1
|
Zheng CY, Qian HL, Yang C, Yan XP. Design of Self-Standing Chiral Covalent-Organic Framework Nanochannel Membrane for Enantioselective Sensing. SMALL METHODS 2025; 9:e2401120. [PMID: 39487650 DOI: 10.1002/smtd.202401120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/23/2024] [Indexed: 11/04/2024]
Abstract
Nanochannel membranes are promising materials for enantioselective sensing. However, it is difficult to make a compromise between the selectivity and permeability in traditional nanochannel membranes. Therefore, new types of nanochannel membranes with high enantioselectivity and excellent permeability should be explored for chiral analysis. Here, asymmetric catalysis strategy is reported for interfacial polymerization synthesis of chiral covalent-organic framework (cCOF) nanochannel membrane for enantioselective sensing. Chiral phenylethylamine (S/R-PEA) and 2,4,6-triformylphloroglucinol (TP) are used to prepare chiral TP monomer. 4,4',4″-triaminotriphenylamine (TAPA) is then condensed with chiral TP to obtain cCOF nanochannel membrane via a C═N Schiff-base reaction. The molar ratio of TP to S/R-PEA is adjusted so that S/R-PEA is bound to the aldehyde only or both the aldehyde and hydroxyl groups on TP to obtain chiral-induced COF (cCOF-1) or both chiral-induced and modified COF (cCOF-2) nanochannel membrane, respectively. The prepared cCOF-2 nanochannel membrane showed two times more selectivity for limonene enantiomers than cCOF-1 nanochannel membrane. Furthermore, cCOF-2 nanochannel platform exhibited excellent sensing performance for other chiral molecules such as limonene, propanediol, methylbutyric acid, ibuprofen, and naproxen (limits of detection of 19-42 ng L-1, enantiomer excess of 63.6-86.3%). This work provides a promising way to develop cCOF-based nanochannel enantioselective sensor.
Collapse
Affiliation(s)
- Chen-Yan Zheng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Hai-Long Qian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Cheng Yang
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Xiu-Ping Yan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
2
|
Ge L, Li X, Zhu G, Niu B, Chen Q, Zhong D, Sun X. Recent developments and applications of solid membrane in chiral separation. J Chromatogr A 2025; 1743:465652. [PMID: 39827785 DOI: 10.1016/j.chroma.2025.465652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/09/2024] [Accepted: 01/02/2025] [Indexed: 01/22/2025]
Abstract
Chirality is a fundamental property in nature, and chiral molecules are closely related to human health and the origin of life. Therefore, the exploration and preparation of optically active compounds of paramount importance. Membrane separation is a large-scale and continuous separation technique that has been developing quickly in recent years. It has many potential applications, particularly in chiral membrane separation technology, which is currently a hotspot for study. Depending on the types of membranes, chiral membranes can be divided into two categories: chiral solid membranes and chiral liquid membranes. Solid membranes outperform the others in terms of better mechanical performance and separation efficiency. This review presents in-depth summaries of chiral solid membranes made of different materials, and their applications in drug separation. It also providing insights into the potential for the future development of chiral solid membranes.
Collapse
Affiliation(s)
- Li Ge
- Shanghai Engineering Research Center of Organ Repair, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Medicine, Shanghai University, Shanghai 200444, China
| | - Xinyu Li
- Shanghai Engineering Research Center of Organ Repair, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Medicine, Shanghai University, Shanghai 200444, China
| | - Gege Zhu
- Shanghai Engineering Research Center of Organ Repair, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Medicine, Shanghai University, Shanghai 200444, China
| | - Bing Niu
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Qin Chen
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Dan Zhong
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Xiaodong Sun
- Shanghai Engineering Research Center of Organ Repair, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Medicine, Shanghai University, Shanghai 200444, China; Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
3
|
Mirza S, Ateeq M, Fazil P, Zada A, Ahmad MS. Carbon-Based Nanoporous Homochiral MOF as a Highly Efficient Platform for Chiral Recognition and Enantioselective Electrooxidation. CRYSTAL GROWTH & DESIGN 2025; 25:903-911. [DOI: 10.1021/acs.cgd.4c00674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2025]
Affiliation(s)
- Salma Mirza
- Dow University of Health Sciences
- University of Chinese Academy of Sciences
| | | | | | - Amir Zada
- Department of Chemistry
- Abdul Wali Khan University
| | - Malik Shoaib Ahmad
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences
- University of Karachi
| |
Collapse
|
4
|
Wu Q, Chen Y, Wang YL, Song JY, Lv HT, Sun YM. Dual emission chiral carbon dots as fluorescent probe for fast chiral recognition of tryptophan enantiomers. Anal Chim Acta 2025; 1334:343414. [PMID: 39638463 DOI: 10.1016/j.aca.2024.343414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 11/11/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Chirality is an essential property of nature. Chiral recognition is of great significance to life sciences, pharmaceutical industry, food analysis, and so on. Chiral carbon dots (CCDs), as green nanomaterials, have great prospects in chiral sensing. However, CCDs with enantioselectivity for tryptophan (Trp) enantiomers are scarce. Moreover, most chiral sensing platforms depend on the difference of fluorescence intensity at the same emission wavelength to identify enantiomers, it is still a challenge to distinguish enantiomers by the positions of fluorescent emission peaks. RESULTS Novel CCDs with specific chiral recognition ability for Trp enantiomers are synthesized using l-lysine and l-cysteine as precursors. The CCDs have two fluorescent emission peaks at 390 nm and 450 nm. Interestingly, the fluorescence intensity of CCDs at 390 nm enhances obviously on the addition of L-Trp, while it enhances slightly at 450 nm in the presence of D-Trp. This chiral sensing system not only can identify Trp enantiomers according to fluorescence intensity, but also achieves the distinguishment depending on emission wavelength. The enantioselectivity (IL/ID) reaches 4.5 when the concentration of Trp enantiomer is 1 mM. This chiral sensing platform not only can be used for quantitative analysis of D-Trp and L-Trp, but also can be used for determining the enantiomeric excess of racemates. The chiral recognition mechanism is investigated by molecular simulation. It is found that L-Trp has higher binding energy with CCDs. SIGNIFICANCE This work presents a novel kind of CCDs with special chiral recognition performance for Trp enantiomers, and opens the door to identify chiral isomers according to wavelength difference, which has profound significance for the development of chiral sensing platforms, and may provide inspirations for the design of novel CCDs with excellent chiral recognition performance.
Collapse
Affiliation(s)
- Qi Wu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Yuan Chen
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yan-Li Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ji-Ying Song
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Hai-Tao Lv
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ya-Ming Sun
- National Engineering Laboratory/Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou, 450001, China.
| |
Collapse
|
5
|
Qin Y, Li D, Yao T, Ali A, Wu J, Yao S. Covalent organic frameworks and related innovative materials in chiral separation and recognition. Biomed Chromatogr 2024; 38:e6008. [PMID: 39317421 DOI: 10.1002/bmc.6008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 09/26/2024]
Abstract
Chiral recognition and enantioseparation are of paramount importance in various fields, including pharmaceuticals, agrochemicals, and material science. Covalent organic frameworks (COFs) have emerged as promising materials for chiral separation due to their unique structural features and tunable properties. This review provided a comprehensive overview of recent progress in the application of COFs and related innovative materials for chiral separation and recognition. Various strategies were analyzed for the design and synthesis of chiral COFs, including the incorporation of chiral building blocks, post-synthetic modification, and the integration of chiral selectors. The applications of chiral COFs in chromatographic techniques, membrane separations, and other emerging methods were critically evaluated with the emphasis on their advantages and limitations. Additionally, the review summarized the potential of combining COFs with other nanomaterials, such as metal-organic frameworks (MOFs) and nanoparticles, to enhance chiral recognition and separation performance. The fundamental principles and mechanisms of chiral recognition were discussed, highlighting the role of chiral selectors and their interactions with enantiomers. Finally, current challenges and future perspectives in this field were discussed, providing insights into the development of more efficient and versatile chiral separation systems based on COFs and related materials.
Collapse
Affiliation(s)
- Yuxin Qin
- School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Dan Li
- School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Tian Yao
- School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Ahmad Ali
- School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Jieyu Wu
- School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Shun Yao
- School of Chemical Engineering, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Wu MY, Mo RJ, Chen S, Rafique S, Bian SJ, Tang YJ, Li ZQ, Xia XH. Beta-Cyclodextrin-Modified Covalent Organic Framework Nanochannel for Electrochemical Chiral Recognition of Amino Acids. Anal Chem 2024; 96:17665-17671. [PMID: 39440736 DOI: 10.1021/acs.analchem.4c03716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
The chiral recognition and separation of enantiomers are of great importance for biological research and the pharmaceutical industry. Preparing homochiral materials with adjustable size and chiral binding sites is beneficial for achieving an efficient chiral recognition performance. Here, a homochiral covalent organic framework membrane modified with β-cyclodextrin (CD-COF) was constructed, which was subsequently utilized as an electrochemical sensor for the enantioselective sensing of tryptophan (Trp) molecules. The preferential adsorption of l-Trp over d-Trp at the β-CD sites can enhance the surface charge density and hydrophilicity of the CD-COF membrane, resulting in an increased transmembrane ionic current. Trp enantiomers with concentrations down to 0.28 nM can be effectively discriminated. The l-/d-Trp recognition selectivity increases with the Trp concentration and reaches a value of 19.2 at 1 mM. The selective adsorption of l-Trp to the CD-COF membrane will also hinder its transport, resulting in a l-/d-Trp permeation selectivity of 15.3. This study offers a new strategy to construct homochiral porous membranes and achieve efficient chiral sensing and separation.
Collapse
Affiliation(s)
- Ming-Yang Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- School of Biological and Chemical Engineering, Yangzhou Polytechnic College, Yangzhou 225126, China
| | - Ri-Jian Mo
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Shuang Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Saima Rafique
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Si-Jia Bian
- School of Biological and Chemical Engineering, Yangzhou Polytechnic College, Yangzhou 225126, China
| | - You-Jie Tang
- School of Biological and Chemical Engineering, Yangzhou Polytechnic College, Yangzhou 225126, China
| | - Zhong-Qiu Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xing-Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
7
|
Yi W, Xiao J, Shi Z, Zhang C, Yi L, Lu Y, Wang X. Glass nano/micron pipette-based ion current rectification sensing technology for single cell/ in vivo analysis. Analyst 2024; 149:4981-4996. [PMID: 39311536 DOI: 10.1039/d4an00899e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Glass nano/micron pipettes, owing to their easy preparation, unique confined space at the tip, and modifiable inner surface of the tip, can capture the ion current signal caused by a single entity, making them widely used in the construction of highly sensitive and highly selective electrochemical sensors for single entity analysis. Compared with other solid-state nanopores, their conical nano-tip causes less damage to cells when inserted into them, thereby becoming a powerful tool for the in situ analysis of important substances in cells. However, glass nanopipettes have some shortcomings, such as poor mechanical properties, difficulty in precise preparation (aperture less than 50 nm), and easy blockage during complex real sample detection, limiting their practicability. Therefore, in recent years, researchers have conducted a series of studies on glass micropipettes. Ionic current rectification technology is a novel electrochemical analysis technique. Compared with traditional electrochemical analysis methods, it does not generate redox products during the detection process; therefore, it can not only be used for the determination of non-electrochemically active substances, but also causes less damage to the cell/living body in situ analysis, becoming a powerful analysis technology for the in situ analysis of cells/in vivo in recent years. In this review, we summarize the preparation and functionalization of glass nano/micron pipettes and introduce the sensing mechanisms of two electrochemical sensing platforms constructed using glass nano/micron pipette-based ion current rectification sensing technology as well as their applications in single cell/in vivo analysis, existing problems, and future prospects.
Collapse
Affiliation(s)
- Wei Yi
- School of Biology and Chemistry, Minzu Normal University of Xingyi, Xingyi 562400, P. R. China.
| | - Junxiong Xiao
- College of Physics, Guizhou Province Key Laboratory for Photoelectrics Technology and Application, Guizhou University, Guiyang 550025, P. R. China
| | - Zhenyu Shi
- School of Biology and Chemistry, Minzu Normal University of Xingyi, Xingyi 562400, P. R. China.
| | - Changbo Zhang
- School of Biology and Chemistry, Minzu Normal University of Xingyi, Xingyi 562400, P. R. China.
| | - Lanhua Yi
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, School of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China.
| | - Yebo Lu
- College of Information Science and Engineering, Jiaxing University, Jiaxing 314001, P. R. China.
| | - Xingzhu Wang
- The Engineering and Research Center for Integrated New Energy Photovoltaics and Energy Storage Systems of Hunan Province and School of Electrical Engineering, University of South China, Hengyang 421001, P. R. China.
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, P. R. China.
| |
Collapse
|
8
|
Yun X, Wang L, Wang J. Enantioseparation of six profenoid drugs by capillary electrophoresis with bovine serum albumin-modified gold nanoparticles as quasi-stationary phases. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1243:124228. [PMID: 38959706 DOI: 10.1016/j.jchromb.2024.124228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/14/2024] [Accepted: 06/29/2024] [Indexed: 07/05/2024]
Abstract
Profenoid drugs are a kind of common non-steroidal anti-inflammatory drugs and their chiral enantiomers often have huge differences in pharmacological activities. In this work, a novel chiral separation system by capillary electrophoresis (CE) was constructed using gold nanoparticles (AuNPs) functionalized with bovine serum albumin (BSA) as a quasi-stationary phase (QSP), and the enantioseparation of six profenoid drugs was efficiently accomplished. Under optimal chromatographic conditions, the enantioseparation performance of the AuNP@BSA-based chiral separation system was greatly improved compared with that of free BSA (Resolutions, Ibuprofen: 0.89 → 8.15; Ketoprofen: 0 → 10.02; Flurbiprofen:0.56 → 9.83; Indoprofen: 0.88 → 13.83; Fenoprofen: 0 → 15.21; Pyranoprofen: 0.59 → 5.34). Such high Rs are exciting and satisfying and it is in the leading position in the reported papers. Finally, through molecular docking, it was also found that the difference in binding energy between BSA and enantiomers was closely related to the resolutions of CE systems, revealing the chiral selection mechanism of BSA. This work significantly improves the CE chiral separation performance through a simple strategy, providing a simple and efficient idea for the chiral separation method.
Collapse
Affiliation(s)
- Xiao Yun
- Shanxi Eye Hospital, Taiyuan 030002, PR China
| | - Lele Wang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030600, Shanxi, PR China; Key Laboratory of Forensic Medicine in Shanxi Province, Jinzhong 030600, Shanxi, PR China; Key Laboratory of Forensic Toxicology of Ministry of Public Security, Jinzhong 030600, Shanxi, PR China
| | - Jing Wang
- Shanxi Eye Hospital, Taiyuan 030002, PR China.
| |
Collapse
|
9
|
Li T, Li H, Chen J, Yu Y, Chen S, Wang J, Qiu H. Preparation and evaluation of two chiral stationary phases based on imidazolyl-functionalized bromoethoxy pillar[5]arene-bonded silica. J Chromatogr A 2024; 1720:464799. [PMID: 38458140 DOI: 10.1016/j.chroma.2024.464799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/10/2024]
Abstract
Chiral pillar[5]arene-based mesoporous silica, an emerging class of chiral structure, possesses excellent characteristics such as abundant chiral active sites, encapsulated cavity and excellent chiral modification, which make them a promising candidate as new chiral stationary phases (CSPs) in enantioseparation. In this study, two imidazole-containing (S)-1-(4-phenyl-1H-imidazol-2-yl)ethanamine and (S)-Histidinol were respectively modified to bromoethoxy pillar[5]arene-bonded silica to construct new chiral stationary phases (sPIE-BP5-Sil and sHol-BP5-Sil) for the separation and analysis of enantiomers. The separation conditions such as mobile phase composition, flow rate and temperature were optimized. Under optimal conditions, both sPIE-BP5-Sil and sHol-BP5-Sil showed good separation performance for different types of enantiomers. Interestingly, sPIE-BP5-Sil and sHol-BP5-Sil showed better enantioselectivity for chiral aromatic compounds and chiral aliphatic compounds, respectively. This enantioseparation result was closely related to the presence of additional aromatic rings and abundant hydroxyl groups in the side chains of the two chiral groups. In addition, the enantioseparation process was further studied by molecular docking simulation. Therefore, this work provided a new strategy for the preparation and application of imidazolyl-derived pillar[5]arene-based chiral stationary phases, which can be efficiently used for screening and separating enantiomers.
Collapse
Affiliation(s)
- Tong Li
- Department of Chemistry, Research Center for Analytical Sciences, College of Sciences, Northeastern University, Shenyang 110819, China; CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Hui Li
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Jia Chen
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yongliang Yu
- Department of Chemistry, Research Center for Analytical Sciences, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Shuai Chen
- Department of Chemistry, Research Center for Analytical Sciences, College of Sciences, Northeastern University, Shenyang 110819, China.
| | - Jianhua Wang
- Department of Chemistry, Research Center for Analytical Sciences, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Hongdeng Qiu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| |
Collapse
|