1
|
Batool R, Soler M, Singh R, Lechuga LM. A novel biomimetic nanoplasmonic sensor for rapid and accurate evaluation of checkpoint inhibitor immunotherapy. Anal Bioanal Chem 2024; 416:7295-7304. [PMID: 38902345 PMCID: PMC11584438 DOI: 10.1007/s00216-024-05398-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 06/22/2024]
Abstract
Immune checkpoint inhibitors (ICIs) emerged as promising immunotherapies for cancer treatment, harnessing the patient's immune system to fight and eliminate tumor cells. However, despite their potential and proven efficacies, checkpoint inhibitors still face important challenges such as the tumor heterogeneity and resistance mechanisms, and the complex in vitro testing, which limits their widespread applicability and implementation to treat cancer. To address these challenges, we propose a novel analytical technique utilizing biomimetic label-free nanoplasmonic biosensors for rapid and reliable screening and evaluation of checkpoint inhibitors. We have designed and fabricated a low-density nanostructured plasmonic sensor based on gold nanodisks that enables the direct formation of a functional supported lipid bilayer, which acts as an artificial cell membrane for tumor ligand immobilization. With this biomimetic scaffold, our biosensing approach provides real-time, highly sensitive analysis of immune checkpoint pathways and direct assessment of the blocking effects of monoclonal antibodies in less than 20 min/test. We demonstrate the accuracy of our biomimetic sensor for the study of the programmed cell death protein 1 (PD1) checkpoint pathway, achieving a limit of detection of 6.7 ng/mL for direct PD1/PD-L1 interaction monitoring. Besides, we have performed dose-response inhibition curves for an anti-PD1 monoclonal antibody, obtaining a half maximal inhibitory concentration (IC50) of 0.43 nM, within the same range than those obtained with conventional techniques. Our biomimetic sensor platform combines the potential of plasmonic technologies for rapid label-free analysis with the reliability of cell-based assay in terms of ligand mobility. The biosensor is integrated in a compact user-friendly device for the straightforward implementation in biomedical and pharmaceutical laboratories.
Collapse
Affiliation(s)
- Razia Batool
- Nanobiosensors and Bioanalytical Applications Group (NanoB2A), Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, BIST and CIBER-BBN, 08193, Bellaterra, Barcelona, Spain
| | - Maria Soler
- Nanobiosensors and Bioanalytical Applications Group (NanoB2A), Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, BIST and CIBER-BBN, 08193, Bellaterra, Barcelona, Spain.
| | - Rukmani Singh
- Nanobiosensors and Bioanalytical Applications Group (NanoB2A), Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, BIST and CIBER-BBN, 08193, Bellaterra, Barcelona, Spain
| | - Laura M Lechuga
- Nanobiosensors and Bioanalytical Applications Group (NanoB2A), Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, BIST and CIBER-BBN, 08193, Bellaterra, Barcelona, Spain.
| |
Collapse
|
2
|
Chen Z, Wu J, Han J, Wang Y, Ni L. UCST-Type Soluble Immobilized Cellulase: A New Strategy for the Efficient Degradation and Improved Recycling Performance of Wastepaper Cellulose. Molecules 2024; 29:1039. [PMID: 38474553 DOI: 10.3390/molecules29051039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
This paper reports an innovative study that aims to address key issues in the efficient recycling of wastepaper cellulose. The research team utilized the temperature-responsive upper critical solution temperature (UCST) polymer P(NAGA-b-DMA) in combination with the LytA label's affinity for choline analogs. This innovative approach enabled them to successfully develop a novel soluble immobilized enzyme, P(NAGA-b-DMA)-cellulase. This new enzyme has proven highly effective, significantly enhancing the degradation of wastepaper cellulose while demonstrating exceptional stability. Compared with the traditional insoluble immobilized cellulase, the enzyme showed a significant improvement in the pH, temperature stability, recycling ability, and storage stability. A kinetic parameter calculation showed that the enzymatic effectiveness of the soluble immobilized enzyme was much better than that of the traditional insoluble immobilized cellulase. After the immobilization reaction, the Michaelis constant of the immobilized enzyme was only increased by 11.5%. In the actual wastepaper degradation experiment, the immobilized enzyme was effectively used, and it was found that the degradation efficiency of wastepaper cellulose reached 80% of that observed in laboratory conditions. This novel, thermosensitive soluble immobilized cellulase can efficiently catalyze the conversion of wastepaper cellulose into glucose under suitable conditions, so as to further ferment into environmentally friendly biofuel ethanol, which provides a solution to solve the shortage of raw materials and environmental protection problems in the paper products industry.
Collapse
Affiliation(s)
- Zhaohui Chen
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jiacong Wu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Juan Han
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yun Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Liang Ni
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
3
|
Elsallab M, Maus MV. Expanding access to CAR T cell therapies through local manufacturing. Nat Biotechnol 2023; 41:1698-1708. [PMID: 37884746 DOI: 10.1038/s41587-023-01981-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 09/05/2023] [Indexed: 10/28/2023]
Abstract
Chimeric antigen receptor (CAR) T cells are changing the therapeutic landscape for hematological malignancies. To date, all six CAR T cell products approved by the US Food and Drug Administration (FDA) are autologous and centrally manufactured. As the numbers of approved products and indications continue to grow, new strategies to increase cell-manufacturing capacity are urgently needed to ensure patient access. Distributed manufacturing at the point of care or at other local manufacturing sites would go a long way toward meeting the rising demand. To ensure successful implementation, it is imperative to harness novel technologies to achieve uniform product quality across geographically dispersed facilities. This includes the use of automated cell-production systems, in-line sensors and process simulation for enhanced quality control and efficient supply chain management. A comprehensive effort to understand the critical quality attributes of CAR T cells would enable better definition of widely attainable release criteria. To supplement oversight by national regulatory agencies, we recommend expansion of the role of accreditation bodies. Moreover, regulatory standards may need to be amended to accommodate the unique characteristics of distributed manufacturing models.
Collapse
Affiliation(s)
- Magdi Elsallab
- Harvard-MIT Center for Regulatory Science, Harvard Medical School, Boston, MA, USA
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Marcela V Maus
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Cancer Center, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
4
|
Batool R, Soler M, Colavita F, Fabeni L, Matusali G, Lechuga LM. Biomimetic nanoplasmonic sensor for rapid evaluation of neutralizing SARS-CoV-2 monoclonal antibodies as antiviral therapy. Biosens Bioelectron 2023; 226:115137. [PMID: 36796306 PMCID: PMC9904857 DOI: 10.1016/j.bios.2023.115137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/16/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023]
Abstract
Monoclonal antibody (mAb) therapy is one of the most promising immunotherapies that have shown the potential to prevent or neutralize the effects of COVID-19 in patients at very early stages, with a few formulations recently approved by the European and American medicine agencies. However, a main bottleneck for their general implementation resides in the time-consuming, laborious, and highly-specialized techniques employed for the manufacturing and assessing of these therapies, excessively increasing their prices and delaying their administration to the patients. We propose a biomimetic nanoplasmonic biosensor as a novel analytical technique for the screening and evaluation of COVID-19 mAb therapies in a simpler, faster, and reliable manner. By creating an artificial cell membrane on the plasmonic sensor surface, our label-free sensing approach enables real-time monitoring of virus-cell interactions as well as direct analysis of antibody blocking effects in only 15 min assay time. We have achieved detection limits in the 102 TCID50/mL range for the study of SARS-CoV-2 viruses, which allows to perform neutralization assays by only employing a low-volume sample with common viral loads. We have demonstrated the accuracy of the biosensor for the evaluation of two different neutralizing antibodies targeting both Delta and Omicron variants of SARS-CoV-2, with half maximal inhibitory concentrations (IC50) determined in the ng/mL range. Our user-friendly and reliable technology could be employed in biomedical and pharmaceutical laboratories to accelerate, cheapen, and simplify the development of effective immunotherapies for COVID-19 and other serious infectious diseases or cancer.
Collapse
Affiliation(s)
- Razia Batool
- Nanobiosensors and Bioanalytical Applications Group (NanoB2A), Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, BIST, CIBER-BBN, Spain
| | - Maria Soler
- Nanobiosensors and Bioanalytical Applications Group (NanoB2A), Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, BIST, CIBER-BBN, Spain.
| | - Francesca Colavita
- National Institute for Infectious Disease "L. Spallanzani", IRCCS, Rome, Italy
| | - Lavinia Fabeni
- National Institute for Infectious Disease "L. Spallanzani", IRCCS, Rome, Italy
| | - Giulia Matusali
- National Institute for Infectious Disease "L. Spallanzani", IRCCS, Rome, Italy
| | - Laura M Lechuga
- Nanobiosensors and Bioanalytical Applications Group (NanoB2A), Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, BIST, CIBER-BBN, Spain.
| |
Collapse
|
5
|
Chakraborty D, Ghosh D, Kumar S, Jenkins D, Chandrasekaran N, Mukherjee A. Nano-diagnostics as an emerging platform for oral cancer detection: Current and emerging trends. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1830. [PMID: 35811418 DOI: 10.1002/wnan.1830] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 06/05/2022] [Accepted: 06/15/2022] [Indexed: 01/31/2023]
Abstract
Globally, oral cancer kills an estimated 150,000 individuals per year, with 300,000 new cases being diagnosed annually. The high incidence rate of oral cancer among the South-Asian and American populations is majorly due to overuse of tobacco, alcohol, and poor dental hygiene. Additionally, socio-economic issues and lack of general awareness delay the primary screening of the disease. The availability of early screening techniques for oral cancer can help in carving out a niche for accurate disease prognosis and also its prevention. However, conventional diagnostic approaches and therapeutics are still far from optimal. Thus, enhancing the analytical performance of diagnostic platforms in terms of specificity and precision can help in understanding the disease progression paradigm. Fabrication of efficient nanoprobes that are sensitive, noninvasive, cost-effective, and less labor-intensive can reduce the global cancer burden. Recent advances in optical, electrochemical, and spectroscopy-based nano biosensors that employ noble and superparamagnetic nanoparticles, have been proven to be extremely efficient. Further, these sensitive nanoprobes can also be employed for predicting disease relapse after chemotherapy, when the majority of the biomarker load is eliminated. Herein, we provide the readers with a brief summary of conventional and new-age oral cancer detection techniques. A comprehensive understanding of the inherent challenges associated with conventional oral cancer detection techniques is discussed. We also elaborate on how nanoparticles have shown tremendous promise and effectiveness in radically transforming the approach toward oral cancer detection. This article is categorized under: Diagnostic Tools > Biosensing Diagnostic Tools > Diagnostic Nanodevices Diagnostic Tools > In Vitro Nanoparticle-Based Sensing.
Collapse
Affiliation(s)
- Debolina Chakraborty
- School of Advanced Sciences, Vellore Institute of Technology, Vellore, India
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, India
| | - Debayan Ghosh
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, India
| | - Sanjit Kumar
- Centre for Bioseparation Technology, Vellore Institute of Technology, Vellore, India
| | - David Jenkins
- Wolfson Nanomaterials & Devices Laboratory, School of Computing, Electronics and Mathematics, Faculty of Science & Engineering, University of Plymouth, Devon, UK
| | | | - Amitava Mukherjee
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
6
|
Szittner Z, Péter B, Kurunczi S, Székács I, Horváth R. Functional blood cell analysis by label-free biosensors and single-cell technologies. Adv Colloid Interface Sci 2022; 308:102727. [DOI: 10.1016/j.cis.2022.102727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/25/2022] [Accepted: 06/27/2022] [Indexed: 11/01/2022]
|
7
|
Fernandez-Cuesta I, Llobera A, Ramos-Payán M. Optofluidic systems enabling detection in real samples: A review. Anal Chim Acta 2022; 1192:339307. [DOI: 10.1016/j.aca.2021.339307] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 12/20/2022]
|
8
|
Soler M, Lechuga LM. Biochemistry strategies for label-free optical sensor biofunctionalization: advances towards real applicability. Anal Bioanal Chem 2021; 414:5071-5085. [PMID: 34735605 PMCID: PMC9242939 DOI: 10.1007/s00216-021-03751-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/18/2021] [Accepted: 10/22/2021] [Indexed: 12/01/2022]
Abstract
Label-free biosensors, and especially those based on optical transducers like plasmonic or silicon photonic systems, have positioned themselves as potential alternatives for rapid and highly sensitive clinical diagnostics, on-site environmental monitoring, and for quality control in foods or other industrial applications, among others. However, most of the biosensor technology has not yet been transferred and implemented in commercial products. Among the several causes behind that, a major challenge is the lack of standardized protocols for sensor biofunctionalization. In this review, we summarize the most common methodologies for sensor surface chemical modification and bioreceptor immobilization, discussing their advantages and limitations in terms of analytical sensitivity and selectivity, reproducibility, and versatility. Special focus is placed on the suggestions of innovative strategies towards antifouling and biomimetic functional coatings to boost the applicability and reliability of optical biosensors in clinics and biomedicine. Finally, a brief overview of research directions in the area of device integration, automation, and multiplexing will give a glimpse of the future perspectives for label-free optical biosensors.
Collapse
Affiliation(s)
- Maria Soler
- Nanobiosensors and Bioanalytical Applications Group (NanoB2A), Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, BIST, and CIBER-BBN, Bellaterra, 08193, Barcelona, Spain.
| | - Laura M Lechuga
- Nanobiosensors and Bioanalytical Applications Group (NanoB2A), Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, BIST, and CIBER-BBN, Bellaterra, 08193, Barcelona, Spain
| |
Collapse
|
9
|
Rockinger GA, Guillaume P, Cachot A, Saillard M, Speiser DE, Coukos G, Harari A, Romero PJ, Schmidt J, Jandus C. Optimized combinatorial pMHC class II multimer labeling for precision immune monitoring of tumor-specific CD4 T cells in patients. J Immunother Cancer 2021; 8:jitc-2019-000435. [PMID: 32448802 PMCID: PMC7253008 DOI: 10.1136/jitc-2019-000435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND With immunotherapy gaining increasing approval for treatment of different tumor types, scientists rely on cutting edge methods for the monitoring of immune responses and biomarker development in patients. Due to the lack of tools to efficiently detect rare circulating human tumor-specific CD4 T cells, their characterization in patients still remains very limited. METHODS We have used combinatorial staining strategies with peptide major histocompatibility complex class II (pMHCII) multimer constructs of different alleles to establish an optimized staining procedure for in vitro and direct ex-vivo visualization of tumor-specific CD4 T cells, in patient samples. Furthermore, we have generated reversible multimers to achieve optimal cell staining and yet disassemble prior to in vitro cell expansion, thus preventing activation induced cell death. RESULTS We observed a vastly improved detection of tumor-specific, viral-specific and bacterial-specific cells with our optimization methods compared with the non-optimized staining procedure. By increasing the variety of fluorochromes used to label the pMHCII multimers, we were also able to increase the parallel detection of different specificities within one sample, including antigen-specific CD8 T cells. A decrease in cell viability was observed when using the full optimization method, but this was mitigated by the removal of neuraminidase and the use of reversible multimers. CONCLUSION This new optimized staining procedure represents an advance toward better detection and analysis of antigen-specific CD4 T cells. It should facilitate state-of-the art precision monitoring of tumor-specific CD4 T cells and contribute to accelerate the use and the targeting of these cells in cancer immunotherapy.
Collapse
Affiliation(s)
- Georg Alexander Rockinger
- Department of Oncology UNIL CHUV, University of Lausanne, Epalinges, Switzerland.,Ludwig Institute for Cancer Research, Lausanne Branch of Immunology, Epalinges, Switzerland
| | - Philippe Guillaume
- Department of Oncology UNIL CHUV, University of Lausanne, Epalinges, Switzerland.,Ludwig Institute for Cancer Research, Lausanne Branch of Immunology, Epalinges, Switzerland
| | - Amélie Cachot
- Department of Oncology UNIL CHUV, University of Lausanne, Epalinges, Switzerland.,Ludwig Institute for Cancer Research, Lausanne Branch of Immunology, Epalinges, Switzerland
| | - Margaux Saillard
- Department of Oncology UNIL CHUV, University of Lausanne, Epalinges, Switzerland.,Ludwig Institute for Cancer Research, Lausanne Branch of Immunology, Epalinges, Switzerland
| | - Daniel E Speiser
- Department of Oncology UNIL CHUV, University of Lausanne, Epalinges, Switzerland
| | - Georges Coukos
- Department of Oncology UNIL CHUV, University of Lausanne, Epalinges, Switzerland.,Ludwig Institute for Cancer Research, Lausanne Branch of Immunology, Epalinges, Switzerland
| | - Alexandre Harari
- Department of Oncology UNIL CHUV, University of Lausanne, Epalinges, Switzerland.,Ludwig Institute for Cancer Research, Lausanne Branch of Immunology, Epalinges, Switzerland
| | - Pedro J Romero
- Department of Oncology UNIL CHUV, University of Lausanne, Epalinges, Switzerland
| | - Julien Schmidt
- Department of Oncology UNIL CHUV, University of Lausanne, Epalinges, Switzerland.,Ludwig Institute for Cancer Research, Lausanne Branch of Immunology, Epalinges, Switzerland
| | - Camilla Jandus
- Department of Oncology UNIL CHUV, University of Lausanne, Epalinges, Switzerland .,Ludwig Institute for Cancer Research, Lausanne Branch of Immunology, Epalinges, Switzerland
| |
Collapse
|
10
|
Chen X, Liu B, Tong R, Zhan L, Yin X, Luo X, Huang Y, Zhang J, He W, Wang Y. Orchestration of biomimetic membrane coating and nanotherapeutics in personalized anticancer therapy. Biomater Sci 2021; 9:590-625. [PMID: 33305765 DOI: 10.1039/d0bm01617a] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Nanoparticle-based therapeutic and detectable modalities can augment anticancer efficiency, holding potential in capable target and suppressive metastases post administration. However, the individual discrepancies of the current "one-size-fits-all" strategies for anticancer nanotherapeutics have heralded the need for "personalized therapy". Benefiting from the special inherency of various cells, diverse cell membrane-coated nanoparticles (CMCNs) were established on a patient-by-patient basis, which would facilitate the personalized treatment of individual cancer patients. CMCNs in a complex microenvironment can evade the immune system and target homologous tumors with a suppressed immune response, as well as a prolonged circulation time, consequently increasing the drug accumulation at the tumor site and anticancer therapeutic efficacy. This review focuses on the emerging strategies and advances of CMCNs to synergistically integrate the merit of source cells with nanoparticulate delivery systems for the orchestration of personalized anticancer nanotherapeutics, thus discussing their rationalities in facilitating chemotherapy, imaging, immunotherapy, phototherapy, radiotherapy, sonodynamic, magnetocaloric, chemodynamic and gene therapy. Furthermore, the mechanism, challenges and opportunities of CMCNs in personalized anticancer therapy were highlighted to further boost cooperation from different fields, including materials science, chemistry, medicine, pharmacy and biology for the lab-to-clinic translation of CMCNs combined with the individual advantages of source cells and nanotherapeutics.
Collapse
Affiliation(s)
- Xuerui Chen
- Tumor Precision Targeting Research Center, School of Medicine & School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China. and Institution of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Bingbing Liu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Rongliang Tong
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Lin Zhan
- Tumor Precision Targeting Research Center, School of Medicine & School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China. and Institution of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Xuelian Yin
- Tumor Precision Targeting Research Center, School of Medicine & School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China. and Institution of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Xin Luo
- Institution of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yanan Huang
- Tumor Precision Targeting Research Center, School of Medicine & School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China. and Institution of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Junfeng Zhang
- Tumor Precision Targeting Research Center, School of Medicine & School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China. and Institution of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Wen He
- Tumor Precision Targeting Research Center, School of Medicine & School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China. and Institution of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yanli Wang
- Tumor Precision Targeting Research Center, School of Medicine & School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China. and Institution of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| |
Collapse
|
11
|
Yoon BK, Park H, Zhdanov VP, Jackman JA, Cho NJ. Real-time nanoplasmonic sensing of three-dimensional morphological changes in a supported lipid bilayer and antimicrobial testing applications. Biosens Bioelectron 2021; 174:112768. [DOI: 10.1016/j.bios.2020.112768] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/03/2020] [Accepted: 10/23/2020] [Indexed: 12/15/2022]
|
12
|
Salvo P, Vivaldi FM, Bonini A, Biagini D, Bellagambi FG, Miliani FM, Di Francesco F, Lomonaco T. Biosensors for Detecting Lymphocytes and Immunoglobulins. BIOSENSORS 2020; 10:E155. [PMID: 33121071 PMCID: PMC7694141 DOI: 10.3390/bios10110155] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 12/15/2022]
Abstract
Lymphocytes (B, T and natural killer cells) and immunoglobulins are essential for the adaptive immune response against external pathogens. Flow cytometry and enzyme-linked immunosorbent (ELISA) kits are the gold standards to detect immunoglobulins, B cells and T cells, whereas the impedance measurement is the most used technique for natural killer cells. For point-of-care, fast and low-cost devices, biosensors could be suitable for the reliable, stable and reproducible detection of immunoglobulins and lymphocytes. In the literature, such biosensors are commonly fabricated using antibodies, aptamers, proteins and nanomaterials, whereas electrochemical, optical and piezoelectric techniques are used for detection. This review describes how these measurement techniques and transducers can be used to fabricate biosensors for detecting lymphocytes and the total content of immunoglobulins. The various methods and configurations are reported, along with the advantages and current limitations.
Collapse
Affiliation(s)
- Pietro Salvo
- Institute of Clinical Physiology, National Council of Research, Via Moruzzi 1, 56124 Pisa, Italy;
| | - Federico M. Vivaldi
- Institute of Clinical Physiology, National Council of Research, Via Moruzzi 1, 56124 Pisa, Italy;
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13, 56124 Pisa, Italy; (A.B.); (D.B.); (F.M.M.); (F.D.F.); (T.L.)
| | - Andrea Bonini
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13, 56124 Pisa, Italy; (A.B.); (D.B.); (F.M.M.); (F.D.F.); (T.L.)
| | - Denise Biagini
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13, 56124 Pisa, Italy; (A.B.); (D.B.); (F.M.M.); (F.D.F.); (T.L.)
| | - Francesca G. Bellagambi
- Institut des Sciences Analytiques, UMR 5280, Université Lyon 1, 5, rue de la Doua, 69100 Villeurbanne, France;
| | - Filippo M. Miliani
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13, 56124 Pisa, Italy; (A.B.); (D.B.); (F.M.M.); (F.D.F.); (T.L.)
| | - Fabio Di Francesco
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13, 56124 Pisa, Italy; (A.B.); (D.B.); (F.M.M.); (F.D.F.); (T.L.)
| | - Tommaso Lomonaco
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13, 56124 Pisa, Italy; (A.B.); (D.B.); (F.M.M.); (F.D.F.); (T.L.)
| |
Collapse
|
13
|
Versatile formation of supported lipid bilayers from bicellar mixtures of phospholipids and capric acid. Sci Rep 2020; 10:13849. [PMID: 32796898 PMCID: PMC7427796 DOI: 10.1038/s41598-020-70872-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/29/2020] [Indexed: 01/07/2023] Open
Abstract
Originally developed for the structural biology field, lipid bicelle nanostructures composed of long- and short-chain phospholipid molecules have emerged as a useful interfacial science tool to fabricate two-dimensional supported lipid bilayers (SLBs) on hydrophilic surfaces due to ease of sample preparation, scalability, and versatility. To improve SLB fabrication prospects, there has been recent interest in replacing the synthetic, short-chain phospholipid component of bicellar mixtures with naturally abundant fatty acids and monoglycerides, i.e., lauric acid and monocaprin. Such options have proven successful under specific conditions, however, there is room for devising more versatile fabrication options, especially in terms of overcoming lipid concentration-dependent SLB formation limitations. Herein, we investigated SLB fabrication by using bicellar mixtures consisting of long-chain phospholipid and capric acid, the latter of which has similar headgroup and chain length properties to lauric acid and monocaprin, respectively. Quartz crystal microbalance-dissipation, epifluorescence microscopy, and fluorescence recovery after photobleaching experiments were conducted to characterize lipid concentration-dependent bicelle adsorption onto silicon dioxide surfaces. We identified that uniform-phase SLB formation occurred independently of total lipid concentration when the ratio of long-chain phospholipid to capric acid molecules ("q-ratio") was 0.25 or 2.5, which is superior to past results with lauric acid- and monocaprin-containing bicelles in which cases lipid concentration-dependent behavior was observed. Together, these findings demonstrate that capric acid-containing bicelles are versatile tools for SLB fabrication and highlight how the molecular structure of bicelle components can be rationally finetuned to modulate self-assembly processes at solid-liquid interfaces.
Collapse
|
14
|
Optimal formation of uniform-phase supported lipid bilayers from phospholipid–monoglyceride bicellar mixtures. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.04.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
15
|
Jakšić Z, Jakšić O. Biomimetic Nanomembranes: An Overview. Biomimetics (Basel) 2020; 5:E24. [PMID: 32485897 PMCID: PMC7345464 DOI: 10.3390/biomimetics5020024] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 11/30/2022] Open
Abstract
Nanomembranes are the principal building block of basically all living organisms, and without them life as we know it would not be possible. Yet in spite of their ubiquity, for a long time their artificial counterparts have mostly been overlooked in mainstream microsystem and nanosystem technologies, being a niche topic at best, instead of holding their rightful position as one of the basic structures in such systems. Synthetic biomimetic nanomembranes are essential in a vast number of seemingly disparate fields, including separation science and technology, sensing technology, environmental protection, renewable energy, process industry, life sciences and biomedicine. In this study, we review the possibilities for the synthesis of inorganic, organic and hybrid nanomembranes mimicking and in some way surpassing living structures, consider their main properties of interest, give a short overview of possible pathways for their enhancement through multifunctionalization, and summarize some of their numerous applications reported to date, with a focus on recent findings. It is our aim to stress the role of functionalized synthetic biomimetic nanomembranes within the context of modern nanoscience and nanotechnologies. We hope to highlight the importance of the topic, as well as to stress its great applicability potentials in many facets of human life.
Collapse
Affiliation(s)
- Zoran Jakšić
- Center of Microelectronic Technologies, Institute of Chemistry, Technology and Metallurgy, University of Belgrade, 11000 Belgrade, Serbia;
| | | |
Collapse
|
16
|
Blanco-Formoso M, Alvarez-Puebla RA. Cancer Diagnosis through SERS and Other Related Techniques. Int J Mol Sci 2020; 21:ijms21062253. [PMID: 32214017 PMCID: PMC7139671 DOI: 10.3390/ijms21062253] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/17/2020] [Accepted: 03/20/2020] [Indexed: 12/11/2022] Open
Abstract
Cancer heterogeneity increasingly requires ultrasensitive techniques that allow early diagnosis for personalized treatment. In addition, they should preferably be non-invasive tools that do not damage surrounding tissues or contribute to body toxicity. In this context, liquid biopsy of biological samples such as urine, blood, or saliva represents an ideal approximation of what is happening in real time in the affected tissues. Plasmonic nanoparticles are emerging as an alternative or complement to current diagnostic techniques, being able to detect and quantify novel biomarkers such as specific peptides and proteins, microRNA, circulating tumor DNA and cells, and exosomes. Here, we review the latest ideas focusing on the use of plasmonic nanoparticles in coded and label-free surface-enhanced Raman scattering (SERS) spectroscopy. Moreover, surface plasmon resonance (SPR) spectroscopy, colorimetric assays, dynamic light scattering (DLS) spectroscopy, mass spectrometry or total internal reflection fluorescence (TIRF) microscopy among others are briefly examined in order to highlight the potential and versatility of plasmonics.
Collapse
Affiliation(s)
- Maria Blanco-Formoso
- Department of Physical Chemistry and EMaS, Universitat Rovira i Virgili, 43007 Tarragona, Spain
- Correspondence: (M.B.-F.); (R.A.A.-P.)
| | - Ramon A. Alvarez-Puebla
- Department of Physical Chemistry and EMaS, Universitat Rovira i Virgili, 43007 Tarragona, Spain
- ICREA, Passeig Lluís Companys 23, 08010 Barcelona, Spain
- Correspondence: (M.B.-F.); (R.A.A.-P.)
| |
Collapse
|
17
|
Verstappen JFM, Jin J, Koçer G, Haroon M, Jonkheijm P, Bakker AD, Klein-Nulend J, Jaspers RT. RGD-functionalized supported lipid bilayers modulate pre-osteoblast adherence and promote osteogenic differentiation. J Biomed Mater Res A 2020; 108:923-937. [PMID: 31895490 DOI: 10.1002/jbm.a.36870] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 12/20/2019] [Accepted: 12/26/2019] [Indexed: 01/27/2023]
Abstract
Biomaterial integration into bone requires optimal surface conditions to promote osteoprogenitor behavior, which is affected by integrin-binding via arginine-glycine-aspartate (RGD). RGD-functionalized supported lipid bilayers (SLBs) might be interesting as biomaterial coating in bone regeneration, because they allow integration of proteins, for example, growth factors, cytokines, and/or antibacterial agents. Since it is unknown whether and how they affect osteoprogenitor adhesion and differentiation, the aim was to investigate adhesion, focal adhesion formation, morphology, proliferation, and osteogenic potential of pre-osteoblasts cultured on RGD-functionalized SLBs compared to unfunctionalized SLBs and poly-l-lysine (PLL). After 17 hr, pre-osteoblast density on SLBs without or with RGD was similar, but lower than on PLL. Cell surface area, elongation, and number and size of phospho-paxillin clusters were also similar. Cells on SLBs without or with RGD were smaller, more elongated, and had less and smaller phospho-paxillin clusters than on PLL. OPN expression was increased on SLBs with RGD compared to PLL. Moreover, after 1 week, COL1a1 expression was increased on SLBs without or with RGD. In conclusion, pre-osteoblast adhesion and enhanced differentiation were realized for the first time on RGD-functionalized SLBs, pointing to a new horizon in the management of bone regeneration using biomaterials. Together with SLBs nonfouling nature and the possibility of adjusting SLB fluidity and peptide content make SLBs highly promising as substrate to develop innovative biomimetic coatings for biomaterials in bone regeneration.
Collapse
Affiliation(s)
- Johanna F M Verstappen
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Jianfeng Jin
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Gülistan Koçer
- Laboratory of Biointerface Chemistry, TechMed Centre and MESA+ Institute for Nanotechnology, University of Twente, Enschede, The Netherlands
| | - Mohammad Haroon
- Laboratory for Myology, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Pascal Jonkheijm
- Laboratory of Biointerface Chemistry, TechMed Centre and MESA+ Institute for Nanotechnology, University of Twente, Enschede, The Netherlands
| | - Astrid D Bakker
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Jenneke Klein-Nulend
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Richard T Jaspers
- Laboratory for Myology, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| |
Collapse
|
18
|
Abstract
Nanophotonics excels at confining light into nanoscale optical mode volumes and generating dramatically enhanced light matter interactions. These unique aspects have been unveiling a plethora of fundamentally new optical phenomena, yet a critical issue ahead for nanophotonics is the development of novel devices and applications that can take advantage of these nano-scale effects. It is expected that nanophotonics will lead to disruptive technologies in energy harvesting, quantum and integrated photonics, optical computing and including biosensing. To this end, our research is focused on the application of nanophotonics to introduce powerful biosensors that can have impact on a wide range of areas including basic research in life sciences, early disease diagnostics, safety and point-of-care testing. In particular, we exploit nanophotonics and its integration with microfluidics to address key challenges of current biosensors and develop devices that can enable label-free, ultra-sensitive, multiplexed, rapid and real-time measurements on biomolecules, pathogens and living systems. In this talk I will present some of our recent work on nanophotonic meta surfaces for biosensing and bioimaging as well as their applications in real-world settings.
Collapse
|
19
|
Fathi F, Rahbarghazi R, Movassaghpour AA, Rashidi MR. Detection of CD133-marked cancer stem cells by surface plasmon resonance: Its application in leukemia patients. Biochim Biophys Acta Gen Subj 2019; 1863:1575-1582. [PMID: 31228554 DOI: 10.1016/j.bbagen.2019.06.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/08/2019] [Accepted: 06/17/2019] [Indexed: 01/05/2023]
Abstract
Here, we reported the development of a label-free and real-time surface plasmon resonance (SPR) based biosensor for cancer stem cells (CSCs) detection using cell surface biomarker; CD133. The fabricated biosensor was used for detection of this marker in some acute myeloid leukemia (AML) patients and the results were compared with those obtained from flow cytometry (FC) method. CD133 antibody was immobilized on the gold chip surface via EDC/NHS coupling method and binding of the candidate cells to the modified gold sensor surface was monitored after isolation of mononuclear cells from bone marrow of the patients. The method was validated in terms of various parameters such as CD133- antibody concentration and cell density. The CD133-marked cells were investigated in seven AML patients. All SPR results were compared with those obtained from FC method. A very good correlation (R2 = 0.96) was obtained between SPR and FC responses related to CD133-marked cells densities. In conclusion, in this study, a label-free and real-time SPR cytometry method was developed to detect CD133 and it was successfully applied to follow this cancer stem cell biomarker in AML patients.
Collapse
Affiliation(s)
- Farzaneh Fathi
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Akbar Movassaghpour
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad-Reza Rashidi
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|