1
|
Ye YX, Pan JC, Jiang Y, Tang P, Wang HC, Shi XA, Zhang XT, Zhu HL, Liu XH. A Mito-targeted, pH-sensitive type I photosensitizer for the diagnosis and therapy in bone metastasis of triple negative breast cancer by activating pyroptosis pathway. Biosens Bioelectron 2025; 283:117559. [PMID: 40345019 DOI: 10.1016/j.bios.2025.117559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 05/03/2025] [Accepted: 05/05/2025] [Indexed: 05/11/2025]
Abstract
Rational design of multifunctional molecules integrating diagnostic and therapeutic capabilities represents a cutting-edge yet challenging frontier in modern medicine. In this study, we present the first report on Rh-HB, a smart near-infrared (NIR) molecular probe engineered for mitochondria-targeted theranostics in triple-negative breast cancer (TNBC) bone metastasis. As a ratiometric, dual-excitation pH-sensitive fluorescent probe, Rh-HB enables real-time monitoring of mitochondrial pH fluctuations associated with early-stage metastatic progression. Moreover, Rh-HB functions as a highly efficient type I photosensitizer, generating cytotoxic reactive oxygen species (ROS) such as superoxide anion (O2•-) and hydroxyl radicals (·OH) upon light irradiation within mitochondria. This localized ROS production overcomes the limitations of short diffusion distances, ensuring effective oxidative damage. Crucially, Rh-HB induces severe mitochondrial oxidative stress, triggering pyroptosis in TNBC bone metastasis models. Thus, Rh-HB serves as a proof-of-concept theranostic agent, offering a promising strategy for combating bone metastasis of TNBC.
Collapse
Affiliation(s)
- Ya-Xi Ye
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Suzhou University, Suzhou, 234000, PR China
| | - Jian-Cheng Pan
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210023, PR China
| | - Yu Jiang
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Suzhou University, Suzhou, 234000, PR China
| | - Pei Tang
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Suzhou University, Suzhou, 234000, PR China
| | - Hai-Chao Wang
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Suzhou University, Suzhou, 234000, PR China
| | - Xin-Ai Shi
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Suzhou University, Suzhou, 234000, PR China
| | - Xing-Tao Zhang
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Suzhou University, Suzhou, 234000, PR China.
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210023, PR China.
| | - Xin-Hua Liu
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Suzhou University, Suzhou, 234000, PR China; School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, PR China.
| |
Collapse
|
2
|
Li XF, Wu FG. Aggregation-induced emission-based fluorescent probes for cellular microenvironment detection. Biosens Bioelectron 2025; 274:117130. [PMID: 39904094 DOI: 10.1016/j.bios.2025.117130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/27/2024] [Accepted: 01/02/2025] [Indexed: 02/06/2025]
Abstract
The cellular microenvironment exerts a pivotal regulatory influence on cell survival, function, and behavior. Dynamic analysis and detection of the cellular microenvironment can promptly elucidate changes in cellular microenvironmental information, uncover the pathogenesis of diseases associated with aberrant microenvironments, and aid in predicting disease risk and monitoring disease progression. Aggregation-induced emission (AIE) fluorescent molecules possess unique AIE characteristics and offer significant advantages in imaging and sensing cellular microenvironments. In this review, we present a profile of the remarkable progress achieved in utilizing AIE fluorescent molecules for detecting cellular microenvironments in recent years. We particularly focus on AIE fluorescent probes applied in imaging key parameters of the cellular microenvironment, including pH, viscosity, polarity, and temperature, as well as in analyzing critical biological components of the microenvironment, such as gas signal molecules, metal ions, redox state, and proteins. We underscore the design principles, detection mechanisms, sensing performance, and biological applications of these fluorescent probes. Furthermore, we address the current challenges confronting this field and provide prospects for the future development of AIE probes used for microenvironment detection. We trust that this review will inspire researchers to develop more precise and sensitive AIE fluorescent probes for the detection of cellular microenvironments.
Collapse
Affiliation(s)
- Xiang-Fei Li
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, 211189, China
| | - Fu-Gen Wu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, 211189, China.
| |
Collapse
|
3
|
Palta A, Thakur P, Kumar G, Vashisht P, Luxami V. 1,10-phenanthroline appended novel Schiff base as a selective fluorescent chemosensor for nerve agent stimulants. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 329:125601. [PMID: 39706075 DOI: 10.1016/j.saa.2024.125601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 11/11/2024] [Accepted: 12/12/2024] [Indexed: 12/23/2024]
Abstract
A simple, tailor-made, novel chemosensor based on 1,10-phenanthroline Schiff base incorporating N, N-Diethylamino salicylaldehyde (1) was designed and synthesized. The sensing ability of chemosensor 1 was tested via colorimetric, UV-Vis and fluorescence spectroscopy. Chemosensor 1 could effectively and specifically detect diethylchlorophosphate (DCP) in acetonitrile displaying naked eye colour change from pale yellow to dark yellow while fluorogenic colour changes from blue to pink fluorescence (365 nm UV lamp irradiation). The spectral changes corroborated the colorimetric results with appreciable bathochromic shifts of 44 and 75 nm in absorption and emission spectra respectively. With DCP, the spectral changes may be attributed to the reaction of the phosphorus group with the hydroxyl group which inhibits the ICT within the molecule. The colorimetric and spectral changes were reversed with the addition of triethylamine (TEA) signifying the reversibility of chemosensor 1. Significantly, the detection limit of 1 for DCP ions was evaluated to be 4.4 nM with the binding constant value of 1.9 × 104 M-1. Furthermore, chemosensor 1 showed excellent performance for convenient DCP detection via filter paper fabricated test strips.
Collapse
Affiliation(s)
- Aastha Palta
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147004, India
| | - Priya Thakur
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147004, India
| | - Gulshan Kumar
- Department of Chemistry, Banasthali University, Banasthali Newai 304022, Rajasthan, India
| | - Priya Vashisht
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147004, India.
| | - Vijay Luxami
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147004, India.
| |
Collapse
|
4
|
Sanfui MH, Hassan N, Roy S, Chowdhury D, Nandy P, Chang M, Rahaman M, Ghosh NN, Majumdar S, Chattopadhyay PK, Maiti DK, Singha NR. Uncovering Integrated Dual-State ESIPT-Conductivity, Redox-Capacity, and Opto-Electronic Responses Toward Hg(II)/ Cr(III) of Aliphatic Fluorescent Polymers. Macromol Rapid Commun 2024; 45:e2400677. [PMID: 39461889 DOI: 10.1002/marc.202400677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/18/2024] [Indexed: 10/29/2024]
Abstract
Excited-state intramolecular proton transfer (ESIPT)-associated dual-state emissive aliphatic dual-light emitting conducting polymers (DLECPs) having oxidation-reduction capacities are prepared polymerizing 2-acrylamido-2-methylpropane-1-sulfonic acid, methacrylic acid, and 2-methyl-3-(N-(2-methyl-1-sulfopropan-2-yl)acrylamido)propanoic acid monomers. Of as-synthesized DLECPs, nuclear magnetic resonance (NMR) and Fourier transform infrared (FTIR) spectroscopies, fluorescent enhancements (I/I0), and computational investigation indicate intriguing photophysical features in DLECP3 (optimum composition). In DLECP3, ─CONH─, ─CON<, and ─COOH subluminophores are recognized by density-functional theory (DFT)/time-dependent-DFT calculations and experimental investigations. ESIPT-associated dual-state emission/conductivity, aggregation-enhanced emissions, selective opto-electronic responses toward Hg(II)/Cr(III) at 437/574 nm, and redox properties of DLECP3 are supported by solid-state/solution spectroscopies, time-correlated single photon counting (TCSPC) measurements, dual-state excitation dependent emissions, microscopic images, electrochemical measurements, and DFT calculations. Here, preferential interaction of Hg(II)/Cr(III) with DLECP3 (amide)/DLECP3 (imidol) and reduction/oxidation of Hg(II)/Cr(III) to Hg(I)/Cr(VI) are substantiated by UV-vis, FTIR, and X-ray photoelectron spectroscopies; TCSPC measurements; NMR-titration; electrochemical studies; alongside computational calculations. The proton-electrical conductivities of DLECP3, Hg(II/I)-DLECP3, and Cr(III/VI)-DLECP3 in solids/solutions are 15.27 × 10-5/6.16 × 10-5, 19.60 × 10-5/25.52 × 10-5, and 26.69 × 10-5/27.60 × 10-5 S cm-1, respectively.
Collapse
Affiliation(s)
- Md Hussain Sanfui
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake, Kolkata, West Bengal, 700106, India
| | - Nadira Hassan
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake, Kolkata, West Bengal, 700106, India
| | - Shrestha Roy
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake, Kolkata, West Bengal, 700106, India
- Department of Chemistry, University of Calcutta, 92, A.P.C. Road, Kolkata, West Bengal, 700009, India
| | - Deepak Chowdhury
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake, Kolkata, West Bengal, 700106, India
| | - Preetam Nandy
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake, Kolkata, West Bengal, 700106, India
- Department of Chemistry, University of Calcutta, 92, A.P.C. Road, Kolkata, West Bengal, 700009, India
| | - Mincheol Chang
- Department of Polymer Engineering, Graduate School, Chonnam National University, Gwangju, South Korea, 61186
| | - Mostafizur Rahaman
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | | | - Swapan Majumdar
- Department of Chemistry, Tripura University, Suryamaninagar, Tripura, 799022, India
| | - Pijush Kanti Chattopadhyay
- Department of Leather Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake, Kolkata, West Bengal, 700106, India
| | - Dilip K Maiti
- Department of Chemistry, University of Calcutta, 92, A.P.C. Road, Kolkata, West Bengal, 700009, India
| | - Nayan Ranjan Singha
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake, Kolkata, West Bengal, 700106, India
| |
Collapse
|
5
|
Ravi S, Karthikeyan S, Pannipara M, Al-Sehemi AG, Moon D, Anthony SP. Propeller shaped triarylamine acid: An ultra-sensitive fluorescence probe for distinguishing propanol isomers and water sensing in organic solvents. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 319:124557. [PMID: 38830332 DOI: 10.1016/j.saa.2024.124557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/05/2024]
Abstract
The photophysical properties of conformationally flexible (TPA-C) and partially rigidified (Cz-C) triarylamine acids were explored in solid as well as solution state and correlated with the structure. TPA-C and Cz-C exhibited moderate solid-state fluorescence (Φf = 6.2 % (TPA-C) and 5.6 % (Cz-C)) and self-reversible mechanofluorochromism. TPA-C produced fluorescent polymorphs (TPA-C-1 and TPA-C-2) with tunable fluorescence. TPA-C-1 showed unusual carboxylic acid intermolecular interactions whereas TPA-C-2 and Cz-C showed usual carboxylic acid dimer. TPA-C exhibited strong solvent polarity dependent tunable fluorescence (Φf = 0.01 to 0.11 compared to quinine sulphate standard) but Cz-C was non-emissive in the solution state. The dual emissive TPA-C showed highly sensitive fluorescence changes in organic solvents (CH3CN, THF, DMF, EtOH) when trace amount of water was added. In CH3CN, TPA-C showed weak fluorescence at 474 nm and addition of water (1 %) exhibited significant blue shift (λmax = 416 nm). The fluorescence intensity was gradually decreased with blue shifting in DMF, THF and EtOH with water addition. Importantly, TPA-C showed drastically different fluorescence in n-propanol (n-PA) and iso-propanol (IPA). TPA-C in n-PA showed fluorescence at 408 nm that was clearly red shifted to 438 nm with 0.1 % addition of IPA. The limit of detection (LOD) of water in CH3CN, DMF, THF and EtOH by TPA-C revealed 0.02, 0.7, 0.08 and 0.77 %, respectively. The LOD of IPA sensing in n-PA is 0.05 % and indicated the very efficient sensing and distinguishing propanol isomers. Thus, simple triphenylamine acid showed excellent water sensing and propanol isomers discrimination that could be attributed to the twisted intramolecular charge transfer (TICT) formation.
Collapse
Affiliation(s)
- Sasikala Ravi
- School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India
| | - Subramanian Karthikeyan
- Department of Chemistry, Khadir Mohideen College (Affiliated to Bharathidasan University), Adirampattinam, Tamil Nadu, India
| | - Mehboobali Pannipara
- Research Center for Advanced Materials Science, King Khalid University, Abha 61413, Saudi Arabia; Department of Chemistry, King Khalid University, Abha 61413, Saudi Arabia
| | - Abdullah G Al-Sehemi
- Research Center for Advanced Materials Science, King Khalid University, Abha 61413, Saudi Arabia; Department of Chemistry, King Khalid University, Abha 61413, Saudi Arabia
| | - Dohyun Moon
- Beamline Department, Pohang Accelerator Laboratory, 80 Jigokro-127beongil, Nam-gu, Pohang, Gyeongbuk, Korea.
| | | |
Collapse
|
6
|
Hassan N, Sanfui MH, Chowdhury D, Roy S, Ghosh NN, Rahaman M, Chang M, Hasnat MA, Chattopadhyay PK, Singha NR. Synthesis of Intrinsically-Fluorescent Aliphatic Tautomeric Polymers for Proton-Conductivity, Dual-State Emission, and Sensing/Oxidation-Reduction of Metal Ions. Macromol Rapid Commun 2024; 45:e2400363. [PMID: 38950314 DOI: 10.1002/marc.202400363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/15/2024] [Indexed: 07/03/2024]
Abstract
Herein, fluorescent conducting tautomeric polymers (FCTPs) are developed by polymerizing 2-methylprop-2-enoic acid (MPEA), methyl-2-methylpropenoate (MMP), N-(propan-2-yl)prop-2-enamide (PPE), and in situ-anchored 3-(N-(propan-2-yl)prop-2-enamido)-2-methylpropanoic acid (PPEMPA). Among as-synthesized FCTPs, the most promising characteristics in FCTP3 are confirmed by NMR and Fourier transform infrared (FTIR) spectroscopies, luminescence enhancements, and computational studies. In FCTP3, ─C(═O)NH─, -C(═O)N<, ─C(═O)OH, and ─C(═O)OCH3 subluminophores are identified by theoretical calculations and experimental analyses. These subluminophores facilitate redox characteristics, solid state emissions, aggregation-enhanced emissions (AEEs), excited-state intramolecular proton transfer (ESIPT), and conductivities in FCTP3. The ESIPT-associated dual emission/AEEs of FCTP3 are elucidated by time correlated single photon counting (TCSPC) investigation, solvent polarity effects, concentration-dependent emissions, dynamic light scattering (DLS) measurements, field emission scanning electron microscopy images, and computational calculations. The cyclic voltammetry measurements of FCTP3 indicate cumulative redox efficacy of ─C(═O)OH, ─C(═O)NH─/-C(═O)N<, ─C(─O─)═NH+─/─C(─O─)═N+, and ─C(═N)OH functionalities. In FCTP3, ESIPT-associated dual-emission enable in the selective detection of Cr(III)/Cu(II) at λem1/λem2 with the limit of detection of 0.0343/0.079 ppb. The preferential interaction of Cr(III)/Cu(II) with FCTP3 (amide)/FCTP3 (imidol) and oxidation/reduction of Cr(III)/Cu(II) to Cr(VI)/Cu(I) are further supported by NMR-titration; FTIR and X-ray photoelectron spectroscopy analyses; TCSPC/electrochemical/DLS measurement; alongside theoretical calculations. The proton conductivity of FCTP3 is explored by electrochemical impedance spectroscopy and I-V measurements.
Collapse
Affiliation(s)
- Nadira Hassan
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata, West Bengal, 700106, India
| | - Md Hussain Sanfui
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata, West Bengal, 700106, India
| | - Deepak Chowdhury
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata, West Bengal, 700106, India
| | - Shrestha Roy
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata, West Bengal, 700106, India
| | | | - Mostafizur Rahaman
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, P.O. Box 2455, Saudi Arabia
| | - Mincheol Chang
- Department of Polymer Engineering, Graduate School, Chonnam National University, Gwangju, 61186, South Korea
| | - Mohammad A Hasnat
- Electrochemistry & Catalysis Research Laboratory (ECRL), Department of Chemistry, School of Physical Sciences, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Pijush Kanti Chattopadhyay
- Department of Leather Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata, West Bengal, 700106, India
| | - Nayan Ranjan Singha
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata, West Bengal, 700106, India
| |
Collapse
|
7
|
Liu S, Fang S, Jang WJ, Yoon J, Zhang L. Coordination Synergistic-Induced J-Aggregation Enhanced Fluorescent Performance of HBT-Excimers and Imaging Applications. Anal Chem 2024; 96:12794-12800. [PMID: 39054752 DOI: 10.1021/acs.analchem.4c02152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Developing a novel strategy to improve the optical performances of fluorescent probes is a vital factor in elevating its practical application; viz., novel biocompatible fluorescent probes with excellent multifunctions exhibited unparalleled advantages in probing functions of intracellular molecules to elucidate intracellular events in living systems. Herein, we have successfully constructed a new strategy that aggregation and coordination synergistically induce (2-hydroxylphenyl-benzothiazole) HBT derivatives to form excimers with large red-shifted fluorescence and application for insight into stress-response zinc fluctuations in living systems. We have synthesized four HBT-based derivatives and deeply investigated the response mechanism by fluorescent spectral studies, demonstrating that probes 3 and 4 showcased large red shifts in emission wavelength due to J-aggregation. More interestingly, the fluorescence of probe 4 was significantly enhanced in the presence of a zinc ion, suggesting that zinc coordination synergistically induced J-aggregation. Probe 4 was successfully applied to image zinc fluctuations in different models of living systems, proving that this probe is a powerful tool to unveil the relationship between invasive stress and diseases by monitoring endogenous zinc fluctuations.
Collapse
Affiliation(s)
- Shudi Liu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, P.R. China
| | - Shujing Fang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, P.R. China
| | - Won Jun Jang
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| | - Liangwei Zhang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Centre for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, P.R. China
| |
Collapse
|
8
|
Ermakova EV, Zvyagina AI, Kharlamova AD, Abel AS, Andraud C, Bessmertnykh-Lemeune A. Preparation of Langmuir-Blodgett Films from Quinoxalines Exhibiting Aggregation-Induced Emission and Their Acidochromism. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:15117-15128. [PMID: 38979711 DOI: 10.1021/acs.langmuir.4c01497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The development of aggregation-induced emission (AIE)-exhibiting compounds heavily relies on our evolving comprehension of their behavior at interfaces, an understanding that still remains notably limited. In this study, we explored the preparation of two-dimensional (2D) sensing films from 2,3-diphenylquinoxaline-based diazapolyoxa- and polyazamacrocycles displaying AIE via the Langmuir-Blodgett (LB) technique. This systematic investigation highlights the key role of the heteroatom-containing tether of 2,3-diphenylquinoxalines in the successful fabrication of Langmuir layers at the air-water interface and the transfer of AIE-emitting supramolecular aggregates onto solid supports. Using both diazapolyoxa- and polyazamacrocycles, we prepared AIE-exhibiting monolayer films containing emissive supramolecular aggregates on silica, mica, and quartz glass and characterized them using ultraviolet-visible (UV-vis) and photoluminescence (PL) spectroscopies, atomic force microscopy (AFM) imaging, and fluorescence microscopy. We also obtained multilayer AIE-emitting films through the LB technique, albeit with increased complexity. Remarkably, by employing the smallest macrocycle N2C3Q, we successfully prepared LB films suitable for the visual detection of acidic vapors. This sensing material, which contains a much lesser amount of organic dye compared with traditional drop-cast films, can be regenerated and utilized for real-life sample analysis, such as monitoring the presence of ammonia in the air and the freshness of meat.
Collapse
Affiliation(s)
- Elizaveta V Ermakova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky Pr. 31-4, Moscow 119071, Russia
| | - Alexandra I Zvyagina
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky Pr. 31-4, Moscow 119071, Russia
| | - Alisa D Kharlamova
- Department of Chemistry, Lomonosov Moscow State University, 1-3, Leninskie Gory, Moscow 119991, Russia
| | - Anton S Abel
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky Pr. 31-4, Moscow 119071, Russia
- Department of Chemistry, Lomonosov Moscow State University, 1-3, Leninskie Gory, Moscow 119991, Russia
| | - Chantal Andraud
- Université de Lyon, CNRS UMR 5182, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, 46 Allée d'Italie, 69342 Lyon, France
| | - Alla Bessmertnykh-Lemeune
- Université de Lyon, CNRS UMR 5182, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, 46 Allée d'Italie, 69342 Lyon, France
| |
Collapse
|
9
|
Mondal T, Biswas S, Mane MV, Panja SS. Shedding Novel Photophysical Insights Toward Discriminative Detection of Three Toxic Heavy Metal Ions and a hazard class 1 nitro-explosive By Using a Simple AIEE Active Luminogen. J Fluoresc 2024; 34:1401-1425. [PMID: 37542589 DOI: 10.1007/s10895-023-03378-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 07/27/2023] [Indexed: 08/07/2023]
Abstract
In this work, we introduced a simple aggregation-induced emission enhancement (AIEE) sensor (PHCS) which can selectively detect and discriminate three environmentally and biologically imperative heavy metal ions (Cu2+, Co2+ and Hg2+) and a hazard class 1 categorized nitro-explosive picric acid (PA) in differential media. By virtue of its weak fluorescence attributes in pure organic medium owing to the synergistic operation of multiple photophysical quenching mechanisms, the molecular probe showcased highly selective 'TURN ON' fluorogenic response towards hazardous Hg2+ with a limit of detection (LOD) as low as 97 nM. Comprehensive investigation of binding mechanism throws light on the cumulative effect of probe-metal complexation induced chelation enhanced fluorescence (CHEF) effect and subsequent AIEE activation within the formed probe-metal adducts. Noteworthily, the probe (PHCS) can be readily used in real water samples for the quantitative determination of Hg2+ in a wide concentration range. In addition, the probe displayed modest colorimetric recognition performances to selectively detect and discriminate two essential heavy metal ions (Cu2+ and Co2+) with a LOD of 96 nM and 65 nM for Cu2+ and Co2+ respectively, in semi-aqueous medium. Intriguingly, based on high photoluminescence efficiency, the AIEE active nano-aggregated PHCS displayed a remarkable propensity to be used as a selective and ultra-sensitive 'TURN-OFF' fluorogenic chemosensor towards PA with LOD of 34.4 ppb in aqueous medium. Finally, we specifically shed light on the interaction of PHCS hydrosol towards PA using some unprecedented techniques, which helped uncover new photophysical insights of probe-explosive molecule interaction.
Collapse
Affiliation(s)
- Tapashree Mondal
- Department of Chemistry, National Institute of Technology Durgapur, Durgapur, WB, 713209, India
| | - Sourav Biswas
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala P. O, Vithura, Thiruvananthapuram, Kerala, 69551, India
| | - Manoj V Mane
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Kanakapura, Ramanagaram, Bangalore, 562112, India
| | - Sujit S Panja
- Department of Chemistry, National Institute of Technology Durgapur, Durgapur, WB, 713209, India.
| |
Collapse
|
10
|
Ravi S, Priyadharshini P, Deviga G, Mariappan M, Karthikeyan S, Pannipara M, G Al-Sehemi A, Moon D, Philip Anthony S. Water sensitive fluorescence tuning of V-shaped ESIPT fluorophores: Substituent effect and trace amount water sensing in DMSO. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 309:123838. [PMID: 38181625 DOI: 10.1016/j.saa.2024.123838] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/26/2023] [Accepted: 01/01/2024] [Indexed: 01/07/2024]
Abstract
Highly sensitive nature of excited state intramolecular proton transfer (ESIPT) functionality in organic fluorophores made them potential candidates for developing environmental sensors and bioimaging applications. Herein, we report the synthesis of V-shaped Dapsone based Schiff base ESIPT derivatives (1-3) and water sensitive wide fluorescence tuning from blue to red in DMSO. Solid-state structural analysis confirmed the V-shaped molecular structure with intramolecular H-bonding and substituent dependent molecular packing in the crystal lattice. 1 showed strong solid-state fluorescence (λmax = 554 nm, Φf = 21.2 %) whereas methoxy substitution (2 and 3) produced tunable but significantly reduced fluorescence (λmax = 547 (2) and 615 nm (3), Φf = 2.1 (2) and 6.5 % (3)). Interestingly, aggregation induced emission (AIE) studies in DMSO-water mixture revealed water sensitive fluorescence tuning. The trace amount of water (less than 1 %) in DMSO converted the non-emissive 1-3 into highly emissive state due to keto tautomer formation. Further increasing water percentage produced deprotonated state of 1-3 in DMSO and enhanced the fluorescence intensity with red shifting of emission peak. At higher water fraction, 1-3 in DMSO produced aggregates and red shifted the emission with reduction of fluorescence intensity. The concentration dependent fluorescence study revealed the very low detection limit of water in DMSO. The limit of detection (LOD) of 1, 2 and 3 were 0.14, 1.04 and 0.65 % of water in DMSO. Hence, simple Schiff bases of 1-3 showed water concentration dependent keto isomer, deprotonated and aggregated state tunable fluorescence in DMSO. Further, scanning electron microscopic (SEM) studies of 1-3 showed water concentration controlled self-assembly and tunable fluorescence.
Collapse
Affiliation(s)
- Sasikala Ravi
- School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India
| | - Prakash Priyadharshini
- School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India
| | - Govindan Deviga
- Department of Chemistry, SRM IST, Kattankulathur, Chennai 603203, Tamil Nadu, India
| | - Mariappan Mariappan
- Department of Chemistry, SRM IST, Kattankulathur, Chennai 603203, Tamil Nadu, India
| | | | - Mehboobali Pannipara
- Department of Chemistry, King Khalid University, Abha 61413, Saudi Arabia; Research Center for Advanced Materials Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Abdullah G Al-Sehemi
- Department of Chemistry, King Khalid University, Abha 61413, Saudi Arabia; Research Center for Advanced Materials Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Dohyun Moon
- Beamline Department, Pohang Accelerator Laboratory, 80 Jigokro-127beongil, Nam-gu, Pohang, Gyeongbuk, Republic of Korea.
| | | |
Collapse
|
11
|
Ma J, Sun R, Xia K, Xia Q, Liu Y, Zhang X. Design and Application of Fluorescent Probes to Detect Cellular Physical Microenvironments. Chem Rev 2024; 124:1738-1861. [PMID: 38354333 DOI: 10.1021/acs.chemrev.3c00573] [Citation(s) in RCA: 74] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
The microenvironment is indispensable for functionality of various biomacromolecules, subcellular compartments, living cells, and organisms. In particular, physical properties within the biological microenvironment could exert profound effects on both the cellular physiology and pathology, with parameters including the polarity, viscosity, pH, and other relevant factors. There is a significant demand to directly visualize and quantitatively measure the fluctuation in the cellular microenvironment with spatiotemporal resolution. To satisfy this need, analytical methods based on fluorescence probes offer great opportunities due to the facile, sensitive, and dynamic detection that these molecules could enable in varying biological settings from in vitro samples to live animal models. Herein, we focus on various types of small molecule fluorescent probes for the detection and measurement of physical parameters of the microenvironment, including pH, polarity, viscosity, mechanical force, temperature, and electron potential. For each parameter, we primarily describe the chemical mechanisms underlying how physical properties are correlated with changes of various fluorescent signals. This review provides both an overview and a perspective for the development of small molecule fluorescent probes to visualize the dynamic changes in the cellular environment, to expand the knowledge for biological process, and to enrich diagnostic tools for human diseases.
Collapse
Affiliation(s)
- Junbao Ma
- Department of Chemistry and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310030, Zhejiang Province, China
| | - Rui Sun
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- University of the Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Kaifu Xia
- Department of Chemistry and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310030, Zhejiang Province, China
| | - Qiuxuan Xia
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- University of the Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Yu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, Chinese Academy of Sciences Dalian Liaoning 116023, China
| | - Xin Zhang
- Department of Chemistry and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| |
Collapse
|
12
|
Ma W, Wu Y, Li J, Yang M, Zhang H, Liu C, He X. A hairpin-contained i-motif guided DNA nanoantenna for sensitive and specific sensing of tumor extracellular pH gradients. Analyst 2024; 149:435-441. [PMID: 38099462 DOI: 10.1039/d3an01849k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Antenna, as a converter, could receive and convert signals from the outside world flexibly. Inspired by the behavior of antennas receiving external signals, we developed a pH-stimulated and aptamer-anchored Y-shaped DNA nanoantenna (termed pH-Apt-YNA) for sensitive and specific sensing of tumor extracellular pH gradients. The nanoantenna consisted of three functional nucleic acid sequences, an I-strand, Apt-Y-R and Y-L-G, where the I-strand endowed the DNA nanoantenna with the ability to receive and convert signals, the Apt-Y-R containing an aptamer fragment gave the DNA nanoantenna the ability to specifically anchor target tumor cells, and the complementarity of Y-L-G with the other two sequences ensured the stability of the DNA nanoantenna. Initially, the DNA nanoantenna was in a "silent" state, and rhodamine green was close to BHQ2, leading to suppressed signal emission. When the DNA nanoantenna anchored on the surface of target cancer cells through the aptamer recognition domain, the I-strand tended to fold into a hairpin-contained i-motif tetramer structure owing to the extracellular low pH stimuli, resulting in the DNA nanoantenna changing into an "active" state. In the meantime, rhodamine green moved far away from BHQ2, resulting in a strong signal output. The results demonstrate that the pH-Apt-YNA presents a sensitive pH sensing capacity within a narrow pH range of 6.2-7.4 and exhibits excellent specificity for the imaging of target cancer cell extracellular pH. Based on these advantages, we therefore anticipate that our facile design of the DNA nanoantenna with sensitive responsiveness provides a new way and great promise in the application of sensing pH-related physiological and pathological processes.
Collapse
Affiliation(s)
- Wenjie Ma
- Hunan Provincial Key Laboratory of Environmental Catalysis and Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha 410082, China.
| | - Yuchen Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha 410082, China.
| | - Jinyan Li
- Hunan Provincial Key Laboratory of Environmental Catalysis and Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China
| | - Mei Yang
- Hunan Provincial Key Laboratory of Environmental Catalysis and Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China
| | - He Zhang
- Hunan Provincial Key Laboratory of Environmental Catalysis and Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China
| | - Chang Liu
- Hunan Provincial Key Laboratory of Environmental Catalysis and Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China
| | - Xiaoxiao He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha 410082, China.
| |
Collapse
|
13
|
Yang C, Zhao J. A simple 'turn-on' fluorescence chemosensor for Al(iii) detection in aqueous solution and solid matrix. RSC Adv 2024; 14:1464-1471. [PMID: 38174242 PMCID: PMC10763699 DOI: 10.1039/d3ra06558h] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
A simple fluorescence chemosensor of FHS-OH based on salicylaldehyde Schiff base was developed via a one-step reaction, which achieved a fast and highly selective response for Al(iii). Mechanism studies showed that when FHS-OH was exposed to Al(iii) with 1 : 2 binding stoichiometry in an aqueous solution at neutral pH, C[double bond, length as m-dash]N isomerization and PET processes were limited, resulting in a 'turn-on' fluorescence response with a low detection limit of 63 nmol L-1 and a satisfying linear range of 0.0-20.0 μmol L-1. Compared to traditional detection methods for Al(iii), fluorometry using FHS-OH has several advantages, including simplicity, quick response, and capability of real-time detection. More importantly, the detection of Al(iii) on a solid matrix (test paper) was successfully achieved. After the addition of Al(iii), a significant emission colour change from green to bright blue was observed by the naked eye owing to the intrinsic aggregation-induced emission (AIE) characteristic of FHS-OH.
Collapse
Affiliation(s)
- Cuiping Yang
- School of Chemistry and Chemical Engineering, Tarim University Alar 843300 P. R. China
| | - Jianbo Zhao
- School of Chemistry and Chemical Engineering, Tarim University Alar 843300 P. R. China
| |
Collapse
|
14
|
Jain A, De S, Haloi P, Barman P. The solvent-regulated excited state reaction mechanism of 2-(2'-hydroxyphenyl)benzothiazole aggregates. Photochem Photobiol Sci 2024; 23:65-78. [PMID: 38006523 DOI: 10.1007/s43630-023-00499-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/20/2023] [Indexed: 11/27/2023]
Abstract
The excited state relaxation dynamics of 2-(2'-hydroxyphenyl)benzothiazole (HBT) in the gas phase and the solvents have been explored experimentally and theoretically. However, the fundamental mechanism of its emission in aggregates is still unexplored. In this article, we have presented a detail investigation of solvent-regulated excited state (ES) reactions for HBT aggregates with the aid of several experimental and theoretical research. The careful investigation of solvatochromic and electrochemical behavior elucidates that the emission around 460 nm of HBT in DMSO and DMSO-water fraction correspond to the excited state internal charge transfer (ESICT). The quantum chemical analysis further supports this observation. The concentration-dependent 1H NMR and emission studies of HBT in DMSO revealed the formation of aggregates at higher concentrations that facilitate the charge transfer. The emission pattern of HBT in the AcN-water fraction demonstrates that the sequential internal charge transfer-proton transfer (ESICT-ESIPT) occurs in HBT aggregates. The pH studies show that HBT aggregates are potential ratiometric sensors for near-physiological pH ranges. Moreover, a ground-state zwitterionic conformation of HBT is observed in the basic medium formed by ground-state internal proton transfer (GSIPT). Overall, this study provides a better understanding of solvent-regulated ES reaction mechanism in the case of HBT aggregates and other substituted HBT compound aggregates published previously.
Collapse
Affiliation(s)
- Abhinav Jain
- Department of Chemistry, National Institute of Technology, Silchar, Assam, 788010, India
| | - Soumik De
- Department of Chemistry, National Institute of Technology, Silchar, Assam, 788010, India
| | - Pankaj Haloi
- Department of Chemistry, National Institute of Technology, Silchar, Assam, 788010, India
| | - Pranjit Barman
- Department of Chemistry, National Institute of Technology, Silchar, Assam, 788010, India.
| |
Collapse
|
15
|
Huang X, Chen F, Ma Y, Zheng F, Fang Y, Feng B, Huang S, Zeng H, Zeng W. De novo design of a novel AIE fluorescent probe tailored to autophagy visualization via pH manipulation. Biomater Res 2023; 27:20. [PMID: 36915215 PMCID: PMC10012510 DOI: 10.1186/s40824-023-00359-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/26/2023] [Indexed: 03/14/2023] Open
Abstract
BACKGROUND Macroautophagy is an essential cellular self-protection mechanism, and defective autophagy has been considered to contribute to a variety of diseases. During the process, cytoplasmic components are transported via autophagosomes to acidic lysosomes for metabolism and recycling, which represents application niches for lysosome-targeted fluorescent probes. Additionally, in view of the complexity of the autophagy pathway, it entails more stringent requirements for probes suitable for monitoring autophagy. Meanwhile, aggregation-induced emission (AIE) fluorescent probes have been impressively demonstrated in the biomedical field, which bring fascinating possibilities to the autophagy visualization. METHODS We reported a generalizable de novo design of a novel pH-sensitive AIE probe ASMP-AP tailored to lysosome targeting for the interpretation of autophagy. Firstly, the theoretical calculation was carried out followed by the investigation of optical properties. Then, the performance of ASMP-AP in visualizing autophagy was corroborated by starvation or drugs treatments. Furthermore, the capability of ASMP-AP to monitor autophagy was demonstrated in ex vivo liver tissue and zebrafish in vivo. RESULTS ASMP-AP displays a large stokes shift, great cell permeability and good biocompatibility. More importantly, ASMP-AP enables a good linear response to pH, which derives from the fact that its aggregation state can be manipulated by the acidity. It was successfully applied for imaging autophagy in living cells and was proved capable of monitoring mitophagy. Moreover, this novel molecular tool was validated by ex vivo visualization of activated autophagy in drug-induced liver injury model. Interestingly, it provided a meaningful pharmacological insight that the melanin inhibitor 1-phenyl-2-thiourea (PTU)-induced autophagy was clearly presented in wild-type zebrafish. CONCLUSIONS ASMP-AP offers a simple yet effective tool for studying lysosome and autophagy. This is the first instance to visualize autophagy in zebrafish using a small-molecule probe with AIE characters, accurate lysosome targeting and simultaneous pH sensitivity. Ultimately, this novel fluorescent system has great potential for in vivo translation to fuel autophagy research.
Collapse
Affiliation(s)
- Xueyan Huang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, People's Republic of China.,Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, China
| | - Fei Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, People's Republic of China.,Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, China
| | - Yeshuo Ma
- Department of Geriatrics, Third Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Fan Zheng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, People's Republic of China.,Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, China
| | - Yanpeng Fang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, People's Republic of China.,Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, China
| | - Bin Feng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, People's Republic of China.,Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, China
| | - Shuai Huang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, People's Republic of China.,Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, China
| | - Hongliang Zeng
- Hunan Academic of Chinese Medicine, Inst Chinese Mat Med, Changsha, People's Republic of China.
| | - Wenbin Zeng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, People's Republic of China. .,Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, China.
| |
Collapse
|
16
|
Stoerkler T, Retailleau P, Jacquemin D, Ulrich G, Massue J. Heteroaryl-Substituted Bis-Anils: Aggregation-Induced Emission (AIE) Derivatives with Tunable ESIPT Emission Color and pH Sensitivity. Chemistry 2023; 29:e202203766. [PMID: 36524677 DOI: 10.1002/chem.202203766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
The two-step synthesis, structural, and photophysical properties of a series of heteroaryl-substituted bis-anil derivatives presenting aggregation-induced emission (AIE) coupled with an excited-state intramolecular proton transfer (ESIPT) process is described. The fluorescence color of the aggregates can be fine tuned by changing the electronic nature of the peripheral substitution, leading to a wide range of emission wavelengths (from green to the near infra-red). Moreover, upon introduction of strong electron-withdrawing groups such as cyano (CN), a competition between ESIPT and deprotonation is observed leading to the emission of the anionic species at low water percentage. This observation led to the synthesis of an additional mixed AIE fluorophore, functionalized by methoxy groups on one side and cyano groups on the other side. Upon addition of water, this dye displays first anionic emission, followed by typical AIE/ESIPT red fluorescence upon formation of the aggregates. TD-DFT calculations on selected AIE dyes were performed to rationalize the nature of the emissive transitions in these derivatives.
Collapse
Affiliation(s)
- Timothée Stoerkler
- Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES) Equipe Chimie Organique pour la Biologie, les Matériaux et l'Optique (COMBO) UMR CNRS 7515, Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), 25 Rue Becquerel, 67087, Strasbourg Cedex 02, France
| | - Pascal Retailleau
- Service de Cristallographie Structurale, ICSN-CNRS, Université Paris-Saclay 1, Avenue de la Terrasse, Bât. 27, 91198 Gif-sur-Yvette, Cedex, France
| | - Denis Jacquemin
- Nantes Université, CNRS, CEISAM UMR 6230, 44000, Nantes, France.,Institut Universitaire de France (IUF), 75005, Paris, France
| | - Gilles Ulrich
- Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES) Equipe Chimie Organique pour la Biologie, les Matériaux et l'Optique (COMBO) UMR CNRS 7515, Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), 25 Rue Becquerel, 67087, Strasbourg Cedex 02, France
| | - Julien Massue
- Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES) Equipe Chimie Organique pour la Biologie, les Matériaux et l'Optique (COMBO) UMR CNRS 7515, Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), 25 Rue Becquerel, 67087, Strasbourg Cedex 02, France
| |
Collapse
|
17
|
Umare M, Patel DA, Bhardwaj V, Sk AK, Sahoo SK. Pyridoxal Derived AIEgen for Fluorescence Turn-off Sensing of Cu 2+ and Fe 2+ Ions and Fluorescence Imaging of Latent Fingerprints. J Fluoresc 2023; 33:601-611. [PMID: 36469208 DOI: 10.1007/s10895-022-03109-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022]
Abstract
Schiff base 4-((E)-((E)-(2-hydroxybenzylidene)hydrazono)methyl)-5-(hydroxymethyl)-2-methylpyridin-3-ol (HSP) was synthesized by condensing vitamin B6 cofactor pyridoxal with salicylaldehyde hydrazone, and characterized by standard spectroscopic techniques (FT-IR, 1H NMR, 13C NMR, and ESI-MS). The solution of HSP in DMSO/HEPES (10 mM, pH = 7.4) mixed solvents with varying HEPES fractions (fw) from 0 to 95% showed aggregation-induced emission (AIE). The AIE active HSP in 95% HEPES gave intense fluorescent emission at 570 nm was employed for the detection of metal ions. The fluorescence of HSP was quenched upon adding Cu2+ and Fe2+ ions. The association constant (Ka) of the Schiff base HSP with Cu2+ and Fe2+ ions was estimated as 4.08 × 105 M-1 and 1.23 × 105 M-1, respectively by using the online analysis tool BindFit v0.5. The HSP showed the detection limit down to 1.75 µM and 1.89 µM for Cu2+ and Fe2+ ions, respectively. Further, the aggregates of HSP were applied to visualize latent fingerprints (LFPs) over a non-porous glass slide.
Collapse
Affiliation(s)
- Mahesh Umare
- Department of Chemistry, Sardar Vallabhbhai National Institute Technology, Surat-395007, Gujarat, India
| | - Dhvani A Patel
- Department of Chemistry, Sardar Vallabhbhai National Institute Technology, Surat-395007, Gujarat, India
| | - Vinita Bhardwaj
- Department of Chemistry, Sardar Vallabhbhai National Institute Technology, Surat-395007, Gujarat, India
| | - Ashok Kumar Sk
- Department of Chemistry, School of Advance Sciences, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India
| | - Suban K Sahoo
- Department of Chemistry, Sardar Vallabhbhai National Institute Technology, Surat-395007, Gujarat, India.
| |
Collapse
|
18
|
Gu H, Wang W, Wu W, Wang M, Liu Y, Jiao Y, Wang F, Wang F, Chen X. Excited-state intramolecular proton transfer (ESIPT)-based fluorescent probes for biomarker detection: design, mechanism, and application. Chem Commun (Camb) 2023; 59:2056-2071. [PMID: 36723346 DOI: 10.1039/d2cc06556h] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Biomarkers are essential in biology, physiology, and pharmacology; thus, their detection is of extensive importance. Fluorescent probes provide effective tools for detecting biomarkers exactly. Excited state intramolecular proton transfer (ESIPT), one of the significant photophysical processes that possesses specific photoisomerization between Keto and Enol forms, can effectively avoid annoying interference from the background with a large Stokes shift. Hence, ESIPT is an excellent choice for biomarker monitoring. Based on the ESIPT process, abundant probes were designed and synthesized using three major design methods. In this review, we conclude probes for 14 kinds of biomarkers based on ESIPT explored in the past five years, summarize these general design methods, and highlight their application for biomarker detection in vitro or in vivo.
Collapse
Affiliation(s)
- Hao Gu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China.
| | - Wenjing Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China.
| | - Wenyan Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China.
| | - Maolin Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China.
| | - Yongrong Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China.
| | - Yanjun Jiao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China.
| | - Fan Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China.
| | - Fang Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China.
| | - Xiaoqiang Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
19
|
Sun G, Fang H. Heteroatom substitution controlled luminescent property and excited state intramolecular proton transfer (ESIPT) process of novel benzothiazole-based fluorophore: A TD-DFT investigation. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
20
|
Bhardwaj V, Bhardwaj K, Sahoo SK. 'AIE + ESIPT' Active 2-hydroxy-naphthalene Hydrazone for the Fluorescence Turn-on Sensing of Al 3. J Fluoresc 2023; 33:1157-1164. [PMID: 36602712 DOI: 10.1007/s10895-022-03138-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023]
Abstract
The aggregation-induced emission (AIE) behaviour of an easy-to-prepare Schiff base 2-hydroxy-naphthalene hydrazone (L) was explored in mixed DMSO/HEPES medium by selecting DMSO as a good solvent, whereas HEPES buffer (H2O, 10 mM, pH 7.4) as a poor solvent. The weakly fluorescent L in pure DMSO showed a fluorescence enhancement at 532 nm upon increasing the fraction of HEPES above 70% because of the self-aggregation of L and excited state intramolecular proton transfer (ESIPT) process. The AIE luminogen (AIEgen) L was applied for the sensing of metal ions in HEPES buffer (5% DMSO, 10 mM, pH 7.4). Among the fourteen different metal ions (Cu2+, Co2+, Ni2+, Mn2+, Mg2+, Fe3+, Fe2+, Zn2+, Cd2+, Hg2+, Pb2+, Al3+, Cr3+), AIEgen L showed a selective fluorescence enhancement at 435 nm in the presence of Al3+ without disturbing the fluorescence intensity at 532 nm due to the chelation-enhanced fluorescence effect (CHEF). The detection limit of 20 nM was estimated by performing the fluorescence titration of AIEgen L with Al3+. The reversibility of the Al3+ selective AIEgen L was demonstrated by adding a strong chelating agent EDTA. Finally, the practical utility of AIEgen L was validated by quantifying Al3+ in river and tap water samples.
Collapse
Affiliation(s)
- Vinita Bhardwaj
- Department of Chemistry, Sardar Vallabhbhai National Institute Technology, 395007, Surat, Gujarat, India
| | - Kanishk Bhardwaj
- Department of Chemistry, Sardar Vallabhbhai National Institute Technology, 395007, Surat, Gujarat, India
| | - Suban K Sahoo
- Department of Chemistry, Sardar Vallabhbhai National Institute Technology, 395007, Surat, Gujarat, India.
| |
Collapse
|
21
|
AIE+ESIPT Active Hydroxybenzothiazole for Intracellular Detection of Cu 2+: Anticancer and Anticounterfeiting Applications. Molecules 2022; 27:molecules27227678. [PMID: 36431779 PMCID: PMC9699452 DOI: 10.3390/molecules27227678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/28/2022] [Accepted: 10/30/2022] [Indexed: 11/09/2022] Open
Abstract
Here, in the present work, a new hydroxybenzothiazole derivative (HBT 2) with AIE+ESIPT features was synthesized by Suzuki-Miyora coupling of HBT 1 with 4-formylphenylboronic acid. The AIE and ESIPT features were confirmed by optical, microscopic (AFM) and dynamic light scattering (DLS) techniques. The yellow fluorescent aggregates of HBT 2 can specifically detect Cu2+/Cu+ ions with limits of detection as low as 250 nM and 69 nM. The Job's plot revealed the formation of a 1:1 complex. The Cu2+ complexation was further confirmed by optical, NMR, AFM and DLS techniques. HBT 2 was also used for the detection of Cu2+ ions in real water samples collected from different regions of Punjab. HBT 2 was successfully used for the bio-imaging of Cu2+ ions in live A549 and its anticancer activity was checked on different cancer cell lines, such as MG63, and HeLa, and normal cell lines such as L929. We successfully utilized HBT 2 to develop security labels for anticounterfeiting applications.
Collapse
|
22
|
Yang Y, Li Z, Dong F, Lv J, Han B, Sun Y, Lu H, Lei Z, Ma H. Hypochlorite Detection by Fluorescent Sensors Bearing Long Alkyl Chains: The Role of Chain Length in Sensing Properties. Chempluschem 2022; 87:e202200307. [PMID: 36416253 DOI: 10.1002/cplu.202200307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/01/2022] [Indexed: 11/06/2022]
Abstract
Three pyridinium derivatives bearing alkyl chains of different lengths (C1, C8, and C18) that show aggregation-enhanced emission were synthesized. These compounds can be used to detect ClO- ion as the reaction releases the fluorescent core with an increase in emission intensity and change in absorption wavelength. The lowest detection limit of TPA-Pyr-18C was 6.04 μM. The length of the alkyl chain and resulting lipophilicity allowed the targeting of different subcellular structures. TPA-Pyr-18C could be used for staining yolk lipids in zebrafish.
Collapse
Affiliation(s)
- Yuan Yang
- Key Laboratory of Polymer Materials of Gansu Province Key Laboratory of Eco- Environment-Related Polymer Materials Ministry of Education College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, P. R. China
| | - Zhao Li
- Key Laboratory of Polymer Materials of Gansu Province Key Laboratory of Eco- Environment-Related Polymer Materials Ministry of Education College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, P. R. China
| | - Fenghao Dong
- Key Laboratory of Polymer Materials of Gansu Province Key Laboratory of Eco- Environment-Related Polymer Materials Ministry of Education College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, P. R. China
| | - Jiawei Lv
- Key Laboratory of Polymer Materials of Gansu Province Key Laboratory of Eco- Environment-Related Polymer Materials Ministry of Education College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, P. R. China
| | - Bingyang Han
- Key Laboratory of Polymer Materials of Gansu Province Key Laboratory of Eco- Environment-Related Polymer Materials Ministry of Education College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, P. R. China
| | - Yuqing Sun
- Key Laboratory of Polymer Materials of Gansu Province Key Laboratory of Eco- Environment-Related Polymer Materials Ministry of Education College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, P. R. China
| | - Huiming Lu
- Key Laboratory of Polymer Materials of Gansu Province Key Laboratory of Eco- Environment-Related Polymer Materials Ministry of Education College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, P. R. China
| | - Ziqiang Lei
- Key Laboratory of Polymer Materials of Gansu Province Key Laboratory of Eco- Environment-Related Polymer Materials Ministry of Education College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, P. R. China
| | - Hengchang Ma
- Key Laboratory of Polymer Materials of Gansu Province Key Laboratory of Eco- Environment-Related Polymer Materials Ministry of Education College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, P. R. China
| |
Collapse
|
23
|
Fang Z, Chen D, Xu J, Wang J, Li S, Tian X, Tian Y, Zhang Q. Three-Photon AIE Pt(II) Complexes as Cysteine-Targeting Theranostic Agents for Tumor Imaging and Chemotherapy. Anal Chem 2022; 94:14769-14777. [PMID: 36219068 DOI: 10.1021/acs.analchem.2c03431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein, we have synthesized a series of three-photon fluorescent Pt(II) complexes targeting a tumor-associated biothiol, cysteine (Cys), which allows it to be detected without any interference from other intracellular proteins. We focused on how to significantly improve the fluorescence response of Cys via regulating the recognition units in probes. The reaction of K2PtCl4 with L-CH3 or L-COOEt in DMSO solution gave Lyso-Pt-CH3 and Lyso-Pt-COOEt, respectively, which present four-coordinated square-planar geometries in mononuclear structures. Lyso-Pt-CH3 consists of a Cys aptamer labeled with typical aggregation-induced emission (AIE) characteristics, which shows strong three-photon absorption cross section (3PA) only in the presence of Cys. It was found that Lyso-Pt-CH3 displayed a perfect signal-to-noise ratio for imaging lysosomes and for rapid detection of Cys. Using Lyso-Pt-CH3, Cys-related cellular mechanisms were proposed. We confirm that cystine (Cyss) could be absorbed in cells through cystine/glutamate antiporters (system xc-) and is then converted to Cys under the effect of enzymes. All of these suggest that Lyso-Pt-CH3 might be a potential candidate as a simple and straightforward biomarker of lysosome-related Cys in vitro. Lyso-Pt-CH3 can effectively identify tumor tissues with excessive levels of Cys. Lyso-Pt-CH3 also showed excellent antitumor activity than cisplatin. This work provides a novel strategy for the rational design of controllably activated and Cys-targeted Pt(II) anticancer prodrugs for clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Zhiyun Fang
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Hefei 230039, P. R. China
| | - Dandan Chen
- School of Life Science, Anhui University, Hefei 230601, P. R. China
| | - Jing Xu
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Hefei 230039, P. R. China
| | - Jingmin Wang
- School of Life Science, Anhui University, Hefei 230601, P. R. China
| | - Shengli Li
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Hefei 230039, P. R. China
| | - Xiaohe Tian
- Huaxi MR Research Centre (HMRRC), Department of Radiology; Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu 610041, P.R. China
| | - Yupeng Tian
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Hefei 230039, P. R. China.,Ministry of Education, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Hefei, Hefei 230601, P. R. China.,State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, P. R. China
| | - Qiong Zhang
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Hefei 230039, P. R. China.,Ministry of Education, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Hefei, Hefei 230601, P. R. China.,State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, P. R. China
| |
Collapse
|
24
|
Gu B, Liu M, Long J, Ye X, Xu Z, Shen Y. An AIE based fluorescent chemosensor for ratiometric detection of hypochlorous acid and its application. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 278:121290. [PMID: 35526440 DOI: 10.1016/j.saa.2022.121290] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/11/2022] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
Detecting and imaging intracellular hypochlorous acid (HClO) is of great importance owning to its prominent role in numerous pathological and physiological processes. In this contribution, a novel AIE-based fluorescent chemosensor has been developed by employing a benzothiazole derivative. The synthesized probe displayed remarkable ratiometric fluorescent response to HClO with a large emission shift (139 nm), resulting in naked-eye fluorescence changes from red to blue. Under the optimal conditions, this probe was capable of quantitatively detecting HClO within 10 s, and possessed good sensitivity and high selectivity toward HClO over other biologically relevant species. Moreover, it has been successfully utilized to image the exogenous and endogenous HClO in living cells through dual channels, and conveniently detect hypochlorous acid solution on test strips with better accuracy, demonstrating its potential for monitoring HClO in biological and environment fields.
Collapse
Affiliation(s)
- Biao Gu
- Hunan Provincial Engineering Research Center for Monitoring and Treatment of Heavy Metals Pollution in the Upper Reaches of Xiangjiang River, College of Chemistry and Materials Science, Hengyang Normal University, Hengyang 421008, PR China.
| | - Mengqin Liu
- Hunan Provincial Engineering Research Center for Monitoring and Treatment of Heavy Metals Pollution in the Upper Reaches of Xiangjiang River, College of Chemistry and Materials Science, Hengyang Normal University, Hengyang 421008, PR China
| | - Jiumei Long
- College of Life Sciences and Environment, Hengyang Normal University, Hengyang 421008, PR China
| | - Xinrong Ye
- Hunan Provincial Engineering Research Center for Monitoring and Treatment of Heavy Metals Pollution in the Upper Reaches of Xiangjiang River, College of Chemistry and Materials Science, Hengyang Normal University, Hengyang 421008, PR China
| | - Zhifeng Xu
- Hunan Provincial Engineering Research Center for Monitoring and Treatment of Heavy Metals Pollution in the Upper Reaches of Xiangjiang River, College of Chemistry and Materials Science, Hengyang Normal University, Hengyang 421008, PR China.
| | - Youming Shen
- College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde 415000, PR China.
| |
Collapse
|
25
|
Carneiro LM, Keppler AF, Ferreira FF, Homem-de-Mello P, Bartoloni FH. Mechanisms for the Deactivation of the Electronic Excited States of α-(2-Hydroxyphenyl)- N-phenylnitrone: From Intramolecular Proton and Charge Transfer to Structure Twisting and Aggregation. J Phys Chem B 2022; 126:7373-7384. [DOI: 10.1021/acs.jpcb.2c03924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Leonardo Martins Carneiro
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Avenida dos Estados, 5001, Bloco A, Santo André 09210-580, São Paulo, Brazil
| | - Artur Franz Keppler
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Avenida dos Estados, 5001, Bloco A, Santo André 09210-580, São Paulo, Brazil
| | - Fabio Furlan Ferreira
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Avenida dos Estados, 5001, Bloco A, Santo André 09210-580, São Paulo, Brazil
| | - Paula Homem-de-Mello
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Avenida dos Estados, 5001, Bloco A, Santo André 09210-580, São Paulo, Brazil
| | - Fernando Heering Bartoloni
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Avenida dos Estados, 5001, Bloco A, Santo André 09210-580, São Paulo, Brazil
| |
Collapse
|
26
|
Minami K, Minakawa M, Uozumi Y. Preparation of Benzothiazoles and Heterocyclic Spiro Compounds Through Cu‐catalyzed S–S Bond Cleavage and C–S Bond Formation. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Keisuke Minami
- Yamagata University: Yamagata Daigaku Graduate School of Science and Engineering JAPAN
| | - Maki Minakawa
- Yamagata University: Yamagata Daigaku Graduate School of Science and Engineering 4-3-16, Jonan 992-8510 Yonezawa JAPAN
| | - Yasuhiro Uozumi
- Institute of Molecular Sciences: Institut des Sciences Moleculaires Complex Catalysis 5-1, Higashiyama, Myodaiji 444-8787 Okazaki JAPAN
| |
Collapse
|
27
|
Plaza-Pedroche R, Fernández-Liencres MP, Jiménez-Pulido SB, Illán-Cabeza NA, Achelle S, Navarro A, Rodríguez-López J. Excited-State Intramolecular Proton Transfer in 2-(2'-Hydroxyphenyl)pyrimidines: Synthesis, Optical Properties, and Theoretical Studies. ACS APPLIED MATERIALS & INTERFACES 2022; 14:24964-24979. [PMID: 35579566 PMCID: PMC9164210 DOI: 10.1021/acsami.2c05439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
The development of fluorescence materials with switched on/off emission has attracted great attention owing to the potential application of these materials in chemical sensing. In this work, the photophysical properties of a series of original 2-(2'-hydroxyphenyl)pyrimidines were thoroughly studied. The compounds were prepared by following well-established and straightforward methodologies and showed very little or null photoluminescence both in solution and in the solid state. This absence of emission can be explained by a fast proton transfer from the OH group to the nitrogen atoms of the pyrimidine ring to yield an excited tautomer that deactivates through a nonradiative pathway. The key role of the OH group in the emission quenching was demonstrated by the preparation of 2'-unsubstituted derivatives, all of which exhibited violet or blue luminescence. Single crystals of some compounds suitable for an X-ray diffraction analysis could be obtained, which permitted us to investigate inter- and intramolecular interactions and molecular packing structures. The protonation of the pyrimidine ring by an addition of trifluoroacetic acid inhibited the excited-state intramolecular proton transfer (ESIPT) process, causing a reversible switch on fluorescence response detectable by the naked eye. This acidochromic behavior allows 2-(2'-hydroxyphenyl)pyrimidines to be used as solid-state acid-base vapor sensors and anticounterfeiting agents. Extensive density functional theory and its time-dependent counterpart calculations at the M06-2X/6-31+G** level of theory were performed to rationalize all the experimental results and understand the impact of protonation on the different optical transitions.
Collapse
Affiliation(s)
- Rodrigo Plaza-Pedroche
- Área
de Química Orgánica, Facultad de Ciencias y Tecnologías
Químicas, Universidad de Castilla-La
Mancha, Avda Camilo José Cela 10, 13071 Ciudad Real, Spain
| | - M. Paz Fernández-Liencres
- Dpto.
de Química Física y Analítica, Facultad de Ciencias
Experimentales, Campus Las Lagunillas, Universidad
de Jaén, 23071 Jaén, Spain
| | - Sonia B. Jiménez-Pulido
- Dpto.
de Química Inorgánica y Orgánica, Facultad de
Ciencias Experimentales, Campus Las Lagunillas, Universidad de Jaén, 23071 Jaén, Spain
| | - Nuria A. Illán-Cabeza
- Dpto.
de Química Inorgánica y Orgánica, Facultad de
Ciencias Experimentales, Campus Las Lagunillas, Universidad de Jaén, 23071 Jaén, Spain
| | - Sylvain Achelle
- Univ
Rennes, CNRS, Institut des Sciences Chimiques de Rennes - UMR 6226, F-35000 Rennes, France
| | - Amparo Navarro
- Dpto.
de Química Física y Analítica, Facultad de Ciencias
Experimentales, Campus Las Lagunillas, Universidad
de Jaén, 23071 Jaén, Spain
| | - Julián Rodríguez-López
- Área
de Química Orgánica, Facultad de Ciencias y Tecnologías
Químicas, Universidad de Castilla-La
Mancha, Avda Camilo José Cela 10, 13071 Ciudad Real, Spain
| |
Collapse
|
28
|
Zhang H, Nie C, Cao D, Cheng X, Guan R. Constructing unconventional fluorescent molecules by imidazoline ring and its salt of carboxylic acid and their application. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
29
|
Jumaah M, Khairuddean M, Owaid SJ. Benzothiazole Pyrazoline: Acid-Switchable Absorption and Fluorescence of Photoinduced Electron Transfer (PET). J Fluoresc 2022; 32:937-948. [PMID: 35119575 DOI: 10.1007/s10895-021-02782-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/13/2021] [Indexed: 10/19/2022]
Abstract
Acid-responsive fluorescent compounds were prepared by introducing an ortho-hydroxyphenyl to pyrazoline with a benzothiazole backbone. These compounds demonstrated normal fluorescence photoinduced electron transfer (PET) under neutral conditions but the addition of trifluoroacetic acid showed an arctic blue fluorescence, we verified that a protonation process of nitrogen in the thiazole ring which weakened the ability of thiazole to donate electrons to the pyrazoline and changed the photoinduced electron transfer led to photoinduced electron transfer (PET), which was the mechanism of the fluorescence quenching phenomenon under strongly acidic conditions. The photophysical properties of Benzothiazole pyrazoline exhibited blue emission at 421 nm in aqueous DMSO. The blue shift in the emission was switched by acid in DMSO, showing the compound's distinct fluorescence peak at 554 nm. To investigate solvatochromism, eight different solvents were used. The red-shift emission observed in enhancing the polarity of solvents and emission in DMSO suggested the conformation of the molecule which led to the intramolecular charge transfer by color and emission changes. Furthermore, the probe was also applied using the High-performance liquid chromatography (HPLC) with a UV detector to determine the trifluoroacetic acid in water samples. Interestingly, the method was found to be linear over the range of 10.0 µg L-1 to 250.0 µg L-1 (0.999). Under the optimum condition, the separation of trifluoroacetic acid was achieved in 20 min with the LOD of 1.3 µg L-1 and LOQ of 5.1 µg L-1. This proposed method also showed satisfactory results when applied for the analysis of trifluoroacetic acid in a water sample.
Collapse
Affiliation(s)
- Maadh Jumaah
- Department of Chemistry, School of Chemical Sciences, University Sains Malaysia, 11800, Minden, Penang, Malaysia
| | - Melati Khairuddean
- Department of Chemistry, School of Chemical Sciences, University Sains Malaysia, 11800, Minden, Penang, Malaysia.
| | - Sohaib Jumaah Owaid
- Department of Chemistry, School of Chemical Sciences, University Sains Malaysia, 11800, Minden, Penang, Malaysia
| |
Collapse
|
30
|
A new simple ESIPT-based fluorescent probe for rapid detection of cysteine with high sensitivity and specificity and bioimaging in living cells. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131865] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
31
|
Banik D, Manna SK, Maiti A, Mahapatra AK. Recent Advancements in Colorimetric and Fluorescent pH Chemosensors: From Design Principles to Applications. Crit Rev Anal Chem 2022; 53:1313-1373. [PMID: 35086371 DOI: 10.1080/10408347.2021.2023002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Due to the immense biological significance of pH in diverse living systems, the design, synthesis, and development of pH chemosensors for pH monitoring has been a very active research field in recent times. In this review, we summarize the designing strategies, sensing mechanisms, biological and environmental applications of fluorogenic and chromogenic pH chemosensors of the last three years (2018-2020). We categorized these pH probes into seven types based on their applications, including 1) Cancer cell discriminating pH probes; 2) Lysosome targetable pH probes; 3) Mitochondria targetable pH probes; 4) Golgi body targetable pH probes; 5) Endoplasmic reticulum targetable pH probes; 6) pH probes used in nonspecific cell imaging; and 7) pH probes without cell imaging. All these different categories exhibit diverse applications of pH probes in biological and environmental fields.
Collapse
Affiliation(s)
- Dipanjan Banik
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, West Bengal, India
| | - Saikat Kumar Manna
- Department of Chemistry, Haldia Government College, Purba Medinipur, West Bengal, India
| | - Anwesha Maiti
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, West Bengal, India
| | - Ajit Kumar Mahapatra
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, West Bengal, India
| |
Collapse
|
32
|
Sawminathan S, Kulathu Iyer S. Phenanthridine based rapid "turn-on" fluorescent sensor for selective detection of Th 4+ ion and its real-time application. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 265:120403. [PMID: 34562860 DOI: 10.1016/j.saa.2021.120403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/27/2021] [Accepted: 09/11/2021] [Indexed: 06/13/2023]
Abstract
A new and highly sensitive and selective phenanthridine based sensor, 9-(7,8,13,14-tetrahydrodibenzo[a,i]phenanthridin-5-yl)benzo[h]quinolin-10-ol (PHBQ), was developed for the fluorescent ''turn-on'' detection of Th4+ ion in acetonitrile: water (8:2) medium. The fluorescence intensity of PHBQ diminished in the region of pH 1 to 3 and could be recovered by adjusting the pH to above 4. The sensor PHBQ showed distinct spectral changes in response to Th4+ ion over other competitive metal ions. The fluorescence displayed good linearity with the Th4+ concentration in the equivalence of 0-0.5 equivalents. The detection limit was calculated to be as low as 99 nM, which was less than that of previously reported sensors. The recognizing mechanism of PHBQ towards Th4+ was investigated in detail using HR-MS, NMR, and IR spectroscopy. The economically viable Whatman filter paper was fabricated with PHBQ to develop a paper-based fluorescence kit to detect the Th4+ in an aqueous medium efficiently. Furthermore, the application of sensor ligand in fluorescence imaging was studied in E-coli cells due to its minimal cytotoxicity and good optical properties. The obtained data suggest that the ligand PHBQ can be used as a fluorescent sensor for tracking Th4+ in multiple applications.
Collapse
Affiliation(s)
- Sathish Sawminathan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, India
| | | |
Collapse
|
33
|
Cai L, Xiong X, Qiao M, Guo J, Zhang H, Lin J, Liu S, Jia YG. Aggregation-induced emission luminogen based self-healing hydrogels fluorescent sensors for α-amylase. Polym Chem 2022. [DOI: 10.1039/d1py01505b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A self-healing hydrogel with a dual network was prepared through the host–guest recognition of acrylate γ-cyclodextrins with tetraphenylethylenes, and the fluorescence of hydrogel was enhanced in the presence of α-amylase.
Collapse
Affiliation(s)
- Lili Cai
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Xueru Xiong
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Mingyu Qiao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Jianwei Guo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Huatang Zhang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Jiawei Lin
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Sa Liu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Yong-Guang Jia
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
34
|
Li Y, Wang Y, Feng X, Zhao Y. Spectroscopic and mechanistic insights into solvent mediated excited-state proton transfer and aggregation-induced emission: introduction of methyl group onto 2-( o-hydroxyphenyl)benzoxazole. Phys Chem Chem Phys 2022; 24:26297-26306. [DOI: 10.1039/d2cp03007a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
2-(2-Hydroxy-5-methylphenyl)benzoxazole(HBO-pCH3), a solvatochromic benzoxazole-based probe, exhibited a typical dual fluorescence phenomenon, high fluorescence quantum yield, red-shifted emission and large Stokes’ shift via the ESIPT in solvents.
Collapse
Affiliation(s)
- Yu Li
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yuanyue Wang
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Xiaoqing Feng
- School of Pharmacy & School of Medicine, Changzhou University, Changzhou 213164, China
| | - Yanying Zhao
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| |
Collapse
|
35
|
Pariat T, Stoerkler T, Diguet C, Laurent AD, Jacquemin D, Ulrich G, Massue J. Dual Solution-/Solid-State Emissive Excited-State Intramolecular Proton Transfer (ESIPT) Dyes: A Combined Experimental and Theoretical Approach. J Org Chem 2021; 86:17606-17619. [PMID: 34846147 DOI: 10.1021/acs.joc.1c01698] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Excited-state intramolecular proton transfer (ESIPT) dyes typically show strong solid-state emission, but faint fluorescence intensity is observed in the solution state owing to detrimental molecular motions. This article investigates the influence of direct (hetero)arylation on the optical properties of 2-(2'-hydroxyphenyl)benzoxazole ESIPT emitters. The synthesis of two series of ESIPT emitters bearing substituted neutral or charged aryl, thiophene, or pyridine rings is reported herein along with full photophysical studies in solution and solid states, demonstrating the dual solution-/solid-state emission behavior. Depending on the nature of substitution, several excited-state dynamics are observed: quantitative or partially frustrated ESIPT process or deprotonation of the excited species. Protonation studies revealed that pyridine substitution triggered a strong increase of quantum yield in the solution state for the protonated species owing to favorable quinoidal stabilization. These attractive features led to the development of a second series of dyes with alkyl or aryl pyridinium moieties showing strong tunable solution/solid fluorescence intensity. For each series, ab initio calculations helped rationalize and ascertain their behavior in the excited state and the nature of the emission observed by the experimental results.
Collapse
Affiliation(s)
- Thibault Pariat
- Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES), Equipe Chimie Organique pour la Biologie, les Matériaux et l'Optique (COMBO), UMR CNRS 7515, Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), Université de Strasbourg, 25 Rue Becquerel, 67087 Strasbourg Cedex 02, France
| | - Timothée Stoerkler
- Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES), Equipe Chimie Organique pour la Biologie, les Matériaux et l'Optique (COMBO), UMR CNRS 7515, Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), Université de Strasbourg, 25 Rue Becquerel, 67087 Strasbourg Cedex 02, France
| | - Clément Diguet
- Laboratoire CEISAM UMR UN-CNRS 6230, Université de Nantes, Nantes F-44000, France
| | - Adèle D Laurent
- Laboratoire CEISAM UMR UN-CNRS 6230, Université de Nantes, Nantes F-44000, France
| | - Denis Jacquemin
- Laboratoire CEISAM UMR UN-CNRS 6230, Université de Nantes, Nantes F-44000, France
| | - Gilles Ulrich
- Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES), Equipe Chimie Organique pour la Biologie, les Matériaux et l'Optique (COMBO), UMR CNRS 7515, Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), Université de Strasbourg, 25 Rue Becquerel, 67087 Strasbourg Cedex 02, France
| | - Julien Massue
- Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES), Equipe Chimie Organique pour la Biologie, les Matériaux et l'Optique (COMBO), UMR CNRS 7515, Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), Université de Strasbourg, 25 Rue Becquerel, 67087 Strasbourg Cedex 02, France
| |
Collapse
|
36
|
Lu B, Yin J, Liu C, Lin W. Lipid droplet polarity decreases during the pathology of muscle injury as revealed by a polarity sensitive sensor. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 262:120149. [PMID: 34252741 DOI: 10.1016/j.saa.2021.120149] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/24/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
Revealing the relationship between lipid droplets (LDs)polarity and disease is indispensable in clinicopathological diagnosis. So far, muscle injury is often ignored as it is not life-threatening as cardiovascular and cerebrovascular diseases, making the exploration of the internal relationship between muscle injury and LDs polarity a gray area. Herein, a fluorescent probe (CCB) with powerful polar-sensitive as well as precise LDs targeting was designed for visualizing the LDs polarity in the pathology of muscle injury. By means of the probe CCB, the identification of cancer cells and the monitoring of LDs polarity changes in dysfunctional cells were successfully realized. Furthermore, the penetration ability of CCB in tissues of mice was tested to verify the applicability of the probe in organisms. Importantly, by CCB, the relationship between muscle damage and LDs polarity was explored, revealing that muscle damage caused a significant decrease in LDs polarity accompanied by a significant increase in fluorescence. Most importantly, it is the first time to reveal the relationship between muscle damage and LDs polarity. Therefore, the probe CCB will be a powerful monitoring platform for diagnosing related diseases caused by abnormal LDs polarity.
Collapse
Affiliation(s)
- Bingli Lu
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, PR China
| | - Junling Yin
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, PR China
| | - Cong Liu
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, PR China
| | - Weiying Lin
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, PR China; Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, PR China.
| |
Collapse
|
37
|
Gao T, Li H, Wu Y, Deng C, Xie Y, Wang J, Yang Y, Lv Q, Jin Q, Chen Y, Yi L, Zhong Y, Li X, Zhao Q, Zhang L, Xie M. First aggregation-induced emission-active probe for species-specific detection of β-galactosidase. Talanta 2021; 235:122659. [PMID: 34517575 DOI: 10.1016/j.talanta.2021.122659] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 11/29/2022]
Abstract
Sensitive detection of β-galactosidase (β-gal) is of great significance for early diagnosis of ovarian cancer. Fluorescent probes for detecting β-gal have received great interest due to the non-invasiveness, excellent sensitivity, high temporal, and superior spatial resolution. However, most reported fluorescent sensors for β-gal suffer from aggregation caused quenching effect when accumulated, and cannot discriminate β-gal from other species, especially, Escherichia coliβ-gal. Herein, we report the first aggregation-induced emission (AIE)-active fluorescent probe HBTTPAG, which achieves species-selective detection of β-gal. Probe HBTTPAG can discriminate Aspergillus oryzae β-gal from Escherichia coliβ-gal, with high sensitivity (detection limit of 3.7 × 10-3 UmL-1), superior selectivity and low cytotoxicity. Furthermore, HBTTPAG is utilized to visualize endogenous β-gal in lysosomes of SKOV-3 cells, as well as to detect β-gal activity in ovarian cancer tissues. Notably, owing to the AIE-active, HBTTPAG realizes long-term (12 h) tracking β-gal in ovarian cancer cells. This work provides a promising method for species-selective detection of β-gal in preclinical.
Collapse
Affiliation(s)
- Tang Gao
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Huiling Li
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Ya Wu
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Cheng Deng
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Yuji Xie
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Jing Wang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Yali Yang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Qin Lv
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Qiaofeng Jin
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Yihan Chen
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Luyang Yi
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Yi Zhong
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Xueke Li
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Qianqian Zhao
- Institute for Advanced Simulations (IAS)-5/Institute for Neuroscience and Medicine (INM)-9, Forschungszentrum Jülich, 52428, Jülich, Germany
| | - Li Zhang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China.
| | - Mingxing Xie
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China.
| |
Collapse
|
38
|
He W, Zhang T, Bai H, Kwok RTK, Lam JWY, Tang BZ. Recent Advances in Aggregation-Induced Emission Materials and Their Biomedical and Healthcare Applications. Adv Healthc Mater 2021; 10:e2101055. [PMID: 34418306 DOI: 10.1002/adhm.202101055] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/18/2021] [Indexed: 12/22/2022]
Abstract
The emergence of the concept of aggregation-induced emission (AIE) has opened new opportunities in many research areas, such as biopsy analysis, biological processes monitoring, and elucidation of key physiological and pathological behaviors. As a new class of luminescent materials, AIE luminogens (AIEgens) possess many prominent advantages such as tunable molecular structures, high molar absorptivity, high brightness, large Stokes shift, excellent photostability, and good biocompatibility. The past two decades have witnessed a dramatic growth of research interest in AIE, and many AIE-based bioprobes with excellent performance have been widely explored in biomedical fields. This review summarizes some of the latest advancements of AIE molecular probes and AIE nanoparticles (NPs) with regards to biomedical and healthcare applications. According to the research areas, the review is divided into five sections, which are imaging and identification of cells and bacteria, photodynamic therapy, multimodal theranostics, deep tissue imaging, and fluorescence-guided surgery. The challenges and future opportunities of AIE materials in the advanced biomedical fields are briefly discussed. In perspective, the AIE-based bioprobes play vital roles in the exploration of advanced bioapplications for the ultimate goal of addressing more healthcare issues by integrating various cutting-edge modalities and techniques.
Collapse
Affiliation(s)
- Wei He
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
- HKUST Shenzhen Research Institute No. 9 Yuexing 1st RD, South Area Hi‐tech Park, Nanshan Shenzhen 518057 China
| | - Tianfu Zhang
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
| | - Haotian Bai
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
| | - Ryan T. K. Kwok
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
- HKUST Shenzhen Research Institute No. 9 Yuexing 1st RD, South Area Hi‐tech Park, Nanshan Shenzhen 518057 China
| | - Jacky W. Y. Lam
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
- HKUST Shenzhen Research Institute No. 9 Yuexing 1st RD, South Area Hi‐tech Park, Nanshan Shenzhen 518057 China
| | - Ben Zhong Tang
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
- HKUST Shenzhen Research Institute No. 9 Yuexing 1st RD, South Area Hi‐tech Park, Nanshan Shenzhen 518057 China
- Shenzhen Institute of Molecular Aggregate Science and Engineering School of Science and Engineering The Chinese University of Hong Kong, Shenzhen 2001 Longxiang Boulevard, Longgang District Shenzhen Guangdong 518172 China
- State Key Laboratory of Luminescent Materials and Devices and Center for Aggregation‐Induced Emission (Guangzhou International Campus) South China University of Technology Guangzhou 510640 China
| |
Collapse
|
39
|
Controlling the photoswitching of 2-(4′-diethylamino-2′-hydroxyphenyl)-1H-imidazo-[4,5-b]pyridine by pH. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113504] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
40
|
Zeng G, Liang Z, Jiang X, Quan T, Chen T. An ESIPT-Dependent AIE Fluorophore Based on HBT Derivative: Substituent Positional Impact on Aggregated Luminescence and its Application for Hydrogen Peroxide Detection. Chemistry 2021; 28:e202103241. [PMID: 34816504 DOI: 10.1002/chem.202103241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Indexed: 11/10/2022]
Abstract
Aiming to develop the facile organic fluorophore possessing excited state intramolecular proton transfer (ESIPT) and aggregation-induced emission (AIE), we designed and synthesized two isomers with different linkage site between hydroxyl of 2-(2-hydroxyphenyl) benzothiazole (HBT) and a benzothiazole substituent (para position refers to p-BHBT and ortho position refers to o-BHBT). Fluorescence emission properties of p-BHBT and o-BHBT in THF/water mixtures with different water volume fractions indicated an opposite luminescence in aggregates, in which p-BHBT showed an ESIPT-dependent AIE properties while o-BHBT displayed ESIPT effect and aggregation-caused quenching (ACQ) qualities. A possible mechanism for molecular actions to illustrate the aggregating luminescence alteration of these two isomers had been proposed and verified by theoretical and experimental studies. More importantly, Probe-1, generated from dual ESIPT-AIE fluorophore p-BHBT, was successfully used as a ratiometric fluorescent chemosensor for highly selective (above 15-fold over other ROS) and sensitive (69-fold fluorescence enhancement with 0.22 μM of detection limit) detection of hydrogen peroxide in aqueous solution and living cells, respectively.
Collapse
Affiliation(s)
- Guanling Zeng
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, P. R. China.,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, P. R. China
| | - Zhenhao Liang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, P. R. China.,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, P. R. China
| | - Xiao Jiang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, P. R. China.,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, P. R. China
| | - Tingting Quan
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, P. R. China.,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, P. R. China
| | - Tongsheng Chen
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, P. R. China.,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, P. R. China.,SCNU Qingyuan Institute of Science and Technology Innovation Co., Ltd., Qingyuan, 511517, P. R. China
| |
Collapse
|
41
|
Wang X, Zhang Y, Shi Z, Lu T, Wang Q, Li B. Multifunctional Zr-MOF Based on Bisimidazole Tetracarboxylic Acid for pH Sensing and Photoreduction of Cr(VI). ACS APPLIED MATERIALS & INTERFACES 2021; 13:54217-54226. [PMID: 34739224 DOI: 10.1021/acsami.1c18130] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Herein, a new luminescent zirconium MOF [Zr-BBI, BBI = 4,4',4″,4‴-(1,4-phenylenebis(1H-imidazole-2,4,5-triyl))tetrabenzoic acid] was successfully constructed by a rationally designed functionalized bisimidazole tetracarboxylic acid ligand. Zr-BBI consists of eight-connected Zr6 clusters and four-connected BBI ligands. The high connection mode must be responsible for the high stabilities of Zr-BBI in both acidic and basic systems. Apart from the high stability, the inherent bisimidazole units endow Zr-BBI with the traits of intense fluorescent emission as well as the protonation/deprotonation behavior. Therefore, Zr-BBI could display a highly sensitive fluorescence response along with the varying pH values in the aqueous solutions and act as a pH sensing scaffold, especially in the pH value range from 4.6 to 7.12. Zr-BBI also shows good fluorescence detection performance toward Cr2O72- at a low concentration with a high KSV value up to 6.49 × 104 M-1. Moreover, by the utilization of Zr-BBI as a catalyst, Cr(VI) could be effectively photoreduced to Cr(III) in aqueous solution under visible light irradiation, in which the introduction of a hole scavenger (benzyl alcohol) could further significantly enhance the photocatalytic efficiency. Compared to that of the recently representative MOFs, the k value of the photocatalytic reaction over Zr-BBI is as high as 0.073 min-1. With the consideration of the presented results, Zr-BBI can serve as a multifunctional platform for efficiently sensing and photoreducing Cr2O72- in an aqueous system, which fully illustrates the feasibility that introducing specific functional groups in the framework of MOFs would enhance the related photocatalytic activity.
Collapse
Affiliation(s)
- Xiaoning Wang
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, Hubei 430200, P. R. China
| | - Yan Zhang
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, Hubei 430200, P. R. China
| | - Zhixiong Shi
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, Hubei 430200, P. R. China
| | - Tingting Lu
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, Hubei 430200, P. R. China
| | - Qiang Wang
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, Hubei 430200, P. R. China
- Engineering Research Centre for Cleaner Production of Textile Printing and Dyeing, Ministry of Education, Wuhan Textile University, Wuhan, Hubei 430200, P. R. China
| | - Bao Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| |
Collapse
|
42
|
Zalmi GA, Bhosale SV. Aggregation induced emission (AIE) molecules for measurement of intracellular temperature, pH, and viscosity sensing. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 184:11-60. [PMID: 34749971 DOI: 10.1016/bs.pmbts.2021.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
This book chapter presents insightful growth and progress in the field of sensing especially, temperature, pH, and viscosity sensing. We focus more on aggregation-induced emission (AIE)-active materials for measuring intracellular pH, viscosity, and temperature by means of fluorescence and absorption study. A special emphasis is given on AIE active fluorescent molecules, molecular rotors, polymeric nanomaterials which are considered as the important aspects of sense. It also gives the fundamental and brief understanding between these different AIE active material and its application in biological systems.
Collapse
Affiliation(s)
- Geeta A Zalmi
- School of Chemical Sciences, Goa University, Taleigao Plateau, Goa, India
| | | |
Collapse
|
43
|
Xiu D, Shi J, Deng M, Song H, Hao Z, Feng Q, Yu H. A new fluorescent chemosensor for Al(III) detection with highly selective in aqueous solution and solid test paper. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130761] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
44
|
Ghorui T, Hens A, Pramanik K. Synthesis, photophysical properties and theoretical studies of pyrrole-based azoaromatic Zn(II) complexes in mixed aqueous medium. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
45
|
Zhang X, Zhao L, Jin X, Zhang Z, Li Y. Nanomolar determination of nitrofurans in water via excited-state inter-ligand proton transfer. Anal Chim Acta 2021; 1181:338905. [PMID: 34556219 DOI: 10.1016/j.aca.2021.338905] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/25/2021] [Accepted: 08/02/2021] [Indexed: 10/20/2022]
Abstract
Qualification and quantification of trace organic contaminants necessitates development of highly efficient sensing system, where excited-state inter-ligand proton transfer (ESILPT) provides a feasible pathway to construct efficient chemo-sensors. Herein, a strategically synthesized lanthanide complex, Eu(DBM)3(MeOH)3 (briefly as Eu-DBM-MeOH; DBM = dibenzoylmethane), features two-step ESILPT processes, along with modification on molecular structure and energy band. As a result, Eu-DBM-MeOH exhibits excellent photophysical properties with characteristic luminescence of Eu3+ ion. Benefiting from these merits, the Eu-DBM-MeOH complex acts as ultra-sensitive chemo-sensor toward nanomolar-level nitrofuran antibiotics (nitrofurazone and nitrofurantoin) in water, by disrupting ESILPT processes. Combining the advantages on photophysical property and luminescent sensitivity, ESILPT-active compounds are expected to widen and deepen the research on complex-based luminophores, being potentially useful in trace detection and biological imaging.
Collapse
Affiliation(s)
- Xiaojun Zhang
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Material Science, Heilongjiang University, Harbin, 150080, PR China
| | - Lina Zhao
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Material Science, Heilongjiang University, Harbin, 150080, PR China; Department of Food & Environmental Engineering, East University of Heilongjiang, Harbin, 150066, PR China
| | - Xiaomeng Jin
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Material Science, Heilongjiang University, Harbin, 150080, PR China
| | - Zijun Zhang
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Material Science, Heilongjiang University, Harbin, 150080, PR China.
| | - Yuxin Li
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Material Science, Heilongjiang University, Harbin, 150080, PR China.
| |
Collapse
|
46
|
Cation sensing by a novel triazine-cored intermediate as a fluorescent chemosensor incorporating benzothiazole fluorophore. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-021-04534-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
47
|
He X, Lam JWY, Kwok RTK, Tang BZ. Real-Time Visualization and Monitoring of Physiological Dynamics by Aggregation-Induced Emission Luminogens (AIEgens). ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2021; 14:413-435. [PMID: 34314222 DOI: 10.1146/annurev-anchem-090420-101149] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Physiological dynamics in living cells and tissues are crucial for maintenance and regulation of their normal activities and functionalities. Tiny fluctuations in physiological microenvironments can leverage significant influences on cell growth, metabolism, differentiation, and apoptosis as well as disease evolution. Fluorescence imaging based on aggregation-induced emission luminogens (AIEgens) exhibits superior advantages in real-time sensing and monitoring of the physiological dynamics in living systems, including its unique properties such as high sensitivity and rapid response, flexible molecular design, and versatile nano- to mesostructural fabrication. The introduction of canonic AIEgens with long-wavelength, near-infrared, or microwave emission, persistent luminescence, and diversified excitation source (e.g., chemo- or bioluminescence) offers researchers a tool to evaluate the resulting molecules with excellent performance in response to subtle fluctuations in bioactivities with broader dimensionalities and deeper hierarchies.
Collapse
Affiliation(s)
- Xuewen He
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Institute for Advanced Study, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China; ,
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
- HKUST-Shenzhen Research Institute, Shenzhen 518057, China
| | - Jacky W Y Lam
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Institute for Advanced Study, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China; ,
- HKUST-Shenzhen Research Institute, Shenzhen 518057, China
| | - Ryan T K Kwok
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Institute for Advanced Study, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China; ,
- HKUST-Shenzhen Research Institute, Shenzhen 518057, China
| | - Ben Zhong Tang
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Institute for Advanced Study, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China; ,
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
- HKUST-Shenzhen Research Institute, Shenzhen 518057, China
- Center for Aggregation-Induced Emission, SCUT-HKUST Joint Research Laboratory, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
- AIE Institute, Guangzhou Development Distinct, Huangpu, Guangzhou 516530, China
| |
Collapse
|
48
|
Gao T, Wu Y, Wang W, Deng C, Chen Y, Yi L, Song Y, Li W, Xu L, Xie Y, Fang L, Jin Q, Zhang L, Tang BZ, Xie M. Biomimetic Glucan Particles with Aggregation-Induced Emission Characteristics for Noninvasive Monitoring of Transplant Immune Response. ACS NANO 2021; 15:11908-11928. [PMID: 34264052 DOI: 10.1021/acsnano.1c03029] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Real-time monitoring of post-transplant immune response is critical to prolong the survival of grafts. The current gold standard for assessing the immune response to graft is biopsy. However, such a method is invasive and prone to false negative results due to limited tissue size available and the heterogeneity of the rejection site. Herein, we report biomimetic glucan particles with aggregation-induced emission (AIE) characteristics (HBTTPEP/GPs) for real-time noninvasive monitoring of post-transplant immune response. We have found that the positively charged near-infrared AIEgens can effectively aggregate in the confined space of glucan particles (GPs), thereby turning on the fluorescence emission. HBTTPEP/GPs can track macrophages for 7 days without hampering the bioactivity. Oral administration of HBTTPEP/GPs can specially target macrophages by mimicking yeast, which then migrate to the transplant rejection site. The fluorescence emitted from HBTTPEP/GPs correlated well with the infiltration of macrophages and the degree of allograft rejection. Furthermore, a single oral HBTTPEP/GPs dose can dynamically evaluate the therapeutic response to immunosuppressive therapy. Consequently, the biomimetic AIE-active glucan particles can be developed as a promising probe for immune-monitoring in solid organ transplantation.
Collapse
Affiliation(s)
- Tang Gao
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Ya Wu
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Wenyuan Wang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Cheng Deng
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Yihan Chen
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Luyang Yi
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Yishu Song
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Wenqu Li
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Lingling Xu
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Yuji Xie
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Lingyun Fang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Qiaofeng Jin
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Li Zhang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong, China
| | - Mingxing Xie
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| |
Collapse
|
49
|
Das R, Bej S, Hirani H, Banerjee P. Trace-Level Humidity Sensing from Commercial Organic Solvents and Food Products by an AIE/ESIPT-Triggered Piezochromic Luminogen and ppb-Level "OFF-ON-OFF" Sensing of Cu 2+: A Combined Experimental and Theoretical Outcome. ACS OMEGA 2021; 6:14104-14121. [PMID: 34124433 PMCID: PMC8190783 DOI: 10.1021/acsomega.1c00565] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
Selective and sensitive moisture sensors have attracted immense attention due to their ability to monitor the humidity content in industrial solvents, food products, etc., for regulating industrial safety management. Herein, a hydroxy naphthaldehyde-based piezochromic luminogen, namely, 1-{[(2-hydroxyphenyl)imino]methyl}naphthalen-2-ol (NAP-1), has been synthesized and its photophysical and molecular sensing properties have been investigated by means of various spectroscopic tools. Owing to the synergistic effect of both aggregation-induced emission (AIE) and excited-state intramolecular proton transfer (ESIPT) along with the restriction of C=N isomerization, the probe shows bright yellowish-green-colored keto emission with high quantum yield after the interaction with a trace amount of water. This makes NAP-1 a potential sensor for monitoring water content in the industrial solvents with very low detection limits of 0.033, 0.032, 0.034, and 0.033% (v/v) from tetrahydrofuran (THF), acetone, dimethyl sulfoxide (DMSO), and methanol, respectively. The probe could be used in the food industry to detect trace moisture in the raw food samples. The reversible switching behavior of NAP-1 makes it suitable for designing an INHIBIT logic gate with an additional application in inkless writing. In addition, an Internet of Things-(IoT) based prototype device has been proposed for on-site monitoring of the moisture content by a smartphone via Bluetooth or Wi-Fi. The aggregated probe also has the ability to recognize Cu2+ from a purely aqueous medium via the chelation-enhanced quenching (CHEQ) mechanism, leading to ∼84% fluorescence quenching with a Stern-Volmer quenching constant of 1.46 × 104 M-1 and with an appreciably low detection threshold of 57.2 ppb, far below than recommended by the World Health Organization (WHO) and the United States Environmental Protection Agency (U.S. EPA). The spectroscopic and theoretical calculations (density functional theory (DFT), time-dependent DFT (TD-DFT), and natural bond orbital (NBO) analysis) further empower the understanding of the mechanistic course of the interaction of the host-guest recognition event.
Collapse
Affiliation(s)
- Riyanka Das
- Surface
Engineering & Tribology Group, CSIR-Central
Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur 713209, West Bengal, India
- Academy
of Scientific and Innovative Research (AcSIR), AcSIR Headquarters CSIR-HRDC Campus, Postal Staff
College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad 201002, Uttar
Pradesh, India
| | - Sourav Bej
- Surface
Engineering & Tribology Group, CSIR-Central
Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur 713209, West Bengal, India
- Academy
of Scientific and Innovative Research (AcSIR), AcSIR Headquarters CSIR-HRDC Campus, Postal Staff
College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad 201002, Uttar
Pradesh, India
| | - Harish Hirani
- CSIR-Central
Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur 713209, India
- Mechanical
Engineering Department, Indian Institute
of Technology Delhi, New Delhi 110016, India
| | - Priyabrata Banerjee
- Surface
Engineering & Tribology Group, CSIR-Central
Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur 713209, West Bengal, India
- Academy
of Scientific and Innovative Research (AcSIR), AcSIR Headquarters CSIR-HRDC Campus, Postal Staff
College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad 201002, Uttar
Pradesh, India
| |
Collapse
|
50
|
Zheng HW, Kang Y, Wu M, Liang QF, Zheng JQ, Zheng XJ, Jin LP. ESIPT-AIE active Schiff base based on 2-(2'-hydroxyphenyl)benzo-thiazole applied as multi-functional fluorescent chemosensors. Dalton Trans 2021; 50:3916-3922. [PMID: 33635301 DOI: 10.1039/d1dt00241d] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Three AIE (aggregation-induced emission)-ESIPT (excited-state intramolecular proton transfer) active 2-(2-hydroxyphenyl)benzothiazole derivatives, HL1, HL2 and HL3 with one, two and three rotatable phenyl groups, were obtained and characterized. Their AIE properties in THF/HEPES solution were investigated in detail. HL2 shows the best AIE performance with 71-fold fluorescence enhancement, while HL3 only shows a 9-fold enhancement. With the AIE property, HL1 and HL2 could act as fluorescence chemosensors to detect Cu2+ ions via the "turn off" mode in THF/HEPES media. With the ESIPT property, HL1 and HL2 could also detect Zn2+ ions via the "turn on" mode in EtOH/HEPES media. During the detection process, both demonstrate rapid response and high contrast before and after the addition of metal ions. The species formed in the detection system were investigated. The results of X-ray single-crystal diffraction confirm that Zn2+ is coordinated with the oxygen atom and Schiff base nitrogen atom instead of the benzothiazole nitrogen atom in the tetrahedron geometry. Moreover, the chemosensors were successfully constructed into handy fluorescence test papers for Cu2+ and Zn2+ detection.
Collapse
Affiliation(s)
- Han-Wen Zheng
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| | | | | | | | | | | | | |
Collapse
|