1
|
Aliouat H, Zhang D, Peng L, Huang J, Cheng H, Zhu J, Chen X, Xie N, Zhou W, Zhao S. Targeted DNA Nanomachine Enables Specific miRNA-Responsive Singlet Oxygen Amplification for Precise Cutaneous Squamous Cancer Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2415296. [PMID: 40116278 PMCID: PMC12097105 DOI: 10.1002/advs.202415296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/05/2025] [Indexed: 03/23/2025]
Abstract
Photodynamic therapy (PDT) is a promising strategy for the treatment of skin-related tumors including cutaneous squamous cells carcinoma (cSCC). However, it is hard to balance the dosage off-target phototoxicity while maintaining satisfactory therapeutic effect. In addition, oxygen-dependent photosensitizers (PSs) are affected by tumor hypoxic environment, which further causes inefficient photocatalysis and reduces therapeutic effect. Herein, an intelligent DNA nanomachine based on tetrahedral DNA framework is proposed, incorporated with tumor-targeted aptamer and specific miRNA-responsive hairpin DNA catalytic assembly (HCA), for precise and high-efficient therapy of cSCC. After aptamer-mediated targeted delivery, a cSCC-specific miRNA selected by tissue sequencing analysis is used to activateHCA, for amplifying PSs and controllably releasing chemotherapeutic drugs. Sequential recognition can greatly improve tumor-specific accumulation and high-dose activation. Moreover, hemin is incorporated into DNA to catalytically produce oxygen. In vitro and in vivo experiments demonstrated that this DNA nanomachine greatly improved anti-tumor effect and realized effective ablation of cSCC in mice, with barely systemic toxicity and inflammation. It is anticipated that this strategy will promote biomedical applications of tumor-specific miRNA and provide a promising option for the non-invasive treatment of skin-associated tumors.
Collapse
Affiliation(s)
- Hanane Aliouat
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410013China
| | - Detian Zhang
- Department of DermatologyHunan Engineering Research Center of Skin Health and DiseaseHunan Key Laboratory of Skin Cancer and PsoriasisXiangya HospitalCentral South UniversityChangshaHunan410008China
- Hangzhou Innovation InstituteBeihang UniversityHangzhouZhejiang310053China
| | - Lanyuan Peng
- Department of DermatologyHunan Engineering Research Center of Skin Health and DiseaseHunan Key Laboratory of Skin Cancer and PsoriasisXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Jiaxin Huang
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410013China
| | - Hongshi Cheng
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410013China
| | - Jiaojiao Zhu
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410013China
| | - Xiang Chen
- Department of DermatologyHunan Engineering Research Center of Skin Health and DiseaseHunan Key Laboratory of Skin Cancer and PsoriasisXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Nuli Xie
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410013China
| | - Wenhu Zhou
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410013China
| | - Shuang Zhao
- Department of DermatologyHunan Engineering Research Center of Skin Health and DiseaseHunan Key Laboratory of Skin Cancer and PsoriasisXiangya HospitalCentral South UniversityChangshaHunan410008China
| |
Collapse
|
2
|
Su Y, Zhang Z, Zhang H. A dual-mode biosensor for microRNA detection based on DNA tetrahedron-gated nanochannels. Mikrochim Acta 2025; 192:94. [PMID: 39827251 DOI: 10.1007/s00604-025-06950-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 01/01/2025] [Indexed: 01/22/2025]
Abstract
A biosensor based on solid-state nanochannels of anodic aluminum oxide (AAO) membrane for both electrochemical and naked-eye detection of microRNA-31 (MiR-31) is proposed. For this purpose, MoS2 nanosheets, which possess different adsorption capabilities to single-stranded and double-stranded nucleic acids, are deposited onto the top surface of the AAO membrane. Moreover, multi-functional DNA nanostructure have been designed by linking a G-rich sequence for folding to a G-quadruplex at three vertices and a complementary sequence of MiR-31 at the other one vertex of a DNA tetrahedron. In the absence of MiR-31, the tetrahedron DNAzyme probe formed after the addition of hemin can mediate the deposition of insoluble on MoS2/AAO, which not only enables the color change of the membrane but also gates the transport of K3[Fe(CN)6] across the nanochannels. Therefore, the detection of MiR-31 is realized by both visual observation of the brown color and measuring the electrochemical redox current of [Fe(CN)6]3-. Using this biosensor, a detection limit as low as 0.06 fM is achieved. The dual-mode detection method also exhibits good specificity, reproducibility, and stability, demonstrating potential application in the diagnosis of oral squamous cell carcinoma and other related biological purposes.
Collapse
Affiliation(s)
- Yuan Su
- Key Laboratory of Synthetic and Natural Functional Molecule, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, People's Republic of China
| | - Ziyu Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, People's Republic of China
| | - Hongfang Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, People's Republic of China.
| |
Collapse
|
3
|
Luo L, Li J, Zhou Y, Xiang D, Luan Y, Wang Q, Huang J, Liu J, Yang X, Wang K. Spatially Controlled DNA Frameworks for Sensitive Detection and Specific Isolation of Tumor Cells. Angew Chem Int Ed Engl 2024; 63:e202411382. [PMID: 39405000 DOI: 10.1002/anie.202411382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/14/2024] [Indexed: 11/13/2024]
Abstract
High-affinity, specific, and sensitive probes are crucial for the specific recognition and identification of tumor cells from complex matrices. Multivalent binding is a powerful strategy, but the irrational spatial distribution of the functional moieties may reduce the probe performance. Here, we constructed a Janus DNA triangular prism nanostructure (3Zy1-JTP-3) for sensitive detection and specific isolation of tumor cells. Benefiting from spatial features of the triangular prism, the fluorescence intensity induced by 3Zy1-JTP-3 was almost 4 times that of the monovalent structure. Moreover, the DNA triangular prisms were connected to form hand-in-hand multivalent DNA triangular prism structures (Zy1-MTP), in which the fluorescence intensity and affinity were increased to 9-fold and 10-fold of 3Zy1-JTP-3, respectively. Furthermore, 3Zy1-JTP-3 and Zy1-MTP were combined with magnetic beads, and the latter showed higher capture efficiency (>90 %) in whole blood. This work provides a new strategy for the efficient capture of rare cells in complex biological samples.
Collapse
Affiliation(s)
- Lei Luo
- State key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, China
| | - Jiaojiao Li
- State key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, China
| | - Yuan Zhou
- State key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, China
| | - Dongliu Xiang
- State key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, China
| | - Yanan Luan
- State key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, China
| | - Qing Wang
- State key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, China
| | - Jin Huang
- State key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, China
| | - Jianbo Liu
- State key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, China
| | - Xiaohai Yang
- State key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, China
| | - Kemin Wang
- State key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, China
| |
Collapse
|
4
|
Su Y, Zhang Y, Zhang H. MicroRNA Triggered Dimerization of DNA Tetrahedron for Enhanced Biosensing Performance of Solid-State Nanochannels Functionalized with MoS 2 Nanosheets. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39568129 DOI: 10.1021/acsami.4c15462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Solid-state nanochannels (SSN) have great development potential as a biosensing interface. The integration of two-dimensional nanomaterials with nanochannels endows SSN with diverse properties, including distinguishing DNA nanostructures. In this study, by modifying MoS2 nanosheets, the outer surface of SSN could be endowed with robust adsorption properties for single-stranded DNA. Therefore, DNA tetrahedrons connected with single-stranded DNA could remain on the SSN surface, whereas DNA tetrahedron dimers with full double-stranded structures formed by the presence of target microRNA cannot be retained on the surface of nanochannels. The change in the DNA nanostructure generated by the target recognition process could cause variations of steric hindrance and electrostatic repulsion on the surface of the SSN. The variations were reflected by the free diffusion flux of [Fe(CN)6]3-. Then, the sensitive electrochemical detection method for microRNA was established, and the detection limit of the method for microRNA-31 was as low as 0.5 fM. The study provided a promising approach for the ultrasensitive detection of biomarkers, thereby offering potential means for early diagnosis of the related diseases.
Collapse
Affiliation(s)
- Yuan Su
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Yifan Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Hongfang Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| |
Collapse
|
5
|
Hu M, Yingyu Z, Zhang M, Wang Q, Cheng W, Hou L, Yuan J, Yu Z, Li L, Zhang X, Zhang W. Functionalizing tetrahedral framework nucleic acids-based nanostructures for tumor in situ imaging and treatment. Colloids Surf B Biointerfaces 2024; 240:113982. [PMID: 38788473 DOI: 10.1016/j.colsurfb.2024.113982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/13/2024] [Accepted: 05/20/2024] [Indexed: 05/26/2024]
Abstract
Timely in situ imaging and effective treatment are efficient strategies in improving the therapeutic effect and survival rate of tumor patients. In recent years, there has been rapid progress in the development of DNA nanomaterials for tumor in situ imaging and treatment, due to their unsurpassed structural stability, excellent material editability, excellent biocompatibility and individual endocytic pathway. Tetrahedral framework nucleic acids (tFNAs), are a typical example of DNA nanostructures demonstrating superior stability, biocompatibility, cell-entry performance, and flexible drug-loading ability. tFNAs have been shown to be effective in achieving timely tumor in situ imaging and precise treatment. Therefore, the progress in the fabrication, characterization, modification and cellular internalization pathway of tFNAs-based functional systems and their potential in tumor in situ imaging and treatment applications were systematically reviewed in this article. In addition, challenges and future prospects of tFNAs in tumor in situ imaging and treatment as well as potential clinical applications were discussed.
Collapse
Affiliation(s)
- Minghui Hu
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| | - Zhang Yingyu
- Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Mengxin Zhang
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| | - Qionglin Wang
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| | - Weyland Cheng
- Henan International Joint Laboratory for Prevention and Treatment of Pediatric Disease, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| | - Ligong Hou
- Henan International Joint Laboratory for Prevention and Treatment of Pediatric Disease, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| | - Jingya Yuan
- Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Zhidan Yu
- Henan International Joint Laboratory for Prevention and Treatment of Pediatric Disease, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| | - Lifeng Li
- Henan International Joint Laboratory for Prevention and Treatment of Pediatric Disease, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| | - Xianwei Zhang
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China.
| | - Wancun Zhang
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China; Henan International Joint Laboratory for Prevention and Treatment of Pediatric Disease, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China; Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China.
| |
Collapse
|
6
|
Li M, Luo H, Wang Z, Mo Q, Zhong S, Mao YA, Li S, Li X. Tuning quantum dots emission on DNA tetrahedron/silica nanosphere/graphene oxide nanointerface for ratiometric fluorescence assay of Pb 2+ in multiplex samples. Anal Chim Acta 2024; 1310:342716. [PMID: 38811135 DOI: 10.1016/j.aca.2024.342716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 04/23/2024] [Accepted: 05/09/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND Assembling framework nucleic acid (FNA) nanoarchitectures and tuning luminescent quantum dots (QDs) for fluorescence assays represent a versatile strategy in analytical territory. Rationally, FNA constructs could offer a preferential orientation to efficiently recognize the target and improve detection sensitivity, meanwhile, regulating size-dependent multicolor emissions of QDs in one analytical setting for ratiometric fluorescence assay would greatly simplify operation procedures. Nonetheless, such FNA/QDs-based ratiometric fluorescence nanoprobes remain rarely explored. RESULTS We designed a sensitive and signal amplification-free fluorescence aptasensor for lead ions (Pb2+) that potentially cause extensive contamination to environment, cosmetic, food and pharmaceuticals. Red and green emission CdTe quantum dots (rQDs and gQDs) were facilely prepared. Moreover, silica nanosphere encapsulating rQDs served as quantitative internal reference and scaffold to anchor a predesigned FNA and DNA sandwich containing Pb2+ binding aptamer and gQD modified DNA signal reporter. On binding of Pb2+, the gQD-DNA signal reporter was set free, resulting in fluorescence quenching at graphene oxide (GO) interface. Owing to the rigid structure of FNA, the fluorescence signal reporter orderly arranged at the silica nanosphere could sensitively respond to Pb2+ stimulation. The dose-dependent fluorescence signal-off mode enabled ratiometric analysis of Pb2+ without cumbersome signal amplification. Linear relationship was established between fluorescence intensity ratio (I555/I720) and Pb2+ concentration from 10 nM to 2 μM, with detection limit of 1.7 nM (0.43 ppb), well addressing the need for Pb2+ routine monitoring. The designed nanoprobe was applied to detection of Pb2+ in soil, cosmetic, milk, drug, and serum samples, with the sensitivity comparable to conventional ICP-MS technique. SIGNIFICANCE Given the programmable design of FNA and efficient recognition of target, flexible tuning of QDs emission, and signal amplification-free strategy, the present fluorescence nanoprobe could be a technical criterion for other heavy metal ions detection in a straightforward manner.
Collapse
Affiliation(s)
- Manting Li
- Guangxi Key Laboratory of Pharmaceutical Precision Detection and Screening, Pharmaceutical College, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, China; Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Pharmaceutical College, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, China
| | - Haikun Luo
- Guangxi Key Laboratory of Pharmaceutical Precision Detection and Screening, Pharmaceutical College, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, China
| | - Zhao Wang
- Guangxi Key Laboratory of Pharmaceutical Precision Detection and Screening, Pharmaceutical College, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, China
| | - Qian Mo
- Guangxi Key Laboratory of Pharmaceutical Precision Detection and Screening, Pharmaceutical College, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, China
| | - Shanshan Zhong
- Guangxi Key Laboratory of Pharmaceutical Precision Detection and Screening, Pharmaceutical College, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, China
| | - Yu-Ang Mao
- Guangxi Key Laboratory of Pharmaceutical Precision Detection and Screening, Pharmaceutical College, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, China.
| | - Shuting Li
- Guangxi Key Laboratory of Pharmaceutical Precision Detection and Screening, Pharmaceutical College, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, China
| | - Xinchun Li
- Guangxi Key Laboratory of Pharmaceutical Precision Detection and Screening, Pharmaceutical College, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, China; Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Pharmaceutical College, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, China; State Key Laboratory of Targeting Oncology, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, China.
| |
Collapse
|
7
|
Mansouri S, Alharbi Y, Alqahtani A. Nanomaterials Connected to Bioreceptors to Introduce Efficient Biosensing Strategy for Diagnosis of the TORCH Infections: A Critical Review. Crit Rev Anal Chem 2024:1-18. [PMID: 38193140 DOI: 10.1080/10408347.2023.2301649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
TORCH infection is a significant risk factor for severe fetal damage, especially congenital malformations. Screening pregnant women for TORCH pathogens could reduce the incidence of adverse pregnancy outcomes and prevent birth defects. Hence, timely identification and inhibition of TORCH infections are effective ways to successfully prevent them in pregnant women. Recently, the superiority of biosensors in TORCH pathogen sensing has been emphasized due to their intrinsic benefits, such as rapid response time, portability, cost-effectiveness, much friendlier preparation and determination steps. With the introduction of advanced nanomaterials into biosensing, the diagnostic properties of biosensors have significantly improved. This study core presents and debates the current progress in biosensing systems for TORCH pathogens using various artificial and natural receptors. The incorporation of nanomaterials into various transduction systems can enhance diagnostic performance. The key performance characteristics of optical and electrochemical biosensors, such as response time, limit of detection (LOD), and linear detection range, are systematically discussed, along with the current TORCH pathogens used for constructing biosensors. Finally, the major problems that exist for converting scientific investigation into product development are also outlined.
Collapse
Affiliation(s)
- Sofiene Mansouri
- Department of Biomedical Technology, College of Applied Medical Sciences in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
- Laboratory of Biophysics and Medical Technologies, University of Tunis El Manar, Higher Institute of Medical Technologies of Tunis, Tunis, Tunisia
| | - Yousef Alharbi
- Department of Biomedical Technology, College of Applied Medical Sciences in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Abdulrahman Alqahtani
- Department of Biomedical Technology, College of Applied Medical Sciences in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
- Department of Medical Equipment Technology, College of Applied, Medical Science, Majmaah University, Majmaah City, Saudi Arabia
| |
Collapse
|
8
|
Wu Y, Feng J, Hu G, Zhang E, Yu HH. Colorimetric Sensors for Chemical and Biological Sensing Applications. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23052749. [PMID: 36904948 PMCID: PMC10007638 DOI: 10.3390/s23052749] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 06/12/2023]
Abstract
Colorimetric sensors have been widely used to detect numerous analytes due to their cost-effectiveness, high sensitivity and specificity, and clear visibility, even with the naked eye. In recent years, the emergence of advanced nanomaterials has greatly improved the development of colorimetric sensors. This review focuses on the recent (from the years 2015 to 2022) advances in the design, fabrication, and applications of colorimetric sensors. First, the classification and sensing mechanisms of colorimetric sensors are briefly described, and the design of colorimetric sensors based on several typical nanomaterials, including graphene and its derivatives, metal and metal oxide nanoparticles, DNA nanomaterials, quantum dots, and some other materials are discussed. Then the applications, especially for the detection of metallic and non-metallic ions, proteins, small molecules, gas, virus and bacteria, and DNA/RNA are summarized. Finally, the remaining challenges and future trends in the development of colorimetric sensors are also discussed.
Collapse
Affiliation(s)
- Yu Wu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Jing Feng
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Guang Hu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - En Zhang
- Chongqing Institute for Food and Drug Control, Chongqing 401121, China
| | - Huan-Huan Yu
- Chongqing Institute for Food and Drug Control, Chongqing 401121, China
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
9
|
Tungsirisurp S, O'Reilly R, Napier R. Nucleic acid aptamers as aptasensors for plant biology. TRENDS IN PLANT SCIENCE 2023; 28:359-371. [PMID: 36357246 DOI: 10.1016/j.tplants.2022.10.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 09/23/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Our knowledge of cell- and tissue-specific quantification of phytohormones is heavily reliant on laborious mass spectrometry techniques. Genetically encoded biosensors have allowed spatial and some temporal quantification of phytohormones intracellularly, but there is still limited information on their intercellular distributions. Here, we review nucleic acid aptamers as an emerging biosensing platform for the detection and quantification of analytes with high affinity and specificity. Options for DNA aptamer technology are explained through selection, sequencing analysis and techniques for evaluating affinity and specificity, and we focus on previously developed DNA aptamers against various plant analytes. We suggest how these tools might be applied in planta for quantification of molecules of interest both intracellularly and intercellularly.
Collapse
Affiliation(s)
| | - Rachel O'Reilly
- School of Chemistry, University of Birmingham, Birmingham B15 2TT, UK
| | - Richard Napier
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK.
| |
Collapse
|
10
|
Sun Y, Qi S, Dong X, Qin M, Ding N, Zhang Y, Wang Z. Colorimetric aptasensor for fumonisin B 1 detection based on the DNA tetrahedra-functionalized magnetic beads and DNA hydrogel-coated bimetallic MOFzyme. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130252. [PMID: 36327850 DOI: 10.1016/j.jhazmat.2022.130252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/07/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
The toxicity and incidence of fumonisin B1 (FB1) pose a major challenge to public health and the environment, prompting the development of alternative quantitative strategies for FB1. Herein, a colorimetric aptasensor was constructed based on DNA tetrahedra-functionalized magnetic beads (MBs) and DNA hydrogel-coated Mn-Zr bimetallic metal-organic frameworks-based nanozyme (MOFzyme). Initially, MBs functionalized by DNA tetrahedra demonstrated excellent capturing capability for FB1. Along with the capture of FB1, catalyst DNA (C) was released into the supernatant. Aided by fuel DNA (F), C can trigger continuous cleavage of the main chains and cross-linking points of the DNA hydrogel through an entropy-driven DNA circuit integrated into the hydrogel coating. Subsequently, the bimetallic MOFzyme encapsulated inside the DNA hydrogel was exposed and exerted its superb peroxidase-like activity, producing a colorimetric signal whose intensity was positively dependent on the amount of FB1. The developed aptasensor exhibited good linearity in the range of 5 × 10-4 to 50 ng mL-1 with a limit of detection (LOD) of 0.38 pg mL-1, and reasonable specificity in different matrices. Furthermore, the aptasensor was successfully applied to quantify FB1 in actual samples with recoveries fell within 92.25 %- 108.00 %, showing its great potential in environmental monitoring and food safety.
Collapse
Affiliation(s)
- Yuhan Sun
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shuo Qi
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiaoze Dong
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Mingwei Qin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Ning Ding
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yin Zhang
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu 610106, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu 610106, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
11
|
Zhou X, Lin S, Yan H. Interfacing DNA nanotechnology and biomimetic photonic complexes: advances and prospects in energy and biomedicine. J Nanobiotechnology 2022; 20:257. [PMID: 35658974 PMCID: PMC9164479 DOI: 10.1186/s12951-022-01449-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/05/2022] [Indexed: 11/16/2022] Open
Abstract
Self-assembled photonic systems with well-organized spatial arrangement and engineered optical properties can be used as efficient energy materials and as effective biomedical agents. The lessons learned from natural light-harvesting antennas have inspired the design and synthesis of a series of biomimetic photonic complexes, including those containing strongly coupled dye aggregates with dense molecular packing and unique spectroscopic features. These photoactive components provide excellent features that could be coupled to multiple applications including light-harvesting, energy transfer, biosensing, bioimaging, and cancer therapy. Meanwhile, nanoscale DNA assemblies have been employed as programmable and addressable templates to guide the formation of DNA-directed multi-pigment complexes, which can be used to enhance the complexity and precision of artificial photonic systems and show the potential for energy and biomedical applications. This review focuses on the interface of DNA nanotechnology and biomimetic photonic systems. We summarized the recent progress in the design, synthesis, and applications of bioinspired photonic systems, highlighted the advantages of the utilization of DNA nanostructures, and discussed the challenges and opportunities they provide.
Collapse
Affiliation(s)
- Xu Zhou
- Center for Molecular Design and Biomimetics at the Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Su Lin
- Center for Molecular Design and Biomimetics at the Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA.,School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Hao Yan
- Center for Molecular Design and Biomimetics at the Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA. .,School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA.
| |
Collapse
|
12
|
Sun S, Yang Y, Niu H, Luo M, Wu ZS. Design and application of DNA nanostructures for organelle-targeted delivery of anticancer drugs. Expert Opin Drug Deliv 2022; 19:707-723. [PMID: 35618266 DOI: 10.1080/17425247.2022.2083603] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION DNA nanostructures targeting organelles are of great significance for the early diagnosis and precise therapy of human cancers. This review is expected to promote the development of DNA nanostructure-based cancer treatment with organelle-level precision in the future. AREAS COVERED In this review, we introduce the different principles for targeting organelles, summarize the progresses in the development of organelle-targeting DNA nanostructures, highlight their advantages and applications in disease treatment, and discuss current challenges and future prospects. EXPERT OPINION Accurate targeting is a basic problem for effective cancer treatment. However, current DNA nanostructures cannot meet the actual needs. Targeting specific organelles is expected to further improve the therapeutic effect and overcome tumor cell resistance, thereby holding great practical significance for tumor treatment in the clinic. With the deepening of the research on the molecular mechanism of disease development, especially on tumorigenesis and tumor progression, and increasing understanding of the behavior of biological materials in living cells, more versatile DNA nanostructures will be constructed to target subcellular organelles for drug delivery, essentially promoting the early diagnosis of cancers, classification, precise therapy and the estimation of prognosis in the future.
Collapse
Affiliation(s)
- Shujuan Sun
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 305108, China.,Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
| | - Ya Yang
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 305108, China
| | - Huimin Niu
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 305108, China.,Fujian Key Laboratory of Aptamers Technology, The 900th Hospital of Joint Logistics Support Force, Fuzhou 350025, China
| | - Mengxue Luo
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 305108, China
| | - Zai-Sheng Wu
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 305108, China
| |
Collapse
|
13
|
Liu X, Wang T, Wu Y, Tan Y, Jiang T, Li K, Lou B, Chen L, Liu Y, Liu Z. Aptamer based probes for living cell intracellular molecules detection. Biosens Bioelectron 2022; 208:114231. [PMID: 35390719 DOI: 10.1016/j.bios.2022.114231] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 03/24/2022] [Accepted: 03/26/2022] [Indexed: 12/21/2022]
Abstract
Biosensors have been employed for monitoring and imaging biological events and molecules. Sensitive detection of different biomolecules in vivo can reflect the changes of physiological conditions in real-time, which is of great significance for the diagnosis and treatment of diseases. The detection of intracellular molecules concentration change can indicate the occurrence and development of disease. But the analysis process of the existing detection methods, such as Western blot detection of intracellular protein, polymerase chain reaction (PCR) technique quantitative analysis of intracellular RNA and DNA, usually need to extract the cell lysis which is complex and time-consuming. Fluorescence bioimaging enables in situ monitoring of intracellular molecules in living cells. By combining the specificity of aptamer for intracellular molecules binding, and biocompatibility of fluorescent materials and nanomaterials, biosensors with different nanostructures have been developed to enter into living cells for analysis. This review summarizes the fluorescence detection methods based on aptamer for intracellular molecules detection. The principles, limit of detection, advantages, and disadvantages of different platforms for intracellular molecular fluorescent response are summarized and reviewed. Finally, the current challenges and future developments were discussed and proposed.
Collapse
Affiliation(s)
- Xiaoqin Liu
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan Province, PR China
| | - Ting Wang
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, PR China
| | - Yuwei Wu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, PR China
| | - Yifu Tan
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan Province, PR China
| | - Ting Jiang
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan Province, PR China
| | - Ke Li
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, PR China
| | - Beibei Lou
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, PR China
| | - Liwei Chen
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan Province, PR China
| | - Yanfei Liu
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan Province, PR China.
| | - Zhenbao Liu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, PR China; Molecular Imaging Research Center of Central South University, Changsha, 410008, Hunan, PR China.
| |
Collapse
|
14
|
Liu X, Wang Y, Effah CY, Wu L, Yu F, Wei J, Mao G, Xiong Y, He L. Endocytosis and intracellular RNAs imaging of nanomaterials-based fluorescence probes. Talanta 2022; 243:123377. [DOI: 10.1016/j.talanta.2022.123377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 03/02/2022] [Accepted: 03/09/2022] [Indexed: 12/12/2022]
|
15
|
Zhang T, Tian T, Lin Y. Functionalizing Framework Nucleic-Acid-Based Nanostructures for Biomedical Application. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 34:e2107820. [PMID: 34787933 DOI: 10.1002/adma.202107820] [Citation(s) in RCA: 169] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/07/2021] [Indexed: 02/05/2023]
Abstract
Strategies for functionalizing diverse tetrahedral framework nucleic acids (tFNAs) have been extensively explored since the first successful fabrication of tFNA by Turberfield. One-pot annealing of at least four DNA single strands is the most common method to prepare tFNA, as it optimizes the cost, yield, and speed of assembly. Herein, the focus is on four key merits of tFNAs and their potential for biomedical applications. The natural ability of tFNA to scavenge reactive oxygen species, along with remarkable enhancement in cellular endocytosis and tissue permeability based on its appropriate size and geometry, promotes cell-material interactions to direct or probe cell behavior, especially to treat inflammatory and degenerative diseases. Moreover, the structural programmability of tFNA enables the development of static tFNA-based nanomaterials via engineering of functional oligonucleotides or therapeutic molecules, and dynamic tFNAs via attachment of stimuli-responsive DNA apparatuses, leading to potential applications in targeted therapies, tissue regeneration, antitumor strategies, and antibacterial treatment. Although there are impressive performance and significant progress, the challenges and prospects of functionalizing tFNA-based nanostructures are still indicated in this review.
Collapse
Affiliation(s)
- Tao Zhang
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu Sichuan 610041 P. R. China
| | - Taoran Tian
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu Sichuan 610041 P. R. China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu 610041 P. R. China
- College of Biomedical Engineering Sichuan University Chengdu 610041 P. R. China
| |
Collapse
|
16
|
Xu H, Zheng L, Zhou Y, Ye BC. An artificial enzyme cascade amplification strategy for highly sensitive and specific detection of breast cancer-derived exosomes. Analyst 2021; 146:5542-5549. [PMID: 34515703 DOI: 10.1039/d1an01071a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tumor-related exosomes, which are heterogeneous membrane-enclosed nanovesicles shed from cancer cells, have been widely recognized as potential noninvasive biomarkers for early cancer diagnosis. Herein, an artificial enzyme cascade amplification strategy based on a switchable DNA tetrahedral (SDT) scaffold was proposed for quantification of breast cancer-derived exosomes. The SDT scaffold is composed of G-quadruplex mimicking DNAzyme sequences on its two single-stranded edges and glucose oxidase (GOx) on the four termini of the complementary strands. In the initial state, the SDT scaffold is blocked by the switch strand which consists of partial complementary domains with the DNA tetrahedron and a MUC1 aptamer. MCF-7 exosomes could release the quadruplex-forming sequences through the recognition of the MUC1 aptamer. The newly formed DNAzyme brings GOx into spatial proximity and induces high-efficiency enzyme cascade catalytic reactions on the SDT. Consequently, high sensitivity toward MCF-7 exosome analysis was obtained with a wide linear range of 3.8 × 106 to 1.2 × 108 particles per mL and a limit of detection of 1.51 × 105 particles per mL. In addition, such a DNAzyme reconfiguration strategy was able to distinguish MCF-7 exosomes from other breast cancer cell derived exosomes, indicating its excellent method specificity. The proposed enzyme cascade strategy not only provides a novel signal transformation and amplification nanoplatform for quantifying the specific populations of exosomes, but also can be further expanded to the analysis of multiple cancer biomarkers.
Collapse
Affiliation(s)
- Huiying Xu
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Lu Zheng
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Yu Zhou
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Bang-Ce Ye
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
17
|
Cai S, Wang J, Li J, Zhou B, He C, Meng X, Huang J, Wang K. A self-assembled DNA nanostructure as a FRET nanoflare for intracellular ATP imaging. Chem Commun (Camb) 2021; 57:6257-6260. [PMID: 34060563 DOI: 10.1039/d1cc02316k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Due to the incorporation of gold nanoparticles (AuNPs), previously reported AuNP-based FRET nanoflares still have some problems, such as non-negligible cytotoxicity and a time-consuming preparation procedure. In this communication, a novel AuNP-free FRET nanoflare for intracellular ATP imaging is developed based on a DNA nanostructure, which is self-assembled through cyclic U-type hybridization only involving a certain number of DNA strands.
Collapse
Affiliation(s)
- Shijun Cai
- College of Biology, College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, China.
| | - Jiaoli Wang
- College of Biology, College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, China.
| | - Jing Li
- College of Biology, College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, China.
| | - Bing Zhou
- College of Biology, College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, China.
| | - Chunmei He
- College of Biology, College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, China.
| | - Xiangxian Meng
- College of Biology, College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, China.
| | - Jin Huang
- College of Biology, College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, China.
| | - Kemin Wang
- College of Biology, College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, China.
| |
Collapse
|
18
|
Hong T, Zheng R, Qiu L, Zhou S, Chao H, Li Y, Rui W, Cui P, Ni X, Tan S, Jiang P, Wang J. Fluorescence coupled capillary electrophoresis as a strategy for tetrahedron DNA analysis. Talanta 2021; 228:122225. [PMID: 33773730 DOI: 10.1016/j.talanta.2021.122225] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 02/10/2021] [Accepted: 02/13/2021] [Indexed: 10/22/2022]
Abstract
A strategy based on fluorescence coupled capillary electrophoresis (CE-FL) was developed for analyzing tetrahedron DNA (TD) and TD-doxorubicin (DOX) conjugate. Capillary gel electrophoresis exhibited desirable performance for separating TD and DNA strands. Under the optimized conditions, satisfactory repeatability concerning run-to-run and interday repeatability was obtained, and relative standard deviation value of resolution (n = 6) was 0.64%. Furthermore, the combination of CE and fluorescence detection provided a sensitive platform for quantifying TD concentration and calculating the damage degree of TD. The electrophoretograms indicated that CE-FL was a suitable TD assay method with high specificity and sensitivity. In addition, the application of CE-FL for TD fluorescence resonance energy transfer (FRET) research was also explored. Two types of DNA strands were utilized to interfere the formation of TD. The impact of partially complementary chain and completely complementary chain on FRET signal was explored, and the influence mechanism was discussed. After applying CE-FL for characterizing TD, we also combine CE and FRET to analyze TD-DOX conjugate. CE presented a favourable technique to monitor DOX loading and releasing processes. These noteworthy results offered a stepping stone for DNA nanomaterials assay by using CE-FL.
Collapse
Affiliation(s)
- Tingting Hong
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, 213164, China
| | - Ronghui Zheng
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, 213164, China
| | - Lin Qiu
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, 213164, China
| | - Shuwen Zhou
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, 213164, China
| | - Hufei Chao
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, 213164, China
| | - Ying Li
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, 213164, China
| | - Wen Rui
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, 213164, China
| | - Pengfei Cui
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, 213164, China
| | - Xinye Ni
- The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, PR China.
| | - Songwen Tan
- Xiangya School of Pharmaceutical Sciences, Central South University, 172 Tongzipo Road, Changsha, Hunan, 410013, China; Jiangsu Dawning Pharmaceutical Co., Ltd., Changzhou, Jiangsu, 213100, China.
| | - Pengju Jiang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, 213164, China.
| | - Jianhao Wang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, 213164, China; Changzhou Le Sun Pharmaceuticals Co., Ltd., Changzhou, Jiangsu, 213125, China; Jiangsu Yue Zhi Biopharmaceutical Co., Ltd., Changzhou, Jiangsu, 213125, China.
| |
Collapse
|
19
|
Li C, Luo S, Wang J, Shen Z, Wu ZS. Nuclease-resistant signaling nanostructures made entirely of DNA oligonucleotides. NANOSCALE 2021; 13:7034-7051. [PMID: 33889882 DOI: 10.1039/d1nr00197c] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nucleic acid probes have the advantages of excellent biocompatibility, biodegradability, versatile functionalities and remarkable programmability. However, the low biostability of nucleic acid probes under complex physiological conditions limits their in vivo application. Despite impressive progress in the development of inorganic material-mediated biostable nucleic acid nanostructures, uncertain systemic toxicity of composite nanocarriers has hindered their application in living organisms. In the field of biomedicine, as a promising alternative capable of avoiding potential cytotoxicity, biologically stable nanostructures composed entirely of DNA oligonucleotides have been rapidly developed in recent years, offering an exciting in vivo tool for cancer diagnosis and clinical treatment. In this review, we summarize the recent advances in the development of nuclease-resistant DNA nanostructures with different geometrical shapes, such as tetrahedron, octahedron, DNA triangular prism (DTP), DNA nanotubes and DNA origami, introduce innovative assembly strategies, and discuss unique structural advantages and especially biological applications in cellular imaging and targeted drug delivery in an organism. Finally, we conclude with the challenges in the clinical development of DNA nanostructures and present an outlook of the future of this rapidly expanding field.
Collapse
Affiliation(s)
- Congcong Li
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China.
| | | | | | | | | |
Collapse
|
20
|
Lin Q, Cai S, Zhou B, Wang K, Jian L, Huang J. Dual-MicroRNA-regulation of singlet oxygen generation by a DNA-tetrahedron-based molecular logic device. Chem Commun (Camb) 2021; 57:3873-3876. [PMID: 33871506 DOI: 10.1039/d1cc00818h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Endogenous miRNA expression patterns are extremely cell-type-specific, thereby offering high prediction accuracy for different cell identities. Here, a DNA-tetrahedron-based "AND" logic gate is utilized as a molecular device that recognizes dual-miRNA inputs through strand hybridization to activate a computation cascade that produces controlled singlet oxygen in live cells, resulting in the death of the target cell.
Collapse
Affiliation(s)
- Qing Lin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, China.
| | - Shijun Cai
- College of Biology, Hunan University, Changsha, P. R. China
| | - Bing Zhou
- College of Biology, Hunan University, Changsha, P. R. China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, China.
| | - Lixin Jian
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, China.
| | - Jin Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, China.
| |
Collapse
|
21
|
Badu S, Melnik R, Singh S. Mathematical and computational models of RNA nanoclusters and their applications in data-driven environments. MOLECULAR SIMULATION 2020. [DOI: 10.1080/08927022.2020.1804564] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Shyam Badu
- MS2Discovery Interdisciplinary Research Institute, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - Roderick Melnik
- MS2Discovery Interdisciplinary Research Institute, Wilfrid Laurier University, Waterloo, Ontario, Canada
- BCAM-Basque Center for Applied Mathematics, Bilbao, Spain
| | - Sundeep Singh
- MS2Discovery Interdisciplinary Research Institute, Wilfrid Laurier University, Waterloo, Ontario, Canada
| |
Collapse
|
22
|
Duangrat R, Udomprasert A, Kangsamaksin T. Tetrahedral DNA nanostructures as drug delivery and bioimaging platforms in cancer therapy. Cancer Sci 2020; 111:3164-3173. [PMID: 32589345 PMCID: PMC7469859 DOI: 10.1111/cas.14548] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 12/26/2022] Open
Abstract
Structural DNA nanotechnology enables DNA to be used as nanomaterials for novel nanostructure construction with unprecedented functionalities. Artificial DNA nanostructures can be designed and generated with precisely controlled features, resulting in its utility in bionanotechnological and biomedical applications. A tetrahedral DNA nanostructure (TDN), the most popular DNA nanostructure, with high stability and simple synthesis procedure, is a promising candidate as nanocarriers in drug delivery and bioimaging platforms, particularly in precision medicine as well as diagnosis for cancer therapy. Recent evidence collectively indicated that TDN successfully enhanced cancer therapeutic efficiency both in vitro and in vivo. Here, we summarize the development of TDN and highlight various aspects of TDN applications in cancer therapy based on previous reports, including anticancer drug loading, photodynamic therapy, therapeutic oligonucleotides, bioimaging platforms, and other molecules and discuss a perspective in opportunities and challenges for future TDN‐based nanomedicine.
Collapse
Affiliation(s)
- Ratchanee Duangrat
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Anuttara Udomprasert
- Department of Biochemistry, Faculty of Science, Burapha University, Chonburi, Thailand
| | - Thaned Kangsamaksin
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
23
|
Xie N, Wang H, Quan K, Feng F, Huang J, Wang K. Self-assembled DNA-Based geometric polyhedrons: Construction and applications. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115844] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
Huang J, Ma W, Sun H, Wang H, He X, Cheng H, Huang M, Lei Y, Wang K. Self-Assembled DNA Nanostructures-Based Nanocarriers Enabled Functional Nucleic Acids Delivery. ACS APPLIED BIO MATERIALS 2020; 3:2779-2795. [DOI: 10.1021/acsabm.9b01197] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jin Huang
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
- College of Biology, Hunan University, Changsha 410082, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
- Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Wenjie Ma
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
- College of Biology, Hunan University, Changsha 410082, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
- Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Huanhuan Sun
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
- College of Biology, Hunan University, Changsha 410082, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
- Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Huizhen Wang
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
- College of Biology, Hunan University, Changsha 410082, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
- Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Xiaoxiao He
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
- College of Biology, Hunan University, Changsha 410082, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
- Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Hong Cheng
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
- College of Biology, Hunan University, Changsha 410082, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
- Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Mingmin Huang
- College of Biology, Hunan University, Changsha 410082, China
| | - Yanli Lei
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
- College of Biology, Hunan University, Changsha 410082, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
- Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Kemin Wang
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
- College of Biology, Hunan University, Changsha 410082, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
- Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Hunan University, Changsha 410082, China
| |
Collapse
|
25
|
Lin Q, Wang A, Liu S, Li J, Wang J, Quan K, Yang X, Huang J, Wang K. A DNA tetrahedron-based molecular computation device for the logic sensing of dual microRNAs in living cells. Chem Commun (Camb) 2020; 56:5303-5306. [DOI: 10.1039/d0cc01231a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Endogenous miRNA expression patterns are specific to cell type and thus offer high prediction accuracy with regard to different cell identities compared to single miRNA analysis.
Collapse
Affiliation(s)
- Qing Lin
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University
- Changsha
- China
| | - Anmin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University
- Changsha
- China
| | - Shiyuan Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University
- Changsha
- China
| | - Jing Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University
- Changsha
- China
| | - Jiaoli Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University
- Changsha
- China
| | - Ke Quan
- School of Chemistry and Food Engineering
- Changsha University of Science and Technology
- Changsha
- China
| | - Xiaohai Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University
- Changsha
- China
| | - Jin Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University
- Changsha
- China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University
- Changsha
- China
| |
Collapse
|
26
|
Gong L, Liu S, Song Y, Xie S, Guo Z, Xu J, Xu L. A versatile luminescent resonance energy transfer (LRET)-based ratiometric upconversion nanoprobe for intracellular miRNA biosensing. J Mater Chem B 2020; 8:5952-5961. [DOI: 10.1039/d0tb00820f] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A versatile LRET-based ratiometric (LBRU) nanoprobe of NaYF4:Yb,Er@NaYF4@NH2–mSiO2/rhodamine B/C-DNA sandwich-structured nanocomposites has been developed for intracellular miRNA biosensing.
Collapse
Affiliation(s)
- Liang Gong
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices
- College of Life Sciences and Chemistry, Hunan University of Technology
- Zhuzhou 412007
- P. R. China
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics
| | - Simin Liu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices
- College of Life Sciences and Chemistry, Hunan University of Technology
- Zhuzhou 412007
- P. R. China
| | - Ya Song
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices
- College of Life Sciences and Chemistry, Hunan University of Technology
- Zhuzhou 412007
- P. R. China
| | - Shaowen Xie
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices
- College of Life Sciences and Chemistry, Hunan University of Technology
- Zhuzhou 412007
- P. R. China
| | - Ziyu Guo
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices
- College of Life Sciences and Chemistry, Hunan University of Technology
- Zhuzhou 412007
- P. R. China
| | - Jianxiong Xu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices
- College of Life Sciences and Chemistry, Hunan University of Technology
- Zhuzhou 412007
- P. R. China
| | - Lijian Xu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices
- College of Life Sciences and Chemistry, Hunan University of Technology
- Zhuzhou 412007
- P. R. China
| |
Collapse
|
27
|
Zhu C, Yang J, Zheng J, Chen S, Huang F, Yang R. Triplex-Functionalized DNA Tetrahedral Nanoprobe for Imaging of Intracellular pH and Tumor-Related Messenger RNA. Anal Chem 2019; 91:15599-15607. [DOI: 10.1021/acs.analchem.9b03659] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Cong Zhu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Jinfeng Yang
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410083, China
| | - Jing Zheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Shiya Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Fujian Huang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Ronghua Yang
- School of Chemistry and Biological Engineering, Changsha University of Science and Technology, Changsha 410076, China
| |
Collapse
|
28
|
Jia R, He X, Ma W, Lei Y, Cheng H, Sun H, Huang J, Wang K. Aptamer-Functionalized Activatable DNA Tetrahedron Nanoprobe for PIWI-Interacting RNA Imaging and Regulating in Cancer Cells. Anal Chem 2019; 91:15107-15113. [PMID: 31691558 DOI: 10.1021/acs.analchem.9b03819] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
It has been reported that PIWI-interacting RNAs (piRNAs) play critical roles in activating invasion and metastasis, evading growth suppressors, and sustaining proliferative signaling of cancer and can be regarded as a novel biomarker candidate. Thus, it is necessary to develop an effective method for imaging and regulating cancer-related piRNAs to diagnose and treat cancers. Herein, we designed aptamer-functionalized activatable DNA tetrahedron nanoprobes (apt-ADTNs) to image and regulate endogenous piRNAs in cancer cells. As proof of concept, overexpressed piRNA-36026 in MCF-7 cells was used for this study. In brief, aptamer AS1411 and piRNA-36026 antisequence with Cy5 fluorescent dye are appended from the DNA tetrahedron; then, a short oligonucleotide with black hole quencher 2 (Q-oligo) is complementary with piRNA-36026 antisequence to quench the fluorescence of Cy5. The apt-ADTNs can recognize the MCF-7 cells through aptamer AS1411, and then enter the cells. Q-oligo is detached from the apt-ADTNs because of the binding between apt-ADTNs and piRNA-36026, leading to the recovery of the Cy5 fluorescence signal. Meanwhile, the hybridization of apt-ADTNs and piRNA-36026 results in down-regulating of dissociative piRNA-36026 in cytoplasm and the subsequent apoptosis of MCF-7 cells. As the achievement of synchronously imaging and regulating piRNA-36026 in MCF-7 cells, we believe that this design holds great promise in application of diagnosis and therapy for cancer.
Collapse
Affiliation(s)
- Ruichen Jia
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering , Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province , Changsha 410082 , China
| | - Xiaoxiao He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering , Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province , Changsha 410082 , China
| | - Wenjie Ma
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering , Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province , Changsha 410082 , China
| | - Yanli Lei
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering , Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province , Changsha 410082 , China
| | - Hong Cheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering , Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province , Changsha 410082 , China
| | - Huanhuan Sun
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering , Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province , Changsha 410082 , China
| | - Jin Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering , Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province , Changsha 410082 , China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering , Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province , Changsha 410082 , China
| |
Collapse
|
29
|
Su J, Wu F, Xia H, Wu Y, Liu S. Accurate cancer cell identification and microRNA silencing induced therapy using tailored DNA tetrahedron nanostructures. Chem Sci 2019; 11:80-86. [PMID: 32110359 PMCID: PMC7012044 DOI: 10.1039/c9sc04823e] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 10/30/2019] [Indexed: 12/16/2022] Open
Abstract
Accurate cancer cell identification and efficient therapy are extremely desirable and challenging in clinics. Here, we reported the first example of DNA tetrahedron nanostructures (DTNSs) to real-time monitor and image three intracellular miRNAs based on the fluorescence "OFF" to "ON" mode, as well as to realize cancer therapy induced by miRNA silencing. DTNSs were self-assembled by seven customized single-stranded nucleic acid chains containing three recognition sequences for target miRNAs. In the three vertexes of DTNSs, fluorophores and quenchers were brought into close proximity, inducing fluorescence quenching. In the presence of target miRNAs, fluorophores and quenchers would be separated, resulting in fluorescence recovery. Owing to the unique tetrahedron-like spatial structure, DTNSs displayed improved resistance to enzymatic digestion and high cellular uptake efficiency, and exhibited the ability to simultaneously monitor three intracellular miRNAs. DTNSs not only effectively distinguished tumor cells from normal cells, but also identified cancer cell subtypes, which avoided false-positive signals and significantly improved the accuracy of cancer diagnosis. Moreover, the DTNSs could also act as an anti-cancer drug; antagomir-21 (one recognition sequence) was detached from DTNSs to silence endogenous miRNA-21 inside cells, which would suppress cancer cell migration and invasion, and finally induce cancer cell apoptosis; the result was demonstrated by experiments in vitro and in vivo. It is anticipated that the development of smart nanoplatforms will open a door for cancer diagnosis and treatment in clinical systems.
Collapse
Affiliation(s)
- Juan Su
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device , School of Chemistry and Chemical Engineering , Southeast University , Nanjing 211189 , China
| | - Fubing Wu
- Department of Pathology , School of Basic Medical Sciences , Department of Oncology , The Affiliated Sir Run Run Hospital , State Key Laboratory of Reproductive Medicine , Key Laboratory of Antibody Technique of National Health Commission , Nanjing Medical University , Nanjing 211166 , China
| | - Hongping Xia
- Department of Pathology , School of Basic Medical Sciences , Department of Oncology , The Affiliated Sir Run Run Hospital , State Key Laboratory of Reproductive Medicine , Key Laboratory of Antibody Technique of National Health Commission , Nanjing Medical University , Nanjing 211166 , China
| | - Yafeng Wu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device , School of Chemistry and Chemical Engineering , Southeast University , Nanjing 211189 , China
| | - Songqin Liu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device , School of Chemistry and Chemical Engineering , Southeast University , Nanjing 211189 , China
| |
Collapse
|
30
|
Xiao M, Lai W, Man T, Chang B, Li L, Chandrasekaran AR, Pei H. Rationally Engineered Nucleic Acid Architectures for Biosensing Applications. Chem Rev 2019; 119:11631-11717. [DOI: 10.1021/acs.chemrev.9b00121] [Citation(s) in RCA: 175] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Mingshu Xiao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Wei Lai
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Tiantian Man
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Binbin Chang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Li Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Arun Richard Chandrasekaran
- The RNA Institute, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Hao Pei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| |
Collapse
|
31
|
Wang DX, Wang J, Cui YX, Wang YX, Tang AN, Kong DM. Nanolantern-Based DNA Probe and Signal Amplifier for Tumor-Related Biomarker Detection in Living Cells. Anal Chem 2019; 91:13165-13173. [DOI: 10.1021/acs.analchem.9b03453] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Dong-Xia Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Jing Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yun-Xi Cui
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Ya-Xin Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - An-Na Tang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - De-Ming Kong
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
32
|
Dong J, Dong H, Dai W, Meng X, Zhang K, Cao Y, Yang F, Zhang X. Functional DNA hexahedron for real-time detection of multiple microRNAs in living cells. Anal Chim Acta 2019; 1078:176-181. [PMID: 31358217 DOI: 10.1016/j.aca.2019.06.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 05/20/2019] [Accepted: 06/13/2019] [Indexed: 01/08/2023]
Abstract
Intracellular microRNA (miRNA) analysis in single cell is highly informative and offers valuable insights to its physiological and pathological state, but it must confront the pivotal challenge of gene probe delivery and conditional release. Herein, we report an assembled DNA mini-hexahedron (DMH) that can selectively package and protect miRNA probe, target-cell-specific delivery and release it based on the target sequence recognition for intracellular miRNA detection. In brief, the DMH is self-assembled from six single-stranded oligonucleotide strands through rational design, one of which containing AS1411 sequence for specific uptake. Two fluorescent dye labeled recognition strands are inserted into two DMH edges with quencher groups through partially complementary hybridization. We find that this DMH possesses great biocompatibility, good trans-membrane ability and are able to protect the gene cargo against enzymatic degradation and protein binding. Fluorescence restoration caused by the target-mediated competitive chain replacement reaction allows to simultaneous detection of two cancer-related intracellular miRNAs with little false-positive signal, providing a powerful tool to discriminate healthy normal cell and cancerous cell. Thus, the construct opens a new avenue to circumvent the challenges in gene delivery, specific delivery and intrinsic interferences resistance.
Collapse
Affiliation(s)
- Jinhong Dong
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China; Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Center for Bioengineering and Sensing Technology, School of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing, 100083, PR China
| | - Haifeng Dong
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China; Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Center for Bioengineering and Sensing Technology, School of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing, 100083, PR China.
| | - Wenhao Dai
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China; Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Center for Bioengineering and Sensing Technology, School of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing, 100083, PR China
| | - Xiangdan Meng
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China; Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Center for Bioengineering and Sensing Technology, School of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing, 100083, PR China
| | - Kai Zhang
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China; Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Center for Bioengineering and Sensing Technology, School of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing, 100083, PR China
| | - Yu Cao
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China; Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Center for Bioengineering and Sensing Technology, School of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing, 100083, PR China
| | - Fan Yang
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China; Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Center for Bioengineering and Sensing Technology, School of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing, 100083, PR China
| | - Xueji Zhang
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China; Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Center for Bioengineering and Sensing Technology, School of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing, 100083, PR China
| |
Collapse
|
33
|
Zhang K, Huang W, Huang Y, Li H, Wang K, Zhu X, Xie M. DNA Tetrahedron Based Biosensor for Argonaute2 Assay in Single Cells and Human Immunodeficiency Virus Type-1 Related Ribonuclease H Detection in Vitro. Anal Chem 2019; 91:7086-7096. [DOI: 10.1021/acs.analchem.9b00011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Kai Zhang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China
| | - Wanting Huang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China
| | - Yue Huang
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Hao Li
- School of Biological Science and Technology, University of Jinan, No. 106 Jiwei Road, Jinan, Shandong 250022, China
| | - Ke Wang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China
| | - Xue Zhu
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China
| | - Minhao Xie
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China
| |
Collapse
|
34
|
|
35
|
Zhang J, Lan T, Lu Y. Molecular Engineering of Functional Nucleic Acid Nanomaterials toward In Vivo Applications. Adv Healthc Mater 2019; 8:e1801158. [PMID: 30725526 PMCID: PMC6426685 DOI: 10.1002/adhm.201801158] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 01/14/2019] [Indexed: 12/25/2022]
Abstract
Recent advances in nanotechnology and engineering have generated many nanomaterials with unique physical and chemical properties. Over the past decade, numerous nanomaterials are introduced into many research areas, such as sensors for environmental monitoring, food safety, point-of-care diagnostics, and as transducers for solar energy transfer. Meanwhile, functional nucleic acids (FNAs), including nucleic acid enzymes, aptamers, and aptazymes, have attracted major attention from the biomedical community due to their unique target recognition and catalytic properties. Benefiting from the recent progress of molecular engineering strategies, the physicochemical properties of nanomaterials are endowed by the target recognition and catalytic activity of FNAs in the presence of a target analyte, resulting in numerous smart nanoprobes for diverse applications including intracellular imaging, drug delivery, in vivo imaging, and tumor therapy. This progress report focuses on the recent advances in designing and engineering FNA-based nanomaterials, highlighting the functional outcomes toward in vivo applications. The challenges and opportunities for the future translation of FNA-based nanomaterials into clinical applications are also discussed.
Collapse
Affiliation(s)
- JingJing Zhang
- Department of Chemistry, University of Illinois at Urbana-Champaign, 601 S. Mathews Ave., Urbana, IL, 61801, USA
| | - Tian Lan
- GlucoSentient, Inc., 2100 S. Oak Street Suite 101, Champaign, IL, 61820, USA
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, 601 S. Mathews Ave., Urbana, IL, 61801, USA
| |
Collapse
|
36
|
Wan Y, Zhu N, Lu Y, Wong PK. DNA Transformer for Visualizing Endogenous RNA Dynamics in Live Cells. Anal Chem 2019; 91:2626-2633. [DOI: 10.1021/acs.analchem.8b02826] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Ying Wan
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, P. R. China
| | - Ninghao Zhu
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Yi Lu
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Pak Kin Wong
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Mechanical Engineering and Department of Surgery, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
37
|
Yu Q, Zhai F, Zhou H, Wang Z. Aptamer Conformation Switching-Induced Two-Stage Amplification for Fluorescent Detection of Proteins. SENSORS 2018; 19:s19010077. [PMID: 30587808 PMCID: PMC6338969 DOI: 10.3390/s19010077] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/14/2018] [Accepted: 12/22/2018] [Indexed: 02/07/2023]
Abstract
Basing on the conformation change of aptamer caused by proteins, a simple and sensitive protein fluorescent assay strategy is proposed, which is assisted by the isothermal amplification reaction of polymerase and nicking endonuclease. In the presence of platelet-derived growth factor (PDGF-BB), the natural conformation of a DNA aptamer would change into a Y-shaped complex, which could hybridize with a molecular beacon (MB) and form a DNA duplex, leading to the open state of the MB and generating a fluorescence signal. Subsequently, with further assistance of isothermal recycling amplification strategies, the designed aptamer sensing platform showed an increment of fluorescence. As a benefit of this amplified strategy, the limit of detection (LOD) was lowered to 0.74 ng/mL, which is much lower than previous reports. This strategy not only offers a new simple, specific, and efficient platform to quantify the target protein in low concentrations, but also shows a powerful approach without multiple washing steps, as well as a precious implementation that has the potential to be integrated into portable, low-cost, and simplified devices for diagnostic applications.
Collapse
Affiliation(s)
- Qiao Yu
- Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China.
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China.
| | - Fenfen Zhai
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China.
- Shandong Provincial Key Laboratory of Life-Organic Analysis, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China.
| | - Hong Zhou
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China.
| | - Zonghua Wang
- Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
38
|
Wiraja C, Yeo DC, Lio DCS, Zheng M, Xu C. Functional Imaging with Nucleic-Acid-Based Sensors: Technology, Application and Future Healthcare Prospects. Chembiochem 2018; 20:437-450. [PMID: 30230165 DOI: 10.1002/cbic.201800430] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Indexed: 12/11/2022]
Abstract
Timely monitoring and assessment of human health plays a crucial role in maintaining the wellbeing of our advancing society. In addition to medical tools and devices, suitable probe agents are crucial to assist such monitoring, either in passive or active ways (i.e., sensors) through inducible signals. In this review we highlight recent developments in activatable optical sensors based on nucleic acids. Sensing mechanisms and bio-applications of these nucleic acid sensors in ex vivo assays, intracellular or in vivo settings are described. In addition, we discuss the limitations of these sensors and how nanotechnology can complement/enhance sensor properties to promote translation into clinical applications.
Collapse
Affiliation(s)
- Christian Wiraja
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - David C Yeo
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Daniel Chin Shiuan Lio
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Mengjia Zheng
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Chenjie Xu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore.,NTU-Northwestern Institute for Nanomedicine, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
39
|
Wei Q, Huang J, Li J, Wang J, Yang X, Liu J, Wang K. A DNA nanowire based localized catalytic hairpin assembly reaction for microRNA imaging in live cells. Chem Sci 2018; 9:7802-7808. [PMID: 30429989 PMCID: PMC6194499 DOI: 10.1039/c8sc02943a] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 08/19/2018] [Indexed: 12/25/2022] Open
Abstract
Here, we have developed a localized catalytic hairpin assembly (LCHA) strategy for intracellular miR-21 imaging by using DNA nanowires confining both hairpin probes in a compact space. The LCHA is constructed by interval hybridization of DNA hairpin probe pairs to a DNA nanowire with multiplex footholds generated by alternating chain hybridization. Compared to the conventional catalytic hairpin assembly (CHA) strategy, the LCHA significantly shortens the reaction time and enhances the sensitivity. Moreover, the proposed LCHA can serve as a carrier for delivery of probes into live cells as well as protect the probes from nuclease degradation and enhances the stability. We anticipate that this design can be widely applied in facilitating basic biomedical research and disease diagnosis.
Collapse
Affiliation(s)
- Qiaomei Wei
- State Key Laboratory of Chemo/Biosensing and Chemometrics , College of Chemistry and Chemical Engineering , Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province , Hunan University , Changsha , P. R. China .
| | - Jin Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics , College of Chemistry and Chemical Engineering , Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province , Hunan University , Changsha , P. R. China .
| | - Jing Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics , College of Chemistry and Chemical Engineering , Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province , Hunan University , Changsha , P. R. China .
| | - Jiaoli Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics , College of Chemistry and Chemical Engineering , Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province , Hunan University , Changsha , P. R. China .
| | - Xiaohai Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics , College of Chemistry and Chemical Engineering , Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province , Hunan University , Changsha , P. R. China .
| | - Jianbo Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics , College of Chemistry and Chemical Engineering , Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province , Hunan University , Changsha , P. R. China .
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics , College of Chemistry and Chemical Engineering , Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province , Hunan University , Changsha , P. R. China .
| |
Collapse
|
40
|
Cheng H, Liu J, Ma W, Duan S, Huang J, He X, Wang K. Low Background Cascade Signal Amplification Electrochemical Sensing Platform for Tumor-Related mRNA Quantification by Target-Activated Hybridization Chain Reaction and Electroactive Cargo Release. Anal Chem 2018; 90:12544-12552. [PMID: 30261719 DOI: 10.1021/acs.analchem.8b02470] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Herein a low background cascade signal amplification electrochemical sensing platform has been proposed for the ultrasensitive detection of mRNA (mRNA) by coupling the target-activated hybridization chain reaction and electroactive cargo release from mesoporous silica nanocontainers (MSNs). In this sensing platform, the 5'-phosphate-terminated DNA (5'-PO4 cDNA) complement to target mRNA is hybridized with the trigger DNA and anchor DNA on the surface of the MSNs, aiming at forming a double-stranded DNA gate molecule and sealing the methylene blue (MB) in the inner pores of the MSNs. In the presence of target mRNA, the 5'-PO4 cDNA is displaced from the MSNs and competitively hybridizes with mRNA, which led to the liberation of the trigger DNA and the opening of the MSNs pore. The liberated trigger DNA can be then immobilized onto the electrode surface through hybridization with the capture DNA, triggering HCR on the electrode surface. At the same time, the MB released from the MSNs will selectively intercalate into the HCR long dsDNA polymers, giving rise to significant electrochemical response. In addition, due to the λ-exonuclease (λ-Exo) cleavage reaction-assisted target recycling, more amounts of trigger DNA will be liberated and trigger HCR, and numerous MB are uncapped and intercalate into the HCR products. As proof of concept, thymidine kinase 1 (TK1) mRNA was used as a model target. Featured with amplification efficiency, label-free capability, and low background signal, the strategy could quantitatively detect TK1 mRNA down to 2.0 aM with a linear calibration range from 0.1 fM to 1 pM. We have also demonstrated the practical application of our proposed sensing platform for detecting TK1 mRNA in real samples, opening up new avenues for highly sensitive quantification of biomarkers in bioanalysis and clinical diagnosis.
Collapse
Affiliation(s)
- Hong Cheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering , Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province , Changsha 410082 , China
| | - Jinquan Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering , Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province , Changsha 410082 , China
| | - Wenjie Ma
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering , Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province , Changsha 410082 , China
| | - Shuangdi Duan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering , Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province , Changsha 410082 , China
| | - Jin Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering , Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province , Changsha 410082 , China
| | - Xiaoxiao He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering , Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province , Changsha 410082 , China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering , Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province , Changsha 410082 , China
| |
Collapse
|
41
|
Abstract
Nucleic acids have been actively exploited to develop various exquisite nanostructures due to their unparalleled programmability. Especially, framework nucleic acids (FNAs) with tailorable functionality and precise addressability hold great promise for biomedical applications. In this review, we summarize recent progress of FNA-enabled biosensing in homogeneous solutions, on heterogeneous surfaces, and inside cells. We describe the strategies to translate the structural order and rigidity of FNAs to interfacial engineering with high controllability, and approaches to realize multiplexing for highly parallel in vitro detection. We also envision the marriage of the currently available FNA tool sets with other emerging technologies to develop a new generation of biosensors for precision diagnosis and bioimaging.
Collapse
Affiliation(s)
- Fan Yang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 1 Huangjia Lake West Road, Wuhan 430065, China
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Qian Li
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Lihua Wang
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Guo-Jun Zhang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 1 Huangjia Lake West Road, Wuhan 430065, China
| | - Chunhai Fan
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| |
Collapse
|
42
|
Fang H, Xie N, Ou M, Huang J, Li W, Wang Q, Liu J, Yang X, Wang K. Detection of Nucleic Acids in Complex Samples via Magnetic Microbead-Assisted Catalyzed Hairpin Assembly and “DD–A” FRET. Anal Chem 2018; 90:7164-7170. [DOI: 10.1021/acs.analchem.8b01330] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Hongmei Fang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Nuli Xie
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Min Ou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Jin Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Wenshan Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Qing Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Jianbo Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Xiaohai Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| |
Collapse
|
43
|
Zhu D, Zhao D, Huang J, Zhu Y, Chao J, Su S, Li J, Wang L, Shi J, Zuo X, Weng L, Li Q, Wang L. Poly-adenine-mediated fluorescent spherical nucleic acid probes for live-cell imaging of endogenous tumor-related mRNA. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:1797-1807. [PMID: 29777876 DOI: 10.1016/j.nano.2018.05.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 04/22/2018] [Accepted: 05/04/2018] [Indexed: 12/22/2022]
Abstract
Identification of tumor-related mRNA in living cells hold great promise for early cancer diagnosis and pathological research. Herein, we present poly-adenine (polyA)-mediated fluorescent spherical nucleic acid (FSNA) probes for intracellular mRNA detection with regulable sensitivities by programmably adjusting the loading density of DNA on gold nano-interface. Gold nanoparticles (AuNPs) functionalized with polyA-tailed recognition sequences were hybridized to fluorescent "reporter" strands to fabricate fluorescence-quenched FSNA probes. While exposed to target gene, the "reporter" strands were released from FSNA through strand displacement and fluorescence was recovered. With polyA20 tail as the attaching block, the detection limit of FSNA probes was calculated to be 0.31 nM, which is ~55 fold lower than that of thiolated probes without surface density regulation. Quantitative intracellular mRNA detection and imaging could be achieved with polyA-mediated FSNA probes within 2 hours, indicating their application potential in rapid and sensitive intracellular target imaging.
Collapse
Affiliation(s)
- Dan Zhu
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Dongxia Zhao
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, China; College of Geography and Biological Information, Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Jiaxuan Huang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Yu Zhu
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Jie Chao
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Shao Su
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Jiang Li
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
| | - Lihua Wang
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
| | - Jiye Shi
- UCB Pharma, Slough, United Kingdom
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Renji Hospital, School of Medicine and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Lixing Weng
- College of Geography and Biological Information, Nanjing University of Posts and Telecommunications, Nanjing, China.
| | - Qian Li
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China.
| | - Lianhui Wang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, China.
| |
Collapse
|
44
|
Huang X, Song J, Yung BC, Huang X, Xiong Y, Chen X. Ratiometric optical nanoprobes enable accurate molecular detection and imaging. Chem Soc Rev 2018; 47:2873-2920. [PMID: 29568836 PMCID: PMC5926823 DOI: 10.1039/c7cs00612h] [Citation(s) in RCA: 487] [Impact Index Per Article: 69.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Exploring and understanding biological and pathological changes are of great significance for early diagnosis and therapy of diseases. Optical sensing and imaging approaches have experienced major progress in this field. Particularly, an emergence of various functional optical nanoprobes has provided enhanced sensitivity, specificity, targeting ability, as well as multiplexing and multimodal capabilities due to improvements in their intrinsic physicochemical and optical properties. However, one of the biggest challenges of conventional optical nanoprobes is their absolute intensity-dependent signal readout, which causes inaccurate sensing and imaging results due to the presence of various analyte-independent factors that can cause fluctuations in their absolute signal intensity. Ratiometric measurements provide built-in self-calibration for signal correction, enabling more sensitive and reliable detection. Optimizing nanoprobe designs with ratiometric strategies can surmount many of the limitations encountered by traditional optical nanoprobes. This review first elaborates upon existing optical nanoprobes that exploit ratiometric measurements for improved sensing and imaging, including fluorescence, surface enhanced Raman scattering (SERS), and photoacoustic nanoprobes. Next, a thorough discussion is provided on design strategies for these nanoprobes, and their potential biomedical applications for targeting specific biomolecule populations (e.g. cancer biomarkers and small molecules with physiological relevance), for imaging the tumor microenvironment (e.g. pH, reactive oxygen species, hypoxia, enzyme and metal ions), as well as for intraoperative image guidance of tumor-resection procedures.
Collapse
Affiliation(s)
- Xiaolin Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China. and Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA.
| | - Jibin Song
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA. and MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Bryant C Yung
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA.
| | - Xiaohua Huang
- Department of Chemistry, University of Memphis, 213 Smith Chemistry Bldg., Memphis, TN 38152, USA
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China.
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA.
| |
Collapse
|
45
|
Gao R, Hao C, Xu L, Xu C, Kuang H. Spiny Nanorod and Upconversion Nanoparticle Satellite Assemblies for Ultrasensitive Detection of Messenger RNA in Living Cells. Anal Chem 2018; 90:5414-5421. [PMID: 29577726 DOI: 10.1021/acs.analchem.8b00617] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Quantitation and in situ monitoring of target mRNA (mRNA) in living cells remains a significant challenge for the chemical and biomedical communities. To quantitatively detect mRNA expression levels in living cells, we have developed DNA-driven gold nanorod coated platinum-upconversion nanoparticle satellite assemblies (termed Au NR@Pt-UCNP satellites) for intracellular thymidine kinase 1 (TK1) mRNA analysis. The nanostructures were capable of recognizing target mRNA in a sequence-specific manner as luminescence of UCNPs was effectively quenched by Au NR@Pt within the assemblies. Following recognition, UCNPs detached from Au NR@Pt, resulting in luminescence restoration to achieve effective in situ imaging and quantifiable detection of target mRNA. The upconversional luminescence intensity of confocal images showed a good linear relationship with intracellular TK1 mRNA ranging from 1.17 to 65.21 fmol/10 μg RNA and a limit of detection (LOD) of 0.67 fmol/10 μg RNA. We believe that our present assay can be broadly applied for detection of endogenous biomolecules at the cellular and tissue levels and restoration of tissue homeostasis in vivo.
Collapse
Affiliation(s)
- Rui Gao
- State Key Laboratory of Food Science and Technology , Jiangnan University , Wuxi , Jiangsu , 214122 , PRC.,International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology , Jiangnan University , Wuxi , Jiangsu , 214122 , PRC.,Collaborative Innovationcenter of Food Safety and Quality Control in Jiangsu Province , Jiangnan University , Wuxi , Jiangsu , 214122 , PRC
| | - Changlong Hao
- State Key Laboratory of Food Science and Technology , Jiangnan University , Wuxi , Jiangsu , 214122 , PRC.,International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology , Jiangnan University , Wuxi , Jiangsu , 214122 , PRC.,Collaborative Innovationcenter of Food Safety and Quality Control in Jiangsu Province , Jiangnan University , Wuxi , Jiangsu , 214122 , PRC
| | - Liguang Xu
- State Key Laboratory of Food Science and Technology , Jiangnan University , Wuxi , Jiangsu , 214122 , PRC.,International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology , Jiangnan University , Wuxi , Jiangsu , 214122 , PRC.,Collaborative Innovationcenter of Food Safety and Quality Control in Jiangsu Province , Jiangnan University , Wuxi , Jiangsu , 214122 , PRC
| | - Chuanlai Xu
- State Key Laboratory of Food Science and Technology , Jiangnan University , Wuxi , Jiangsu , 214122 , PRC.,International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology , Jiangnan University , Wuxi , Jiangsu , 214122 , PRC.,Collaborative Innovationcenter of Food Safety and Quality Control in Jiangsu Province , Jiangnan University , Wuxi , Jiangsu , 214122 , PRC
| | - Hua Kuang
- State Key Laboratory of Food Science and Technology , Jiangnan University , Wuxi , Jiangsu , 214122 , PRC.,International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology , Jiangnan University , Wuxi , Jiangsu , 214122 , PRC.,Collaborative Innovationcenter of Food Safety and Quality Control in Jiangsu Province , Jiangnan University , Wuxi , Jiangsu , 214122 , PRC
| |
Collapse
|
46
|
Xu X, Wang L, Li K, Huang Q, Jiang W. A Smart DNA Tweezer for Detection of Human Telomerase Activity. Anal Chem 2018; 90:3521-3530. [PMID: 29446916 DOI: 10.1021/acs.analchem.7b05373] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Reliable and accurate detection of telomerase activity is crucial to better understand its role in cancer cells and to further explore its function in cancer diagnosis and treatment. Here, we construct a smart DNA tweezer (DT) for detection of telomerase activity. The DT is assembled by three specially designed single-stranded oligonucleotides: a central strand dually labeled with donor/acceptor fluorophores and two arm strands containing overhangs complementary to telomerase reaction products (TRPs). It can get closed through hybridization with TRPs and get reopen through strand displacement reaction by TRPs' complementary sequences. First, under the action of telomerase, telomerase binding substrates (TS) are elongated to generate TRPs ended with telomeric repeats (TTAGGG) n. TRPs hybridize with the two arm overhangs cooperatively and strain DT to closed state, inducing an increased fluorescence resonance energy transfer (FRET) efficiency, which is utilized for telomerase activity detection. Second, upon introduction of a removal strand (RS) complementary to TRPs, the closed DT is relaxed to open state via the toehold-mediated strand displacement, inducing a decreased FRET efficiency, which is utilized for determination of TRP length distribution. The detection limit of telomerase activity is equivalent to 141 cells/μL for HeLa cells, and telomerase-active cellular extracts can be differentiated from telomerase-inactive cellular extracts. Furthermore, TRPs owning 1, 2, 3, 4, and ≥5 telomeric repeats are identified to account for 25.6%, 20.5%, 15.7%, 12.5%, and 25.7%, respectively. The proposed strategy will offer a new approach for reliable, accurate detection of telomerase activity and product length distribution for deeper studying its role and function in cancer.
Collapse
|
47
|
Hu Q, Li H, Wang L, Gu H, Fan C. DNA Nanotechnology-Enabled Drug Delivery Systems. Chem Rev 2018; 119:6459-6506. [PMID: 29465222 DOI: 10.1021/acs.chemrev.7b00663] [Citation(s) in RCA: 643] [Impact Index Per Article: 91.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Over the past decade, we have seen rapid advances in applying nanotechnology in biomedical areas including bioimaging, biodetection, and drug delivery. As an emerging field, DNA nanotechnology offers simple yet powerful design techniques for self-assembly of nanostructures with unique advantages and high potential in enhancing drug targeting and reducing drug toxicity. Various sequence programming and optimization approaches have been developed to design DNA nanostructures with precisely engineered, controllable size, shape, surface chemistry, and function. Potent anticancer drug molecules, including Doxorubicin and CpG oligonucleotides, have been successfully loaded on DNA nanostructures to increase their cell uptake efficiency. These advances have implicated the bright future of DNA nanotechnology-enabled nanomedicine. In this review, we begin with the origin of DNA nanotechnology, followed by summarizing state-of-the-art strategies for the construction of DNA nanostructures and drug payloads delivered by DNA nanovehicles. Further, we discuss the cellular fates of DNA nanostructures as well as challenges and opportunities for DNA nanostructure-based drug delivery.
Collapse
Affiliation(s)
- Qinqin Hu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University , Shanghai 200032 , China.,Department of Systems Biology for Medicine , School of Basic Medical Sciences, Fudan University , Shanghai 200032 , China
| | - Hua Li
- Shanghai Institute of Cardiovascular Diseases , Zhongshan Hospital, Fudan University , Shanghai 200032 , China.,Research & Development Center, Shandong Buchang Pharmaceutical Company, Limited, Heze 274000 , China
| | - Lihua Wang
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility Shanghai Institute of Applied Physics , Chinese Academy of Sciences , Shanghai 201800 , China.,School of Life Science and Technology , ShanghaiTech University , Shanghai 201210 , China
| | - Hongzhou Gu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University , Shanghai 200032 , China.,Department of Systems Biology for Medicine , School of Basic Medical Sciences, Fudan University , Shanghai 200032 , China.,Shanghai Institute of Cardiovascular Diseases , Zhongshan Hospital, Fudan University , Shanghai 200032 , China
| | - Chunhai Fan
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility Shanghai Institute of Applied Physics , Chinese Academy of Sciences , Shanghai 201800 , China.,School of Life Science and Technology , ShanghaiTech University , Shanghai 201210 , China
| |
Collapse
|
48
|
Yang L, Li J, Pan W, Wang H, Li N, Tang B. Fluorescence and photoacoustic dual-mode imaging of tumor-related mRNA with a covalent linkage-based DNA nanoprobe. Chem Commun (Camb) 2018; 54:3656-3659. [DOI: 10.1039/c8cc01335g] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A fluorescence and photoacoustic dual-mode DNA nanoprobe based on covalent linkage was developed for detecting tumor-associated mRNA.
Collapse
Affiliation(s)
- Limin Yang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Jia Li
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Wei Pan
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Hongyu Wang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Na Li
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Bo Tang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| |
Collapse
|
49
|
Xie N, Huang J, Yang X, He X, Liu J, Huang J, Fang H, Wang K. Scallop-Inspired DNA Nanomachine: A Ratiometric Nanothermometer for Intracellular Temperature Sensing. Anal Chem 2017; 89:12115-12122. [DOI: 10.1021/acs.analchem.7b02709] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Nuli Xie
- State Key Laboratory of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, Key
Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan
Province, Hunan University, Changsha 410082, People’s Republic of China
| | - Jin Huang
- State Key Laboratory of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, Key
Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan
Province, Hunan University, Changsha 410082, People’s Republic of China
| | - Xiaohai Yang
- State Key Laboratory of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, Key
Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan
Province, Hunan University, Changsha 410082, People’s Republic of China
| | - Xiaoxiao He
- State Key Laboratory of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, Key
Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan
Province, Hunan University, Changsha 410082, People’s Republic of China
| | - Jianbo Liu
- State Key Laboratory of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, Key
Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan
Province, Hunan University, Changsha 410082, People’s Republic of China
| | - Jiaqi Huang
- State Key Laboratory of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, Key
Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan
Province, Hunan University, Changsha 410082, People’s Republic of China
| | - Hongmei Fang
- State Key Laboratory of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, Key
Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan
Province, Hunan University, Changsha 410082, People’s Republic of China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, Key
Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan
Province, Hunan University, Changsha 410082, People’s Republic of China
| |
Collapse
|
50
|
Zhu L, Qing Z, Hou L, Yang S, Zou Z, Cao Z, Yang R. Direct Detection of Nucleic Acid with Minimizing Background and Improving Sensitivity Based on a Conformation-Discriminating Indicator. ACS Sens 2017; 2:1198-1204. [PMID: 28741345 DOI: 10.1021/acssensors.7b00349] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
As is well-known, the nucleic acid indicator-based strategy is one of the major approaches to monitor the nucleic acid hybridization-mediated recognition events in biochemical analysis, displaying obvious advantages including simplicity, low cost, convenience, and generality. However, conventional indicators either hold strong self-fluorescence or can be lighted by both ssDNA and dsDNA, lacking absolute selectivity for a certain conformation, always with high background interference and low sensitivity in sensing; and additional processing (e.g., nanomaterial-mediated background suppression, and enzyme-catalyzed signal amplification) is generally required to improve the detection performance. In this work, a carbazole derivative, EBCB, has been synthesized and screened as a dsDNA-specific fluorescent indicator. Compared with conventional indicators under the same conditions, EBCB displayed a much higher selective coefficient for dsDNA, with little self-fluorescence and negligible effect from ssDNA. Based on its superior capability in DNA conformation-discrimination, high sensitivity with minimizing background interference was demonstrated for direct detection of nucleic acid, and monitoring nucleic acid-based circuitry with good reversibity, resulting in low detection limit and high capability for discriminating base-mismatching. Thus, we expect that this highly specific DNA conformation-discriminating indicator will hold good potential for application in biochemical sensing and molecular logic switching.
Collapse
Affiliation(s)
- Lixuan Zhu
- Hunan
Provincial Key Laboratory of Materials Protection for Electric Power
and Transportation, Hunan Provincial Engineering Research Center for
Food Processing of Aquatic Biotic Resources, School of Chemistry and
Biological Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China
| | - Zhihe Qing
- Hunan
Provincial Key Laboratory of Materials Protection for Electric Power
and Transportation, Hunan Provincial Engineering Research Center for
Food Processing of Aquatic Biotic Resources, School of Chemistry and
Biological Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China
- State
Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry
and Chemical Engineering, Molecular Science and Biomedicine Laboratory, Hunan University, Changsha 410082, P. R. China
| | - Lina Hou
- Hunan
Provincial Key Laboratory of Materials Protection for Electric Power
and Transportation, Hunan Provincial Engineering Research Center for
Food Processing of Aquatic Biotic Resources, School of Chemistry and
Biological Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China
| | - Sheng Yang
- Hunan
Provincial Key Laboratory of Materials Protection for Electric Power
and Transportation, Hunan Provincial Engineering Research Center for
Food Processing of Aquatic Biotic Resources, School of Chemistry and
Biological Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China
| | - Zhen Zou
- Hunan
Provincial Key Laboratory of Materials Protection for Electric Power
and Transportation, Hunan Provincial Engineering Research Center for
Food Processing of Aquatic Biotic Resources, School of Chemistry and
Biological Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China
| | - Zhong Cao
- Hunan
Provincial Key Laboratory of Materials Protection for Electric Power
and Transportation, Hunan Provincial Engineering Research Center for
Food Processing of Aquatic Biotic Resources, School of Chemistry and
Biological Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China
| | - Ronghua Yang
- Hunan
Provincial Key Laboratory of Materials Protection for Electric Power
and Transportation, Hunan Provincial Engineering Research Center for
Food Processing of Aquatic Biotic Resources, School of Chemistry and
Biological Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China
- State
Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry
and Chemical Engineering, Molecular Science and Biomedicine Laboratory, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|