1
|
Chen G, Xu L, Chen Z, Lin L, Wang W, Chen M, Sun W, Huang X, Zhang X, Chen J. A DNA Fishhook Electrochemical Sensor Based on a Potassium Ferricyanide-Mediated Dual-Signal-Correlation Enhanced Electrocatalysis Reaction for a Simultaneous and Correlation Assay of Multiple Biomarkers. ACS Sens 2025. [PMID: 40375444 DOI: 10.1021/acssensors.4c03142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
Simultaneous detection and correlation analysis of multiple biomarkers in a single run are crucial to improving the detection specificity and indicate disease progression, but they remain a challenge. Herein, we propose a DNA fishhook electrochemical sensor based on the potassium ferricyanide-mediated dual-signal correlation enhanced electrocatalysis reaction (DEER). The designed T-shaped DNA fishhook scaffold has two "hooks" to recruit their respective "fish" (targets) with the help of the "fishing bait" (signal probes, Sp), resulting in the different targets and Sp being specifically captured by the DNA fishhook to the electrode interface, respectively. The proposed DEER not only effectively improves the detection sensitivity without introducing nucleic acid amplification but also can reflect the logical correlation between the targets. As proof of principle, the DNA fishhook sensor was successfully applied in the simultaneous detection of two related gene sequences of SARS-CoV-2 and the active-state assay of the PI3K/AKT signaling pathway. In general, our DNA fishhook sensor provides a meaningful potential tool for the sensitive simultaneous detection and correlation analysis of multiple targets.
Collapse
Affiliation(s)
- Guanyu Chen
- Department of Pharmaceutics, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province 350122, PR China
- Innovative Drug Research Institute, Fujian Medical University, Fuzhou, Fujian Province 350122, PR China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province 350122, PR China
| | - Lilan Xu
- Department of Pharmaceutics, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province 350122, PR China
- Innovative Drug Research Institute, Fujian Medical University, Fuzhou, Fujian Province 350122, PR China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province 350122, PR China
| | - Zhuhua Chen
- Department of Pharmaceutical Analysis, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province 350122, PR China
- Innovative Drug Research Institute, Fujian Medical University, Fuzhou, Fujian Province 350122, PR China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province 350122, PR China
| | - Lifang Lin
- Department of Pharmaceutical Analysis, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province 350122, PR China
- Innovative Drug Research Institute, Fujian Medical University, Fuzhou, Fujian Province 350122, PR China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province 350122, PR China
| | - Wenlu Wang
- Innovative Drug Research Institute, Fujian Medical University, Fuzhou, Fujian Province 350122, PR China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province 350122, PR China
| | - Mingzhu Chen
- Department of Pharmaceutical Analysis, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province 350122, PR China
- Innovative Drug Research Institute, Fujian Medical University, Fuzhou, Fujian Province 350122, PR China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province 350122, PR China
| | - Weiming Sun
- Innovative Drug Research Institute, Fujian Medical University, Fuzhou, Fujian Province 350122, PR China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province 350122, PR China
| | - Xiaobing Huang
- Department of Medical Oncology, Fuzhou First Hospital Affiliated with Fujian Medical University, Fuzhou, Fujian Province 350009, PR China
| | - Xi Zhang
- Innovative Drug Research Institute, Fujian Medical University, Fuzhou, Fujian Province 350122, PR China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province 350122, PR China
- Department of Clinical Pharmacy and Pharmacy Administration, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province 350122, PR China
| | - Jinghua Chen
- Department of Pharmaceutical Analysis, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province 350122, PR China
- Innovative Drug Research Institute, Fujian Medical University, Fuzhou, Fujian Province 350122, PR China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province 350122, PR China
| |
Collapse
|
2
|
Shenagari M, Ebrahimi A, Bozorgzadeh E, Khosravi M, Hasan-Alizadeh E. Advanced multiplexed electrochemical nanobiosensors for simultaneous detection of BK polyomavirus miRNAs in renal transplants. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:1804-1812. [PMID: 39895263 DOI: 10.1039/d4ay02000f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
BK Polyomavirus (BKPyV)-associated nephropathy (BKPyVAN) is a leading cause of kidney transplant graft loss. Although polymerase chain reaction (PCR) is a common technique for quantifying BK Polyomavirus (BKPyV) viral loads, it lacks optimal sensitivity due to variations in sample type and source, DNA extraction techniques, primer and probe sequences, and the BKPyV strain DNA used for standard-curve genotype variance, all of which can affect the results. Studies have shown that bkv-miR-B1-5p and bkv-miR-B1-3p can be suitable candidates for the diagnosis of nephropathy in kidney transplant recipients, especially in the early stages of the disease. This research introduces an innovative electrochemical nanobiosensor that can detect BKPyV-related miRNAs, including bkv-miR-B1-5p and bkv-miR-B1-3p, with high sensitivity in renal transplant patients. By using a biotin-modified molecular beacon (biotin-MB) and gold nanoparticles (AuNP)/silver nanoparticles (AgNP), this sensor is able to detect viral miRNA with unparalleled sensitivity. Using square-wave voltammetry (SWV), the system can detect miRNA targets simultaneously, surpassing the constraints of traditional techniques like PCR. The sensor displays high linearity with detection limits of 0.3 fM for bkv-miR-B1-5p and 3.6 fM for bkv-miR-B1-3p. This technology offers the potential for diagnosing BKPyVAN earlier and more accurately, offering important information to enhance the lifespan of kidney transplants.
Collapse
Affiliation(s)
- Mohammad Shenagari
- Cellular and Molecular Research Center, Guilan University of Medical Science, Rasht, Iran
- Department of Microbiology, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Ammar Ebrahimi
- Aging and Muscle Metabolism Lab, Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Switzerland
| | - Elahe Bozorgzadeh
- Department of Medical Biotechnology, School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran.
| | - Masoud Khosravi
- Urology Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | | |
Collapse
|
3
|
Dai Y, He J, Zhou Y, Yu Y, Hui H, Guo L, Yin H. Constructing a highly sensitive duplex immunoassay using AuNPs and AgNPs as nanolabels for investigating the epithelial-mesenchymal transition occurring on circulating tumor cells with lung cancer patients. Biosens Bioelectron 2025; 270:116947. [PMID: 39561553 DOI: 10.1016/j.bios.2024.116947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/01/2024] [Accepted: 11/14/2024] [Indexed: 11/21/2024]
Abstract
Transformation of epithelial to mesenchymal (EMT) is an important event in the process of tumor initiation, invasion and metastasis. Circulating tumor cells (CTCs) are one kind of important markers in the field of liquid tumor biopsy, whose number and phenotype represent the occurrence and progression of tumors. Therefore, it is our interest to investigate the epithelial mesenchymal transition process occurring on the surface of CTCs. Herein in this work, two proteins of E-cadherin (E-cad) and N-cadherin (N-cad) were selected as representative proteins of EMT process. To achieve simultaneous analysis of E-cad and N-cad on the surface of rare CTCs, we designed a duplex and portable immunosensor using AuNPs and AgNPs as nanolabels to amplify the immunoreaction signals. The dual channel immunosensor not only exhibited good electrochemical responses for recombinant E-cad and N-cad as low as 0.1 ng/mL and 0.05 ng/mL, respectively, but also showed good linear correlations with different numbers of phenotypic CTCs (10-500 cells/10 μL). The above strategy was further employed to inspect the occurrence of EMT on CTCs surface, which displayed a high consistence with other molecular biological characterizations. Finally, this immunoassay was successfully applied to inspect the correlations of numbers, phenotype of CTCs, as well as E-cad and N-cad expressions on these CTCs in bloods of NSCLC patients with disease stage.
Collapse
Affiliation(s)
- Yunuo Dai
- Department of Radiotherapy Central Hospital, Affiliated Xuzhou Clinical College of Xuzhou Medical University, 199 Jiefang South Road, Xuzhou, 221009, Jiangsu, PR China
| | - Jie He
- Department of Radiotherapy Central Hospital, Affiliated Xuzhou Clinical College of Xuzhou Medical University, 199 Jiefang South Road, Xuzhou, 221009, Jiangsu, PR China
| | - Yun Zhou
- Department of Radiotherapy Central Hospital, Affiliated Xuzhou Clinical College of Xuzhou Medical University, 199 Jiefang South Road, Xuzhou, 221009, Jiangsu, PR China
| | - Yanyan Yu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, PR China
| | - Hui Hui
- Department of Radiotherapy Central Hospital, Affiliated Xuzhou Clinical College of Xuzhou Medical University, 199 Jiefang South Road, Xuzhou, 221009, Jiangsu, PR China
| | - Lin Guo
- Department of Radiotherapy Central Hospital, Affiliated Xuzhou Clinical College of Xuzhou Medical University, 199 Jiefang South Road, Xuzhou, 221009, Jiangsu, PR China
| | - Haitao Yin
- The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, 269 University Road, Xuzhou, 221002, Jiangsu, PR China.
| |
Collapse
|
4
|
Wang Y, Shao L, Zhao Z, Huang C, Jiao Y, Sun D, Liu R, Jiang D, Gao X. Simultaneous detection of dual microRNAs related to EV71 using ICP-MS based on metal nanoparticle labeling with hybridization chain reaction. Anal Chim Acta 2024; 1294:342272. [PMID: 38336408 DOI: 10.1016/j.aca.2024.342272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/14/2024] [Accepted: 01/20/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND Hand, foot, and mouth (HMFD) disease caused by enterovirus 71 (EV 71), is closely associated with severe clinical manifestations and can be deadly. Early detection of EV 71 can be achieved by detecting the increment in miR296 and miR16 in the serum. Using HCR to amplify signals and convert biological signals into metal nanoparticle signals detectable by ICP-MS is a detection method that can collect more accurate and reliable information, compared with traditional methods, in the detection of biological samples. RESULTS We described a strategy for the simultaneous detection of miR296 and miR16 by ICP-MS based on metal nanoparticles (NPs) labeling with HCR. Briefly, single-stranded DNA (ssDNA) and magnetic beads (MBs), as well as NPs and signal probes for miRNA (Sp-miR) were firstly conjugated via the streptavidin-biotin recognition system, constituting ssDNA-MBs and NPs-Sp-miR complex, respectively. The latter complex then hybridized with the former through HCR, generating the nanosensors for targets. Then, the targets were added and hybridized with ssDNA, and the HCR complex with NPs was released into the solution. Finally, the corresponding signals of the NPs were measured by ICP-MS. Results demonstrated that the developed method had good sensitivity and satisfactory selectivity and precision. Furthermore, when applied to biological samples with a complex matrix, the developed method also showed good recovery (88 % - 92 %) and reproducibility (RSD<10 %). SIGNIFICANCE This method contributes to the early diagnosis of HFMD and opens up ideas for the further development of high-throughput biomarker detection. The strategy has practical potential for miR296 and miR16 detection in biological samples and provides a promising tool for multiple miRNA detection.
Collapse
Affiliation(s)
- Yuxin Wang
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, PR China; Shandong Academy of Preventive Medicine, Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, Jinan, PR China; Department of Transfusion Medicine, West China Hospital, Sichuan University, Chengdu, PR China
| | - Lijun Shao
- Shandong Academy of Preventive Medicine, Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, Jinan, PR China
| | - Zhigang Zhao
- Shandong Academy of Preventive Medicine, Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, Jinan, PR China
| | - Chao Huang
- Department of Pharmacy, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, PR China
| | - Yanni Jiao
- Shandong Academy of Preventive Medicine, Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, Jinan, PR China
| | - Dapeng Sun
- Shandong Academy of Preventive Medicine, Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, Jinan, PR China
| | - Rui Liu
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, PR China; Shandong Academy of Preventive Medicine, Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, Jinan, PR China
| | - Dafeng Jiang
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, PR China; Shandong Academy of Preventive Medicine, Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, Jinan, PR China.
| | - Xibao Gao
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, PR China.
| |
Collapse
|
5
|
Xue Y, Wang K, Jiang Y, Dai Y, Liu X, Pei B, Li H, Xu H, Zhao G. An ultrasensitive and multiplexed miRNA one-step real time RT-qPCR detection system and its application in esophageal cancer serum. Biosens Bioelectron 2024; 247:115927. [PMID: 38113694 DOI: 10.1016/j.bios.2023.115927] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/30/2023] [Accepted: 12/10/2023] [Indexed: 12/21/2023]
Abstract
MicroRNAs (miRNAs) are increasingly recognized as promising biomarkers for early disease diagnosis and prognosis. Therefore, the need for rapid, robust methods for multiplex miRNA detection in biological research and clinical diagnosis is crucial. This study introduces a novel multiplex miRNA detection method, SMOS-qPCR (Sensitive and Multiplexed One-Step RT-qPCR). The method integrates multiplexed reverse transcription and TaqMan-based qPCR into a single tube, employing a one-step operation on a real-time PCR system. We investigated the effect of 3' end phosphorylation of the Linker, Linker concentration and probe concentration on the SMOS-qPCR, resulted in a wide linear range from 1 fM to 0.1 zM (R2 ≥ 0.99 for each miRNA), surpassing the capabilities of stem-loop RT-qPCR and SYBR Green One-step RT-qPCR. The method showed excellent performance in distinguishing mature miRNA from miRNA precursor, and successfully detected four miRNAs in a single tube without cross-interference. Its high specificity enables precise differentiation of less than 1% nonspecific signal. Finally, we demonstrated the effectiveness of the SMOS-qPCR system in detecting circulating miRNAs in serum samples, distinguishing between esophageal cancers and health individuals with high AUC values (>0.940). In conclusion, the proposed SMOS-qPCR system offers a straightforward and promising approach for miRNA profiling in future clinical applications.
Collapse
Affiliation(s)
- Ying Xue
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou Jiangsu 215000, China.
| | - Kai Wang
- Suzhou VersaBio Technologies Co. Ltd., Kunshan, Jiangsu 215300, China
| | - Yunli Jiang
- Department of Gastroenterology, The First People's Hospital of Xuzhou, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, The Affiliated Hospital of China University of Mining and Technology, Xuzhou, Jiangsu, 221002, China
| | - Yanmiao Dai
- Department of Spleen and Stomach Diseases, Kunshan Hospital of Traditional Chinese Medicine, Kunshan Jiangsu, 215300, China
| | - Xiaoyu Liu
- Suzhou VersaBio Technologies Co. Ltd., Kunshan, Jiangsu 215300, China
| | - Bing Pei
- Department of Clinical Laboratory, The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian, Jiangsu, 223800, China
| | - Hui Li
- Department of Gastroenterology, The First People's Hospital of Xuzhou, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, The Affiliated Hospital of China University of Mining and Technology, Xuzhou, Jiangsu, 221002, China
| | - Hongwei Xu
- Department of Spleen and Stomach Diseases, Kunshan Hospital of Traditional Chinese Medicine, Kunshan Jiangsu, 215300, China.
| | - Guodong Zhao
- Zhejiang University of Technology, Zhejiang, Hangzhou 310014, China; Suzhou VersaBio Technologies Co. Ltd., Kunshan, Jiangsu 215300, China; ZJUT Yinhu Research Institute of Innovation and Entrepreneurship, Zhejiang, Hangzhou 311400, China.
| |
Collapse
|
6
|
Li K, Xiao P, Yuan N, Yan S, Zhao P, Zuo G. Precise quantification of microRNAs based on proximity ligation of AuNPs-immobilized DNA probes. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:1281-1287. [PMID: 38327233 DOI: 10.1039/d3ay02136j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
MiRNAs are critical regulators of target gene expression in many biological processes and are considered promising biomarkers for diseases. In this study, we developed a simple, specific, and sensitive miRNA detection method based on proximity ligation reaction, which is easy to operate. The method uses a pair of target-specific DNA probes immobilized on the same gold nanoparticles (AuNPs), which hybridize to the target miRNA. Hybridization brings the probes close together, allowing the formation of a continuous DNA sequence that can be amplified by Quantitative Real-time PCR (qPCR). This method eliminates the need for complex reverse transcription design and achieves high specificity for discriminating single base mismatches between miRNAs through a simple procedure. This method can sensitively measure three different miRNAs with a detection limit of 20 aM, providing high versatility and sensitivity, even distinguishing single-base variations among members of the miR-200 family with high selectivity. Due to its high selectivity and sensitivity, this method has important implications for the investigation of miRNA biological functions and related biomedical research.
Collapse
Affiliation(s)
- Keyu Li
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Peng Xiao
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Ningning Yuan
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Shujuan Yan
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510620, China.
| | - Pei Zhao
- Department of Laboratory Medicine, Hebei General Hospital, Shijiazhuang 050051, China.
| | - Guowei Zuo
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
7
|
Liao L, Gong T, Jiang B, Yuan R, Xiang Y. Target-initiated triplex signal amplification cascades for non-label and sensitive fluorescence sensing of microRNA. Analyst 2024; 149:451-456. [PMID: 38099654 DOI: 10.1039/d3an01928d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The aberrant expression of microRNAs (miRs) in cells is closely linked to the initiation and progression of various diseases. Sensitive monitoring of their level is hence vital for biomedical research and disease diagnosis. Herein, a highly sensitive and non-label fluorescence sensor based on multiple recycling signal amplification cascades is constructed for the detection of miR-21 in human sera. The presence of miR-21 initiates the primer-fueled target recycling process for the generation of many primer/hairpin templates for the subsequent auto-cycling primer extension (APE) amplification cycles, which result in the formation of lots of long-stem hairpins. The enzyme-based cleavage of such hairpins via polymerization/excision cycles further leads to the generation of abundant G-quadruplex strands, which associate with the thioflavin T (ThT) dye to emit remarkably magnified fluorescence for detecting miR-21 in the range of 1 pM-100 nM with a 0.32 pM detection limit without labeling the probes. Besides, the proposed assay can selectively discriminate miR-21 against other control molecules and realize the sensing of low levels of miR-21 in diluted sera. With features of high sensitivity via the triplex signal amplification cycles and simplicity in a non-label homogeneous manner, our miR sensing protocol can be a robust means for detecting various nucleic acids for the early diagnosis of diseases.
Collapse
Affiliation(s)
- Lei Liao
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, PR China.
| | - Tingting Gong
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, PR China.
| | - Bingying Jiang
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, PR China.
| | - Ruo Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| | - Yun Xiang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
8
|
Wen X, Hua J, Ding Y, Li Z, Zhu H, Wang G, Li J, Hong X. A dual-mode method for detection of miRNA based on the photoluminescence and resonance light scattering. Anal Chim Acta 2023; 1280:341864. [PMID: 37858554 DOI: 10.1016/j.aca.2023.341864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/20/2023] [Accepted: 09/29/2023] [Indexed: 10/21/2023]
Abstract
MicroRNAs (miRNAs) hold potential as useful biomarkers for early diagnosis and evaluation of diverse cancers, but their low abundance and short length make the detection of miRNAs face low sensitivity and accuracy. Herein, a photoluminescence (PL)-resonance light scattering (RLS) dual-mode method was developed for the sensitive and accurate detection of miRNA-141 using CdTe quantum dots (QDs) and Au nanoparticles. The presence of miRNA-141 induced PL quenching and RLS increasing. The limit of detection (LOD) was as low as 3.7 fM, and the miRNA-141 was detected linearly in a range from 10 fM to 10 nM. The dual signals generated no mutual interference and were detected using the same spectrophotometer, allowing for mutual validation to ensure the accuracy and reliability of the detection results. This study proposes valuable references for constructing dual-mode detection methods.
Collapse
Affiliation(s)
- Xiaokun Wen
- Key Laboratory of UV-Emitting Materials and Technology (Northeast Normal University), Ministry of Education, Changchun, 130024, PR China
| | - Jia Hua
- Key Laboratory of UV-Emitting Materials and Technology (Northeast Normal University), Ministry of Education, Changchun, 130024, PR China
| | - Yadan Ding
- Key Laboratory of UV-Emitting Materials and Technology (Northeast Normal University), Ministry of Education, Changchun, 130024, PR China
| | - Zhipeng Li
- Key Laboratory of UV-Emitting Materials and Technology (Northeast Normal University), Ministry of Education, Changchun, 130024, PR China
| | - Hancheng Zhu
- Key Laboratory of UV-Emitting Materials and Technology (Northeast Normal University), Ministry of Education, Changchun, 130024, PR China
| | - Guorui Wang
- Key Laboratory of UV-Emitting Materials and Technology (Northeast Normal University), Ministry of Education, Changchun, 130024, PR China
| | - Jun Li
- Key Laboratory of UV-Emitting Materials and Technology (Northeast Normal University), Ministry of Education, Changchun, 130024, PR China.
| | - Xia Hong
- Key Laboratory of UV-Emitting Materials and Technology (Northeast Normal University), Ministry of Education, Changchun, 130024, PR China.
| |
Collapse
|
9
|
Zhou S, Zhu S, Huang Z, Chen J, Li J, Yang M, Jin L, Huo D, Hou C. Target-mediated rolling circle transcription coupling with CRISPR/Cas12a-Cas13a for simultaneous detection of HPV16 and HPV18. Chem Commun (Camb) 2023; 59:11987-11990. [PMID: 37727048 DOI: 10.1039/d3cc04223e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Simultaneous detection of multiple targets can provide important data support for clinical diagnosis and treatment. Here, we report a facile isothermal assay based on target-mediated rolling circle transcription coupling with CRISPR/Cas12a-Cas13a (TM-RCT/Cas12a-Cas13a). Through facile one-step amplification (TM-RCT), two target DNAs are converted to RNA amplified products. The simultaneous detection of HPV16 and HPV18 is then achieved by combining two CRISPR/Cas systems. This system shows excellent sensing performance and provides a universal method for simultaneous detection.
Collapse
Affiliation(s)
- Shiying Zhou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
| | - Shuyu Zhu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
| | - Zhen Huang
- Key Laboratory of Bio-Resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, SeNA Research Institute and Szostak-CDHT Large Nucleic Acids Institute, Chengdu, 610000, PR China
| | - Jian Chen
- Chongqing University Three Gorges Hospital, Chongqing, 404000, PR China
| | - Jiawei Li
- Chongqing University Three Gorges Hospital, Chongqing, 404000, PR China
| | - Mei Yang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
| | - Liang Jin
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
| | - Danqun Huo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
| | - Changjun Hou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
- Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, School of Microelectronics and Communication Engineering, Chongqing University, Chongqing, 400044, PR China.
| |
Collapse
|
10
|
Takiguchi S, Kambara F, Tani M, Sugiura T, Kawano R. Simultaneous Recognition of Over- and Under-Expressed MicroRNAs Using Nanopore Decoding. Anal Chem 2023; 95:14675-14685. [PMID: 37675494 PMCID: PMC10797591 DOI: 10.1021/acs.analchem.3c02560] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/28/2023] [Indexed: 09/08/2023]
Abstract
This paper describes a strategy for simultaneous recognition of over- and under-expressed microRNAs (miRNAs) using the method of signal classification-based nanopore decoding. MiRNA has attracted attention as a promising biomarker for cancer diagnosis owing to its cancer-type-specific expression patterns. While nanopore technology has emerged as a simple and label-free method to detect miRNAs and their expression patterns, recognizing patterns involving simultaneous over/under-expression is still challenging due to the inherent working principles. Here, inspired by the sequence design for DNA computation with nanopore decoding, we designed diagnostic DNA probes targeting two individual over/under-expressed miRNAs in the serum of oral squamous cell carcinoma. Through nanopore measurements, our designed probes exhibited characteristic current signals depending on the hybridized miRNA species, which were plotted on the scatter plot of duration versus current blocking ratio. The classified signals reflected the relative abundance of target miRNAs, thereby enabling successful pattern recognition of over/under-expressed miRNAs, even when using clinical samples. We believe that our method paves the way for miRNA-targeting simple diagnosis as a liquid biopsy.
Collapse
Affiliation(s)
- Sotaro Takiguchi
- Department
of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
| | - Fumika Kambara
- Department
of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
| | - Mika Tani
- Department
of Maxillofacial Diagnostic and Surgical Science, Field of Oral and
Maxillofacial Rehabilitation, Graduate School of Medical and Dental
Science, Kagoshima University, Kagoshima 890-8544, Japan
| | - Tsuyoshi Sugiura
- Department
of Maxillofacial Diagnostic and Surgical Science, Field of Oral and
Maxillofacial Rehabilitation, Graduate School of Medical and Dental
Science, Kagoshima University, Kagoshima 890-8544, Japan
- Division
of Oral and Maxillofacial Oncology and Surgical Sciences, Graduate
School of Dentistry, Tohoku University, Miyagi 980-8577, Japan
| | - Ryuji Kawano
- Department
of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
| |
Collapse
|
11
|
Tian R, Zhao W, Li H, Liu S, Yu R. Biosensor model based on single hairpin structure for highly sensitive detection of multiple targets. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4220-4225. [PMID: 37609764 DOI: 10.1039/d3ay01049j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Nowadays, due to the genetic information carried by nucleic acids, they can serve as a biomarker for the early diagnosis of diseases, including tumors and cardiovascular disease, among others, making genetic testing a hotspot of biomedicine. Therefore, we have designed a universal fluorescence biosensor that can detect multiple DNA sequences with good performance. In our designed biosensor, λ exonuclease is used due to its ability to digest double-stranded DNA from the phosphorylated 5'- end and promote the targeted cycle. The exonuclease is introduced into a DNA hairpin containing a target recognition sequence. Hence, with the target, λ exonuclease-assisted targeted recycling can be activated. The hydrolyzed DNA hairpin triggers a strand displacement reaction between the hairpin probe (H1) and F-Q double DNA strand (F-Q), increasing the distance between the fluorescent chain (F) and quenching chain (Q); thus the fluorescence signal is emitted. It is exciting that the detection limit of the biosensor is 300 fM, which is relatively low, and there is an excellent linear relationship between fluorescence intensity and target concentration. Moreover, the biosensor we designed has universal applicability in the detection of other genes, and the range of RSD is 1.28-2.45%. Hence, it has good application prospects and practical value in the early detection of some diseases and the design of fluorescent biosensors.
Collapse
Affiliation(s)
- Ruiting Tian
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Weihua Zhao
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Hongbo Li
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
- State Key Laboratory for Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, P. R. China
| | - Shiwen Liu
- Jiangxi Provincial Center for Disease Control and Prevention, Nanchang 330029, P. R. China
| | - Ruqin Yu
- State Key Laboratory for Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
12
|
Li S, Zhang H, Zhu M, Kuang Z, Li X, Xu F, Miao S, Zhang Z, Lou X, Li H, Xia F. Electrochemical Biosensors for Whole Blood Analysis: Recent Progress, Challenges, and Future Perspectives. Chem Rev 2023. [PMID: 37262362 DOI: 10.1021/acs.chemrev.1c00759] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Whole blood, as one of the most significant biological fluids, provides critical information for health management and disease monitoring. Over the past 10 years, advances in nanotechnology, microfluidics, and biomarker research have spurred the development of powerful miniaturized diagnostic systems for whole blood testing toward the goal of disease monitoring and treatment. Among the techniques employed for whole-blood diagnostics, electrochemical biosensors, as known to be rapid, sensitive, capable of miniaturization, reagentless and washing free, become a class of emerging technology to achieve the target detection specifically and directly in complex media, e.g., whole blood or even in the living body. Here we are aiming to provide a comprehensive review to summarize advances over the past decade in the development of electrochemical sensors for whole blood analysis. Further, we address the remaining challenges and opportunities to integrate electrochemical sensing platforms.
Collapse
Affiliation(s)
- Shaoguang Li
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Hongyuan Zhang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Man Zhu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Zhujun Kuang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Xun Li
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Fan Xu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Siyuan Miao
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Zishuo Zhang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Xiaoding Lou
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Hui Li
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
13
|
Guo Y, Li J, Yang H, Gu H, Xu G, Xu H. Multiplexed and accurate quantification strategy for miRNA based on specific terminal-mediated PCR with equivalent amplification. Talanta 2023; 258:124463. [PMID: 36940574 DOI: 10.1016/j.talanta.2023.124463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 03/22/2023]
Abstract
MicroRNAs (miRNAs) are recognized as potential biomarkers for the early diagnosis and prognosis of different diseases. Multiplexed and accurate miRNA quantification methods with equivalent detection efficiency are particularly crucial due to their complex biological functions and lack of a unified internal reference gene. Here, a unique multiplexed miRNA detection method, named Specific Terminal-Mediated miRNA PCR (STEM-Mi-PCR), was developed. It mainly includes a linear reverse transcription step using tailored-designed target specific capture primers, followed by an exponential amplification process using two universal primers to execute the multiplex assay. For proof of concept, four miRNAs were used as models to develop a multiplexed detection assay within one tube simultaneously and then evaluate the performance of the established STEM-Mi-PCR. The sensitivity of the 4-plexed assay was approximately 100 aM with an equivalent amplification efficiency (95.67 ± 8.58%), and had no cross-reactivity each other with high specificity. Quantification of different miRNAs in twenty patients' tissues shown variation from approximately pM to fM concentration level, demonstrating the possibility of practical application of the established method. Moreover, this method was extraordinarily capable of single nucleotide mutation discrimination in different let-7 family members with no more than 0.7% nonspecific detection signal. Hence, the STEM-Mi-PCR we proposed here paves an easy and promising way for miRNA profiling in future clinical applications.
Collapse
Affiliation(s)
- Yunfei Guo
- School of Biomedical Engineering/Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, PR China
| | - Jun Li
- School of Biomedical Engineering/Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, PR China
| | - Hao Yang
- School of Biomedical Engineering/Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, PR China
| | - Hongchen Gu
- School of Biomedical Engineering/Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, PR China
| | - Gaolian Xu
- School of Biomedical Engineering/Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, PR China.
| | - Hong Xu
- School of Biomedical Engineering/Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, PR China.
| |
Collapse
|
14
|
Gan Y, Zhou M, Ma H, Gong J, Fung SY, Huang X, Yang H. Silver nano-reporter enables simple and ultrasensitive profiling of microRNAs on a nanoflower-like microelectrode array on glass. J Nanobiotechnology 2022; 20:456. [PMID: 36274120 PMCID: PMC9590124 DOI: 10.1186/s12951-022-01664-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/11/2022] [Indexed: 11/10/2022] Open
Abstract
AbstractMicroRNAs (miRNAs) are small non-coding RNAs with ~ 22 nucleotides, playing important roles in the post-transcriptional regulation of gene expression. The expression profiles of many miRNAs are closely related to the occurrence and progression of cancer and can be used as biomarkers for cancer diagnosis and prognosis. However, their intrinsic properties, such as short length, low abundance and high sequence homology, represent great challenges in miRNA detection of clinical samples. To overcome these challenges, we developed a simple, ultrasensitive detection platform of electrochemical miRNAs chip (e-miRchip) with a novel signal amplification strategy using silver nanoparticle reporters (AgNRs) for multiplexed, direct, electronic profiling of miRNAs. A two-step hybridization strategy was used to detect miRNAs, where the target miRNA hybridizes with a stem-loop probe to unlock the probe first, and the opened stem-loop can further hybridize with AgNRs for signaling amplification. To enhance the detection sensitivity, the gold nanoflower electrodes (GNEs) were constructed in the microaperture arrays of the e-miRchips by electroplating. With the optimal size of the GNEs, the e-miRchip showed excellent performance for miR-21 detection with a detection limit of 0.56 fM and a linear range extended from 1 fM to 10 pM. The e-miRchip also exhibited good specificity in differentiating the 3-base mismatched sequences of the target miRNA. In addition, the e-miRchip was able to directly detect miR-21 expression in the total RNA extracts or cell lysates collected from lung cancer cells and normal cells. This work demonstrated the developed e-miRchip as an efficient and promising miniaturized point-of-care diagnostic device for the early diagnosis and prognosis of cancers.
Graphical Abstract
Collapse
|
15
|
Liu Y, Wang C, Zhang C, Chen R, Liu B, Zhang K. Nonenzymatic Multiamplified Electrochemical Detection of Medulloblastoma-Relevant MicroRNAs from Cerebrospinal Fluid. ACS Sens 2022; 7:2320-2327. [PMID: 35925869 DOI: 10.1021/acssensors.2c00956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The sensitive analysis of microRNAs (miRNAs) in cerebrospinal fluid (CSF) holds promise for the minimally invasive early diagnosis of brain cancers such as pediatric medulloblastoma but remains challenging due partially to a lack of facile yet sensitive sensing methods. Herein, an enzyme-free triple-signal amplification electrochemical assay for miRNA was developed by integrating the target-triggered cyclic strand-displacement reaction (TCSDR), hybridization chain reaction (HCR), and methylene blue (MB) intercalation. In this assay, the presence of target miRNA (miR-9) initiated the TCSDR and produced primers that triggered the subsequent HCR amplification to generate copious double-stranded DNAs (dsDNAs) on the electrode surface. Intercalation of a large number of MB reporters into the long nicked double helixes of dsDNAs yielded a more enhanced signal of differential pulse voltammetry. The enzyme-free multiple-amplification approach allowed for highly sensitive (detection limit: 6.5 fM) and sequence-specific (single-base mismatch resolution) detection of miR-9 from tumor cells and human CSF with minimal sample consumption (10 μL). Moreover, the clinical utilization of this method was documented by accurate discrimination of five medulloblastoma patients from the nontumoral controls. In light of its sensitivity, specificity, and convenience of use, this electrochemical method was expected to facilitate the early detection of malignant brain tumors.
Collapse
Affiliation(s)
- Yujie Liu
- Shanghai Institute of Pediatric Research, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Chen Wang
- Department of Pediatric Neurosurgery, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Chenran Zhang
- Department of Pediatric Neurosurgery, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Ruoping Chen
- Department of Pediatric Neurosurgery, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Baohong Liu
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Lab of Molecular Engineering of Polymers, Institutes of Biomedical Sciences Fudan University, Shanghai 200438, China
| | - Kun Zhang
- Shanghai Institute of Pediatric Research, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| |
Collapse
|
16
|
Hou M, He D, Wang H, Huang J, Cheng H, Wan K, Li HW, Tang Z, He X, Wang K. Simultaneous and multiplex detection of exosomal microRNAs based on the asymmetric Au@Au@Ag probes with enhanced Raman signal. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.11.092] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
17
|
A ratiometric electrochemical DNA-biosensor for detection of miR-141. Mikrochim Acta 2022; 189:213. [PMID: 35513513 DOI: 10.1007/s00604-022-05301-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 03/30/2022] [Indexed: 10/18/2022]
Abstract
A sensitive biosensor for the detection of miR-141 has been constructed. The DNA-biosensor is prepared by first immobilizing the thiolated methylene blue-labeled hairpin capture probe (MB-HCP) on two-layer nanocomposite film graphene oxide-chitosan@ polyvinylpyrrolidone-gold nanourchin modified glassy carbon electrode. We used the hematoxylin as an electrochemical auxiliary indicator in the second stage to recognize DNA hybridization via the square wave voltammetry (SWV) responses that record the accumulated hematoxylin on electrode surfaces. The morphology and chemical composition of nanocomposite was characterized using TEM, FE-SEM, and FT-IR techniques. The preparation stages of the DNA-biosensor were screened by electrochemical impedance spectroscopy and cyclic voltammetry. The proposed DNA-biosensor can distinguish miR-141 from a non-complementary and mismatch sequence. A detection limit of 0.94 fM and a linear range of 2.0 -5.0 × 105 fM were obtained using SWV for miR-141 detection. The working potential for methylene blue and hematoxylin was -0.28 and + 0.15 V vs. Ag/AgCl, respectively. The developed biosensor can be successfully used in the early detection of non-small cell lung cancer (NSCLC) by directly measuring miR-141 in human plasma samples. This novel DNA-biosensor is of promise in early sensitive clinical diagnosis of cancers with miR-141 as its biomarker.
Collapse
|
18
|
Shueng PW, Shih KC, Gambhir SS, Kuo DY, Chuang HY. Cancer Detection Using an Artificial Secretable MicroRNA Found in Blood and Urine. Biomedicines 2022; 10:biomedicines10030621. [PMID: 35327423 PMCID: PMC8945529 DOI: 10.3390/biomedicines10030621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/01/2022] [Accepted: 03/04/2022] [Indexed: 12/25/2022] Open
Abstract
Biomarkers can potentially help in the detection and prognosis of diseases such as cancer, its recurrence, predicting response to therapy, and monitoring of response during and/or after treatment. Endogenous tumor blood biomarkers suffer from low concentrations that are not distinguishable from background noise and, if identified, the localization of the biomarker production site is not known. The use of exogenously introduced or artificial biomarkers can eliminate these issues. In this study, we show that cancer cells can be made to produce an artificial secreted microRNA (Sec-miR) that can be detected in media from cells in culture, and from both blood and urine in living mice. In culture, we show that chaining a number of Sec-miR sequences in a plasmid and transfecting cells with the plasmids could increase Sec-miR secretion as the number of sequences increases. Tumor induction in mice with a stably transfected HeLa cell line shows the presence and significant increase in the Sec-miR with time and tumor growth in plasma (p < 0.001, R2 = 0.5542). The relative half-life of the Sec-miR was seen to be 1.2 h in the plasma of living mice and was seen to appear in urine within 12 h. The transgene for the Sec-miR within a minicircle was introduced via the tail-vein into subcutaneous tumor-bearing mice. As the tumor growth increased with time, further in vivo transfection of the Sec-miR minicircles showed an increase in Sec-miR in both plasma and urine (R2 = 0.4546). This study demonstrated that an exogenous Sec-miR biomarker would allow for early tumor detection using in vitro diagnostics techniques.
Collapse
Affiliation(s)
- Pei-Wei Shueng
- Division of Radiation Oncology, Department of Radiology, Far Eastern Memorial Hospital, New Taipei 220, Taiwan;
- School of Medicine, Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Kuang-Chung Shih
- Division of Endocrinology and Metabolism, Department of Medicine, Cheng-Hsin General Hospital, Taipei 112, Taiwan;
| | - Sanjiv Sam Gambhir
- Molecular Imaging Program at Stanford, School of Medicine, Stanford University, Stanford, CA 94305, USA
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
| | - Deng-Yu Kuo
- Division of Radiation Oncology, Department of Radiology, Far Eastern Memorial Hospital, New Taipei 220, Taiwan;
- Correspondence: (D.-Y.K.); (H.-Y.C.); Tel.: +886-2-7728-1033 (D.-Y.K.); +886-2-2826-7241 (H.-Y.C.); Fax: +886-2-7728-2367 (D.-Y.K.); +886-2-2820-1095 (H.-Y.C.)
| | - Hui-Yen Chuang
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Correspondence: (D.-Y.K.); (H.-Y.C.); Tel.: +886-2-7728-1033 (D.-Y.K.); +886-2-2826-7241 (H.-Y.C.); Fax: +886-2-7728-2367 (D.-Y.K.); +886-2-2820-1095 (H.-Y.C.)
| |
Collapse
|
19
|
Mahshid SS, Higazi AM, Ogier JM, Dabdoub A. Extracellular Biomarkers of Inner Ear Disease and Their Potential for Point-of-Care Diagnostics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104033. [PMID: 34957708 PMCID: PMC8948604 DOI: 10.1002/advs.202104033] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 11/09/2021] [Indexed: 06/14/2023]
Abstract
Rapid diagnostic testing has become a mainstay of patient care, using easily obtained samples such as blood or urine to facilitate sample analysis at the point-of-care. These tests rely on the detection of disease or organ-specific biomarkers that have been well characterized for a particular disorder. Currently, there is no rapid diagnostic test for hearing loss, which is one of the most prevalent sensory disorders in the world. In this review, potential biomarkers for inner ear-related disorders, their detection, and quantification in bodily fluids are described. The authors discuss lesion-specific changes in cell-free deoxyribonucleic acids (DNAs), micro-ribonucleic acids (microRNAs), proteins, and metabolites, in addition to recent biosensor advances that may facilitate rapid and precise detection of these molecules. Ultimately, these biomarkers may be used to provide accurate diagnostics regarding the site of damage in the inner ear, providing practical information for individualized therapy and assessment of treatment efficacy in the future.
Collapse
Affiliation(s)
- Sahar Sadat Mahshid
- Biological SciencesSunnybrook Research InstituteSunnybrook Health Sciences CentreTorontoONM4N 3M5Canada
| | - Aliaa Monir Higazi
- Biological SciencesSunnybrook Research InstituteSunnybrook Health Sciences CentreTorontoONM4N 3M5Canada
- Department of Clinical and Chemical PathologyMinia UniversityMinia61519Egypt
| | - Jacqueline Michelle Ogier
- Biological SciencesSunnybrook Research InstituteSunnybrook Health Sciences CentreTorontoONM4N 3M5Canada
| | - Alain Dabdoub
- Biological SciencesSunnybrook Research InstituteSunnybrook Health Sciences CentreTorontoONM4N 3M5Canada
- Department of Otolaryngology–Head & Neck SurgeryUniversity of TorontoTorontoONM5G 2C4Canada
- Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoONM5S 1A8Canada
| |
Collapse
|
20
|
Wang Z, Zhang Y, Wang X, Han L. Flow-homogeneous electrochemical sensing system based on 2D metal-organic framework nanozyme for successive microRNA assay. Biosens Bioelectron 2022; 206:114120. [PMID: 35240439 DOI: 10.1016/j.bios.2022.114120] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/14/2022] [Accepted: 02/18/2022] [Indexed: 11/26/2022]
Abstract
Considering DNA-based homogeneous electrochemical assay allows identification of targets to be carried out in a homogeneous solution, it would be of significance to develop the successive homogeneous assay system in dynamic solution for rapid disease diagnosis and high-throughput bioanalysis. In homogeneous assay, the work electrodes generally have capability of DNA capture but lack signal amplification, restricting its sensitivity. Here, a flow-homogeneous sensing system was proposed to realize the successive assay of microRNA, a model biomarker. Ultrathin 2D metal-organic framework (MOF) nanozymes with thickness of about 1 nm were facilely prepared by ultrasonic approach. Due to the excellent enzyme-like activity and adsorption capacity towards single-strand DNA (ssDNA), MOF nanozymes adsorbed on electrode simultaneously played two roles of ssDNA collector and signal-amplifier. To adapt the recoverable electrode to on-line monitoring, duplex-specific nuclease-assisted circle reaction was conducted to produce the turn-on amplified signal. Flow injection device was employed to realize the recycling of electrodes and the successive microRNA assay. The assay strategy showed low limit of detection (0.12 pM, S/N = 3) for microRNA, excellent renewability and acceptable reliability for real sample assay. The established system exerts the advantages of DNA-based homogeneous electrochemical sensing strategy. This work would not only expand homogeneous electrochemical assay to successive bioassay, but also provide the possibility for practical application of homogeneous sensing strategy.
Collapse
Affiliation(s)
- Zhen Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, 266109, Shandong, China
| | - Yucui Zhang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, 266109, Shandong, China
| | - Xiuzhong Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, 266109, Shandong, China.
| | - Lei Han
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, 266109, Shandong, China.
| |
Collapse
|
21
|
Hua X, Fan J, Yang L, Wang J, Wen Y, Su L, Zhang X. Rapid detection of miRNA via development of consecutive adenines (polyA)-based electrochemical biosensors. Biosens Bioelectron 2022; 198:113830. [PMID: 34861526 DOI: 10.1016/j.bios.2021.113830] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/11/2021] [Accepted: 11/19/2021] [Indexed: 12/12/2022]
Abstract
Herein, we report rapid electrochemical detection of miRNA let-7a based on a DNA probe consisting of a polyA and Fc-co-labeled harpin structure (the polyA-H probe). The polyA-H probe could be facilely immobilized on Au surfaces through the interactions between polyA and Au, followed by its pre-hybridization with a single strand (S1). The probe's surface density could be optimized for minimizing steric hindrance via changing the polyA block length. The target let-7a could be rapidly amplified via loop-mediated isothermal amplification (LAMP) with four simplified primers, followed by inducing the formation of dimeric i-motif (DIM) structure via H+-induced rapid folding of two C-rich sequences of motif strand 1 and strand 2. It was found that, after introducing the as-formed DIM to hybridize the S1, the immobilized polyA20-H probe could rapidly revert to its hairpin structure, sending out a turn-on electrochemical signal of the Fc. The total time for detecting the let-7a was around 80 min, obviously less than that of most of electrochemical DNA sensors reported previously. The biosensor showed a linear relationship of the current response to the let-7a in the range of 10 fM to 50 nM with a limit of detection (LOD) of 5.1 fM. Our biosensors were further tested using human serum spiked with the let-7a and the extracts of the breast adenocarcinoma cells spiked with and without the let-7a, respectively. Satisfied results were obtained. This study shows a potential promising future of development of electrochemical biosensors for rapid detection of miRNAs in the application of clinical practice.
Collapse
Affiliation(s)
- Xiaoyu Hua
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Jingjing Fan
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Lingzhi Yang
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518037, PR China.
| | - Jun Wang
- Department of Biomedicine and Biopharmacology, Hubei University of Technology, Wuhan, 430068, PR China
| | - Yongqiang Wen
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Lei Su
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518037, PR China.
| | - Xueji Zhang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518037, PR China
| |
Collapse
|
22
|
Zhang L, Su W, Liu S, Huang C, Ghalandari B, Divsalar A, Ding X. Recent Progresses in Electrochemical DNA Biosensors for MicroRNA Detection. PHENOMICS (CHAM, SWITZERLAND) 2022; 2:18-32. [PMID: 36939771 PMCID: PMC9590547 DOI: 10.1007/s43657-021-00032-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/28/2021] [Accepted: 10/11/2021] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs), as the small, non-coding, evolutionary conserved, and post-transcriptional gene regulators of the genome, have been highly associated with various diseases such as cancers, viral infections, and cardiovascular diseases. Several techniques have been established to detect miRNAs, including northern blotting, real-time polymerase chain reaction (RT-PCR), and fluorescent microarray platform. However, it remains a significant challenge to develop sensitive, accurate, rapid, and cost-effective methods to detect miRNAs due to their short size, high similarity, and low abundance. The electrochemical biosensors exhibit tremendous potential in miRNA detection because they satisfy feature integration, portability, mass production, short response time, and minimal sample consumption. This article reviewed the working principles and signal amplification strategies of electrochemical DNA biosensors summarized the recent improvements. With the development of DNA nanotechnology, nanomaterials and biotechnology, electrochemical DNA biosensors of high sensitivity and specificity for microRNA detection will shortly be commercially accessible.
Collapse
Affiliation(s)
- Lulu Zhang
- Institute of Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030 China
| | - Wenqiong Su
- Institute of Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030 China
| | - Shuopeng Liu
- East China Branch, China Academy of Information and Communications Technology, Shanghai, 200030 China
| | - Chengjie Huang
- Institute of Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030 China
| | - Behafarid Ghalandari
- Institute of Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030 China
| | - Adeleh Divsalar
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, 15719-14911 Iran
| | - Xianting Ding
- Institute of Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030 China
| |
Collapse
|
23
|
Alba-Patiño A, Vaquer A, Barón E, Russell SM, Borges M, de la Rica R. Micro- and nanosensors for detecting blood pathogens and biomarkers at different points of sepsis care. Mikrochim Acta 2022; 189:74. [PMID: 35080669 PMCID: PMC8790942 DOI: 10.1007/s00604-022-05171-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 12/26/2021] [Indexed: 12/29/2022]
Abstract
Severe infections can cause a dysregulated response leading to organ dysfunction known as sepsis. Sepsis can be lethal if not identified and treated right away. This requires measuring biomarkers and pathogens rapidly at the different points where sepsis care is provided. Current commercial approaches for sepsis diagnosis are not fast, sensitive, and/or specific enough for meeting this medical challenge. In this article, we review recent advances in the development of diagnostic tools for sepsis management based on micro- and nanostructured materials. We start with a brief introduction to the most popular biomarkers for sepsis diagnosis (lactate, procalcitonin, cytokines, C-reactive protein, and other emerging protein and non-protein biomarkers including miRNAs and cell-based assays) and methods for detecting bacteremia. We then highlight the role of nano- and microstructured materials in developing biosensors for detecting them taking into consideration the particular needs of every point of sepsis care (e.g., ultrafast detection of multiple protein biomarkers for diagnosing in triage, emergency room, ward, and intensive care unit; quantitative detection to de-escalate treatment; ultrasensitive and culture-independent detection of blood pathogens for personalized antimicrobial therapies; robust, portable, and web-connected biomarker tests outside the hospital). We conclude with an overview of the most utilized nano- and microstructured materials used thus far for solving issues related to sepsis diagnosis and point to new challenges for future development.
Collapse
Affiliation(s)
- Alejandra Alba-Patiño
- Multidisciplinary Sepsis Group, Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Department of Chemistry, University of the Balearic Islands, Palma, Spain
| | - Andreu Vaquer
- Multidisciplinary Sepsis Group, Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Department of Chemistry, University of the Balearic Islands, Palma, Spain
| | - Enrique Barón
- Multidisciplinary Sepsis Group, Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain.
| | - Steven M Russell
- Multidisciplinary Sepsis Group, Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Marcio Borges
- Multidisciplinary Sepsis Group, Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Multidisciplinary Sepsis Unit, ICU, Son Llàtzer University Hospital, Palma, Spain
| | - Roberto de la Rica
- Multidisciplinary Sepsis Group, Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain.
| |
Collapse
|
24
|
Agrahari S, Kumar Gautam R, Kumar Singh A, Tiwari I. Nanoscale materials-based hybrid frameworks modified electrochemical biosensors for early cancer diagnostics: An overview of current trends and challenges. Microchem J 2022. [DOI: 10.1016/j.microc.2021.106980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
25
|
Chen H, Liu Y, Feng S, Cao Y, Wu T, Liu Z. Cotton thread-based multi-channel photothermal biosensor for simultaneous detection of multiple microRNAs. Biosens Bioelectron 2021; 200:113913. [PMID: 34968855 DOI: 10.1016/j.bios.2021.113913] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/15/2021] [Accepted: 12/21/2021] [Indexed: 02/07/2023]
Abstract
The abnormal expression of microRNAs (miRNAs) is associated with various diseases. Developing simple and portable methods for sensitive, rapid and simultaneous detection of multiple miRNAs is critical to achieve accurate and timely diagnosis. Herein, a cotton thread-based multi-channel photothermal biosensor was proposed for simultaneous detection of three breast cancer-related miRNAs including miRNA-10b, miRNA-27a and miRNA-let-7a. Three cotton thread-based channels with one input were designed and the capture probes for detecting different miRNAs were immobilized on the test zones of the corresponding channels. Cu2-xS nanostrings prepared on the basis of hybridization chain reaction (HCR) were taken as the photothermal agents for signal transduction and amplification. The formation of a sandwich structure among the capture probe, target miRNA, and Cu2-xS nanostrings led to the accumulation of the Cu2-xS nanostrings on the test zones and transformed the concentration of miRNA into temperature signal under 808 nm laser irradiation. The temperature changes were quantified by a portable thermal camera and directly reflected the concentration of miRNAs. Under the optimal conditions, the developed multi-channel photothermal biosensor showed excellent specificity and sensitivity with the detection limits of 37 pM, 38 pM and 38 pM for miRNA-10b, miRNA-27a and miRNA-let-7a, respectively. Furthermore, a simultaneous detection of the three miRNAs in cell lysates were achieved and the results were in accordance with that obtained by the quantitative reverse transcription polymerase chain reaction (qRT-PCR), indicating its excellent capacity for practical applications. The developed biosensor provided an important tool for analysis of multiple targets and showed great potential in clinical diagnosis.
Collapse
Affiliation(s)
- Hanjun Chen
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China
| | - Ying Liu
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China
| | - Shaoqiong Feng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, PR China
| | - Yu Cao
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China
| | - Tingting Wu
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China.
| | - Zhihong Liu
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China; College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, PR China
| |
Collapse
|
26
|
Lin Q, Wu J, Jiang L, Kong D, Xing C, Lu C. Target-driven assembly of DNAzyme probes for simultaneous electrochemical detection of multiplex microRNAs. Analyst 2021; 147:262-267. [PMID: 34935782 DOI: 10.1039/d1an02036f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, we employed target-driven assembly of a Mg2+-dependent DNAzyme to develop an ultrasensitive electrochemical biosensor for the simultaneous detection of miRNA-21 and miRNA-141. The target miRNAs could hybridize with two partial DNAzymes, facilitating the formation of a stable and active Mg2+-dependent DNAzyme. With the help of the Mg2+ cofactor, the DNAzyme could circularly cleave the ferrocene (Fc) or methylene blue (MB) labelled hairpin probes and release Fc and MB labels from the electrode surface, which could significantly amplify the current suppression to achieve multiple detection of small amounts of miRNA-21 and miRNA-141. This electrochemical biosensor showed high sensitivity and selectivity for the simultaneous detection of miRNA-21 and miRNA-141. Furthermore, the proposed method was also successfully applied for the determination of miRNA-21 and miRNA-141 from diluted serum samples. Overall, the proposed sensor showed several considerable advantages including simple preparation, high sensitivity, and enzyme-free signal amplification. Therefore, the proposed electrochemical biosensor could be used as a highly efficient amplification strategy for simultaneous detection of various miRNA biomarkers in bioanalysis and clinical diagnostics.
Collapse
Affiliation(s)
- Qitian Lin
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, P.R. China.
| | - Junye Wu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, P.R. China.
| | - Lili Jiang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, P.R. China.
| | - Dexian Kong
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Chao Xing
- Fujian Key Laboratory of Functional Marine Sensing Materials, Center for Advanced Marine Materials and Smart Sensors, College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, P. R. China.
| | - Chunhua Lu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, P.R. China.
| |
Collapse
|
27
|
Liu S, Wu J, He M, Chen B, Kang Q, Xu Y, Yin X, Hu B. DNA Tetrahedron-Based MNAzyme for Sensitive Detection of microRNA with Elemental Tagging. ACS APPLIED MATERIALS & INTERFACES 2021; 13:59076-59084. [PMID: 34851610 DOI: 10.1021/acsami.1c17234] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Heterogeneous immunoassay based on magnetic separation is commonly used in inductively coupled plasma-mass spectrometry (ICP-MS)-based biomedical analysis with elemental labeling. However, the functionalized magnetic beads (MBs) often suffer from non-specific adsorption and random distribution of the functional probes. To overcome these problems, DNA tetrahedron (DT)-functionalized MBs were designed and further conjugated with substrate modified Au NPs (Sub-AuNP). Based on the prepared MB-DT-AuNP probes, an MB-DT based multicomponent nucleic acid enzyme (MNAzyme) system involving Au NPs as the elemental tags was proposed for highly sensitive quantification of miRNA-155 by ICP-MS. Target miRNA would trigger the assembly of MNAzyme, and Sub-AuNP would be cleaved from the MB-DT-AuNP probe, resulting in a cyclic amplification. Single-stranded DNA-functionalized MB (MB-ssDNA)-AuNP probes were prepared as well. Comparatively, the amount of Au NPs grafted onto MB-ssDNA-AuNP probes was higher than that grafted onto MB-DT-AuNP probes. Meanwhile, a higher signal-to-noise ratio was obtained by using MB-DT-AuNP probes over MB-ssDNA-AuNP probes in the MNAzyme system. Under the optimal experimental conditions, the limit of detection for target miRNA obtained by using MB-DT-AuNP probes was 1.15 pmol L-1, improved by 23 times over that obtained by the use of MB-ssDNA-AuNP probes. The proposed MB-DT-MNAzyme-ICP-MS method was applied to the analysis of miRNA-155 in serum samples, and recoveries of 86.7-94.6% were obtained. This method is featured with high sensitivity, good specificity, and simple operation, showing a great application potential in biomedical analysis.
Collapse
Affiliation(s)
- Shaocheng Liu
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Jingyi Wu
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Man He
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Beibei Chen
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Qi Kang
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Yan Xu
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Xiao Yin
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Bin Hu
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| |
Collapse
|
28
|
Xie X, Wang Z, Zhou M, Xing Y, Chen Y, Huang J, Cai K, Zhang J. Redox Host-Guest Nanosensors Installed with DNA Gatekeepers for Immobilization-Free and Ratiometric Electrochemical Detection of miRNA. SMALL METHODS 2021; 5:e2101072. [PMID: 34928007 DOI: 10.1002/smtd.202101072] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/24/2021] [Indexed: 06/14/2023]
Abstract
Electrochemical nanosensors by integrating functional nucleic acids and nanomaterials hold a great promise in the fast detection of biomarkers, yet the current systems possess limitations on the accessibility of target-probe and probe-electrode interactions and the repeatability of detection. Herein, a host-guest assembly strategy is developed to build redox nanosensors for an immobilization-free and ratiometric electrochemical detection system. Specifically, electroactive molecule (Em ) guests are loaded in porous hosts of polydopamine nanoparticles (MPDA) to act as dual-signal redox reporters. Hybrid DNA probes of G-quadruplex and a single-stranded anchor DNA are installed as gatekeepers for sealing the mesopores. Thereby, miRNA triggered Em release by strand displacement reactions and the homogeneous transportation of the hosts/guests to the electrode facilitate the generation of reference signal/response signal at different potentials. Concomitantly applied NIR irradiation boosts the electron transfer from MPDA to the electrode and results in a tenfold increase in the reference signal. Finally, the sensing system through the differential pulse voltammetry method achieves a highly repeatable detection (relative standard deviation 3.8%) of miRNA with a lower detection limit (362 × 10-15 m). This attractive system paves the way for rational designs of advanced electrochemical biosensors and smart diagnosis.
Collapse
Affiliation(s)
- Xiyue Xie
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Zhenqiang Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Meizhen Zhou
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Yuxin Xing
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Yuhua Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Jixi Huang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Jixi Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
29
|
Low SS, Ji D, Chai WS, Liu J, Khoo KS, Salmanpour S, Karimi F, Deepanraj B, Show PL. Recent Progress in Nanomaterials Modified Electrochemical Biosensors for the Detection of MicroRNA. MICROMACHINES 2021; 12:mi12111409. [PMID: 34832823 PMCID: PMC8618943 DOI: 10.3390/mi12111409] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/07/2021] [Accepted: 11/15/2021] [Indexed: 12/26/2022]
Abstract
MicroRNAs (miRNAs) are important non-coding, single-stranded RNAs possessing crucial regulating roles in human body. Therefore, miRNAs have received extensive attention from various disciplines as the aberrant expression of miRNAs are tightly related to different types of diseases. Furthermore, the exceptional stability of miRNAs has presented them as biomarker with high specificity and sensitivity. However, small size, high sequence similarity, low abundance of miRNAs impose difficulty in their detection. Hence, it is of utmost importance to develop accurate and sensitive method for miRNA biosensing. Electrochemical biosensors have been demonstrated as promising solution for miRNA detection as they are highly sensitive, facile, and low-cost with ease of miniaturization. The incorporation of nanomaterials to electrochemical biosensor offers excellent prospects for converting biological recognition events to electronic signal for the development of biosensing platform with desired sensing properties due to their unique properties. This review introduces the signal amplification strategies employed in miRNA electrochemical biosensor and presents the feasibility of different strategies. The recent advances in nanomaterial-based electrochemical biosensor for the detection of miRNA were also discussed and summarized based on different types of miRNAs, opening new approaches in biological analysis and early disease diagnosis. Lastly, the challenges and future prospects are discussed.
Collapse
Affiliation(s)
- Sze Shin Low
- Research Centre of Life Science and Healthcare, China Beacons Institute, University of Nottingham Ningbo China, 199 Taikang East Road, Ningbo 315100, China;
| | - Daizong Ji
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China;
| | - Wai Siong Chai
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen 518055, China;
| | - Jingjing Liu
- College of Automation Engineering, Northeast Electric Power University, Jilin 132012, China
- Correspondence: (J.L.); (P.L.S.)
| | - Kuan Shiong Khoo
- Faculty of Applied Sciences, UCSI University, UCSI Heights, Cheras 56000, Malaysia;
| | - Sadegh Salmanpour
- Department of Chemistry, Sari Branch, Islamic Azad University, Sari 1931848161, Iran;
| | - Fatemeh Karimi
- Department of Chemical Engineering, Quchan University of Technology, Quchan 9477177870, Iran;
| | - Balakrishnan Deepanraj
- Department of Mechanical Engineering, Jyothi Engineering College, Thrissur 679531, India;
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Selangor 43500, Malaysia
- Correspondence: (J.L.); (P.L.S.)
| |
Collapse
|
30
|
Jamalipour Soufi G, Iravani P, Hekmatnia A, Mostafavi E, Khatami M, Iravani S. MXenes and MXene-based Materials with Cancer Diagnostic Applications: Challenges and Opportunities. COMMENT INORG CHEM 2021. [DOI: 10.1080/02603594.2021.1990890] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
| | - Parisa Iravani
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Hekmatnia
- Radiology Department, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ebrahim Mostafavi
- Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, USA
| | - Mehrdad Khatami
- Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
31
|
Gong Y, Yuan W, Guo X, Zhang Q, Zhang P, Ding C. Fluorescent detection of microRNA-21 in MCF-7 cells based on multifunctional gold nanorods and the integration of chemotherapy and phototherapy. Mikrochim Acta 2021; 188:253. [PMID: 34263415 DOI: 10.1007/s00604-021-04917-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/26/2021] [Indexed: 11/26/2022]
Abstract
MicroRNA-21 is an important biomarker of tumor early prediction and metastasis, and its accurate detection is of great significance for tumor diagnosis and treatment. It will be a meaningful work to combine the detection of RNA with chemotherapy and photothermal therapy on the same composite material. Herein, we designed a multifunctional nanocomposite based on gold nanorods (AuNRs), making use of microRNA-triggered drug release and near-infrared photothermal effect, which has been developed for cancer therapy and microRNA-21detection. Firstly, the AuNRs with photothermal effect were synthesized as carriers for drug delivery. Then the surface of gold nanorods was modified by functional DNA chains to provide an efficient site for doxorubicin (DOX) loading. Finally, folic acid was introduced to achieve the targeted treatment of MCF-7 cells. The microRNA competed with the double-stranded DNA, resulting in the release of DOX and the recovery of fluorescence signal located at 595 nm with an excitation of 488 nm effectively. The nano-biosensor could not only achieve dual-function of diagnosis and treatment of cancer cells, but also accomplish the detection of microRNA in tumor cells. It showed a high selectivity for microRNA-21 determination with a limit of detection (LOD) of 2.1 nM from the linear relationship from 1.0 × 10-5 M to 5.0 × 10-7 M. This scheme provides an outstanding strategy for cell imaging, treatment, and detection, which serves as a promising candidate in the field of biomedical research.
Collapse
Affiliation(s)
- Yan Gong
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Wei Yuan
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Xinjie Guo
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Qian Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Peng Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Caifeng Ding
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| |
Collapse
|
32
|
Song C, Chen W, Kuang J, Yao Y, Tang S, Zhao Z, Guo X, Shen W, Lee HK. Recent advances in the detection of multiple microRNAs. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
33
|
Zhou QY, Ma RN, Hu CL, Sun F, Jia LP, Zhang W, Shang L, Xue QW, Jia WL, Wang HS. A novel ratiometric electrochemical biosensing strategy based on T7 exonuclease-assisted homogenous target recycling coupling hairpin assembly-triggered double-signal output for the multiple amplified detection of miRNA. Analyst 2021; 146:2705-2711. [PMID: 33751013 DOI: 10.1039/d1an00204j] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A novel ratiometric electrochemical biosensing strategy based on T7 exonuclease (T7 Exo)-assisted homogenous target recycling coupling hairpin assembly triggered dual-signal output was proposed for the accurate and sensitive detection of microRNA-141 (miRNA-141). Concretely, in the presence of target miRNA, abundant signal transduction probes were released via the T7 Exo-assisted homogenous target recycling amplification, which could be captured by the specially designed ferrocene-labeled hairpin probe (Fc-H1) on -electrode interface and triggered the nonenzymatic catalytic hairpin assembly (Fc-H1 + MB-H2) to realize the cascade signal amplification and dual-signal output. Through such a conformational change process, the electrochemical signal of Fc (IFc) and MB (IMB) is proportionally and substantially decreased and increased. Therefore, the signal ratio of IMB/IFc can be employed to accurately reflect the true level of original miRNA. Benefiting from the efficient integration of the T7 Exo-assisted target recycle, nonenzymatic hairpin assembly and dual-signal output mode, the proposed sensor could realize the amplified detection of miRNA-141 effectively with a wide detection range from 1 fM to 100 pM, and a detection limit of 200 aM. Furthermore, it exhibits outstanding sequence specificity to discriminate mismatched RNA, acceptable reproducibility and feasibility for real sample. This strategy effectively integrated the advantages of multiple amplification and ratiometric output modes, which could provide an accurate and efficient method in biosensing and clinical diagnosis.
Collapse
Affiliation(s)
- Qing-Yun Zhou
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, Shandong, P.R. China.
| | - Rong-Na Ma
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, Shandong, P.R. China.
| | - Chao-Long Hu
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, Shandong, P.R. China.
| | - Fei Sun
- Oncology Department, Hospital of Traditional Chinese Medicine of Jinan City, Jinan 250000, Shandong, P.R. China
| | - Li-Ping Jia
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, Shandong, P.R. China.
| | - Wei Zhang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, Shandong, P.R. China.
| | - Lei Shang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, Shandong, P.R. China.
| | - Qing-Wang Xue
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, Shandong, P.R. China.
| | - Wen-Li Jia
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, Shandong, P.R. China.
| | - Huai-Sheng Wang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, Shandong, P.R. China.
| |
Collapse
|
34
|
Zhou H, Zhang J, Li B, Liu J, Xu JJ, Chen HY. Dual-Mode SERS and Electrochemical Detection of miRNA Based on Popcorn-like Gold Nanofilms and Toehold-Mediated Strand Displacement Amplification Reaction. Anal Chem 2021; 93:6120-6127. [PMID: 33821629 DOI: 10.1021/acs.analchem.0c05221] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
MicroRNA (miRNA) has emerged as one of the ideal target biomarker analytes for cancer detection because its abnormal expression is closely related to the occurrence of many cancers. In this work, we combined three-dimensional (3D) popcorn-like gold nanofilms as novel surface-enhanced Raman scattering (SERS)-electrochemistry active substrates with toehold-mediated strand displacement reactions (TSDRs) to construct a DNA molecular machine for SERS-electrochemistry dual-mode detection of miRNA. 3D popcorn-like spatial structures generated more active "hot spots" and thus enhanced the sensitivity of SERS and electrochemical signals. Besides, the TSDRs showed high sequence-dependence and high specificity. The addition of target miRNA will trigger the molecular machine to perform two TSDRs in the presence of signal DNA strands modified by R6G (R6G-DNA), thus achieving an enzyme-free amplification detection of miRNA with a low limit of detection of 0.12 fM (for the SERS method) and 2.2 fM (for the electrochemical method). This biosensor can also serve as a universally amplified and sensitive detection platform for monitoring different biomarkers, such as cancer-related DNA, messenger RNA, or miRNA molecules, with high selectivity by changing the corresponding probe sequence.
Collapse
Affiliation(s)
- Hong Zhou
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Jishou Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Binxiao Li
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers and Institute of Biomedical Sciences, Fudan University, Shanghai 200433, P. R. China
| | - Jing Liu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, P. R. China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.,College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.,College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
35
|
Wang Z, Zong S, Liu Y, Qian Z, Zhu K, Yang Z, Wang Z, Cui Y. Simultaneous detection of multiple exosomal microRNAs for exosome screening based on rolling circle amplification. NANOTECHNOLOGY 2021; 32:085504. [PMID: 33152726 DOI: 10.1088/1361-6528/abc7d4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Exosomal microRNAs (miRNAs) have attracted great attention as predictive and prognostic biomarkers of cancer. Profiling of miRNAs plays a key role in the effective diagnosis of cancers. However, simultaneous quantification of multiple miRNAs is challenging due to their homology and low abundance especially in exosomes. Here, we developed a sensitive detection method for multiple exosomal miRNAs with the help of rolling circle amplification (RCA). In contrast of the traditional ways, this method takes the advantages of both the multiplex sensing ability and the simplicity of RCA. Specifically, multiple exosomal miRNAs from different cell lines were replicated simultaneously through RCA and detected using designed molecular beacons (MBs). miRNA-21, miRNA-122 and miRNA-155 were chosen as the targets, which are overexpressed in cancers. Normalized fluorescence intensities of MB were used to imply the relative concentrations of these miRNAs. The obtained relative miRNAs expression levels could be used to distinguish the breast cancer exosome from normal one. If the varieties of the detected exosomal miRNAs are abundant enough, the concentration ratios of miRNAs could basically indicate the corresponding exosome and exosome screening could be realized. Such exosomal miRNA profiling and exosome screening can assist cancer diagnosis, which is promising in clinical application.
Collapse
Affiliation(s)
- Zhile Wang
- Advanced Photonics Center, Southeast University, Nanjing 210096, People's Republic of China
| | - Shenfei Zong
- Advanced Photonics Center, Southeast University, Nanjing 210096, People's Republic of China
| | - Yun Liu
- Advanced Photonics Center, Southeast University, Nanjing 210096, People's Republic of China
| | - Ziting Qian
- Advanced Photonics Center, Southeast University, Nanjing 210096, People's Republic of China
| | - Kai Zhu
- Advanced Photonics Center, Southeast University, Nanjing 210096, People's Republic of China
| | - Zhaoyan Yang
- Advanced Photonics Center, Southeast University, Nanjing 210096, People's Republic of China
| | - Zhuyuan Wang
- Advanced Photonics Center, Southeast University, Nanjing 210096, People's Republic of China
| | - Yiping Cui
- Advanced Photonics Center, Southeast University, Nanjing 210096, People's Republic of China
| |
Collapse
|
36
|
Jet T, Gines G, Rondelez Y, Taly V. Advances in multiplexed techniques for the detection and quantification of microRNAs. Chem Soc Rev 2021; 50:4141-4161. [PMID: 33538706 DOI: 10.1039/d0cs00609b] [Citation(s) in RCA: 193] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
MicroRNA detection is currently a crucial analytical chemistry challenge: almost 2000 papers were referenced in PubMed in 2018 and 2019 for the keywords "miRNA detection method". MicroRNAs are potential biomarkers for multiple diseases including cancers, neurodegenerative and cardiovascular diseases. Since miRNAs are stably released in bodily fluids, they are of prime interest for the development of non-invasive diagnosis methods, such as liquid biopsies. Their detection is however challenging, as high levels of sensitivity, specificity and robustness are required. The analysis also needs to be quantitative, since the aim is to detect miRNA concentration changes. Moreover, a high multiplexing capability is also of crucial importance, since the clinical potential of miRNAs probably lays in our ability to perform parallel mapping of multiple miRNA concentrations and recognize typical disease signature from this profile. A plethora of biochemical innovative detection methods have been reported recently and some of them provide new solutions to the problem of sensitive multiplex detection. In this review, we propose to analyze in particular the new developments in multiplexed approaches to miRNA detection. The main aspects of these methods (including sensitivity and specificity) will be analyzed, with a particular focus on the demonstrated multiplexing capability and potential of each of these methods.
Collapse
Affiliation(s)
- Thomas Jet
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, CNRS SNC5096, Equipe Labellisée Ligue Nationale Contre le Cancer, F-75006 Paris, France.
| | | | | | | |
Collapse
|
37
|
Zheng Y, Chen J, Li Y, Xu Y, Chen L, Chen W, Liu A, Lin X, Weng S. Dual-probe fluorescent biosensor based on T7 exonuclease-assisted target recycling amplification for simultaneous sensitive detection of microRNA-21 and microRNA-155. Anal Bioanal Chem 2021; 413:1605-1614. [PMID: 33515273 DOI: 10.1007/s00216-020-03121-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/25/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022]
Abstract
Effective and simultaneous monitoring of the abnormal expression of certain microRNAs (miRNAs), especially for miRNA-21 and miRNA-155, can indicate drug resistance in lung cancer. In this work, T7 exonuclease (T7 Exo)-assisted target recycling amplification coupled with the extensive fluorescence quenching of graphene oxide (GO) was designed for the simultaneous detection of miRNA-21 and miRNA-155 using FAM- and ROX-labeled single-strand DNA probes. Through this method, the variable emission intensities of FAM and ROX caused by the introduction of miRNA-21 and miRNA-155, respectively, were obtained with high sensitivity. The method exhibited excellent analytical performance for simultaneous detection of miRNA-21 and miRNA-155 without cross-interference. The linear range was from 0.005 nM to 5 nM over three orders of magnitude, with detection limits as low as 3.2 pM and 4.5 pM for miRNA-21 and miRNA-155, respectively. Furthermore, the recovery (92.49-103.67%) and relative standard deviation (RSD < 4.8%) of the standard addition test of miRNA-21 and miRNA-155 in human plasma suggested the potential for drug resistance warning in clinical practice via this simple strategy. A homogeneous T7 Exo-assisted signal amplification combined with GO quenching platform was developed for accurate, sensitive and simultaneous analysis of miRNA-21 and miRNA-155 for drug resistance warning in lung cancer. This simple method exhibited a wide linear range and low LODs for miR-21 and miR-155.
Collapse
Affiliation(s)
- Yanjie Zheng
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Jinyuan Chen
- The Central lab, the First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian, China
| | - You Li
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian, China
- Department of Pharmacy, Fuzhou Pulmonary Hospital of Fujian, Fuzhou, 350008, Fujian, China
| | - Yichun Xu
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Li Chen
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Wei Chen
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian, China
- Nano Biomedical Technology Research Center, Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Ailin Liu
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian, China
- Nano Biomedical Technology Research Center, Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Xinhua Lin
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian, China.
- Nano Biomedical Technology Research Center, Fujian Medical University, Fuzhou, 350122, Fujian, China.
| | - Shaohuang Weng
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian, China.
| |
Collapse
|
38
|
Bidar N, Amini M, Oroojalian F, Baradaran B, Hosseini SS, Shahbazi MA, Hashemzaei M, Mokhtarzadeh A, Hamblin MR, de la Guardia M. Molecular beacon strategies for sensing purpose. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2020.116143] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
39
|
Kang Q, He M, Chen B, Xiao G, Hu B. MNAzyme-Catalyzed Amplification Assay with Lanthanide Tags for the Simultaneous Detection of Multiple microRNAs by Inductively Coupled Plasma–Mass Spectrometry. Anal Chem 2020; 93:737-744. [DOI: 10.1021/acs.analchem.0c02455] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Qi Kang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Man He
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Beibei Chen
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Guangyang Xiao
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Bin Hu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| |
Collapse
|
40
|
El Aamri M, Yammouri G, Mohammadi H, Amine A, Korri-Youssoufi H. Electrochemical Biosensors for Detection of MicroRNA as a Cancer Biomarker: Pros and Cons. BIOSENSORS 2020; 10:E186. [PMID: 33233700 PMCID: PMC7699780 DOI: 10.3390/bios10110186] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 12/23/2022]
Abstract
Cancer is the second most fatal disease in the world and an early diagnosis is important for a successful treatment. Thus, it is necessary to develop fast, sensitive, simple, and inexpensive analytical tools for cancer biomarker detection. MicroRNA (miRNA) is an RNA cancer biomarker where the expression level in body fluid is strongly correlated to cancer. Various biosensors involving the detection of miRNA for cancer diagnosis were developed. The present review offers a comprehensive overview of the recent developments in electrochemical biosensor for miRNA cancer marker detection from 2015 to 2020. The review focuses on the approaches to direct miRNA detection based on the electrochemical signal. It includes a RedOx-labeled probe with different designs, RedOx DNA-intercalating agents, various kinds of RedOx catalysts used to produce a signal response, and finally a free RedOx indicator. Furthermore, the advantages and drawbacks of these approaches are highlighted.
Collapse
Affiliation(s)
- Maliana El Aamri
- Laboratory of Process Engineering & Environment, Faculty of Sciences and Techniques, Hassan II, University of Casablanca, B.P.146, Mohammedia 28806, Morocco; (M.E.A.); (G.Y.); (H.M.)
| | - Ghita Yammouri
- Laboratory of Process Engineering & Environment, Faculty of Sciences and Techniques, Hassan II, University of Casablanca, B.P.146, Mohammedia 28806, Morocco; (M.E.A.); (G.Y.); (H.M.)
| | - Hasna Mohammadi
- Laboratory of Process Engineering & Environment, Faculty of Sciences and Techniques, Hassan II, University of Casablanca, B.P.146, Mohammedia 28806, Morocco; (M.E.A.); (G.Y.); (H.M.)
| | - Aziz Amine
- Laboratory of Process Engineering & Environment, Faculty of Sciences and Techniques, Hassan II, University of Casablanca, B.P.146, Mohammedia 28806, Morocco; (M.E.A.); (G.Y.); (H.M.)
| | - Hafsa Korri-Youssoufi
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d’Orsay (ICMMO), Equipe de Chimie Biorganique et Bioinorganique (ECBB), Bât 420, 2 Rue du Doyen Georges Poitou, 91400 Orsay, France;
| |
Collapse
|
41
|
Zhao LL, Pan HY, Zhang XX, Zhou YL. Ultrasensitive detection of microRNA based on a homogeneous label-free electrochemical platform using G-triplex/methylene blue as a signal generator. Anal Chim Acta 2020; 1116:62-69. [DOI: 10.1016/j.aca.2020.04.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 04/11/2020] [Accepted: 04/14/2020] [Indexed: 01/09/2023]
|
42
|
Chen X, Xu K, Li J, Yang M, Li X, Chen Q, Lu C, Yang H. Switch-conversional ratiometric fluorescence biosensor for miRNA detection. Biosens Bioelectron 2020; 155:112104. [DOI: 10.1016/j.bios.2020.112104] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/31/2020] [Accepted: 02/17/2020] [Indexed: 02/01/2023]
|
43
|
Mohammadniaei M, Koyappayil A, Sun Y, Min J, Lee MH. Gold nanoparticle/MXene for multiple and sensitive detection of oncomiRs based on synergetic signal amplification. Biosens Bioelectron 2020; 159:112208. [PMID: 32364932 DOI: 10.1016/j.bios.2020.112208] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/07/2020] [Accepted: 04/09/2020] [Indexed: 01/06/2023]
Abstract
Multiple and sensitive detection of oncomiRs for accurate cancer diagnostics is still a challenge. Here, a synergetic amplification strategy was introduced by combining a MXene-based electrochemical signal amplification and a duplex-specific nuclease (DSN)-based amplification system for rapid, attomolar and concurrent quantification of multiple microRNAs on a single platform in total plasma. Synthesized MXene-Ti3C2Tx modified with 5 nm gold nanoparticles (AuNPs) was casted on a dual screen-printed gold electrode to host vast numbers of DNA probes identically co-immobilized on dedicated electrodes. Interestingly, presence of MXene provided biofouling resistance and enhanced the electrochemical signals by almost 4 folds of magnitude, attributed to its specious surface area and remarkable charge mobility. The 5 nm AuNPs were perfectly distributed within the whole flaky architect of the MXene to give rise to the electrochemical performance of MXene and provide the thiol-Au bonding feature. This synergetic strategy reduced the DSN-based biosensors' assay time to 80 min, provided multiplexability, antifouling activity, substantial sensitivity and specificity (single mutation recognition). The limit of detection of the proposed biosensor for microRNA-21 and microRNA-141 was respectively 204 aM and 138 aM with a wide linear range from 500 aM to 50 nM. As a proof of concept, this newly-developed strategy was coupled with a 96-well adaptive sensing device to successfully profile three cancer plasma samples based on their altered oncomiR abundances.
Collapse
Affiliation(s)
- Mohsen Mohammadniaei
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, DK, 2800, Denmark
| | - Aneesh Koyappayil
- School of Integrative Engineering, Chung-Ang University, Heukseok-dong, Dongjak-gu, Seoul, 06910, Republic of Korea
| | - Yi Sun
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, DK, 2800, Denmark
| | - Junhong Min
- School of Integrative Engineering, Chung-Ang University, Heukseok-dong, Dongjak-gu, Seoul, 06910, Republic of Korea.
| | - Min-Ho Lee
- School of Integrative Engineering, Chung-Ang University, Heukseok-dong, Dongjak-gu, Seoul, 06910, Republic of Korea.
| |
Collapse
|
44
|
Dual-functional β-CD@CdS nanorod/WS2 nanosheet heterostructures coupled with strand displacement reaction-mediated photocurrent quenching for an ultrasensitive MicroRNA-21 assay. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2019.135581] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
45
|
Ye WQ, Wei YX, Zhang YZ, Yang CG, Xu ZR. Multiplexed detection of micro-RNAs based on microfluidic multi-color fluorescence droplets. Anal Bioanal Chem 2019; 412:647-655. [PMID: 31836924 DOI: 10.1007/s00216-019-02266-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/12/2019] [Accepted: 11/08/2019] [Indexed: 12/29/2022]
Abstract
In this work, simple, rapid, and low-cost multiplexed detection of tumor-related micro-RNAs (miRNAs) was achieved based on multi-color fluorescence on a microfluidic droplet chip, which simplified the complexity of light path to a half. A four-T-junction structure was fabricated to form uniform nano-volume droplet arrays with customized contents. Multi-color quantum dots (QDs) used as the fluorescence labels were encapsulated into droplets to develop the multi-path fluorescence detection module. We designed an integrated multiplex fluorescence resonance energy transfer system assisted by multiple QDs (four colors) and one quencher to detect four tumor-related miRNAs (miRNA-20a, miRNA-21, miRNA-155, and miRNA-221). The qualitative analysis of miRNAs was realized by the color identification of QDs, while the quantitative detection of miRNAs was achieved based on the linear relationship between the quenching efficiency of QDs and the concentration of miRNAs. The practicability of the multiplex detection device was further confirmed by detecting four tumor-related miRNAs in real human serum samples. The detection limits of four miRNAs ranged from 35 to 39 pmol/L was achieved without any target amplification. And the linear range was from 0.1 nmol/L to 1 μmol/L using 10 nL detection volume (one droplet) under the detection speed of 320 droplets per minute. The multiple detection system for miRNAs is simple, fast, and low-cost and will be a powerful platform for clinical diagnostic analysis. Graphical abstract.
Collapse
Affiliation(s)
- Wen-Qi Ye
- Research Center for Analytical Sciences, Northeastern University, 3-11 Wenhua Road, Shenyang, 110819, Liaoning, China
| | - Yi-Xuan Wei
- Research Center for Analytical Sciences, Northeastern University, 3-11 Wenhua Road, Shenyang, 110819, Liaoning, China
| | - Ying-Zhi Zhang
- Research Center for Analytical Sciences, Northeastern University, 3-11 Wenhua Road, Shenyang, 110819, Liaoning, China
| | - Chun-Guang Yang
- Research Center for Analytical Sciences, Northeastern University, 3-11 Wenhua Road, Shenyang, 110819, Liaoning, China.
| | - Zhang-Run Xu
- Research Center for Analytical Sciences, Northeastern University, 3-11 Wenhua Road, Shenyang, 110819, Liaoning, China
| |
Collapse
|
46
|
Kannan P, Chen J, Su F, Guo Z, Huang Y. Faraday-Cage-Type Electrochemiluminescence Immunoassay: A Rise of Advanced Biosensing Strategy. Anal Chem 2019; 91:14792-14802. [PMID: 31692335 DOI: 10.1021/acs.analchem.9b04503] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Electrochemiluminescence immunoassays are usually carried out through "on-electrode" strategy, i.e., sandwich-type immunoassay format, the sensitivity of which is restricted by two key bottlenecks: (1) the number of signal labels is limited and (2) only a part of signal labels could participate in the electrode reaction. In this Perspective, we discuss the development of an "in-electrode" Faraday-cage-type concept-based immunocomplex immobilization strategy. The biggest difference from the traditional sandwich-type one is that the designed "in-electrode" Faraday-cage-type immunoassay uses a conductive two-dimensional (2-D) nanomaterial simultaneously coated with signal labels and a recognition component as the detection unit, which could directly overlap on the electrode surface. In such a case, electrons could flow freely from the electrode to the detection unit, the outer Helmholtz plane (OHP) of the electrode is extended, and thousands of signal labels coated on the 2-D nanomaterial are all electrochemically "effective." Thus, then, the above-mentioned bottlenecks obstructing the improvement of the sensitivity in sandwich-type immunoassay are eliminated, and as a result a much higher sensitivity of the Faraday-cage-type immunoassay can be obtained. And, the applications of the proposed versatile "in-electrode" Faraday-cage-type immunoassay have been explored in the detection of target polypeptide, protein, pathogen, and microRNA, with the detection sensitivity improved tens to hundreds of times. Finally, the outlook and challenges in the field are summarized. The rise of Faraday-cage-type electrochemiluminescence immunoassay (FCT-ECLIA)-based biosensing strategies opens new horizons for a wide range of early clinical identification and diagnostic applications.
Collapse
Affiliation(s)
- Palanisamy Kannan
- College of Biological, Chemical Sciences and Engineering , Jiaxing University , Jiaxing 314001 , People's Republic of China
| | - Jing Chen
- Division of Polymer and Composite Materials , Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Science (CAS) , Ningbo 315201 , People's Republic of China
| | - Fengmei Su
- National Engineering Research Centre for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education , Zhengzhou University , Zhengzhou 450002 , People's Republic of China
| | - Zhiyong Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science and Chemical Engineering , Ningbo University , Ningbo 315211 , People's Republic of China
| | - Youju Huang
- College of Materials, Chemistry and Chemical Engineering , Hangzhou Normal University , Hangzhou 311121 , People's Republic of China
| |
Collapse
|
47
|
Li Y, Zhou L, Ni W, Luo Q, Zhu C, Wu Y. Portable and Field-Ready Detection of Circulating MicroRNAs with Paper-Based Bioluminescent Sensing and Isothermal Amplification. Anal Chem 2019; 91:14838-14841. [PMID: 31693337 DOI: 10.1021/acs.analchem.9b04422] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We present a paper-based system that integrates bioluminescence resonance energy transfer (BRET) and isothermal amplification for the analysis of tumor-associated circulating microRNAs (miRNAs) in clinical serum samples. The analysis procedure could be easily accomplished with two pieces of functionalized paper and a low-cost smartphone-based device, which enables sequence-specific quantification of femtomolar miRNAs, without the need for tedious handling of aqueous reactions and operation of sophisticated equipment. Furthermore, the analytical performance of the proposed paper-based system was highly stable at room temperature, demonstrating its capability for cold-chain-free and remote deployment. These qualities highlight the practical utility of our method for the portable and field-ready miRNA diagnostic tests in resource-limited settings.
Collapse
Affiliation(s)
| | | | - Wei Ni
- Hubei Provincial Hospital of Traditional Chinese Medicine , Hubei Province Academy of Traditional Chinese Medicine , Wuhan 430061 , P. R. China
| | - Qingying Luo
- Research Center for Micro/Nano System & Bionic Medicine, Institute of Biomedical & Health Engineering , Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055 , P. R. China
| | | | | |
Collapse
|
48
|
A label-free IFN-γ aptasensor based on target-triggered allosteric switching of aptamer beacon and streptavidin-inorganic hybrid composites. Anal Chim Acta 2019; 1087:29-35. [PMID: 31585563 DOI: 10.1016/j.aca.2019.08.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/05/2019] [Accepted: 08/15/2019] [Indexed: 12/31/2022]
Abstract
A label-free electrochemical aptasensor was developed for the sensitive detection of interferon-gamma (IFN-γ). To do this, a diblock dual-aptamer allosteric hairpin (DDAH) was designed, followed by conjugation with gold nanoparticles (DDAH&AuNP). The presence of target destroyed the stable hairpin structure, and then the catalytic cleavage of DNAzymes removed the IFN-γ-binding molecules, triggering the allosteric switching from inactive hairpin to active streptavidin aptamer (A-DDAH&AuNP) in homogeneous system. Moreover, streptavidin-inorganic hybrid nanoflowers decorated with graphene composites (SFG) were synthesized and used as substrates to modify glassy carbon electrodes (SFG/GCE). SFG specifically bind to the A-DDAH&AuNP to realize high-efficient readout of signals. Under the optimal conditions and by using differential pulse stripping voltammetry (DPSV), the response peak currents increases linearly with the logarithm of the IFN-γ concentration in the range between 0.1 pg mL-1 and 500 ng/mL. The detection limit is as low as 19 fg mL-1. The aptasensor also has excellent electrochemical performances, which exhibits broad application prospects in biometric analysis.
Collapse
|