1
|
Liu Q, Chen K, Xu X, Zhang Q, Liang H, Cao C. A facile double moving redox boundary model for visual electrophoresis titration of ascorbic acid. Electrophoresis 2024; 45:639-650. [PMID: 38227365 DOI: 10.1002/elps.202300194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/19/2023] [Accepted: 01/03/2024] [Indexed: 01/17/2024]
Abstract
In this work, we proposed a double moving redox boundary (MROB) model to realize the colorless analyte electrophoresis titration (ET) by the two steps of the redox reaction. Single MROB has been proposed for the development of ET sensing (Analyst, 2013, 138, 1137. ACS Sensor, 2019, 4, 126.), and faces great challenges in detecting the analyte without color change during redox reaction. Herein, a novel model of double-MROB electrophoresis, including its mechanisms, equations, and procedures, was developed for titration by using ascorbic acid as a model analyte. The first MROB was created with ferric iron (Fe3+) and iodide ion (I-) in which Fe3+ was reduced as Fe2+ and I- was oxidized as molecular iodine (I2) used as an indicator of visible MROB due to blue starch-iodine complex. The second boundary was then formed between the molecular iodine and model analyte of ascorbic acid. Under given conditions, there was a quantitative relationship between velocity of MROB (VMROB(ii)) and ascorbic acid concentration (CVit C) in the double-MROB system (1/VMROB(ii) = 0.6502CVit C + 4.5165, and R = 0.9939). The relevant relative standard deviation values of intraday and inter-day were less than ∼5.55% and ∼6.64%, respectively. Finally, the titration of ascorbic acid in chewable vitamin C tablets was performed by the developed method, the titration results agreed with those via the classic iodometric titration. All the results briefly demonstrated the validity of the double MROB model, in which Vit C was used as a model analyte. The developed method had potential use in quantitative analysis of redox-active species in biomedical samples.
Collapse
Affiliation(s)
- Qian Liu
- School of Sensing Science and Technology, School of Electronic Information and Electric Engineering, Shanghai Jiao Tong University, Shanghai, P. R. China
- Key Laboratory of Biomedical Information Engineering of Education Ministry, Xi'an Jiao Tong University, Xi'an, P. R. China
| | - Keer Chen
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, P. R. China
| | - Xu Xu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, P. R. China
| | - Qiang Zhang
- School of Sensing Science and Technology, School of Electronic Information and Electric Engineering, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Heng Liang
- Key Laboratory of Biomedical Information Engineering of Education Ministry, Xi'an Jiao Tong University, Xi'an, P. R. China
| | - Chengxi Cao
- School of Sensing Science and Technology, School of Electronic Information and Electric Engineering, Shanghai Jiao Tong University, Shanghai, P. R. China
| |
Collapse
|
2
|
Guo Z, Cao Y, Fan L, Liu W, Wei L, Ma Y, Ren J, Zhang Q, Cao C. A temperature-independent model of dual calibration standards for onsite and point-of-care quantification analyses via electrophoresis titration chip. Anal Chim Acta 2024; 1289:342207. [PMID: 38245206 DOI: 10.1016/j.aca.2024.342207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/28/2023] [Accepted: 01/02/2024] [Indexed: 01/22/2024]
Abstract
Electrophoresis titration chip (ETC) is a versatile tool for onsite and point-of-care quantification analyses because it affords naked-eye detection and a straightforward quantification format. However, it is vulnerable to changes in environmental temperature, which regulates the electrophoretic migration by affecting the ion mobility and the target recognition by influencing the enzyme activity. Therefore, the quantification accuracy of the ETC tests was severely compromised. Rather than using the dry bath or heating/cooling units, we proposed a facile model of dual calibration standards (DCS) to mathematically eliminate the effects of temperature on quantification accuracy. To verify our model, we deployed the ETC device at different temperatures ranging from 5 to 40 °C. We further utilized the DCS-ETC to determine the protein content and uric acid concentration in real samples outside the laboratory. All the experimental results showed that our model significantly stabilized the quantification recovery from 35.31-153.44 % to 99.38-103.44 % for protein titration; the recovery of uric acid titration is also stable at 96.25-106.42 %, suggesting the enhanced robustness of the ETC tests. Therefore, DCS-ETC is a field-deployable test that can offer reliable quantification performance without extra equipment for temperature control. We envision that it is promising to be used for onsite applications, including food safety control and disease diagnostics.
Collapse
Affiliation(s)
- Zehua Guo
- School of Sensing Science and Engineering, School of Electronic Information & Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yiren Cao
- School of Sensing Science and Engineering, School of Electronic Information & Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Liuyin Fan
- Student Innovation Center, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Weiwen Liu
- School of Sensing Science and Engineering, School of Electronic Information & Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Li Wei
- Shanghai 6th People's Hospital, Shanghai Jiao Tong University, Shanghai, 200235, China
| | - Yixin Ma
- School of Sensing Science and Engineering, School of Electronic Information & Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jicun Ren
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qiang Zhang
- School of Sensing Science and Engineering, School of Electronic Information & Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Chengxi Cao
- School of Sensing Science and Engineering, School of Electronic Information & Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
3
|
Ji C, Tang X, Wen R, Xu C, Wei J, Han B, Wu L. A Multienzyme Reaction-Mediated Electrochemical Biosensor for Sensitive Detection of Organophosphorus Pesticides. BIOSENSORS 2024; 14:62. [PMID: 38391981 PMCID: PMC10886554 DOI: 10.3390/bios14020062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 02/24/2024]
Abstract
Ethephon (ETH), a commonly employed growth regulator, poses potential health risks due to its residue in fruits and vegetables, leading to both acute and subchronic toxicity. However, the detection accuracy of ETH is compromised by the color effects of the samples during the detection process. In this work, a multienzyme reaction-mediated electrochemical biosensor (MRMEC) was developed for the sensitive, rapid, and color-interference-resistant determination of ETH. Nanozymes Fe3O4@Au-Pt and graphene nanocomplexes (GN-Au NPs) were prepared as catalysts and signal amplifiers for MRMEC. Acetylcholinesterase (AChE), acetylcholine (ACh), and choline oxidase (CHOx) form a cascade enzyme reaction to produce H2O2 in an electrolytic cell. Fe3O4@Au-Pt has excellent peroxidase-like activity and can catalyze the oxidation of 3,3',5,5'-tetramethvlbenzidine (TMB) in the presence of H2O2, resulting in a decrease in the characteristic peak current of TMB. Based on the inhibitory effect of ETH on AChE, the differential pulse voltammetry (DPV) current signal of TMB was used to detect ETH, offering the limit of detection (LOD) of 2.01 nmol L-1. The MRMEC method effectively analyzed ETH levels in mangoes, showing satisfactory precision (coefficient of variations, 2.88-15.97%) and recovery rate (92.18-110.72%). This biosensor holds promise for detecting various organophosphorus pesticides in food samples.
Collapse
Affiliation(s)
- Chengzhen Ji
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (C.J.); (X.T.); (C.X.)
| | - Xuemei Tang
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (C.J.); (X.T.); (C.X.)
| | - Ruiming Wen
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (C.J.); (X.T.); (C.X.)
| | - Chengdong Xu
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (C.J.); (X.T.); (C.X.)
| | - Jing Wei
- Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan Institute for Food Control, Haikou 570314, China;
| | - Bingjun Han
- Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China;
| | - Long Wu
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (C.J.); (X.T.); (C.X.)
- Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan Institute for Food Control, Haikou 570314, China;
| |
Collapse
|
4
|
Hagness DE, Yang Y, Tilley RD, Gooding JJ. The application of an applied electrical potential to generate electrical fields and forces to enhance affinity biosensors. Biosens Bioelectron 2023; 238:115577. [PMID: 37579531 DOI: 10.1016/j.bios.2023.115577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/13/2023] [Accepted: 08/05/2023] [Indexed: 08/16/2023]
Abstract
Affinity biosensors play a crucial role in clinical diagnosis, pharmaceuticals, immunology, and other areas of human health. Affinity biosensors rely on the specific binding between target analytes and biological ligands such as antibodies, nucleic acids, aptamers, or other receptors to primarily generate electrochemical or optical signals. Considerable effort has been put into improving the performance of the affinity technologies to make them more sensitive, efficient and reproducible, of the many approaches electrokinetic phenomena are a viable option. In this perspective, studies that combine electrokinetic phenomena with affinity biosensor are discussed about their promise for achieving higher sensitivity and lower detection limit.
Collapse
Affiliation(s)
- Daniel E Hagness
- School of Chemistry, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Ying Yang
- School of Chemistry, The University of New South Wales, Sydney, New South Wales, 2052, Australia; Australia Centre for Nanomedicine, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Richard D Tilley
- School of Chemistry, The University of New South Wales, Sydney, New South Wales, 2052, Australia; Electron Microscope Unit, Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - J Justin Gooding
- School of Chemistry, The University of New South Wales, Sydney, New South Wales, 2052, Australia; Australia Centre for Nanomedicine, The University of New South Wales, Sydney, New South Wales, 2052, Australia.
| |
Collapse
|
5
|
Tian Y, Cao Y, Zha G, Chen KE, Khan MI, Ren J, Liu W, Wang Y, Zhang Q, Cao C. Marker-Free Isoelectric Focusing Patterns for Identification of Meat Samples via Deep Learning. Anal Chem 2023; 95:13941-13948. [PMID: 37653711 DOI: 10.1021/acs.analchem.3c02461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Isoelectric focusing (IEF) is a powerful tool for resolving complex protein samples, which generates IEF patterns consisting of multiplex analyte bands. However, the interpretation of IEF patterns requires the careful selection of isoelectric point (pI) markers for profiling the pH gradient and a trivial process of pI labeling, resulting in low IEF efficiency. Here, we for the first time proposed a marker-free IEF method for the efficient and accurate classification of IEF patterns by using a convolutional neural network (CNN) model. To verify our method, we identified 21 meat samples whose IEF patterns comprised different bands of meat hemoglobin, myoglobin, and their oxygen-binding variants but no pI marker. Thanks to the high throughput and short assay time of the microstrip IEF, we efficiently collected 1449 IEF patterns to construct the data set for model training. Despite the absence of pI markers, we experimentally introduced the severe pH gradient drift into 189 IEF patterns in the data set, thereby omitting the need for profiling the pH gradient. To enhance the model robustness, we further employed data augmentation during the model training to mimic pH gradient drift. With the advantages of simple preprocessing, a rapid inference of 50 ms, and a high accuracy of 97.1%, the CNN model outperformed the traditional algorithm for simultaneously identifying meat species and cuts of meat of 105 IEF patterns, suggesting its great potential of being combined with microstrip IEF for large-scale IEF analyses of complicated protein samples.
Collapse
Affiliation(s)
- Youli Tian
- School of Life Sciences and Biotechnology, State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, China
- School of Sensing Science and Engineering, School of Electronic Information & Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yiren Cao
- School of Sensing Science and Engineering, School of Electronic Information & Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Genhan Zha
- School of Sensing Science and Engineering, School of Electronic Information & Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ke-Er Chen
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 200240, China
| | - Muhammad Idrees Khan
- School of Sensing Science and Engineering, School of Electronic Information & Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jicun Ren
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Weiwen Liu
- School of Sensing Science and Engineering, School of Electronic Information & Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuxing Wang
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qiang Zhang
- School of Sensing Science and Engineering, School of Electronic Information & Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chengxi Cao
- School of Life Sciences and Biotechnology, State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, China
- School of Sensing Science and Engineering, School of Electronic Information & Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
6
|
Zhang Y, Wu T, Liu D, Xu R, Ma H, Wei Q, Zhang Y. Photoelectrochemical immunosensor for the sensitive detection of neuron-specific enolase based on the effect of Z-scheme WO 3/NiCo 2O 4 nanoarrays p-n heterojunction. Biosens Bioelectron 2022; 213:114452. [PMID: 35679647 DOI: 10.1016/j.bios.2022.114452] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/20/2022] [Accepted: 06/01/2022] [Indexed: 11/26/2022]
Abstract
In this study, a signal-on type PEC immunosensor was constructed to detect neuron-specific enolase (NSE) via Z-scheme WO3/NiCo2O4 p-n heterojunction with cactus-like structure used as photoactive materials and MnxCd1-xS⊃Au NPs (MCS⊃Au NPs) as signal labels. Firstly, Z-scheme WO3/NiCo2O4 heterojunction could accelerate the separation efficiency of carriers and well-matched photoactive materials may promote charge migration, which resulted in WO3/NiCo2O4 generating strong and stable current. In addition, Z-scheme WO3/NiCo2O4 heterojunction directly grown on the surface of FTO via hydrothermal method facilitated the preparation of PEC immunosensor with outstanding stability. Secondly, an efficient signal amplification strategy was proposed by MnxCd1-xS⊃Au NPs incubating with signal antibody (Ab2). On the one hand, the well-matched energy levels of MnxCd1-xS with WO3/NiCo2O4 boosted the photo-generated electrons transferred to the electrode; on the other hand, the LSPR effect of Au may convert thermion to photocurrent to achieve signal amplification. Based on the above strategies, a PEC immunosensor with outstanding reproducibility and stability was obtained for sensitive detection of NSE. Under the optimum experimental conditions, current response range of the constructed signal amplification PEC sensor to NSE was 0.1 pg/mL ∼50 ng/mL and the detection limit was 0.07 pg/mL (S/N = 3). After the application tests in the detection of actual samples, the feasibility of the prepared PEC immunosensor with excellent selectivity, high sensitivity and satisfactory reproducibility was verified and the satisfactory results were obtained.
Collapse
Affiliation(s)
- Yingying Zhang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, Shandong, China; Provincial Key Laboratory of Rural Energy Engineering in Yunnan, School of Energy and Environment Science, Yunnan Normal University, Kunming, 650500, China
| | - Tingting Wu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, Shandong, China
| | - Deling Liu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, Shandong, China
| | - Rui Xu
- Provincial Key Laboratory of Rural Energy Engineering in Yunnan, School of Energy and Environment Science, Yunnan Normal University, Kunming, 650500, China
| | - Hongmin Ma
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, Shandong, China.
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, Shandong, China
| | - Yong Zhang
- Provincial Key Laboratory of Rural Energy Engineering in Yunnan, School of Energy and Environment Science, Yunnan Normal University, Kunming, 650500, China.
| |
Collapse
|
7
|
Peng P, Liu C, Li Z, Xue Z, Mao P, Hu J, Xu F, Yao C, You M. Emerging ELISA Derived Technologies for in vitro Diagnostics. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116605] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Nguyen VD, Nguyen HQ, Bui KH, Ko YS, Park BJ, Seo TS. A handheld-type total integrated capillary electrophoresis system for SARS-CoV-2 diagnostics: Power, fluorescence detection, and data analysis by smartphone. Biosens Bioelectron 2022; 195:113632. [PMID: 34571485 DOI: 10.1016/j.bios.2021.113632] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/09/2021] [Accepted: 09/11/2021] [Indexed: 12/23/2022]
Abstract
A micro-capillary electrophoresis (μCE) system is one of the widely adopted techniques in the molecular diagnostics and DNA sequencing due to the benefits of high resolution, rapid analysis, and low reagent consumption, but due to the requirements of bulky high-power suppliers and an expensive laser-induced fluorescence detector module, the conventional set-up of μCE system is not adequate for point-of-care (POC) molecular diagnostics. In this study, we constructed a miniaturized and integrated μCE system which can be manipulated by a smartphone. The smartphone not only powers two boost converters and an excited laser, but also controls the relay for the power switch. Moreover, the complementary metal-oxide-semiconductor (CMOS) camera of the smartphone was used for detecting the fluorescence signal of amplicons amplified with reverse transcription-polymerase chain reaction (RT-PCR). We also developed a web-based application so that the raw data of the recorded fluorescence intensity versus the running time can display typical capillary electropherograms on the smartphone. The total size of the hand-held μCE system was 9.6 cm [Width] × 22 cm [Length] × 15.5 cm [Height], and the weight was ∼1 kg, which is suitable for POC DNA testing. In the integrated smartphone-associated μCE system, we could accurately analyze two genes of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), namely N gene and S gene along with two bracket ladders in 6 min to identify SARS-CoV-2. Such an advanced μCE platform can be applied for a variety of on-site molecular diagnostics fields with user-friendliness.
Collapse
Affiliation(s)
- Van Dan Nguyen
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, 1 Seochon-dong, Giheung-gu, Yongin-si, Gyeonggi-do, 17140, Republic of Korea
| | - Huynh Quoc Nguyen
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, 1 Seochon-dong, Giheung-gu, Yongin-si, Gyeonggi-do, 17140, Republic of Korea
| | - Khang Hoang Bui
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, 1 Seochon-dong, Giheung-gu, Yongin-si, Gyeonggi-do, 17140, Republic of Korea
| | - Young Soo Ko
- Department of Chemical Engineering and Department of Future Convergence Engineering, Kongju National University, Cheonan City, Chungcheongnam-do, Republic of Korea
| | - Bum Jun Park
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, 1 Seochon-dong, Giheung-gu, Yongin-si, Gyeonggi-do, 17140, Republic of Korea
| | - Tae Seok Seo
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, 1 Seochon-dong, Giheung-gu, Yongin-si, Gyeonggi-do, 17140, Republic of Korea.
| |
Collapse
|
9
|
Magnetic separation and enzymatic catalysis conjugated colorimetric immunosensor for Hepatitis B surface antigen detection. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106155] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
10
|
Wei X, Guo J, Lian H, Sun X, Liu B. Cobalt metal-organic framework modified carbon cloth/paper hybrid electrochemical button-sensor for nonenzymatic glucose diagnostics. SENSORS AND ACTUATORS. B, CHEMICAL 2021; 329:129205. [PMID: 33519089 PMCID: PMC7833951 DOI: 10.1016/j.snb.2020.129205] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 05/15/2023]
Abstract
In the growing pandemic, family healthcare is widely concerned with the increase of medical self-diagnosis away from the hospital. A cobalt metal-organic framework modified carbon cloth/paper (Co-MOF/CC/Paper) hybrid button-sensor was developed as a portable, robust, and user-friendly electrochemical analytical chip for nonenzymatic quantitative detection of glucose. Highly integrated electrochemical analytical chip was successfully fabricated with a flexible Co-MOF/CC sensing interface, effectively increasing the specific area and catalytic sites than the traditional plane electrode. Based on the button-sensor, rapid quantitative detection of glucose was achieved in multiple complex bio-matrixes, such as serum, urine, and saliva, with desired selectivity, stability, and durability. With the advantages of low cost, high environment tolerance, ease of production, our nanozyme-based electrochemical analytical chip achieved reliable nonenzymatic electrocatalysis, has great potential for the application of rapid on-site analysis in personalized diagnostic and disease prevention.
Collapse
Affiliation(s)
- Xiaofeng Wei
- College of Materials Science and Engineering, Huaqiao University, Key Laboratory of Molecular Designing and Green Conversions (Fujian University), Xiamen, 361021, People's Republic of China
| | - Jialei Guo
- College of Materials Science and Engineering, Huaqiao University, Key Laboratory of Molecular Designing and Green Conversions (Fujian University), Xiamen, 361021, People's Republic of China
| | - Huiting Lian
- College of Materials Science and Engineering, Huaqiao University, Key Laboratory of Molecular Designing and Green Conversions (Fujian University), Xiamen, 361021, People's Republic of China
| | - Xiangying Sun
- College of Materials Science and Engineering, Huaqiao University, Key Laboratory of Molecular Designing and Green Conversions (Fujian University), Xiamen, 361021, People's Republic of China
| | - Bin Liu
- College of Materials Science and Engineering, Huaqiao University, Key Laboratory of Molecular Designing and Green Conversions (Fujian University), Xiamen, 361021, People's Republic of China
| |
Collapse
|
11
|
Manmana Y, Kubo T, Otsuka K. Recent developments of point-of-care (POC) testing platform for biomolecules. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2020.116160] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
12
|
Sun LP, Huang Y, Huang T, Yuan Z, Lin W, Sun Z, Yang M, Xiao P, Ma J, Wang W, Zhang Y, Liu Z, Guan BO. Optical Microfiber Reader for Enzyme-Linked Immunosorbent Assay. Anal Chem 2019; 91:14141-14148. [DOI: 10.1021/acs.analchem.9b04119] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Li-Peng Sun
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communication, Institute of Photonics Technology, Jinan University, Guangzhou 511443, China
| | - Yan Huang
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communication, Institute of Photonics Technology, Jinan University, Guangzhou 511443, China
| | - Tiansheng Huang
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communication, Institute of Photonics Technology, Jinan University, Guangzhou 511443, China
| | - Zihao Yuan
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communication, Institute of Photonics Technology, Jinan University, Guangzhou 511443, China
| | - Wenfu Lin
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communication, Institute of Photonics Technology, Jinan University, Guangzhou 511443, China
| | - Zhen Sun
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communication, Institute of Photonics Technology, Jinan University, Guangzhou 511443, China
| | - Mingjin Yang
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communication, Institute of Photonics Technology, Jinan University, Guangzhou 511443, China
| | - Peng Xiao
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communication, Institute of Photonics Technology, Jinan University, Guangzhou 511443, China
| | - Jun Ma
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communication, Institute of Photonics Technology, Jinan University, Guangzhou 511443, China
| | - Wei Wang
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communication, Institute of Photonics Technology, Jinan University, Guangzhou 511443, China
| | - Yi Zhang
- Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Zonghua Liu
- Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Bai-Ou Guan
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communication, Institute of Photonics Technology, Jinan University, Guangzhou 511443, China
| |
Collapse
|
13
|
Kong H, Liu WW, Zhang W, Zhang Q, Wang CH, Khan MI, Wang YX, Fan LY, Cao CX. Facile, Rapid, and Low-Cost Electrophoresis Titration of Thrombin by Aptamer-Linked Magnetic Nanoparticles and a Redox Boundary Chip. ACS APPLIED MATERIALS & INTERFACES 2019; 11:29549-29556. [PMID: 31259516 DOI: 10.1021/acsami.9b09598] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
An aptamer-linked assay of a target biomarker (e.g., thrombin) is facing the challenges of long-term run, complex performance, and expensive instrument, unfitting clinical diagnosis in resource-limited areas. Herein, a facile chip electrophoresis titration (ET) model was proposed for rapid, portable, and low-cost assay of thrombin via aptamer-linked magnetic nanoparticles (MNPs), redox boundary (RB), and horseradish peroxidase (HRP). In the electrophoresis titration-redox boundary (ET-RB) model, thrombin was chosen as a model biomarker, which could be captured within 15 min by MNP-aptamer 1 and HRP-aptamer 2, forming a sandwich complex of (MNP-aptamer 1)-thrombin-(HRP-aptamer 2). After MNP separation and chromogenic reaction of 3,3',5,5'-tetramethylbenzidine (TMB) within 10 min, an ET-RB run could be completed within 5 min based on the reaction between a 3,3',5,5'-tetramethylbenzidine radical cation (TMB•+) and l-ascorbic acid in the ET channel. The systemic experiments based on the ET-RB method revealed that the sandwich complex could be formed and the thrombin content could be assayed via an ET-RB chip, demonstrating the developed model and method. In particular, the ET-RB method had the evident merits of simplicity, rapidity (less than 30 min), and low cost as well as portability and visuality, in contrast to the currently used thrombin assay. In addition, the developed method had high selectivity, sensitivity (limit of detection of 0.04 nM), and stability (intraday: 3.26%, interday: 6.07%) as well as good recovery (urine: 97-102%, serum: 94-103%). The developed model and method have potential to the development of a point-of-care testing assay in resource-constrained conditions.
Collapse
Affiliation(s)
- Hao Kong
- Shanghai Sixth Peoples' Hospital East , Shanghai Jiao Tong University Medical School , Shanghai 201306 , China
| | - Wei-Wen Liu
- Shanghai Sixth Peoples' Hospital East , Shanghai Jiao Tong University Medical School , Shanghai 201306 , China
- Department of Instrument Science and Engineering, School of Electronic Information & Electrical Engineering , §State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology , ∥School of Physics and Astronomy , and ⊥Student Innovation Center , Shanghai Jiao Tong University , Shanghai 200240 , China
| | | | - Qiang Zhang
- Shanghai Sixth Peoples' Hospital East , Shanghai Jiao Tong University Medical School , Shanghai 201306 , China
- Department of Instrument Science and Engineering, School of Electronic Information & Electrical Engineering , §State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology , ∥School of Physics and Astronomy , and ⊥Student Innovation Center , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Cun-Huai Wang
- Shanghai Sixth Peoples' Hospital East , Shanghai Jiao Tong University Medical School , Shanghai 201306 , China
| | - Muhammad Idrees Khan
- Shanghai Sixth Peoples' Hospital East , Shanghai Jiao Tong University Medical School , Shanghai 201306 , China
| | | | | | - Cheng-Xi Cao
- Shanghai Sixth Peoples' Hospital East , Shanghai Jiao Tong University Medical School , Shanghai 201306 , China
- Department of Instrument Science and Engineering, School of Electronic Information & Electrical Engineering , §State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology , ∥School of Physics and Astronomy , and ⊥Student Innovation Center , Shanghai Jiao Tong University , Shanghai 200240 , China
| |
Collapse
|