweat analysis has advanced from diagnosing cystic fibrosis and testing for illicit drugs to noninvasive monitoring of health biomarkers. This article introduces the rapid development of wearable and flexible sweat sensors, highlighting key milestones and various sensing strategies for real-time monitoring of analytes. We discuss challenges such as developing high-performance nanomaterial-based biosensors, ensuring continuous sweat production and sampling, achieving high sweat/blood correlation, and biocompatibility. The potential of machine learning to enhance these sensors for personalized healthcare is presented, enabling real-time tracking and prediction of physiological changes and disease onset. Leveraging advancements in flexible electronics, nanomaterials, biosensing, and data analytics, wearable sweat biosensors promise to revolutionize disease management, prevention, and prediction, promoting healthier lifestyles and transforming medical practices globally.
Collapse
Affiliation(s)
- Andre Childs
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
| | - Beatriz Mayol
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
| | - José A Lasalde-Ramírez
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Yu Song
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Juliane R Sempionatto
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
12
|
Wu Y, Li X, Madsen KE, Zhang H, Cho S, Song R, Nuxoll RF, Xiong Y, Liu J, Feng J, Yang T, Zhang K, Aranyosi AJ, Wright DE, Ghaffari R, Huang Y, Nuzzo RG, Rogers JA. Skin-interfaced microfluidic biosensors for colorimetric measurements of the concentrations of ketones in sweat. LAB ON A CHIP 2024; 24:4288-4295. [PMID: 39193649 DOI: 10.1039/d4lc00588k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Ketones, such as beta-hydroxybutyrate (BHB), are important metabolites that can be used to monitor for conditions such as diabetic ketoacidosis (DKA) and ketosis. Compared to conventional approaches that rely on samples of urine or blood evaluated using laboratory techniques, processes for monitoring of ketones in sweat using on-body sensors offer significant advantages. Here, we report a class of soft, skin-interfaced microfluidic devices that can quantify the concentrations of BHB in sweat based on simple and low-cost colorimetric schemes. These devices combine microfluidic structures and enzymatic colorimetric BHB assays for selective and accurate analysis. Human trials demonstrate the broad applicability of this technology in practical scenarios, and they also establish quantitative correlations between the concentration of BHB in sweat and in blood. The results represent a convenient means for managing DKA and aspects of personal nutrition/wellness.
Collapse
Affiliation(s)
- Yunyun Wu
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA.
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL 60208, USA
| | - Xinming Li
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA.
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Kenneth E Madsen
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA.
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL 60208, USA
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.
| | - Haohui Zhang
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Soongwon Cho
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA.
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL 60208, USA
| | - Ruihao Song
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA.
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL 60208, USA
| | - Ravi F Nuxoll
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA.
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL 60208, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208, USA
| | - Yirui Xiong
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA.
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL 60208, USA
| | - Jiaqi Liu
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA.
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL 60208, USA
| | - Jingyuan Feng
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA.
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL 60208, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Tianyu Yang
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA.
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL 60208, USA
| | - Kaiqing Zhang
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208, USA
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian, 116024, Liaoning, China
| | - Alexander J Aranyosi
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA.
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL 60208, USA
- Epicore Biosystems, Inc., Cambridge, MA 02139, USA
| | | | - Roozbeh Ghaffari
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA.
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Epicore Biosystems, Inc., Cambridge, MA 02139, USA
| | - Yonggang Huang
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA.
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Ralph G Nuzzo
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.
| | - John A Rogers
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA.
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Neurological Surgery, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
13
|
Ghazizadeh E, Naseri Z, Deigner HP, Rahimi H, Altintas Z. Approaches of wearable and implantable biosensor towards of developing in precision medicine. Front Med (Lausanne) 2024; 11:1390634. [PMID: 39091290 PMCID: PMC11293309 DOI: 10.3389/fmed.2024.1390634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/30/2024] [Indexed: 08/04/2024] Open
Abstract
In the relentless pursuit of precision medicine, the intersection of cutting-edge technology and healthcare has given rise to a transformative era. At the forefront of this revolution stands the burgeoning field of wearable and implantable biosensors, promising a paradigm shift in how we monitor, analyze, and tailor medical interventions. As these miniature marvels seamlessly integrate with the human body, they weave a tapestry of real-time health data, offering unprecedented insights into individual physiological landscapes. This log embarks on a journey into the realm of wearable and implantable biosensors, where the convergence of biology and technology heralds a new dawn in personalized healthcare. Here, we explore the intricate web of innovations, challenges, and the immense potential these bioelectronics sentinels hold in sculpting the future of precision medicine.
Collapse
Affiliation(s)
- Elham Ghazizadeh
- Department of Bioinspired Materials and Biosensor Technologies, Faculty of Engineering, Institute of Materials Science, Kiel University, Kiel, Germany
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Naseri
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hans-Peter Deigner
- Institute of Precision Medicine, Furtwangen University, Villingen-Schwenningen, Germany
- Fraunhofer Institute IZI (Leipzig), Rostock, Germany
- Faculty of Science, Eberhard-Karls-University Tuebingen, Tuebingen, Germany
| | - Hossein Rahimi
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Zeynep Altintas
- Department of Bioinspired Materials and Biosensor Technologies, Faculty of Engineering, Institute of Materials Science, Kiel University, Kiel, Germany
| |
Collapse
|
14
|
Promphet N, Thanawattano C, Buekban C, Laochai T, Lormaneenopparat P, Sukmas W, Rattanawaleedirojn P, Puthongkham P, Potiyaraj P, Leewattanakit W, Rodthongkum N. Smartphone based wearable sweat glucose sensing device correlated with machine learning for real-time diabetes screening. Anal Chim Acta 2024; 1312:342761. [PMID: 38834276 DOI: 10.1016/j.aca.2024.342761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/26/2024] [Accepted: 05/20/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND Diabetes is a significant health threat, with its prevalence and burden increasing worldwide indicating its challenge for global healthcare management. To decrease the disease severity, the diabetic patients are recommended to regularly check their blood glucose levels. The conventional finger-pricking test possesses some drawbacks, including painfulness and infection risk. Nowadays, smartphone has become a part of our lives offering an important benefit in self-health monitoring. Thus, non-invasive wearable sweat glucose sensor connected with a smartphone readout is of interest for real-time glucose detection. RESULTS Wearable sweat glucose sensing device is fabricated for self-monitoring of diabetes. This device is designed as a body strap consisting of a sensing strip and a portable potentiostat connected with a smartphone readout via Bluetooth. The sensing strip is modified by carbon nanotubes (CNTs)-cellulose nanofibers (CNFs), followed by electrodeposition of Prussian blue. To preserve the activity of glucose oxidase (GOx) immobilized on the modified sensing strip, chitosan is coated on the top layer of the electrode strip. Herein, machine learning is implemented to correlate between the electrochemical results and the nanomaterial content along with deposition cycle of prussian blue, which provide the highest current response signal. The optimized regression models provide an insight, establishing a robust framework for design of high-performance glucose sensor. SIGNIFICANCE This wearable glucose sensing device connected with a smartphone readout offers a user-friendly platform for real-time sweat glucose monitoring. This device provides a linear range of 0.1-1.5 mM with a detection limit of 0.1 mM that is sufficient enough for distinguishing between normal and diabetes patient with a cut-off level of 0.3 mM. This platform might be an alternative tool for improving health management for diabetes patients.
Collapse
Affiliation(s)
- Nadtinan Promphet
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Soi Chula 12, Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Chusak Thanawattano
- National Electronics and Computer Technology Center (NECTEC), Pathumthani, 12120, Thailand
| | - Chatchai Buekban
- National Electronics and Computer Technology Center (NECTEC), Pathumthani, 12120, Thailand
| | - Thidarut Laochai
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Soi Chula 12, Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Panlop Lormaneenopparat
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Soi Chula 12, Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Wiwittawin Sukmas
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Soi Chula 12, Phayathai Road, Pathumwan, Bangkok, 10330, Thailand; Extreme Conditions Physics Research Laboratory and Center of Excellence in Physics of Energy Materials (CE:PEM), Department of Physics, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Pranee Rattanawaleedirojn
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Soi Chula 12, Phayathai Road, Pathumwan, Bangkok, 10330, Thailand; Center of Excellence in Responsive Wearable Materials, Chulalongkorn University, Soi Chula 12, Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Pumidech Puthongkham
- Center of Excellence in Responsive Wearable Materials, Chulalongkorn University, Soi Chula 12, Phayathai Road, Pathumwan, Bangkok, 10330, Thailand; Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Pranut Potiyaraj
- Center of Excellence in Responsive Wearable Materials, Chulalongkorn University, Soi Chula 12, Phayathai Road, Pathumwan, Bangkok, 10330, Thailand; Department of Materials Science, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | | | - Nadnudda Rodthongkum
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Soi Chula 12, Phayathai Road, Pathumwan, Bangkok, 10330, Thailand; Center of Excellence in Responsive Wearable Materials, Chulalongkorn University, Soi Chula 12, Phayathai Road, Pathumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
15
|
Wang P, Tadeo X, Chew HSJ, Sapanel Y, Ong YH, Leung NYT, Chow EKH, Ho D. N-of-1 health optimization: Digital monitoring of biomarker dynamics to gamify adherence to metabolic switching. PNAS NEXUS 2024; 3:pgae214. [PMID: 38881838 PMCID: PMC11179112 DOI: 10.1093/pnasnexus/pgae214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/20/2024] [Indexed: 06/18/2024]
Abstract
The digital health field is experiencing substantial growth due to its potential for sustained and longitudinal deployment. In turn, this may drive improved monitoring and intervention as catalysts for behavioral change compared to traditional point-of-care practices. In particular, the increase in incidence of population health challenges such as diabetes, heart disease, fatty liver disease, and other disorders coupled with rising healthcare costs have emphasized the importance of exploring technical, economics, and implementation considerations, among others in the decentralization of health and healthcare innovations. Both healthy individuals and patients stand to benefit from continued technical advances and studies in these domains. To address these points, this study reports a N-of-1 study comprised of sustained regimens of intermittent fasting, fitness (strength and cardiovascular training), and high protein, low carbohydrate diet and parallel monitoring. These regimens were paired with serial blood ketone, blood glucose (wearable and finger stick) and blood pressure readings, as well as body weight measurements using a collection of devices. Collectively this suite of platforms and approaches were used to monitor metabolic switching from glucose to ketones as energy sources-a process associated with potential cardio- and neuroprotective functions. In addition to longitudinal biomarker dynamics, this work discusses user perspectives on the potential role of harnessing digital devices to these dynamics as potential gamification factors, as well as considerations for the role of biomarker monitoring in health regimen development, user stratification, and potentially informing downstream population-scale studies to address metabolic disease, healthy aging and longevity, among other indications.
Collapse
Affiliation(s)
- Peter Wang
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore 117583, Singapore
- Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
- The N.1 Institute for Health (N.1), National University of Singapore, Singapore 117456, Singapore
| | - Xavier Tadeo
- Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
- The N.1 Institute for Health (N.1), National University of Singapore, Singapore 117456, Singapore
| | - Han Shi Jocelyn Chew
- Alice Lee Centre for Nursing Studies, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Yoann Sapanel
- Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
- Singapore's Health District @ Queenstown, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
| | - Yoong Hun Ong
- Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
- The N.1 Institute for Health (N.1), National University of Singapore, Singapore 117456, Singapore
| | - Nicole Yong Ting Leung
- Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
- The N.1 Institute for Health (N.1), National University of Singapore, Singapore 117456, Singapore
| | - Edward Kai-Hua Chow
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore 117583, Singapore
- Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
- The N.1 Institute for Health (N.1), National University of Singapore, Singapore 117456, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Dean Ho
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore 117583, Singapore
- Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
- The N.1 Institute for Health (N.1), National University of Singapore, Singapore 117456, Singapore
- Singapore's Health District @ Queenstown, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- The Bia-Echo Asia Centre for Reproductive Longevity and Equality, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
| |
Collapse
|
16
|
Wang Q, Liu Q, Zhong G, Xu T, Zhang X. Wearable Vertical Graphene-Based Microneedle Biosensor for Real-Time Ketogenic Diet Management. Anal Chem 2024; 96:8713-8720. [PMID: 38745346 DOI: 10.1021/acs.analchem.4c00960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Ketogenic diets have attracted substantial interest in the treatment of chronic diseases, but there are health risks with long-term regimes. Despite the advancements in diagnostic and therapeutic methods in modern medicine, there is a huge gap in personalized health management of this dietary strategy. Hence, we present a wearable microneedle biosensor for real-time ketone and glucose monitoring. The microneedle array possesses excellent mechanical properties, allowing for consistent sampling of interstitial biomarkers while reducing the pain associated with skin puncture. Vertical graphene with outstanding electrical conductivity provides the resulting sensor with a high sensitivity of 234.18 μA mM-1 cm-2 and a low limit detection of 1.21 μM. When this fully integrated biosensor was used in human volunteers, it displayed an attractive analytical capability for tracking the dynamic metabolite levels. Moreover, the results of the on-body evaluation established a significant correlation with commercial blood measurements. Overall, this cost-effective and efficient sensing platform can accelerate the application of a ketogenic diet in personal nutrition and wellness management.
Collapse
Affiliation(s)
- Qiyu Wang
- School of Biomedical Engineering, Institute for Advanced Study, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, P. R. China
| | - Qingzhou Liu
- Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen 518060, China
| | - Geng Zhong
- School of Biomedical Engineering, Institute for Advanced Study, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, P. R. China
| | - Tailin Xu
- School of Biomedical Engineering, Institute for Advanced Study, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, P. R. China
| | - Xueji Zhang
- School of Biomedical Engineering, Institute for Advanced Study, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, P. R. China
| |
Collapse
|
17
|
Shajari S, Kuruvinashetti K, Komeili A, Sundararaj U. The Emergence of AI-Based Wearable Sensors for Digital Health Technology: A Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:9498. [PMID: 38067871 PMCID: PMC10708748 DOI: 10.3390/s23239498] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023]
Abstract
Disease diagnosis and monitoring using conventional healthcare services is typically expensive and has limited accuracy. Wearable health technology based on flexible electronics has gained tremendous attention in recent years for monitoring patient health owing to attractive features, such as lower medical costs, quick access to patient health data, ability to operate and transmit data in harsh environments, storage at room temperature, non-invasive implementation, mass scaling, etc. This technology provides an opportunity for disease pre-diagnosis and immediate therapy. Wearable sensors have opened a new area of personalized health monitoring by accurately measuring physical states and biochemical signals. Despite the progress to date in the development of wearable sensors, there are still several limitations in the accuracy of the data collected, precise disease diagnosis, and early treatment. This necessitates advances in applied materials and structures and using artificial intelligence (AI)-enabled wearable sensors to extract target signals for accurate clinical decision-making and efficient medical care. In this paper, we review two significant aspects of smart wearable sensors. First, we offer an overview of the most recent progress in improving wearable sensor performance for physical, chemical, and biosensors, focusing on materials, structural configurations, and transduction mechanisms. Next, we review the use of AI technology in combination with wearable technology for big data processing, self-learning, power-efficiency, real-time data acquisition and processing, and personalized health for an intelligent sensing platform. Finally, we present the challenges and future opportunities associated with smart wearable sensors.
Collapse
Affiliation(s)
- Shaghayegh Shajari
- Center for Applied Polymers and Nanotechnology (CAPNA), Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB T2N1 N4, Canada;
- Center for Bio-Integrated Electronics (CBIE), Querrey Simpson Institute for Bioelectronics (QSIB), Northwestern University, Evanston, IL 60208, USA
| | - Kirankumar Kuruvinashetti
- Intelligent Human and Animal Assistive Devices, Department of Biomedical Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada; (K.K.); (A.K.)
- Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Amin Komeili
- Intelligent Human and Animal Assistive Devices, Department of Biomedical Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada; (K.K.); (A.K.)
- Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Uttandaraman Sundararaj
- Center for Applied Polymers and Nanotechnology (CAPNA), Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB T2N1 N4, Canada;
| |
Collapse
|
18
|
Clark KM, Ray TR. Recent Advances in Skin-Interfaced Wearable Sweat Sensors: Opportunities for Equitable Personalized Medicine and Global Health Diagnostics. ACS Sens 2023; 8:3606-3622. [PMID: 37747817 PMCID: PMC11211071 DOI: 10.1021/acssensors.3c01512] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Recent advances in skin-interfaced wearable sweat sensors enable the noninvasive, real-time monitoring of biochemical signals associated with health and wellness. These wearable platforms leverage microfluidic channels, biochemical sensors, and flexible electronics to enable the continuous analysis of sweat-based biomarkers such as electrolytes, metabolites, and hormones. As this field continues to mature, the potential of low-cost, continuous personalized health monitoring enabled by such wearable sensors holds significant promise for addressing some of the formidable obstacles to delivering comprehensive medical care in under-resourced settings. This Perspective highlights the transformative potential of wearable sweat sensing for providing equitable access to cutting-edge healthcare diagnostics, especially in remote or geographically isolated areas. It examines the current understanding of sweat composition as well as recent innovations in microfluidic device architectures and sensing strategies by showcasing emerging applications and opportunities for innovation. It concludes with a discussion on expanding the utility of wearable sweat sensors for clinically relevant health applications and opportunities for enabling equitable access to innovation to address existing health disparities.
Collapse
Affiliation(s)
- Kaylee M. Clark
- Department of Mechanical Engineering, University of Hawai’i at Mãnoa, Honolulu, HI 96822, USA
| | - Tyler R. Ray
- Department of Mechanical Engineering, University of Hawai’i at Mãnoa, Honolulu, HI 96822, USA
- Department of Cell and Molecular Biology, John. A. Burns School of Medicine, University of Hawai’i at Mãnoa, Honolulu, HI 96813, USA
| |
Collapse
|
19
|
Song Z, Zhou S, Qin Y, Xia X, Sun Y, Han G, Shu T, Hu L, Zhang Q. Flexible and Wearable Biosensors for Monitoring Health Conditions. BIOSENSORS 2023; 13:630. [PMID: 37366995 DOI: 10.3390/bios13060630] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/22/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023]
Abstract
Flexible and wearable biosensors have received tremendous attention over the past decade owing to their great potential applications in the field of health and medicine. Wearable biosensors serve as an ideal platform for real-time and continuous health monitoring, which exhibit unique properties such as self-powered, lightweight, low cost, high flexibility, detection convenience, and great conformability. This review introduces the recent research progress in wearable biosensors. First of all, the biological fluids often detected by wearable biosensors are proposed. Then, the existing micro-nanofabrication technologies and basic characteristics of wearable biosensors are summarized. Then, their application manners and information processing are also highlighted in the paper. Massive cutting-edge research examples are introduced such as wearable physiological pressure sensors, wearable sweat sensors, and wearable self-powered biosensors. As a significant content, the detection mechanism of these sensors was detailed with examples to help readers understand this area. Finally, the current challenges and future perspectives are proposed to push this research area forward and expand practical applications in the future.
Collapse
Affiliation(s)
- Zhimin Song
- Department of Anesthesiology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Shu Zhou
- Department of Anesthesiology, Jilin Cancer Hospital, Changchun 130021, China
| | - Yanxia Qin
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Xiangjiao Xia
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Yanping Sun
- School of Biomedical Engineering, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen Key Laboratory for Nano-Biosensing Technology, International Health Science Innovation Center, Research Center for Biosensor and Nanotheranostic, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Guanghong Han
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Tong Shu
- School of Biomedical Engineering, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen Key Laboratory for Nano-Biosensing Technology, International Health Science Innovation Center, Research Center for Biosensor and Nanotheranostic, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Liang Hu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Qiang Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| |
Collapse
|
20
|
Gorbachev I, Smirnov A, Ivanov GR, Venelinov T, Amova A, Datsuk E, Anisimkin V, Kuznetsova I, Kolesov V. Langmuir-Blodgett Films with Immobilized Glucose Oxidase Enzyme Molecules for Acoustic Glucose Sensor Application. SENSORS (BASEL, SWITZERLAND) 2023; 23:5290. [PMID: 37300021 PMCID: PMC10256062 DOI: 10.3390/s23115290] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023]
Abstract
In this work, a sensitive coating based on Langmuir-Blodgett (LB) films containing monolayers of 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE) with an immobilized glucose oxidase (GOx) enzyme was created. The immobilization of the enzyme in the LB film occurred during the formation of the monolayer. The effect of the immobilization of GOx enzyme molecules on the surface properties of a Langmuir DPPE monolayer was investigated. The sensory properties of the resulting LB DPPE film with an immobilized GOx enzyme in a glucose solution of various concentrations were studied. It has shown that the immobilization of GOx enzyme molecules into the LB DPPE film leads to a rising LB film conductivity with an increasing glucose concentration. Such an effect made it possible to conclude that acoustic methods can be used to determine the concentration of glucose molecules in an aqueous solution. It was found that for an aqueous glucose solution in the concentration range from 0 to 0.8 mg/mL the phase response of the acoustic mode at a frequency of 42.7 MHz has a linear form, and its maximum change is 55°. The maximum change in the insertion loss for this mode was 18 dB for a glucose concentration in the working solution of 0.4 mg/mL. The range of glucose concentrations measured using this method, from 0 to 0.9 mg/mL, corresponds to the corresponding range in the blood. The possibility of changing the conductivity range of a glucose solution depending on the concentration of the GOx enzyme in the LB film will make it possible to develop glucose sensors for higher concentrations. Such technological sensors would be in demand in the food and pharmaceutical industries. The developed technology can become the basis for creating a new generation of acoustoelectronic biosensors in the case of using other enzymatic reactions.
Collapse
Affiliation(s)
- Ilya Gorbachev
- Kotelnikov Institute of Radio Engineering and Electronics of RAS, 125009 Moscow, Russia; (I.G.); (A.S.); (E.D.); (V.A.); (V.K.)
| | - Andrey Smirnov
- Kotelnikov Institute of Radio Engineering and Electronics of RAS, 125009 Moscow, Russia; (I.G.); (A.S.); (E.D.); (V.A.); (V.K.)
| | - George R. Ivanov
- University Laboratory “Nanoscience and Nanotechnology”, University of Architecture, Civil Engineering and Geodesy, 1164 Sofia, Bulgaria; (G.R.I.); (T.V.); (A.A.)
| | - Tony Venelinov
- University Laboratory “Nanoscience and Nanotechnology”, University of Architecture, Civil Engineering and Geodesy, 1164 Sofia, Bulgaria; (G.R.I.); (T.V.); (A.A.)
| | - Anna Amova
- University Laboratory “Nanoscience and Nanotechnology”, University of Architecture, Civil Engineering and Geodesy, 1164 Sofia, Bulgaria; (G.R.I.); (T.V.); (A.A.)
| | - Elizaveta Datsuk
- Kotelnikov Institute of Radio Engineering and Electronics of RAS, 125009 Moscow, Russia; (I.G.); (A.S.); (E.D.); (V.A.); (V.K.)
| | - Vladimir Anisimkin
- Kotelnikov Institute of Radio Engineering and Electronics of RAS, 125009 Moscow, Russia; (I.G.); (A.S.); (E.D.); (V.A.); (V.K.)
| | - Iren Kuznetsova
- Kotelnikov Institute of Radio Engineering and Electronics of RAS, 125009 Moscow, Russia; (I.G.); (A.S.); (E.D.); (V.A.); (V.K.)
| | - Vladimir Kolesov
- Kotelnikov Institute of Radio Engineering and Electronics of RAS, 125009 Moscow, Russia; (I.G.); (A.S.); (E.D.); (V.A.); (V.K.)
| |
Collapse
|
21
|
Chen Y, Ma B, Zuo Y, Chen G, Hao Q, Zhao C, Liu H. Versatile sweat bioanalysis on demand with hydrogel-programmed wearables. Biosens Bioelectron 2023; 235:115412. [PMID: 37236013 DOI: 10.1016/j.bios.2023.115412] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 05/07/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023]
Abstract
Wearable sweat bioanalysis is promising for non-invasive diagnostics of diseases. However, collection of representative sweat samples without disturbing daily life and wearable bioanalysis of targets that are clinically significant are still challenging. In this work, we report on a versatile method for the sweat bioanalysis. The method is based on a thermoresponsive hydrogel which can imperceptibly absorb slowly secreted sweat without stimulation such as heat or sport exercise. The wearable bioanalysis is accomplished by programmed electric heating of hydrogel modules to 42°C to release absorbed sweat or preloaded reagents into a microfluidic detection channel. Using our method, not only one-step detection of glucose but also multi-step immunoassay of cortisol is accomplished within 1 h, even at a very low sweat rate. Our test results are also compared with those obtained with conventional blood samples and stimulated sweat samples to evaluate the applicability of our method to non-invasive clinical practice.
Collapse
Affiliation(s)
- Yichen Chen
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Biao Ma
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| | - Yinxiu Zuo
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Gangsheng Chen
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Qing Hao
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Chao Zhao
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Hong Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| |
Collapse
|
22
|
Bi Y, Sun M, Wang J, Zhu Z, Bai J, Emran MY, Kotb A, Bo X, Zhou M. Universal Fully Integrated Wearable Sensor Arrays for the Multiple Electrolyte and Metabolite Monitoring in Raw Sweat, Saliva, or Urine. Anal Chem 2023; 95:6690-6699. [PMID: 36961950 DOI: 10.1021/acs.analchem.3c00361] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
Fully integrated wearable sensors are capable of dynamically, directly, and independently tracking biomarkers in raw noninvasive biofluids without any other equipment or accessories by integrating the unique on-body monitoring feature with the special complete functional implementation attribute. Sweat, saliva, and urine are three important noninvasive biofluids, and changes in their biomarkers hold great potential for revealing physiological conditions. However, it is still a challenge to design single fully integrated wearable sensor arrays (FIWSAs) that are universally able to concurrently measure electrolytes and metabolites in three of the most common noninvasive biofluids including sweat, saliva, and urine. Here, we propose the first single universal FIWSAs for wirelessly, noninvasively, and simultaneously measuring various metabolites (i.e., uric acid) and electrolytes (i.e., Na+ and H+) in raw sweat, saliva, or urine under subjects' exercise by integrating the specifically designed microfluidic, sensing, and electronic modules in a seamless manner. We evaluate its utility for noninvasive gout management in healthy subjects and in gout patients through a purine-rich meal challenge and with a medicine-treatment control, respectively. Noninvasive monitoring of multiple electrolytes and metabolites in a variety of raw noninvasive biofluids via such single universal FIWSAs may enrich the understanding of the biomarkers' levels in the body and would also facilitate self-health management.
Collapse
Affiliation(s)
- Yanni Bi
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, National and Local United Engineering Laboratory for Power Batteries, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin Province 130024, China
| | - Mimi Sun
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, National and Local United Engineering Laboratory for Power Batteries, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin Province 130024, China
| | - Jingjuan Wang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, National and Local United Engineering Laboratory for Power Batteries, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin Province 130024, China
| | - Ziyu Zhu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, National and Local United Engineering Laboratory for Power Batteries, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin Province 130024, China
| | - Jing Bai
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, National and Local United Engineering Laboratory for Power Batteries, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin Province 130024, China
| | - Mohammed Y Emran
- Chemistry Department, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
| | - Ahmed Kotb
- Chemistry Department, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
| | - Xiangjie Bo
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, National and Local United Engineering Laboratory for Power Batteries, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin Province 130024, China
| | - Ming Zhou
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, National and Local United Engineering Laboratory for Power Batteries, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin Province 130024, China
| |
Collapse
|
23
|
Chen L, Guo X, Sun X, Zhang S, Wu J, Yu H, Zhang T, Cheng W, Shi Y, Pan L. Porous Structural Microfluidic Device for Biomedical Diagnosis: A Review. MICROMACHINES 2023; 14:547. [PMID: 36984956 PMCID: PMC10051279 DOI: 10.3390/mi14030547] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Microfluidics has recently received more and more attention in applications such as biomedical, chemical and medicine. With the development of microelectronics technology as well as material science in recent years, microfluidic devices have made great progress. Porous structures as a discontinuous medium in which the special flow phenomena of fluids lead to their potential and special applications in microfluidics offer a unique way to develop completely new microfluidic chips. In this article, we firstly introduce the fabrication methods for porous structures of different materials. Then, the physical effects of microfluid flow in porous media and their related physical models are discussed. Finally, the state-of-the-art porous microfluidic chips and their applications in biomedicine are summarized, and we present the current problems and future directions in this field.
Collapse
Affiliation(s)
| | | | - Xidi Sun
- Correspondence: (X.S.); (Y.S.); (L.P.)
| | | | | | | | | | | | - Yi Shi
- Correspondence: (X.S.); (Y.S.); (L.P.)
| | - Lijia Pan
- Correspondence: (X.S.); (Y.S.); (L.P.)
| |
Collapse
|
24
|
Ketone bodies detection: Wearable and mobile sensors for personalized medicine and nutrition. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|