1
|
Pillai RG, Azyat K, Chan NWC, Jemere AB. Rapid assembly of mixed thiols for toll-like receptor-based electrochemical pathogen sensing. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:7021-7032. [PMID: 39283241 DOI: 10.1039/d4ay00983e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Herein, we describe a rapid and facile fabrication of electrochemical sensors utilizing two different toll-like receptor (TLR) proteins as biorecognition elements to detect bacterial pathogen associated molecular patterns (PAMPs). Using potential-assisted self-assembly, binary mixtures of 11-mercaptoundecanoic acid (MUA) and 6-mercapto-1-hexanol (MCH), or MUA and an in-house synthesized zwitterionic sulfobetaine thiol (DPS) were assembled on a gold working electrode within 5 minutes, which is >200 times shorter than other TLR sensors' preparation time. Electrochemical methods and X-ray photoelectron microscopy were used to characterize the SAM layers. SAMs composed of the betaine terminated thiol exhibited superior resistance to nonspecific interactions, and were used to develop the TLR sensors. Biosensors containing two individually immobilized TLRs (TLR4 and TLR9) were fabricated on separate MUA-DPS SAM modified Au electrodes (MUA-DPS/Au) and tested for their response towards their respective PAMPs. The changes to electron transfer resistance in EIS of the TLR4/MUA-DPS/Au sensor showed a detection limit of 4 ng mL-1 for E. coli 0157:H7 endotoxin (lipopolysaccharide, LPS) and a dynamic range of up to 1000 ng mL-1. The TLR4-based sensor showed negligible response when tested with LPS spiked human plasma samples, showing no interference from the plasma matrix. The TLR9/MUA-DPS/Au sensor responded linearly up to 350 μg mL-1 bacterial DNA, with a detection limit of 7 μg mL-1. The rapid assembly of the TLR sensors, excellent antifouling properties of the mixed SAM assembly, small size and ease of operation of EIS hold great promise for the development of a portable and automated broad-spectrum pathogen detection and classification tool.
Collapse
Affiliation(s)
- Rajesh G Pillai
- National Research Council Canada- Quantum and Nanotechnologies Research Center, 11421 Saskatchewan Drive, Edmonton T6G 2M9, AB, Canada.
| | - Khalid Azyat
- National Research Council Canada- Quantum and Nanotechnologies Research Center, 11421 Saskatchewan Drive, Edmonton T6G 2M9, AB, Canada.
| | - Nora W C Chan
- Defence Research and Development Canada - Suffield Research Centre, Medicine Hat T1A 8K6, AB, Canada
| | - Abebaw B Jemere
- National Research Council Canada- Quantum and Nanotechnologies Research Center, 11421 Saskatchewan Drive, Edmonton T6G 2M9, AB, Canada.
- Department of Chemistry, Queen's University, Kingston K7L 3N6, ON, Canada
- Department of Chemistry, University of Waterloo, Waterloo N2L 3G1, ON, Canada
| |
Collapse
|
2
|
Qi L, Mayall RM, Lee DS, Smith C, Woods A, Narouz MR, Hyla A, Bhattacharjee H, She Z, Crudden CM, Birss VI. Energetics and Redox Kinetics of Pure Ferrocene-Terminated N-Heterocyclic Carbene Self-Assembled Monolayers on Gold. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:17367-17377. [PMID: 39106183 DOI: 10.1021/acs.langmuir.4c01446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
N-heterocyclic carbene (NHC) self-assembled monolayers (SAMs) on gold have received considerable attention, but little is known about the lateral interactions between neighboring NHC molecules, their stability when subjected to aggressive oxidizing/reducing conditions, and their interactions with solution ions, all of which are essential for their use in a wide range of applications. To address these deficiencies, we present a comprehensive investigation of two different ferrocene (Fc)-terminated NHC SAMs with different chain lengths and linking groups. Pure monolayers of Fc-terminated NHCs display only a single, symmetrical pair of redox peaks, implying the formation of a homogeneous SAM structure with uniformly distributed Fc/Fc+ redox centers. By comparison, pure Fc-alkylthiol SAMs exhibit complex and impractical redox chemistry and require surface dilution in order to achieve reproducible properties. The NHC SAMs examined in this study exhibit very fast Fc redox kinetics and comparable or even superior stability against the application of multiple potential cycles or long-time holding at constant potential compared to alkylthiol SAMs. Furthermore, ion pairing of Fc+ and hydrophobic perchlorate and other hydrophilic anions is observed with Fc-NHC SAMs, highlighting conditions favorable for future applications of these monolayers. This study should therefore shed light on the very promising characteristics of redox-active NHC SAMs as an alternative to traditional Fc-alkylthiol SAMs for multiple practical applications, including in sensors and electrocatalysis.
Collapse
Affiliation(s)
- Lin Qi
- Department of Chemistry, University of Calgary, Calgary, Alberta T2N1N4, Canada
| | - Robert M Mayall
- Department of Chemistry, University of Calgary, Calgary, Alberta T2N1N4, Canada
| | - Dianne S Lee
- Department of Chemistry, Queen's University, Kingston, Ontario K7L3N6, Canada
| | - Christene Smith
- Department of Chemistry, Queen's University, Kingston, Ontario K7L3N6, Canada
| | - April Woods
- Department of Chemistry, University of Calgary, Calgary, Alberta T2N1N4, Canada
| | - Mina R Narouz
- Department of Chemistry, Queen's University, Kingston, Ontario K7L3N6, Canada
| | - Alexander Hyla
- Department of Chemistry, University of Calgary, Calgary, Alberta T2N1N4, Canada
| | | | - Zhe She
- Department of Chemistry, Queen's University, Kingston, Ontario K7L3N6, Canada
| | - Cathleen M Crudden
- Department of Chemistry, Queen's University, Kingston, Ontario K7L3N6, Canada
| | - Viola Ingrid Birss
- Department of Chemistry, University of Calgary, Calgary, Alberta T2N1N4, Canada
| |
Collapse
|
3
|
Mancini K, Khatib Y, Shahine L, O’Neil GD. Photoelectrochemistry of Redox-Active Self-Assembled Monolayers Formed on n-Si/Au Nanoparticle Photoelectrodes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:17536-17546. [PMID: 39110768 PMCID: PMC11340028 DOI: 10.1021/acs.langmuir.4c01751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/21/2024]
Abstract
Controlling the chemistry of the electrode-solution interface is critically important for applications in sensing, energy storage, corrosion prevention, molecular electronics, and surface patterning. While numerous methods of chemically modifying electrodes exist, self-assembled monolayers (SAMs) containing redox-active moieties are particularly important because they are easy to prepare, have well-defined interfaces, and can exhibit textbook photoelectrochemistry. Here, we investigate the photoelectrochemistry of redox-active SAMs on semiconductor/metal interfaces, where the SAM is attached to the metal site instead of the semiconductor. n-Si/Au photoelectrodes were fabricated using a benchtop electrodeposition procedure and subsequently modified by immersion in aqueous solutions of (ferrocenyl)hexanethiol and mercaptohexanol. We explored the relevant preparation conditions, finding that after optimization, we were able to obtain canonical cyclic voltammetry for a surface-bound redox molecule that could be turned on and off using light. We then characterized the optimized electrodes under varying illumination intensities, finding that the heterogeneous electron transfer kinetics improved under higher illumination intensities. These results lay the foundation for future studies of semiconductor/metal/molecule interfaces relevant to sensing and electrocatalysis.
Collapse
Affiliation(s)
- Kayla
M. Mancini
- Department
of Chemistry and Biochemistry, Montclair
State University, Montclair, New Jersey 07043, United States
| | - Yousef Khatib
- Department
of Chemistry and Biochemistry, Montclair
State University, Montclair, New Jersey 07043, United States
| | - Lauren Shahine
- Department
of Chemistry and Biochemistry, Montclair
State University, Montclair, New Jersey 07043, United States
| | - Glen D. O’Neil
- Department
of Chemistry and Biochemistry, Montclair
State University, Montclair, New Jersey 07043, United States
- Sokol
Institute for Pharmaceutical Life Sciences, Montclair State University, Montclair, New Jersey 07043, United States
| |
Collapse
|
4
|
Abstract
Unique pneumonia due to an unknown source emerged in December 2019 in the city of Wuhan, China. Consequently, the World Health Organization (WHO) declared this condition as a new coronavirus disease-19 also known as COVID-19 on February 11, 2020, which on March 13, 2020 was declared as a pandemic. The virus that causes COVID-19 was found to have a similar genome (80% similarity) with the previously known acute respiratory syndrome also known as SARS-CoV. The novel virus was later named Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). SARS-CoV-2 falls in the family of Coronaviridae which is further divided into Nidovirales and another subfamily called Orthocoronavirinae. The four generations of the coronaviruses belongs to the Orthocoronavirinae family that consists of alpha, beta, gamma and delta coronavirus which are denoted as α-CoV, β-CoV, γ-CoV, δ-CoV respectively. The α-CoV and β-CoVs are mainly known to infect mammals whereas γ-CoV and δ-CoV are generally found in birds. The β-CoVs also comprise of SARS-CoV and also include another virus that was found in the Middle East called the Middle East respiratory syndrome virus (MERS-CoV) and the cause of current pandemic SARS-CoV-2. These viruses initially cause the development of pneumonia in the patients and further development of a severe case of acute respiratory distress syndrome (ARDS) and other related symptoms that can be fatal leading to death.
Collapse
|
5
|
Khoshroo A, Mavaei M, Rostami M, Valinezhad-Saghezi B, Fattahi A. Recent advances in electrochemical strategies for bacteria detection. BIOIMPACTS : BI 2022; 12:567-588. [PMID: 36644549 PMCID: PMC9809139 DOI: 10.34172/bi.2022.23616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/20/2022] [Accepted: 04/05/2022] [Indexed: 11/06/2022]
Abstract
Introduction: Bacterial infections have always been a major threat to public health and humans' life, and fast detection of bacteria in various samples is significant to provide early and effective treatments. Cell-culture protocols, as well-established methods, involve labor-intensive and complicated preparation steps. For overcoming this drawback, electrochemical methods may provide promising alternative tools for fast and reliable detection of bacterial infections. Methods: Therefore, this review study was done to present an overview of different electrochemical strategy based on recognition elements for detection of bacteria in the studies published during 2015-2020. For this purpose, many references in the field were reviewed, and the review covered several issues, including (a) enzymes, (b) receptors, (c) antimicrobial peptides, (d) lectins, (e) redox-active metabolites, (f) aptamer, (g) bacteriophage, (h) antibody, and (i) molecularly imprinted polymers. Results: Different analytical methods have developed are used to bacteria detection. However, most of these methods are highly time, and cost consuming, requiring trained personnel to perform the analysis. Among of these methods, electrochemical based methods are well accepted powerful tools for the detection of various analytes due to the inherent properties. Electrochemical sensors with different recognition elements can be used to design diagnostic system for bacterial infections. Recent studies have shown that electrochemical assay can provide promising reliable method for detection of bacteria. Conclusion: In general, the field of bacterial detection by electrochemical sensors is continuously growing. It is believed that this field will focus on portable devices for detection of bacteria based on electrochemical methods. Development of these devices requires close collaboration of various disciplines, such as biology, electrochemistry, and biomaterial engineering.
Collapse
Affiliation(s)
- Alireza Khoshroo
- Nutrition Health Research center, Hamadan University of Medical Sciences, Hamadan, Iran
,Corresponding authors: Alireza Khoshroo, ; Ali Fattahi,
| | - Maryamosadat Mavaei
- Pharmaceutical Sciences Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Masoume Rostami
- Student Research Committe, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Ali Fattahi
- Pharmaceutical Sciences Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
,Medical Biology Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
,Corresponding authors: Alireza Khoshroo, ; Ali Fattahi,
| |
Collapse
|
6
|
Singh I, Lee DS, Huang S, Bhattacharjee H, Xu W, McLeod JF, Crudden CM, She Z. N-Heterocyclic carbenes meet toll-like receptors. Chem Commun (Camb) 2021; 57:8421-8424. [PMID: 34373867 DOI: 10.1039/d1cc03030b] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Combining the stability of the N-heterocyclic carbenes (NHCs) and broad-spectrum recognition of toll-like receptor (TLR) proteins, we report new electrochemical biosensors for bacteria detection. Instead of traditional thiol-gold chemistry, newly synthesized NHCs are employed as the linker molecules to immobilize TLR bio-recognition elements on gold electrodes. Our proof-of-concept methodology includes testing the fidelity of TLR-based electrochemical sensors with NHC linkers. The performance of the biosensors is demonstrated using whole-cell bacterial cultures.
Collapse
Affiliation(s)
- Ishwar Singh
- Department of Chemistry, Queen's University, Chernoff Hall, Kingston, Ontario, K7L 3N6, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Wu D, Ma C, Pan F, Tao Y, Kong Y. Strategies to Achieve a Ferrocene-Based Polymer with Reversible Redox Activity for Chiral Electroanalysis of Nonelectroactive Amino Acids. Anal Chem 2021; 93:10160-10166. [PMID: 34255968 DOI: 10.1021/acs.analchem.1c01158] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In the past, various chiral isomers accompanied by electroactive units have been distinguished using electrochemical techniques, which can produce electrochemical signals by themselves. However, it is still difficult to use an electrochemical technique to detect nonelectroactive samples. To address this bottleneck, an electroactive chiral polymer (S,S)-p-CVB-Fc that contains one redox-active ferrocene unit was designed and synthesized in this study. The electroactive polymer can give electrochemical signals as an alternative to the tested chiral samples, regardless of whether the isomers have electroactive units. Then, it was fixed on the surface of a glassy carbon electrode as an electrochemical chiral sensor. When nonelectroactive amino acids including proline, threonine, and alanine were examined by the sensor, clear discrimination in the response of peak current could be observed toward l- and d-isomers at pH 6.5. The peak current ratios (IL/ID) for proline and alanine were 1.47 and 1.48, respectively. In contrast, for threonine, the d-isomer exhibited a higher peak current than the l -isomer with a ratio of 2.59. In summary, the results ensure that the current work can enlarge the testing scope of chiral samples in the field of chiral electroanalysis using an electroactive sensor.
Collapse
Affiliation(s)
- Datong Wu
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Cong Ma
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Fei Pan
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Yongxin Tao
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Yong Kong
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
8
|
Mayall RM, Marenco AJ, Kilgore M, Birss VI, Creager SE. Ultrasensitive Detection of Surface‐Confined Redox Molecules by Mediation‐Based Amplification. ChemElectroChem 2021. [DOI: 10.1002/celc.202100369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Robert M. Mayall
- Department of Chemistry University of Calgary Calgary AB postcode missing Canada
| | - Armando J. Marenco
- Department of Chemistry University of Calgary Calgary AB postcode missing Canada
| | - Madison Kilgore
- Department of Chemistry Clemson University Clemson SC 29634 USA
| | - Viola I. Birss
- Department of Chemistry University of Calgary Calgary AB postcode missing Canada
| | | |
Collapse
|
9
|
Higashino T, Kuribara K, Toda N, Uemura S, Tachibana H, Azumi R. Direct Preparation of Mixed Self-assembled Monolayers Based on Common-substructure-tailored Phosphonic Acids for Fine Control of Surface Wettability. CHEM LETT 2020. [DOI: 10.1246/cl.200460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Toshiki Higashino
- National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Kazunori Kuribara
- National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Naoya Toda
- National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Sei Uemura
- National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Hiroaki Tachibana
- National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Reiko Azumi
- National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| |
Collapse
|
10
|
Mayall RM, Smith CA, Hyla AS, Lee DS, Crudden CM, Birss VI. Ultrasensitive and Label-Free Detection of the Measles Virus Using an N-Heterocyclic Carbene-Based Electrochemical Biosensor. ACS Sens 2020; 5:2747-2752. [PMID: 32820626 DOI: 10.1021/acssensors.0c01250] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
With the current intense need for rapid and accurate detection of viruses due to COVID-19, we report on a platform technology that is well suited for this purpose, using intact measles virus for a demonstration. Cases of infection due to the measles virus are rapidly increasing, yet current diagnostic tools used to monitor for the virus rely on slow (>1 h) technologies. Here, we demonstrate the first biosensor capable of detecting the measles virus in minutes with no preprocessing steps. The key sensing element is an electrode coated with a self-assembled monolayer containing the measles antibody, immobilized through an N-heterocyclic carbene (NHC). The intact virus is detected by changes in resistance, giving a linear response to 10-100 μg/mL of the intact measles virus without the need to label or process the sample. The limit of detection is 6 μg/mL, which is at the lower limit of concentrations that can cause infections in primates. The NHC-based biosensors are shown to be superior to thiol-based systems, producing an approximately 10× larger response and significantly greater stability toward repeated measurements and long-term storage. This NHC-based biosensor thus represents an important development for both the rapid detection of the measles virus and as a platform technology for the detection of other biological targets of interest.
Collapse
Affiliation(s)
- Robert M. Mayall
- Department of Chemistry, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Christene A. Smith
- Department of Chemistry, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| | - Alexander S. Hyla
- Department of Chemistry, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Dianne S. Lee
- Department of Chemistry, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| | - Cathleen M. Crudden
- Department of Chemistry, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| | - Viola I. Birss
- Department of Chemistry, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
11
|
Probing consequences of anion-dictated electrochemistry on the electrode/monolayer/electrolyte interfacial properties. Nat Commun 2020; 11:4194. [PMID: 32826881 PMCID: PMC7442636 DOI: 10.1038/s41467-020-18030-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/28/2020] [Indexed: 01/01/2023] Open
Abstract
Altering electrochemical interfaces by using electrolyte effects or so-called "electrolyte engineering" provides a versatile means to modulate the electrochemical response. However, the long-standing challenge is going "beyond cyclic voltammetry" where electrolyte effects are interrogated from the standpoint of the interfacial properties of the electrode/electrolyte interface. Here, we employ ferrocene-terminated self-assembled monolayers as a molecular probe and investigate how the anion-dictated electrochemical responses are translated in terms of the electronic and structural properties of the electrode/monolayer/electrolyte interface. We utilise a photoelectron-based spectroelectrochemical approach that is capable of capturing "snapshots" into (1) anion dependencies of the ferrocene/ferrocenium (Fc/Fc+) redox process including ion-pairing with counter anions (Fc+-anion) caused by differences in Fc+-anion interactions and steric constraints, and (2) interfacial energetics concerning the electrostatic potential across the electrode/monolayer/electrolyte interface. Our work can be extended to provide electrolyte-related structure-property relationships in redox-active polymers and functionalised electrodes for pseudocapacitive energy storage.
Collapse
|
12
|
Yuan X, Yang C, He Q, Chen J, Yu D, Li J, Zhai S, Qin Z, Du K, Chu Z, Qin P. Current and Perspective Diagnostic Techniques for COVID-19. ACS Infect Dis 2020; 6:1998-2016. [PMID: 32677821 PMCID: PMC7409380 DOI: 10.1021/acsinfecdis.0c00365] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Indexed: 02/08/2023]
Abstract
Since late December 2019, the coronavirus pandemic (COVID-19; previously known as 2019-nCoV) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been surging rapidly around the world. With more than 1,700,000 confirmed cases, the world faces an unprecedented economic, social, and health impact. The early, rapid, sensitive, and accurate diagnosis of viral infection provides rapid responses for public health surveillance, prevention, and control of contagious diffusion. More than 30% of the confirmed cases are asymptomatic, and the high false-negative rate (FNR) of a single assay requires the development of novel diagnostic techniques, combinative approaches, sampling from different locations, and consecutive detection. The recurrence of discharged patients indicates the need for long-term monitoring and tracking. Diagnostic and therapeutic methods are evolving with a deeper understanding of virus pathology and the potential for relapse. In this Review, a comprehensive summary and comparison of different SARS-CoV-2 diagnostic methods are provided for researchers and clinicians to develop appropriate strategies for the timely and effective detection of SARS-CoV-2. The survey of current biosensors and diagnostic devices for viral nucleic acids, proteins, and particles and chest tomography will provide insight into the development of novel perspective techniques for the diagnosis of COVID-19.
Collapse
Affiliation(s)
- Xi Yuan
- Center
of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong 518055, China
| | - Chengming Yang
- Southern
University of Science and Technology Hospital, Shenzhen, Guangdong 518055, China
| | - Qian He
- Center
of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong 518055, China
| | - Junhu Chen
- National
Institute of Parasitic Diseases, Chinese
Center for Disease Control and Prevention, Shanghai 200025, China
| | - Dongmei Yu
- Center
of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong 518055, China
- Department
of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Jie Li
- Center
of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong 518055, China
- Kunming
Dog Base of Police Security, Ministry of Public Security, Kunming, Yunnan 650204, China
| | - Shiyao Zhai
- Center
of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong 518055, China
| | - Zhifeng Qin
- Animal &
Plant Inspection and Quarantine Technology Center, Shenzhen Customs District People’s Republic of China, Shenzhen, Guangdong 518045, China
| | - Ke Du
- Department
of Mechanical Engineering, Rochester Institute
of Technology, Rochester, New York 14623, United States
| | - Zhenhai Chu
- Southern
University of Science and Technology Hospital, Shenzhen, Guangdong 518055, China
| | - Peiwu Qin
- Center
of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong 518055, China
| |
Collapse
|
13
|
Parlak O, Richter-Dahlfors A. Bacterial Sensing and Biofilm Monitoring for Infection Diagnostics. Macromol Biosci 2020; 20:e2000129. [PMID: 32588553 DOI: 10.1002/mabi.202000129] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/01/2020] [Indexed: 12/21/2022]
Abstract
Recent insights into the rapidly emerging field of bacterial sensing and biofilm monitoring for infection diagnostics are discussed as well as recent key developments and emerging technologies in the field. Electrochemical sensing of bacteria and bacterial biofilm via synthetic, natural, and engineered recognition, as well as direct redox-sensing approaches via algorithm-based optical sensing, and tailor-made optotracing technology are discussed. These technologies are highlighted to answer the very critical question: "how can fast and accurate bacterial sensing and biofilm monitoring be achieved? Following on from that: "how can these different sensing concepts be translated for use in infection diagnostics? A central obstacle to this transformation is the absence of direct and fast analysis methods that provide high-throughput results and bio-interfaces that can control and regulate the means of communication between biological and electronic systems. Here, the overall progress made to date in building such translational efforts at the level of an individual bacterial cell to a bacterial community is discussed.
Collapse
Affiliation(s)
- Onur Parlak
- AIMES-Center for the Advancement of Integrated Medical and Engineering Science, Karolinska Institutet and KTH Royal Institute of Technology, Stockholm, SE-171 77, Sweden.,Department of Neuroscience, Karolinska Institutet, Stockholm, SE-171 77, Sweden
| | - Agneta Richter-Dahlfors
- AIMES-Center for the Advancement of Integrated Medical and Engineering Science, Karolinska Institutet and KTH Royal Institute of Technology, Stockholm, SE-171 77, Sweden.,Department of Neuroscience, Karolinska Institutet, Stockholm, SE-171 77, Sweden.,Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm, SE-100 44, Sweden
| |
Collapse
|
14
|
Ortiz de la Morena R, Asyuda A, Lu H, Aitchison H, Turner K, Francis SM, Zharnikov M, Buck M. Shape controlled assembly of carboxylic acids: formation of a binary monolayer by intercalation into molecular nanotunnels. Phys Chem Chem Phys 2020; 22:4205-4215. [PMID: 32043099 DOI: 10.1039/c9cp06724h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Binary self-assembled monolayers (SAMs) combining a Y-shaped aromatic carboxylic acid (1,3,5-benzenetribenzoic acid, H3BTB) and a cage-type alicyclic carboxylic acid (adamantane carboxylic acid, AdCA) were investigated by scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS), and near edge X-ray absorption fine structure (NEXAFS) spectroscopy. The SAMs, prepared by molecular adsorption from solution on Au substrates modified by underpotential deposition of Ag, exhibit a pronounced dependence of their structure on the assembly protocol. Exposing an H3BTB SAM to AdCA, the highly regular row structure of the native H3BTB layer persists and STM imaging does not show signs of AdCA adsorption. This is in striking contrast to the disordered arrangements of H3BTB and the presence of AdCA employing the inverted adsorption sequence or coadsorption of the two molecules. However, spectroscopic analysis of the H3BTB SAM exposed to AdCA reveals the presence also of the latter, suggesting that the AdCA molecules are hidden in the nanotunnels of the H3BTB monolayer. Direct evidence for the intercalation of AdCA is obtained by STM manipulation experiments which lay bare areas of AdCA molecules upon local removal of H3BTB. Surprisingly, these are densely packed and arranged into a highly ordered monolayer. Formation of such a compact AdCA layer is explained by expulsion of AdCA from the H3BTB nanotunnels of the surrounding intact mixed SAM, driven by release of stress in the nanotunnels built up when AdCA is intercalated.
Collapse
Affiliation(s)
| | - Andika Asyuda
- Angewandte Physikalische Chemie, Universität Heidelberg, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany
| | - Hao Lu
- Angewandte Physikalische Chemie, Universität Heidelberg, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany
| | - Hannah Aitchison
- EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, UK.
| | - Kelly Turner
- EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, UK.
| | - Stephen M Francis
- EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, UK.
| | - Michael Zharnikov
- Angewandte Physikalische Chemie, Universität Heidelberg, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany
| | - Manfred Buck
- EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, UK.
| |
Collapse
|
15
|
McLeod J, Park C, Cunningham A, O'Donnell L, Brown RS, Kelly F, She Z. Developing a toll-like receptor biosensor for Gram-positive bacterial detection and its storage strategies. Analyst 2020; 145:6024-6031. [DOI: 10.1039/d0an01050b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Conditions to store toll-like receptor2/6 sensors and use them to detect bacterial analytes, including pathogen-associated molecular patterns and bacterial cultures.
Collapse
Affiliation(s)
- Jennifer McLeod
- Department of Chemistry
- Queen's University
- Kingston
- Canada
- Beaty Water Research Centre
| | - Chankyu Park
- Department of Chemistry
- Queen's University
- Kingston
- Canada
| | | | - Lynne O'Donnell
- School of Environmental Studies
- Queen's University
- Kingston
- Canada
| | - R. Stephen Brown
- Department of Chemistry
- Queen's University
- Kingston
- Canada
- Beaty Water Research Centre
| | - Fiona Kelly
- Department of Chemistry and Chemical Engineering
- Royal Military College of
- Canada
- Kingston
- Canada
| | - Zhe She
- Department of Chemistry
- Queen's University
- Kingston
- Canada
- Beaty Water Research Centre
| |
Collapse
|