1
|
Awlqadr FH, Altemimi AB, Qadir SA, Hama Salih TA, Alkanan ZT, AlKaisy QH, Mohammed OA, Hesarinejad MA. Emerging trends in nano-sensors: A new frontier in food safety and quality assurance. Heliyon 2025; 11:e41181. [PMID: 39807502 PMCID: PMC11728908 DOI: 10.1016/j.heliyon.2024.e41181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 12/06/2024] [Accepted: 12/11/2024] [Indexed: 01/16/2025] Open
Abstract
The rapid evolution of nanotechnology has catalyzed significant advancements in the design and application of nano-sensors, particularly within the food industry, where ensuring safety and quality is of paramount concern. This review explores the multifaceted role of nano-sensors constructed from diverse nanomaterials in detecting foodborne pathogens and toxins, offering a comprehensive analysis of their operational principles, sensitivity, and specificity. Nano-sensors leverage unique physical and chemical properties at the nanoscale to enhance the detection of microbial contamination, actively contributing to food safety protocols. With applications ranging from real-time monitoring of pathogenic bacteria, such as Escherichia coli and Salmonella, to assessing environmental factors affecting food quality, these innovative devices demonstrate unparalleled advantages over conventional detection methods. Recent research illustrates the integration of nano-sensors with biosensing techniques, enabling multiplex analysis and rapid detection. Furthermore, the review addresses current challenges in the commercialization and regulatory landscape of nano-sensor technology, emphasizing the need for ongoing research to optimize their performance and facilitate widespread adoption in food safety systems. Overall, the incorporation of nano-sensors represents a transformative approach to safeguarding public health by proactively managing food safety risks and enhancing the efficiency of food quality assurance processes.
Collapse
Affiliation(s)
- Farhang Hameed Awlqadr
- Food Science and Quality control, Halabja Technical College of Applied Science, Sulaimani Polytechnic University, Sulaymaniyah, Iraq
| | - Ammar B. Altemimi
- Food Science Department, College of Agriculture, University of Basrah, 61004, Iraq
- College of Medicine, University of Warith Al-Anbiyaa, Karbala, Iraq
| | - Syamand Ahmed Qadir
- Medical Laboratory Techniques Department, Halabja Technical Institute, Research center/Sulaimani Polytechnic University, Sulaymaniyah, Iraq
| | - Tablo Azad Hama Salih
- Food Science and Quality control, Halabja Technical College of Applied Science, Sulaimani Polytechnic University, Sulaymaniyah, Iraq
| | - Zina T. Alkanan
- Food Science Department, College of Agriculture, University of Basrah, 61004, Iraq
| | - Qausar Hamed AlKaisy
- Department of Dairy Science and technology, College of Food science, Al-Qasim Green University, Iraq
| | - Othman Abdulrahman Mohammed
- Medical Laboratory Science Department, Halabja Technical College of Applied Sciences, Sulaimani Polytechnic, Iraq
| | - Mohammad Ali Hesarinejad
- Department of Food Sensory and Cognitive Science, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| |
Collapse
|
2
|
El Guerraf A, Ziani I, Ben Jadi S, El Bachiri A, Bazzaoui M, Bazzaoui EA, Sher F. Smart conducting polymer innovations for sustainable and safe food packaging technologies. Compr Rev Food Sci Food Saf 2024; 23:e70045. [PMID: 39437198 DOI: 10.1111/1541-4337.70045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/25/2024] [Accepted: 09/29/2024] [Indexed: 10/25/2024]
Abstract
Biofilm formation on food packaging surfaces is a major issue in the industry, as it leads to contamination, reduces shelf life, and poses risks to human health. To mitigate these effects, developing smart coatings that can actively sense and combat microbial growth has become a critical research focus. This study is motivated by the need for intelligent packaging solutions that integrate antimicrobial agents and sensors for real-time contamination detection. It is hypothesized that combining conducting polymers (CPs) with nanomaterials can enhance antimicrobial efficacy while maintaining the mechanical integrity and environmental stability required for food packaging applications. Through the application of numerous technologies like surface modification, CP-nanoparticle integration, and multilayered coating, the antimicrobial performance and sensor capabilities of these materials were analyzed. Case studies showed a 90% inhibition of bacterial growth and a tenfold decrease in viable bacterial counts with AgNPs incorporation, extending strawberries' shelf life by 40% and maintaining fish freshness for an additional 5 days. Moreover, multilayered CP coatings in complex systems have been shown to reduce oxidative spoilage in nuts and dried fruits by up to 85%, while maintaining the quality of leafy greens for up to 3 weeks under suboptimal conditions. Environmental assessments indicated a 30% reduction in carbon footprint when CP coatings were combined with biodegradable polymers, contributing to a more transparent and reliable food supply chain. CP-based films integrated with intelligent sensors exhibit high sensitivity, detecting ammonia concentrations below 500 ppb, and offer significant selectivity for sensing hazardous gases. These findings indicate that CP-based smart coatings markedly enhance food safety and sustainability in packaging applications.
Collapse
Affiliation(s)
- Abdelqader El Guerraf
- Laboratory of Applied Chemistry and Environment, Department of chemistry, Faculty of Sciences and Technologies, Hassan First University, Settat, Morocco
- International Society of Engineering Science and Technology, Nottingham, UK
| | - Imane Ziani
- International Society of Engineering Science and Technology, Nottingham, UK
- Laboratory of Applied Chemistry and Environment, Department of chemistry, Faculty of Sciences, Mohammed First University, Oujda, Morocco
| | - Sana Ben Jadi
- Laboratory of Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
- Cité de l'innovation Souss Massa, Agadir, Morocco
| | - Ali El Bachiri
- Laboratory of Applied Chemistry and Environment, Department of chemistry, Faculty of Sciences, Mohammed First University, Oujda, Morocco
| | - Mohammed Bazzaoui
- Laboratory of Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
- Cité de l'innovation Souss Massa, Agadir, Morocco
| | - El Arbi Bazzaoui
- Laboratory of Applied Chemistry and Environment, Department of chemistry, Faculty of Sciences, Mohammed First University, Oujda, Morocco
| | - Farooq Sher
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| |
Collapse
|
3
|
Zang C, Ramaraj SG, Yano Y, Yamahara H, Seki M, Tabata H. Imaging of Volatile Organic Compounds Using a Single Nanowire-Based Electronic Nose for Future Biomedical Applications. ACS Sens 2024; 9:5188-5196. [PMID: 39259973 DOI: 10.1021/acssensors.4c01280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
This study introduces an array of semiconductor oxide single nanowires fabricated using advanced semiconductor processing techniques, including electron beam lithography and thin-film deposition, which is well-suited for large-scale nanowire integration. A four-channel nanowire array consisting of tin oxide (SnO2), indium oxide (In2O3), ferric oxide (Fe3O4), and titanium oxide (TiO2) was developed. As a proof of concept, we converted the response curves of the sensor array to heat maps, enabling comprehensive feature representation. The fabricated electronic nose (E-nose) was utilized to detect three types of volatile organic compounds (VOCs), with the results visualized in a heat map format. Additionally, the performance of each individual sensor was quantitatively studied, highlighting the array's potential for enhanced gas detection and analysis. To further illustrate the interaction between gas molecules and the nanowires, we visualized the gas response results by mapping the sensor's signal changes. These visualizations provide a clear representation of how different gas molecules interact with specific nanowires. For example, the heat maps reveal distinct response patterns for each type of VOC, allowing for the identification and differentiation of gases based on their unique signatures. This visualization technique not only enhances the understanding of gas-nanowire interactions but also demonstrates the effectiveness of the E-nose in distinguishing between various VOCs. The SnO2 nanowire gas sensor showed enhanced gas response compared to other materials. The SnO2 and TiO2 gas sensors showed enhanced response (62 and 56 s) and recovery times (100 and 37 s).
Collapse
Affiliation(s)
- Chuanlai Zang
- Department of Electrical Engineering and Information Systems, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Sankar Ganesh Ramaraj
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Tokyo 113-8656, Japan
- Department of Materials Physics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMTS), Thandalam, Chennai 602105, Tamil Nadu, India
| | - Yasuo Yano
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Tokyo 113-8656, Japan
| | - Hiroyasu Yamahara
- Department of Electrical Engineering and Information Systems, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Munetoshi Seki
- Department of Electrical Engineering and Information Systems, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hitoshi Tabata
- Department of Electrical Engineering and Information Systems, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Tokyo 113-8656, Japan
| |
Collapse
|
4
|
Gasso S, Carrier J, Radu D, Lai CY. Novel Gas Sensing Approach: ReS 2/Ti 3C 2T x Heterostructures for NH 3 Detection in Humid Environments. ACS Sens 2024; 9:4788-4802. [PMID: 39174348 DOI: 10.1021/acssensors.4c01216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Continuous monitoring of ammonia (NH3) in humid environments poses a notable challenge for gas sensing applications because of its effect on sensor sensitivity. The present work investigates the detection of NH3 in a natural humid environment utilizing ReS2/Ti3C2Tx heterostructures as a sensing platform. ReS2 nanosheets were vertically grown on the surface of Ti3C2Tx sheets through a hydrothermal synthetic approach, resulting in the formation of ReS2/Ti3C2Tx heterostructures. The structural, morphological, and optical properties of ReS2/Ti3C2Tx were investigated using various state-of-the-art techniques, including scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, zeta potential, Brunauer-Emmett-Teller technique, and Raman spectroscopy. The heterostructures exhibited 1.3- and 8-fold increases in specific surface area compared with ReS2 and Ti3C2Tx, respectively, potentially enhancing the active gas adsorption sites. The electrical investigations of the ReS2/Ti3C2Tx-based sensor demonstrated enhanced selectivity and superior sensing response ranging from 7.8 to 12.4% toward 10 ppm of NH3 within a relative humidity range of 15-85% at room temperature. These findings highlight the synergistic effect of ReS2 and Ti3C2Tx, offering valuable insights for NH3 sensing in environments with high humidity, and are explained in the gas sensing mechanism.
Collapse
Affiliation(s)
- Sahil Gasso
- Department of Mechanical and Materials Engineering, Florida International University, Miami, Florida 33174, United States
| | - Jake Carrier
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Daniela Radu
- Department of Mechanical and Materials Engineering, Florida International University, Miami, Florida 33174, United States
| | - Cheng-Yu Lai
- Department of Mechanical and Materials Engineering, Florida International University, Miami, Florida 33174, United States
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| |
Collapse
|
5
|
Singh S, Shin KY, Moon S, Kim SS, Kim HW. Phase-Engineered MoSe 2/CeO 2 Composites for Room-Temperature Gas Sensing with a Drastic Discrimination of NH 3 and TEA Gases. ACS Sens 2024; 9:3994-4006. [PMID: 39042863 DOI: 10.1021/acssensors.4c00793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Detecting and distinguishing between hazardous gases with similar odors by using conventional sensor technology for safeguarding human health and ensuring food safety are significant challenges. Bulky, costly, and power-hungry devices, such as that used for gas chromatography-mass spectrometry (GC-MS), are widely employed for gas sensing. Using a single chemiresistive semiconductor or electric nose (e-nose) gas sensor to achieve this objective is difficult, mainly because of its selectivity issue. Thus, there is a need to develop new materials with tunable and versatile sensing characteristics. Phase engineering of two-dimensional materials to better utilize their physiochemical properties has attracted considerable attention. Here, we show that MoSe2 phase-transition/CeO2 composites can be effectively used to distinguish ammonia (NH3) and triethylamine (TEA) at room temperature. The phase transition of nanocomposite samples from semimetallic (1T) to semiconducting (2H) prepared at different synthesis temperatures is confirmed via X-ray photoelectron spectroscopy (XPS). A composite sensor in which the 2H phase of MoSe2 is predominant lacks discrimination capability and is less responsive to NH3 and TEA. An MoSe2/CeO2 composite sensor with a higher 1T phase content exhibits high selectivity for NH3, whereas one with a higher 2H phase content (2H > 1T) shows more selective behavior toward TEA. For example, for 50% relative humidity, the MoSe2/CeO2 sensor's signal changes from the baseline by 45% and 58% for 1 ppm of NH3 and TEA, respectively, indicating a low limit of detection (LOD) of 70 and 160 ppb, respectively. The composites' superior sensing characteristics are mainly attributed to their large specific surface area, their numerous active sites, presence of defects, and the n-n type heterojunction between MoSe2 and CeO2. The sensing mechanism is elucidated using Raman spectroscopy, XPS, and GC-MS results. Their phase-transition characteristics render MoSe2/CeO2 sensors promising for use in distributed, low-cost, and room-temperature sensor networks, and they offer new opportunities for the development of integrated advanced smart sensing technologies for environmental and healthcare.
Collapse
Affiliation(s)
- Sukhwinder Singh
- Division of Materials Science and Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Ka Yoon Shin
- Division of Materials Science and Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Sungjoon Moon
- Division of Materials Science and Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Sang Sub Kim
- Department of Materials Science and Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Hyoun Woo Kim
- Division of Materials Science and Engineering, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
6
|
Wang Y, Wang Y, Jian M, Jiang Q, Li X. MXene Key Composites: A New Arena for Gas Sensors. NANO-MICRO LETTERS 2024; 16:209. [PMID: 38842597 PMCID: PMC11156835 DOI: 10.1007/s40820-024-01430-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 04/22/2024] [Indexed: 06/07/2024]
Abstract
With the development of science and technology, the scale of industrial production continues to grow, and the types and quantities of gas raw materials used in industrial production and produced during the production process are also constantly increasing. These gases include flammable and explosive gases, and even contain toxic gases. Therefore, it is very important and necessary for gas sensors to detect and monitor these gases quickly and accurately. In recent years, a new two-dimensional material called MXene has attracted widespread attention in various applications. Their abundant surface functional groups and sites, excellent current conductivity, tunable surface chemistry, and outstanding stability make them promising for gas sensor applications. Since the birth of MXene materials, researchers have utilized the efficient and convenient solution etching preparation, high flexibility, and easily functionalize MXene with other materials to prepare composites for gas sensing. This has opened a new chapter in high-performance gas sensing materials and provided a new approach for advanced sensor research. However, previous reviews on MXene-based composite materials in gas sensing only focused on the performance of gas sensing, without systematically explaining the gas sensing mechanisms generated by different gases, as well as summarizing and predicting the advantages and disadvantages of MXene-based composite materials. This article reviews the latest progress in the application of MXene-based composite materials in gas sensing. Firstly, a brief summary was given of the commonly used methods for preparing gas sensing device structures, followed by an introduction to the key attributes of MXene related to gas sensing performance. This article focuses on the performance of MXene-based composite materials used for gas sensing, such as MXene/graphene, MXene/Metal oxide, MXene/Transition metal sulfides (TMDs), MXene/Metal-organic framework (MOF), MXene/Polymer. It summarizes the advantages and disadvantages of MXene composite materials with different composites and discusses the possible gas sensing mechanisms of MXene-based composite materials for different gases. Finally, future directions and inroads of MXenes-based composites in gas sensing are presented and discussed.
Collapse
Affiliation(s)
- Yitong Wang
- Hubei Province Key Laboratory of Systems Science in Metallurgical Process, Wuhan University of Science and Technology, Wuhan, 430081, People's Republic of China
| | - Yuhua Wang
- Hubei Province Key Laboratory of Systems Science in Metallurgical Process, Wuhan University of Science and Technology, Wuhan, 430081, People's Republic of China.
| | - Min Jian
- Hubei Province Key Laboratory of Systems Science in Metallurgical Process, Wuhan University of Science and Technology, Wuhan, 430081, People's Republic of China
| | - Qinting Jiang
- Key Materials and Components of Electrical Vehicles for Overseas Expertise Introduction Center for Discipline Innovation, Institute of Advanced Electrochemical Energy and School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, 710048, People's Republic of China
| | - Xifei Li
- Key Materials and Components of Electrical Vehicles for Overseas Expertise Introduction Center for Discipline Innovation, Institute of Advanced Electrochemical Energy and School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, 710048, People's Republic of China.
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, Fujian, People's Republic of China.
| |
Collapse
|
7
|
Wang Z, Yan F, Yu Z, Cao H, Ma Z, YeErKenTai Z, Li Z, Han Y, Zhu Z. Fully Transient 3D Origami Paper-Based Ammonia Gas Sensor Obtained by Facile MXene Spray Coating. ACS Sens 2024; 9:1447-1457. [PMID: 38412069 DOI: 10.1021/acssensors.3c02558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Developing high-performance chemiresistive gas sensors with mechanical compliance for environmental or health-related biomarker monitoring has recently drawn increasing research attention. Among them, two-dimensional MXene materials hold great potential for room-temperature hazardous gas (e.g., NH3) monitoring regardless of the complicated fabrication process, insufficient 2D/3D flexibilities, and poor environmental sustainability. Herein, a Ti3C2Tx MXene/gelatin ink was developed for patterning electrodes through a facile spray coating. Particularly, the patterned Ti3C2Tx-based coating exhibited good adhesion on the paper substrate against repeated peeling-off and excellent mechanical flexibility against 1000 cyclic stretching. The porous morphology of the coating facilitated the NH3 sensing ability. As a result, the 2D kirigami-shaped NH3 sensor exhibited a good response of 7% to 50 ppm of NH3 with detectable concentrations ranging from 5-500 ppm, decent selectivity over interferences, etc., which could be well-maintained even at 50% stretched state. In addition, with the help of mechanically guided compressive buckling, 3D mesostructured MXene origamis could be obtained, holding promise for detecting the coming direction and height distribution of hazardous gas, e.g., the NH3. More importantly, the as-fabricated MXene/gelatin origami paper could be fully degraded in PBS/H2O2/cellulase solution within 19 days, demonstrating its potential as a high-performance, shape morphable, and environmentally friendly wearable gas sensor.
Collapse
Affiliation(s)
- Zifeng Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Feng Yan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Zhichao Yu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Huina Cao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Zhanying Ma
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - ZuNa YeErKenTai
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Zhanhong Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Yutong Han
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Zhigang Zhu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| |
Collapse
|
8
|
Wang Y, Wang Y, Kuai Y, Jian M. "Visualization" Gas-Gas Sensors Based on High Performance Novel MXenes Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305250. [PMID: 37661585 DOI: 10.1002/smll.202305250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/01/2023] [Indexed: 09/05/2023]
Abstract
The detection of toxic, harmful, explosive, and volatile gases cannot be separated from gas sensors, and gas sensors are also used to monitor the greenhouse effect and air pollution. However, existing gas sensors remain with many drawbacks, such as lower sensitivity, lower selectivity, and unstable room temperature detection. Thus, there is an imperative need to find more suitable sensing materials. The emergence of a new 2D layered material MXenes has brought dawn to solve this problem. The multiple advantages of MXenes, namely high specific surface area, enriched terminal functionality groups, hydrophilicity, and good electrical conductivity, make them among the most prolific gas-sensing materials. Therefore, this review paper describes the current main synthesis methods of MXenes materials, and focuses on summarizing and organizing the latest research results of MXenes in gas sensing applications. It also introduces the possible gas sensing mechanisms of MXenes materials on NH3 , NO2 , CH3 , and volatile organic compounds (VOCs). In conclusion, it provides insight into the problems and upcoming challenges of MXenes materials for gas sensing.
Collapse
Affiliation(s)
- Yitong Wang
- Hubei Province Key Laboratory of Science in Metallurgical Process, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Yuhua Wang
- Hubei Province Key Laboratory of Science in Metallurgical Process, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Yanbing Kuai
- Hubei Province Key Laboratory of Science in Metallurgical Process, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Min Jian
- Hubei Province Key Laboratory of Science in Metallurgical Process, Wuhan University of Science and Technology, Wuhan, 430081, China
| |
Collapse
|
9
|
Zhao Z, Ma C, Xu L, Yu Z, Wang D, Jiang L, Jiang X, Gao G. Conductive Polyaniline-Based Microwire Arrays for SO 2 Gas Detection. ACS APPLIED MATERIALS & INTERFACES 2023; 15:38938-38945. [PMID: 37531472 DOI: 10.1021/acsami.3c06712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Polyaniline-based conductive polymers are promising electrochemical sensor materials due to their unique physical and chemical properties, such as good gas absorption, low dielectric loss, and chemical and thermal stabilities. The sensing performance is highly dependent on the structure and dimensions of the polyaniline-based conductive polymers. Although in situ oxidative polymerization combined with the self-assembly process has become one of the main processes for the preparation of flexible polyaniline-based gas sensors, how to prepare polyaniline materials into uniformly arranged microwire arrays is still an urgent problem. In this paper, an in-depth study was conducted on the preparation of polyaniline microwire arrays by combining a wettability interface dewetting process and a liquid-film-induced capillary bridges method. The factors influencing the preparation of polyaniline microwire arrays, including solution concentration, template width, evaporation temperature, and evaporation time, were investigated in detail. The wire formation rates were recorded from the results of SEM images. 100% microwires formation rate can be obtained by using a 1.0 mg mL-1 concentration of polyaniline solution and a 10 μm silicon template at an evaporation temperature of 80 °C for 18 h. The prepared microwire arrays can realize sulfur dioxide sensing at room temperature with a response speed of about 20 s and can detect sulfur dioxide gas as low as 1 ppm. Thus, the liquid-film-induced capillary bridge method shows a new possibility to prepare gas sensor devices for insoluble polymers.
Collapse
Affiliation(s)
- Zhihao Zhao
- Research Institute of Frontier Science, Beihang University, Beijing 100191, China
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Chao Ma
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Lingyun Xu
- Research Institute of Frontier Science, Beihang University, Beijing 100191, China
| | - Zhenwei Yu
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Dong Wang
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Lei Jiang
- Research Institute of Frontier Science, Beihang University, Beijing 100191, China
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 101407, China
- Ji Hua Laboratory, Foshan 528000, China
| | - Xiangyu Jiang
- Research Institute of Frontier Science, Beihang University, Beijing 100191, China
- Ji Hua Laboratory, Foshan 528000, China
| | - Guangcheng Gao
- Department of Dermatology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| |
Collapse
|
10
|
Linto Sibi SP, Rajkumar M, Govindharaj K, Mobika J, Nithya Priya V, Rajendra Kumar RT. Electronic sensitization enhanced p-type ammonia gas sensing of zinc doped MoS 2/RGO composites. Anal Chim Acta 2023; 1248:340932. [PMID: 36813461 DOI: 10.1016/j.aca.2023.340932] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
Zinc (Zn) doping induced synergetic effects of defects engineering and heterojunction in Molybdenum disulphide/Reduced graphene oxide (MoS2/RGO) effectively enhances the p-type Volatile organic compounds (VOC) gas sensing traits and helps in tailoring the over dependence on noble metals for surface sensitization. Through this work, we have successfully prepared Zn doped MoS2 grafted on RGO employing an in-situ hydrothermal method. Optimal doping concentration of Zn dopants in the MoS2 lattice triggered more active sites on the basal plane of MoS2 with the aid of defects promoted by the zinc dopants. Effective intercalation of RGO further boost up the exposed surface area of Zn doped MoS2 for further interaction of ammonia gas molecules. Besides, smaller crystallite size brought out by 5% Zn dopants aids in efficient charge transfer across the heterojunctions that further amplifies the ammonia sensing traits with a peak response of 32.40% along with a response time of 21.3 s and recovery time of 44.90 s. The as prepared ammonia gas sensor exhibited excellent selectivity and repeatability. The obtained results reveal that transition metal doping into the host lattice proves to be a promising approach for VOC sensing characteristics of p-type gas sensors and gives insight about the importance of dopants and defects for the development of highly efficient gas sensors in the future.
Collapse
Affiliation(s)
- S P Linto Sibi
- Department of Physics, PSG College of Arts and Science, Coimbatore, 641014, Tamil Nadu, India
| | - M Rajkumar
- Department of Physics, PSG College of Arts and Science, Coimbatore, 641014, Tamil Nadu, India.
| | - Kamaraj Govindharaj
- Advanced Materials and Devices Laboratory (AMDL), Department of Nanoscience and Technology, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| | - J Mobika
- Department of Physics, Nandha Engineering College, Erode, Tamil Nadu, 638052, India
| | - V Nithya Priya
- Department of Physics, PSG College of Arts and Science, Coimbatore, 641014, Tamil Nadu, India
| | - R T Rajendra Kumar
- Advanced Materials and Devices Laboratory (AMDL), Department of Nanoscience and Technology, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| |
Collapse
|
11
|
Gelatin-based films and mats as electro-sensoactive layers for monitoring volatile compounds related to meat spoilage. Food Packag Shelf Life 2023. [DOI: 10.1016/j.fpsl.2023.101049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
12
|
Chen H, Chen J, Liu Y, Li B, Li H, Zhang X, Lv C, Dong H. Wearable Dual-Signal NH 3 Sensor with High Sensitivity for Non-invasive Diagnosis of Chronic Kidney Disease. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:3420-3430. [PMID: 36880227 DOI: 10.1021/acs.langmuir.2c03347] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
NH3 gas in human exhaled breath contains abundant physiological information related to human health, especially chronic kidney disease (CKD). Unfortunately, up to now, most wearable NH3 sensors show inevitable defects (low sensitivity, easy to be interfered by the environment, etc.), which may lead to misdiagnosis of CKD. To solve the above dilemma, a nanoporous, heterogeneous, and dual-signal (optical and electrical) wearable NH3 sensor mask is developed successfully. More specifically, a polyacrylonitrile/bromocresol green (PAN/BCG) nanofiber film as a visual NH3 sensor and a polyacrylonitrile/polyaniline/reduced graphene oxide (PAN/PANI/rGO) nanofiber film as a resistive NH3 sensor are constructed. Due to the high specific surface area and abundant NH3 binding sites of these two nanofiber films, they exhibit good NH3 sensing performance. However, although the visual NH3 sensor (PAN/BCG nanofiber film) is simple without the need of any detecting facilities and quite stable when temperature and humidity change, it shows poor sensitivity and resolution. In comparison, the resistive NH3 sensor (PAN/PANI/rGO nanofiber film) is of high sensitivity, fast response, and good resolution, but its electrical signal is easily interfered by the external environment (such as humidity, temperature, etc.). Considering that the sensing principles between a visual NH3 sensor and resistive NH3 sensor are significantly different, a wearable dual-signal NH3 sensor containing both a visual NH3 sensor and resistive NH3 sensor is further explored. Our data prove that the two sensing signals in this dual-signal NH3 sensor mask can not only work well without interference with each other but also complement each other to improve the sensing accuracy, indicating its potential application in non-invasive diagnosis of CKD.
Collapse
Affiliation(s)
- Hongjie Chen
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Junlin Chen
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), South China University of Technology, Guangzhou, Guangdong 510006, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, Guangdong 510641, China
| | - Yang Liu
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Bingrui Li
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), South China University of Technology, Guangzhou, Guangdong 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Haofei Li
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), South China University of Technology, Guangzhou, Guangdong 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Xing Zhang
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), South China University of Technology, Guangzhou, Guangdong 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Chuhan Lv
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), South China University of Technology, Guangzhou, Guangdong 510006, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, Guangdong 510641, China
| | - Hua Dong
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), South China University of Technology, Guangzhou, Guangdong 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, Guangdong 510006, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, Guangdong 510641, China
| |
Collapse
|
13
|
He T, Wen F, Yang Y, Le X, Liu W, Lee C. Emerging Wearable Chemical Sensors Enabling Advanced Integrated Systems toward Personalized and Preventive Medicine. Anal Chem 2023; 95:490-514. [PMID: 36625107 DOI: 10.1021/acs.analchem.2c04527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Tianyiyi He
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore.,Center for Intelligent Sensors and MEMS, National University of Singapore, Block E6 #05-11, 5 Engineering Drive 1, Singapore 117608, Singapore
| | - Feng Wen
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore.,Center for Intelligent Sensors and MEMS, National University of Singapore, Block E6 #05-11, 5 Engineering Drive 1, Singapore 117608, Singapore
| | - Yanqin Yang
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore.,Center for Intelligent Sensors and MEMS, National University of Singapore, Block E6 #05-11, 5 Engineering Drive 1, Singapore 117608, Singapore
| | - Xianhao Le
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore.,Center for Intelligent Sensors and MEMS, National University of Singapore, Block E6 #05-11, 5 Engineering Drive 1, Singapore 117608, Singapore
| | - Weixin Liu
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore.,Center for Intelligent Sensors and MEMS, National University of Singapore, Block E6 #05-11, 5 Engineering Drive 1, Singapore 117608, Singapore
| | - Chengkuo Lee
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore.,Center for Intelligent Sensors and MEMS, National University of Singapore, Block E6 #05-11, 5 Engineering Drive 1, Singapore 117608, Singapore
| |
Collapse
|
14
|
Mahmoud ZH, Salman HNKA, Hussein HH, Adhab AH, Al-Majdi K, Rasheed T, Abdulhussien HA, Sasirekha N, Abd AN, Kianfar E. Organic chemical Nano sensors: synthesis, properties, and applications. BRAZ J BIOL 2023; 84:e268893. [PMID: 37194801 DOI: 10.1590/1519-6984.268893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 03/20/2023] [Indexed: 05/18/2023] Open
Abstract
Nanosensors work on the "Nano" scale. "Nano" is a unit of measurement around 10- 9 m. A nanosensor is a device capable of carrying data and information about the behavior and characteristics of particles at the nanoscale level to the macroscopic level. Nanosensors can be used to detect chemical or mechanical information such as the presence of chemical species and nanoparticles or monitor physical parameters such as temperature on the nanoscale. Nanosensors are emerging as promising tools for applications in agriculture. They offer an enormous upgrade in selectivity, speed, and sensitivity compared to traditional chemical and biological methods. Nanosensors can be used for the determination of microbe and contaminants. With the advancement of science in the world and the advent of electronic equipment and the great changes that have taken place in recent decades, the need to build more accurate, smaller and more capable sensors was felt. Today, high-sensitivity sensors are used that are sensitive to small amounts of gas, heat, or radiation. Increasing the sensitivity, efficiency and accuracy of these sensors requires the discovery of new materials and tools. Nano sensors are nanometer-sized sensors that, due to their small size and nanometer size, have such high accuracy and responsiveness that they react even to the presence of several atoms of a gas. Nano sensors are inherently smaller and more sensitive than other sensors.
Collapse
Affiliation(s)
- Z H Mahmoud
- Science College University of Diyala, Chemistry Department, Diyala, Iraq
| | - H N K Al Salman
- University of Basrah, College of Pharmacy, Department of pharmaceutical Chemistry, Basrah, Iraq
| | - H H Hussein
- University of Basrah, College of Pharmacy, Department of pharmaceutical Chemistry, Basrah, Iraq
| | - A H Adhab
- Al-Zahrawi University College, Department of Medical Laboratory Technics, Karbala, Iraq
| | - K Al-Majdi
- Ashur University College, Department of Biomedialc Engineering, Baghdad, Iraq
| | - T Rasheed
- Prince Sattam Bin Abdulaziz University, College of Science and Humanities, Department of English, Al-Kharj, Alkharj, Saudi Arabia
| | | | - N Sasirekha
- Sona College of Technology, Salem, Tamil Nadu, India
| | - A N Abd
- University of Diyala, Science College, Chemistry Department, Diyala, Iraq
| | - E Kianfar
- Islamic Azad University, Department of Chemical Engineering, Arak Branch, Arak, Iran
- Islamic Azad University, Young Researchers and Elite Club, Gachsaran Branch, Gachsaran, Iran
| |
Collapse
|
15
|
Choi D, Lee SJ, Baek D, Kim SO, Shin J, Choi Y, Cho Y, Bang S, Park JY, Lee SH, Park TH, Hong S. Bioelectrical Nose Platform Using Odorant-Binding Protein as a Molecular Transporter Mimicking Human Mucosa for Direct Gas Sensing. ACS Sens 2022; 7:3399-3408. [PMID: 36350699 DOI: 10.1021/acssensors.2c01507] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Recently, various bioelectronic nose devices based on human receptors were developed for mimicking a human olfactory system. However, such bioelectronic nose devices could operate in an aqueous solution, and it was often very difficult to detect insoluble gas odorants. Here, we report a portable bioelectronic nose platform utilizing a receptor protein-based bioelectronic nose device as a sensor and odorant-binding protein (OBP) as a transporter for insoluble gas molecules in a solution, mimicking the functionality of human mucosa. Our bioelectronic nose platform based on I7 receptor exhibited dose-dependent responses to octanal gas in real time. Furthermore, the bioelectronic platforms with OBP exhibited the sensor sensitivity improved by ∼100% compared with those without OBP. We also demonstrated the detection of odorant gas from real orange juice and found that the electrical responses of the devices with OBP were much larger than those without OBP. Since our bioelectronic nose platform allows us to directly detect gas-phase odorant molecules including a rather insoluble species, it could be a powerful tool for versatile applications and basic research based on a bioelectronic nose.
Collapse
Affiliation(s)
- Danmin Choi
- Department of Physics and Astronomy, Institute of Applied Physics, Seoul National University, Seoul 08826, Korea
| | - Se June Lee
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 15588, Korea
| | - Dahee Baek
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 15588, Korea
| | - So-Ong Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Korea
| | - Junghyun Shin
- Department of Physics and Astronomy, Institute of Applied Physics, Seoul National University, Seoul 08826, Korea
| | - Yoonji Choi
- Department of Physics and Astronomy, Institute of Applied Physics, Seoul National University, Seoul 08826, Korea
| | - Youngtak Cho
- Department of Physics and Astronomy, Institute of Applied Physics, Seoul National University, Seoul 08826, Korea
| | - Sunwoo Bang
- Department of Physics and Astronomy, Institute of Applied Physics, Seoul National University, Seoul 08826, Korea
| | - Jae Yeol Park
- Department of Electric Vehicle, Doowon University of Technology, Paju 10838, Korea
| | - Seung Hwan Lee
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 15588, Korea
| | - Tai Hyun Park
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Korea
| | - Seunghun Hong
- Department of Physics and Astronomy, Institute of Applied Physics, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
16
|
Simonenko NP, Fisenko NA, Fedorov FS, Simonenko TL, Mokrushin AS, Simonenko EP, Korotcenkov G, Sysoev VV, Sevastyanov VG, Kuznetsov NT. Printing Technologies as an Emerging Approach in Gas Sensors: Survey of Literature. SENSORS (BASEL, SWITZERLAND) 2022; 22:3473. [PMID: 35591162 PMCID: PMC9102873 DOI: 10.3390/s22093473] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 02/04/2023]
Abstract
Herein, we review printing technologies which are commonly approbated at recent time in the course of fabricating gas sensors and multisensor arrays, mainly of chemiresistive type. The most important characteristics of the receptor materials, which need to be addressed in order to achieve a high efficiency of chemisensor devices, are considered. The printing technologies are comparatively analyzed with regard to, (i) the rheological properties of the employed inks representing both reagent solutions or organometallic precursors and disperse systems, (ii) the printing speed and resolution, and (iii) the thickness of the formed coatings to highlight benefits and drawbacks of the methods. Particular attention is given to protocols suitable for manufacturing single miniature devices with unique characteristics under a large-scale production of gas sensors where the receptor materials could be rather quickly tuned to modify their geometry and morphology. We address the most convenient approaches to the rapid printing single-crystal multisensor arrays at lab-on-chip paradigm with sufficiently high resolution, employing receptor layers with various chemical composition which could replace in nearest future the single-sensor units for advancing a selectivity.
Collapse
Affiliation(s)
- Nikolay P. Simonenko
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 31 Leninsky pr., 119991 Moscow, Russia; (N.A.F.); (T.L.S.); (A.S.M.); (E.P.S.); (V.G.S.); (N.T.K.)
| | - Nikita A. Fisenko
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 31 Leninsky pr., 119991 Moscow, Russia; (N.A.F.); (T.L.S.); (A.S.M.); (E.P.S.); (V.G.S.); (N.T.K.)
- Higher Chemical College of the Russian Academy of Sciences, D. Mendeleev University of Chemical Technology of Russia, 9 Miusskaya sq., 125047 Moscow, Russia
| | - Fedor S. Fedorov
- Laboratory of Nanomaterials, Skolkovo Institute of Science and Technology, 3 Nobel Str., 121205 Moscow, Russia;
| | - Tatiana L. Simonenko
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 31 Leninsky pr., 119991 Moscow, Russia; (N.A.F.); (T.L.S.); (A.S.M.); (E.P.S.); (V.G.S.); (N.T.K.)
| | - Artem S. Mokrushin
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 31 Leninsky pr., 119991 Moscow, Russia; (N.A.F.); (T.L.S.); (A.S.M.); (E.P.S.); (V.G.S.); (N.T.K.)
| | - Elizaveta P. Simonenko
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 31 Leninsky pr., 119991 Moscow, Russia; (N.A.F.); (T.L.S.); (A.S.M.); (E.P.S.); (V.G.S.); (N.T.K.)
| | - Ghenadii Korotcenkov
- Department of Theoretical Physics, Moldova State University, 2009 Chisinau, Moldova;
| | - Victor V. Sysoev
- Department of Physics, Yuri Gagarin State Technical University of Saratov, 77 Polytechnicheskaya Str., 410054 Saratov, Russia
| | - Vladimir G. Sevastyanov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 31 Leninsky pr., 119991 Moscow, Russia; (N.A.F.); (T.L.S.); (A.S.M.); (E.P.S.); (V.G.S.); (N.T.K.)
| | - Nikolay T. Kuznetsov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 31 Leninsky pr., 119991 Moscow, Russia; (N.A.F.); (T.L.S.); (A.S.M.); (E.P.S.); (V.G.S.); (N.T.K.)
| |
Collapse
|
17
|
Abstract
Wireless chemical sensors have been developed as a result of advances in chemical sensing and wireless communication technology. Because of their mobility and widespread availability, smartphones have been extensively combined with sensors such as hand-held detectors, sensor chips, and test strips for biochemical detection. Smartphones are frequently used as controllers, analyzers, and displayers for quick, authentic, and point-of-care monitoring, which may considerably streamline the design and lower the cost of sensing systems. This study looks at the most recent wireless and smartphone-supported chemical sensors. The review is divided into four different topics that emphasize the basic types of wireless smartphone-operated chemical sensors. According to a study of 114 original research publications published during recent years, market opportunities for wireless and smartphone-supported chemical sensor systems include environmental monitoring, healthcare and medicine, food quality, sport, and fitness. The issues and illustrations for each of the primary chemical sensors relevant to many application areas are covered. In terms of performance, the advancement of technologies related to chemical sensors will result in smaller and more lightweight, cost-effective, versatile, and durable devices. Given the limitations, we suggest that wireless and smartphone-supported chemical sensor systems play a significant role in the sensor Internet of Things.
Collapse
|
18
|
Chen X, Wang T, Shi J, Lv W, Han Y, Zeng M, Yang J, Hu N, Su Y, Wei H, Zhou Z, Yang Z, Zhang Y. A Novel Artificial Neuron-Like Gas Sensor Constructed from CuS Quantum Dots/Bi 2S 3 Nanosheets. NANO-MICRO LETTERS 2021; 14:8. [PMID: 34859321 PMCID: PMC8639894 DOI: 10.1007/s40820-021-00740-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 08/23/2021] [Indexed: 05/07/2023]
Abstract
Real-time rapid detection of toxic gases at room temperature is particularly important for public health and environmental monitoring. Gas sensors based on conventional bulk materials often suffer from their poor surface-sensitive sites, leading to a very low gas adsorption ability. Moreover, the charge transportation efficiency is usually inhibited by the low defect density of surface-sensitive area than that in the interior. In this work, a gas sensing structure model based on CuS quantum dots/Bi2S3 nanosheets (CuS QDs/Bi2S3 NSs) inspired by artificial neuron network is constructed. Simulation analysis by density functional calculation revealed that CuS QDs and Bi2S3 NSs can be used as the main adsorption sites and charge transport pathways, respectively. Thus, the high-sensitivity sensing of NO2 can be realized by designing the artificial neuron-like sensor. The experimental results showed that the CuS QDs with a size of about 8 nm are highly adsorbable, which can enhance the NO2 sensitivity due to the rich sensitive sites and quantum size effect. The Bi2S3 NSs can be used as a charge transfer network channel to achieve efficient charge collection and transmission. The neuron-like sensor that simulates biological smell shows a significantly enhanced response value (3.4), excellent responsiveness (18 s) and recovery rate (338 s), low theoretical detection limit of 78 ppb, and excellent selectivity for NO2. Furthermore, the developed wearable device can also realize the visual detection of NO2 through real-time signal changes.
Collapse
Affiliation(s)
- Xinwei Chen
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Tao Wang
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Jia Shi
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Wen Lv
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Yutong Han
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Min Zeng
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Jianhua Yang
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Nantao Hu
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Yanjie Su
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Hao Wei
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Zhihua Zhou
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Zhi Yang
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| | - Yafei Zhang
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| |
Collapse
|
19
|
Qu CC, Sun XY, Sun WX, Cao LX, Wang XQ, He ZZ. Flexible Wearables for Plants. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2104482. [PMID: 34796649 DOI: 10.1002/smll.202104482] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/18/2021] [Indexed: 05/27/2023]
Abstract
The excellent stretchability and biocompatibility of flexible sensors have inspired an emerging field of plant wearables, which enable intimate contact with the plants to continuously monitor the growth status and localized microclimate in real-time. Plant flexible wearables provide a promising platform for the development of plant phenotype and the construction of intelligent agriculture via monitoring and regulating the critical physiological parameters and microclimate of plants. Here, the emerging applications of plant flexible wearables together with their pros and cons from four aspects, including physiological indicators, surrounding environment, crop quality, and active control of growth, are highlighted. Self-powered energy supply systems and signal transmission mechanisms are also elucidated. Furthermore, the future opportunities and challenges of plant wearables are discussed in detail.
Collapse
Affiliation(s)
- Chun-Chun Qu
- College of Engineering, China Agricultural University, Beijing, 100083, China
- State Key Laboratory of Plant Physiology and Biochemistry, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100083, China
- Sanya Institute of China Agricultural University, China Agricultural University, Hainan, 572000, China
| | - Xu-Yang Sun
- School of Medical Science and Engineering, Beihang University, Beijing, 100191, China
| | - Wen-Xiu Sun
- College of Engineering, China Agricultural University, Beijing, 100083, China
- State Key Laboratory of Plant Physiology and Biochemistry, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100083, China
| | - Ling-Xiao Cao
- College of Engineering, China Agricultural University, Beijing, 100083, China
| | - Xi-Qing Wang
- State Key Laboratory of Plant Physiology and Biochemistry, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100083, China
| | - Zhi-Zhu He
- College of Engineering, China Agricultural University, Beijing, 100083, China
| |
Collapse
|
20
|
Zhang X, Yang W, Zhang H, Xie M, Duan X. PEDOT:PSS: From conductive polymers to sensors. NANOTECHNOLOGY AND PRECISION ENGINEERING 2021. [DOI: 10.1063/10.0006866] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xiaoshuang Zhang
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
| | - Wentuo Yang
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
| | - Hainan Zhang
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
| | - Mengying Xie
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
| | - Xuexin Duan
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
| |
Collapse
|
21
|
A Wearable Electrochemical Gas Sensor for Ammonia Detection. SENSORS 2021; 21:s21237905. [PMID: 34883908 PMCID: PMC8659774 DOI: 10.3390/s21237905] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 01/04/2023]
Abstract
The next future strategies for improved occupational safety and health management could largely benefit from wearable and Internet of Things technologies, enabling the real-time monitoring of health-related and environmental information to the wearer, to emergency responders, and to inspectors. The aim of this study is the development of a wearable gas sensor for the detection of NH3 at room temperature based on the organic semiconductor poly(3,4-ethylenedioxythiophene) (PEDOT), electrochemically deposited iridium oxide particles, and a hydrogel film. The hydrogel composition was finely optimised to obtain self-healing properties, as well as the desired porosity, adhesion to the substrate, and stability in humidity variations. Its chemical structure and morphology were characterised by infrared spectroscopy and scanning electron microscopy, respectively, and were found to play a key role in the transduction process and in the achievement of a reversible and selective response. The sensing properties rely on a potentiometric-like mechanism that significantly differs from most of the state-of-the-art NH3 gas sensors and provides superior robustness to the final device. Thanks to the reliability of the analytical response, the simple two-terminal configuration and the low power consumption, the PEDOT:PSS/IrOx Ps/hydrogel sensor was realised on a flexible plastic foil and successfully tested in a wearable configuration with wireless connectivity to a smartphone. The wearable sensor showed stability to mechanical deformations and good analytical performances, with a sensitivity of 60 ± 8 μA decade−1 in a wide concentration range (17–7899 ppm), which includes the safety limits set by law for NH3 exposure.
Collapse
|
22
|
Reconfigurable Modular Platform for Prolonged Sensing of Toxic Gases in Particle Polluted Environments. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9110328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The prolonged sensing of toxic gases in polluted particles and harsh environments is a challenging task that is also in high demand. In this work, the proof of principle of a sensitive, low-cost, and low-maintenance reconfigurable platform for filter-free and continuous ammonia (NH3) sensing in polluted environments is simulated. The platform can be modified for the detection of various toxic gases and includes three main modules: a microfluidic system for in-line continuous dust filtering; a toxic gas adsorption module; and a low-frequency microwave split-ring resonator (SRR). An inertia-based spiral microfluidic system has been designed and optimized through simulation for the in-line filtration of small particles from the intake air. Zeolite Y is selected as the adsorbent in the adsorption module. The adsorption module is a non-metallic thin tube that is filled with zeolite Y powder and precisely fixed at the drilled through-hole into the 3D microwave system. For the sensing module, a low-frequency three-dimensional (3D) split-ring resonator is proposed and optimally designed. A microwave resonator continuously monitors the permittivity of zeolite Y and can detect small permittivity alterations upon the presence of ammonia in the intake air. The microwave resonator is optimized at a frequency range of 2.5–3 GHz toward the detection of ammonia under different ammonia concentrations from 400 to 2800 ppm. The microwave simulation results show a clear contrast of around 4 MHz that shifts at 2.7 GHz for 400 ppm ammonia concentration. The results show the proof of principle of the proposed microfluidic-microwave platform for toxic gas detection.
Collapse
|
23
|
Zhang H, Moon SK. Reviews on Machine Learning Approaches for Process Optimization in Noncontact Direct Ink Writing. ACS APPLIED MATERIALS & INTERFACES 2021; 13:53323-53345. [PMID: 34042439 DOI: 10.1021/acsami.1c04544] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Recently, machine learning has gained considerable attention in noncontact direct ink writing because of its novel process modeling and optimization techniques. Unlike conventional fabrication approaches, noncontact direct ink writing is an emerging 3D printing technology for directly fabricating low-cost and customized device applications. Despite possessing many advantages, the achieved electrical performance of produced microelectronics is still limited by the printing quality of the noncontact ink writing process. Therefore, there has been increasing interest in the machine learning for process optimization in the noncontact direct ink writing. Compared with traditional approaches, despite machine learning-based strategies having great potential for efficient process optimization, they are still limited to optimize a specific aspect of the printing process in the noncontact direct ink writing. Therefore, a systematic process optimization approach that integrates the advantages of state-of-the-art machine learning techniques is in demand to fully optimize the overall printing quality. In this paper, we systematically discuss the printing principles, key influencing factors, and main limitations of the noncontact direct ink writing technologies based on inkjet printing (IJP) and aerosol jet printing (AJP). The requirements for process optimization of the noncontact direct ink writing are classified into four main aspects. Then, traditional methods and the state-of-the-art machine learning-based strategies adopted in IJP and AJP for process optimization are reviewed and compared with pros and cons. Finally, to further develop a systematic machine learning approach for the process optimization, we highlight the major limitations, challenges, and future directions of the current machine learning applications.
Collapse
Affiliation(s)
- Haining Zhang
- Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology, Kunming 650500, China
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Seung Ki Moon
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
24
|
Adamu BI, Chen P, Chu W. Role of nanostructuring of sensing materials in performance of electrical gas sensors by combining with extra strategies. NANO EXPRESS 2021. [DOI: 10.1088/2632-959x/ac3636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
25
|
Tang N, Zheng Y, Cui D, Haick H. Multifunctional Dressing for Wound Diagnosis and Rehabilitation. Adv Healthc Mater 2021; 10:e2101292. [PMID: 34310078 DOI: 10.1002/adhm.202101292] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Indexed: 12/12/2022]
Abstract
A wound dressing is a sterile pad or compress that is used in direct contact with a wound to help it heal and prevent further issues or complications. Though wound healing is an intricate dynamic process that involves multiple biomolecular species, conventional wound dressings have a limited ability to provide timely information of abnormal conditions, missing the best time for early treatment. The current perspective presents and discusses the design and development of smart wound dressings that are integrated with multifunctional materials, wearable sensors and drug delivery systems as well as their application ranging from wound monitoring to timely application of therapeutics. The perspective also discusses the ongoing challenges and exciting opportunities associated with the development of wearable sensor-based smart wound dressing and provide critical insights into wound healing monitoring and management.
Collapse
Affiliation(s)
- Ning Tang
- School of Electronic Information and Electrical Engineering Shanghai Jiao Tong University Shanghai 200240 P. R. China
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute Technion‐Israel Institute of Technology Haifa 3200003 Israel
| | - Youbin Zheng
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute Technion‐Israel Institute of Technology Haifa 3200003 Israel
| | - Daxiang Cui
- School of Electronic Information and Electrical Engineering Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Hossam Haick
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute Technion‐Israel Institute of Technology Haifa 3200003 Israel
| |
Collapse
|
26
|
Xue Q, Kan X, Pan Z, Li Z, Pan W, Zhou F, Duan X. An intelligent face mask integrated with high density conductive nanowire array for directly exhaled coronavirus aerosols screening. Biosens Bioelectron 2021; 186:113286. [PMID: 33990035 PMCID: PMC8091738 DOI: 10.1016/j.bios.2021.113286] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/19/2021] [Accepted: 04/23/2021] [Indexed: 01/10/2023]
Abstract
The current ongoing outbreak of Coronavirus Disease 2019 (COVID-19) has globally affected the lives of more than one hundred million people. RT-PCR based molecular test is recommended as the gold standard method for diagnosing current infections. However, transportation and processing of the clinical sample for detecting virus require an expert operator and long processing time. Testing device enables on-site virus detection could reduce the sample-to-answer time, which plays a central role in containing the pandemic. In this work, we proposed an intelligent face mask, where a flexible immunosensor based on high density conductive nanowire array, a miniaturized impedance circuit, and wireless communication units were embedded. The sub-100 nm size and the gap between the neighbored nanowires facilitate the locking of nanoscale virus particles by the nanowire arrays and greatly improve the detection efficiency. Such a point-of-care (POC) system was demonstrated for coronavirus 'spike' protein and whole virus aerosol detection in simulated human breath. Detection of viral concentration as low as 7 pfu/mL from the atomized sample of coronavirus aerosol mimic was achieved in only 5 min. The POC systems can be readily applied for preliminary screening of coronavirus infections on-site and may help to understand the COVID-19 progression while a patient is under prescribed therapy.
Collapse
Affiliation(s)
- Qiannan Xue
- State Key Laboratory of Precision Measuring Technology & Instruments, School of Precision Instruments and Optoelec-tronics Engineering, Tianjin University, Tianjin, 300072, China
| | - Xinyuan Kan
- State Key Laboratory of Precision Measuring Technology & Instruments, School of Precision Instruments and Optoelec-tronics Engineering, Tianjin University, Tianjin, 300072, China
| | - Zhihao Pan
- State Key Laboratory of Precision Measuring Technology & Instruments, School of Precision Instruments and Optoelec-tronics Engineering, Tianjin University, Tianjin, 300072, China
| | - Zheyu Li
- State Key Laboratory of Precision Measuring Technology & Instruments, School of Precision Instruments and Optoelec-tronics Engineering, Tianjin University, Tianjin, 300072, China
| | - Wenwei Pan
- State Key Laboratory of Precision Measuring Technology & Instruments, School of Precision Instruments and Optoelec-tronics Engineering, Tianjin University, Tianjin, 300072, China
| | - Feng Zhou
- State Key Laboratory of Precision Measuring Technology & Instruments, School of Precision Instruments and Optoelec-tronics Engineering, Tianjin University, Tianjin, 300072, China
| | - Xuexin Duan
- State Key Laboratory of Precision Measuring Technology & Instruments, School of Precision Instruments and Optoelec-tronics Engineering, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
27
|
Haick H, Tang N. Artificial Intelligence in Medical Sensors for Clinical Decisions. ACS NANO 2021; 15:3557-3567. [PMID: 33620208 DOI: 10.1021/acsnano.1c00085] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Due to the limited ability of conventional methods and the limited perspective of human diagnostics, patients are often diagnosed incorrectly or at a late stage as their disease condition progresses. They may then undergo unnecessary treatments due to inaccurate diagnoses. In this Perspective, we offer a brief overview on the integration of nanotechnology-based medical sensors and artificial intelligence (AI) for advanced clinical decision support systems to help decision-makers and healthcare systems improve how they approach information, insights, and the surrounding contexts, as well as to promote the uptake of personalized medicine on an individualized basis. Relying on these milestones, wearable sensing devices could enable interactive and evolving clinical decisions that could be used for evidence-based analysis and recommendations as well as for personalized monitoring of disease progress and treatment. We present and discuss the ongoing challenges and future opportunities associated with AI-enabled medical sensors in clinical decisions.
Collapse
Affiliation(s)
- Hossam Haick
- The Department of Chemical Engineering and the Russell Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Ning Tang
- The Department of Chemical Engineering and the Russell Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
28
|
Yang T, Duncan TV. Challenges and potential solutions for nanosensors intended for use with foods. NATURE NANOTECHNOLOGY 2021; 16:251-265. [PMID: 33712739 DOI: 10.1038/s41565-021-00867-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 01/14/2021] [Indexed: 06/12/2023]
Abstract
Nanotechnology-adapted detection technologies could improve the safety and quality of foods, provide new methods to combat fraud and be useful tools in our arsenal against bioterrorism. Yet despite hundreds of published studies on nanosensors each year targeted to the food and agriculture space, there are few nanosensors on the market in this area and almost no nanotechnology-enabled methods employed by public health agencies for food analysis. This Review shows that the field is currently being held back by technical, regulatory, political, legal, economic, environmental health and safety, and ethical challenges. We explore these challenges in detail and provide suggestions about how they may be surmounted. Strategies that may have particular effectiveness include improving funding opportunities and publication venues for nanosensor validation, social science and patent landscape studies; prioritizing research and development of nanosensors that are specifically designed for rapid analysis in non-laboratory settings; and incorporating platform cost and adaptability into early design decisions.
Collapse
Affiliation(s)
- Tianxi Yang
- Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, Bedford Park, IL, USA
| | - Timothy V Duncan
- Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, Bedford Park, IL, USA.
| |
Collapse
|
29
|
Ziegler JM, Andoni I, Choi EJ, Fang L, Flores-Zuleta H, Humphrey NJ, Kim DH, Shin J, Youn H, Penner RM. Sensors Based Upon Nanowires, Nanotubes, and Nanoribbons: 2016-2020. Anal Chem 2020; 93:124-166. [PMID: 33242951 DOI: 10.1021/acs.analchem.0c04476] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Joshua M Ziegler
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Ilektra Andoni
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Eric J Choi
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Lu Fang
- Department of Automation, Hangzhou Dianzi University, 1158 Second Street, Xiasha, Hangzhou 310018, China
| | - Heriberto Flores-Zuleta
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Nicholas J Humphrey
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Dong-Hwan Kim
- School of Chemical Engineering, Sungkyunkwan University, Seobu-ro 2066, Jangan-gu Suwon, Gyeonggi-do 16419, South Korea
| | - Jihoon Shin
- School of Chemical Engineering, Sungkyunkwan University, Seobu-ro 2066, Jangan-gu Suwon, Gyeonggi-do 16419, South Korea
| | - Hyunho Youn
- School of Chemical Engineering, Sungkyunkwan University, Seobu-ro 2066, Jangan-gu Suwon, Gyeonggi-do 16419, South Korea
| | - Reginald M Penner
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| |
Collapse
|
30
|
Zhang S, Lin C, Xia Z, Chen M, Jia Y, Tao B, Li S, Cai K. A facile and novel design of multifunctional electronic skin based on polydimethylsiloxane with micropillars for signal monitoring. J Mater Chem B 2020; 8:8315-8322. [PMID: 32785401 DOI: 10.1039/d0tb00954g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Electronic skins (e-skins) with monitoring capabilities have attracted extensive attention and are being widely employed in wearable devices for medical diagnosis. In particular, e-skins based on strain sensors have been reported extensively due to their simple structure and efficient performance in collecting human physiological information. Flexible sensors with high sensitivity, simplified fabrication, and low-cost are highly desired for human signal monitoring; this work provides a novel strain-sensing e-skin with micro-structures, which is simply made of modified polydimethylsiloxane (PDMS) and silver nanowires (AgNWs). The fabricated e-skin has great sensitivity towards strain changes, and its mechanical properties and sensitivity could be regulated by varying the micro-structures. Furthermore, the e-skin demonstrated significant capacity for monitoring human body movements, temperature changes, and spatial resolution, highlighting its great potential in personalized medicine.
Collapse
Affiliation(s)
- Songyue Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
| | - Chuanchuan Lin
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
| | - Zengzilu Xia
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
| | - Maowen Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
| | - Yile Jia
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
| | - Bailong Tao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
| | - Shunbo Li
- Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education and Key Disciplines Laboratory of Novel Micro-Nano Devices and System Technology, School of Optoelectronics Engineering, Chongqing University, Chongqing 400044, China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
31
|
Ammonia Gas Sensors: Comparison of Solid-State and Optical Methods. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10155111] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
High precision and fast measurement of gas concentrations is important for both understanding and monitoring various phenomena, from industrial and environmental to medical and scientific applications. This article deals with the recent progress in ammonia detection using in-situ solid-state and optical methods. Due to the continuous progress in material engineering and optoelectronic technologies, these methods are among the most perceptive because of their advantages in a specific application. We present the basics of each technique, their performance limits, and the possibility of further development. The practical implementations of representative examples are described in detail. Finally, we present a performance comparison of selected practical application, accumulating data reported over the preceding decade, and conclude from this comparison.
Collapse
|
32
|
Jia A, Liu B, Liu H, Li Q, Yun Y. Interface Design of SnO 2@PANI Nanotube With Enhanced Sensing Performance for Ammonia Detection at Room Temperature. Front Chem 2020; 8:383. [PMID: 32582622 PMCID: PMC7283607 DOI: 10.3389/fchem.2020.00383] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/14/2020] [Indexed: 11/13/2022] Open
Abstract
Gas sensors with excellent stability and a high response at room temperature has drawn a great deal of attention and demand for them is huge. Surface designs provide inspiration toward making more useful sensor devices. The facile electrospinning process and Ar plasma treatment are used to fabricate rich and stable oxygen vacancies that contain a core-shell structured SnO2 polyaniline (PANI) nanotube. It shows that the induced surface oxygen vacancies would accelerate the PANI shell to generate more protons, which can enhance its sensor responsibility through reacting with the target Ammonia (NH3) gas. It was also found that the obtained oxygen vacancies can be well-protected by the coated PANI shell, which enhance and stabilize the gas response. It shows that the room temperature for the gas response of NH3 can reach up to 35.3 at 100 ppm. Finally, its good stability is demonstrated by the response-recovery performances carried out over 3 months and multiple cycles. This work indicates that this well-designed PANI-coated plasma-treated SnO2 is a potential way to design ammonia gas sensors.
Collapse
Affiliation(s)
- Anqiang Jia
- Department of Urban and Rural Planning, School of Architecture, Tianjin University, Tianjin, China.,Research Institute for New Materials Technology, Chongqing University of Arts and Sciences, Chongqing, China.,Institute of Urban and Rural Construction, College of Science, College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Bitao Liu
- Research Institute for New Materials Technology, Chongqing University of Arts and Sciences, Chongqing, China
| | - Haiyan Liu
- Institute of Urban and Rural Construction, College of Science, College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Qiufeng Li
- Institute of Urban and Rural Construction, College of Science, College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Yingxia Yun
- Department of Urban and Rural Planning, School of Architecture, Tianjin University, Tianjin, China
| |
Collapse
|
33
|
Tang N, Zhou C, Qu D, Fang Y, Zheng Y, Hu W, Jin K, Wu W, Duan X, Haick H. A Highly Aligned Nanowire-Based Strain Sensor for Ultrasensitive Monitoring of Subtle Human Motion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2001363. [PMID: 32390318 DOI: 10.1002/smll.202001363] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 06/11/2023]
Abstract
Achieving highly accurate responses to external stimuli during human motion is a considerable challenge for wearable devices. The present study leverages the intrinsically high surface-to-volume ratio as well as the mechanical robustness of nanostructures for obtaining highly-sensitive detection of motion. To do so, highly-aligned nanowires covering a large area were prepared by capillarity-based mechanism. The nanowires exhibit a strain sensor with excellent gauge factor (≈35.8), capable of high responses to various subtle external stimuli (≤200 µm deformation). The wearable strain sensor exhibits also a rapid response rate (≈230 ms), mechanical stability (1000 cycles) and reproducibility, low hysteresis (<8.1%), and low power consumption (<35 µW). Moreover, it achieves a gauge factor almost five times that of microwire-based sensors. The nanowire-based strain sensor can be used to monitor and discriminate subtle movements of fingers, wrist, and throat swallowing accurately, enabling such movements to be integrated further into a miniaturized analyzer to create a wearable motion monitoring system for mobile healthcare.
Collapse
Affiliation(s)
- Ning Tang
- School of Aerospace Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Cheng Zhou
- State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin, 300072, China
| | - Danyao Qu
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Ye Fang
- State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin, 300072, China
| | - Youbin Zheng
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Wenwen Hu
- School of Aerospace Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Ke Jin
- School of Aerospace Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Weiwei Wu
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Xuexin Duan
- State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin, 300072, China
| | - Hossam Haick
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an, Shaanxi, 710126, China
| |
Collapse
|
34
|
Xue Q, Li Z, Wang Q, Pan W, Chang Y, Duan X. Nanostrip flexible microwave enzymatic biosensor for noninvasive epidermal glucose sensing. NANOSCALE HORIZONS 2020; 5:934-943. [PMID: 32301449 DOI: 10.1039/d0nh00098a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Microwave sensors based on microstrip antennas are promising as wearable devices because of their flexibility and wireless communication compatibility. However, their sensitivity is limited due to the reduced sensor size and the potential of biochemical monitoring needs to be explored. In this work, we present a new concept to enhance the microwave signals using nanostrip-based metamaterials. The introduction of the nanostrip structures was achieved by theory and simulations. Experiments prove their enhancement of the electric field and sensing response in the characteristic gigahertz (GHz) wave band. Ordered nanostrips were fabricated on a plastic substrate through a simple nanoscale printing approach. Glucose oxidase is directly doped into the nanostrips, which enables a flexible wearable enzymatic biosensor for glucose sensing. Sensing experiments demonstrated that the nanostrip biosensor gives excellent performance for glucose detection, including high sensitivity, fast response, low detection limit, high affinity, and low power consumption. The applicability of the nanostrip-based sensor as a wearable epidermal device for real-time noninvasive monitoring of glucose in sweat is verified as well.
Collapse
Affiliation(s)
- Qiannan Xue
- State Key Laboratory of Precision Measuring Technology and Instruments, School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China.
| | | | | | | | | | | |
Collapse
|
35
|
Luo H, Lin X, Peng Z, Zhou Y, Xu S, Song M, Jin L, Zheng X. A Fast and Highly Selective Nitrite Sensor Based on Interdigital Electrodes Modified With Nanogold Film and Chrome-Black T. Front Chem 2020; 8:366. [PMID: 32411677 PMCID: PMC7201102 DOI: 10.3389/fchem.2020.00366] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 04/08/2020] [Indexed: 11/17/2022] Open
Abstract
Nitrite is a toxic substance, when excessive nitrite enters the human body, it will be seriously harmful to human. At present, the detection methods of nitrite are complicated to operate and require expensive detection instruments. Therefore, an effective, fast and highly selective nanogold film interdigital electrode sensors that can detect nitrite easily and quickly is developed in the work. Firstly, the variation of the sensitivity of nanogold film nitrite sensors with concentrations (1 mol/L, 10−1 mol/L, 10−2 mol/L, 10−3 mol/L, 10−4 mol/L, and 10−5 mol/L) was measured by experiments. Then, Chrome-black T was modified to the surface of the nanogold film interdigital electrodes by electrochemical polymerization, and the film of chrome-black T had affinity for nitrite ions, so nitrite ions were enriched on the sensor surface. The change law of the impedance signal of the modified nanogold film nitrite sensors after being added to different concentrations of sodium nitrite solution were also concluded. The study demonstrates that the larger the concentration of sodium nitrite solution is added to the modified interdigital electrodes, the smaller impedance and resistance of the modified interdigital electrodes are reflected. Finally, specificity of the modified interdigital electrode sensors has been demonstrated. The novel interdigital electrode sensors can detect the concentration of nitrite solution conveniently and quickly with only 30 s. Therefore, the prospect of applying the novel nanogold film interdigital electrode sensors to the detection of nitrite in blood, body fluid, food and drinking water is promising.
Collapse
Affiliation(s)
- Haoyue Luo
- Key Laboratory of Optoelectronic Technology and Systems of Ministry of Education of China, Chongqing University, Chongqing, China
| | - Xiaogang Lin
- Key Laboratory of Optoelectronic Technology and Systems of Ministry of Education of China, Chongqing University, Chongqing, China
| | - Zhijia Peng
- Key Laboratory of Optoelectronic Technology and Systems of Ministry of Education of China, Chongqing University, Chongqing, China
| | - Yong Zhou
- Key Laboratory of Optoelectronic Technology and Systems of Ministry of Education of China, Chongqing University, Chongqing, China
| | - Shibin Xu
- Key Laboratory of Optoelectronic Technology and Systems of Ministry of Education of China, Chongqing University, Chongqing, China
| | - Ming Song
- Key Laboratory of Optoelectronic Technology and Systems of Ministry of Education of China, Chongqing University, Chongqing, China
| | - Lifeng Jin
- Key Laboratory of Optoelectronic Technology and Systems of Ministry of Education of China, Chongqing University, Chongqing, China
| | - Xiaodong Zheng
- Chongqing University Cancer Hospital, Chongqing University, Chongqing, China
| |
Collapse
|
36
|
Song C, Luo H, Lin X, Peng Z, Weng L, Tang X, Xu S, Song M, Jin L, Zheng X. Study on AgInZnS-Graphene Oxide Non-toxic Quantum Dots for Biomedical Sensing. Front Chem 2020; 8:331. [PMID: 32432079 PMCID: PMC7215081 DOI: 10.3389/fchem.2020.00331] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 03/31/2020] [Indexed: 11/20/2022] Open
Abstract
In recent years, non-toxic quantum dot has caught the attention of biomedical fields. However, the inherent cytotoxicity of QDs makes its biomedical application painful, and is a major drawback of this method. In this paper, a non-toxic and water-soluble quantum dot AgInZnS-GO using graphene oxide was synthesized. A simple model of state complex was also established, which is produced through a combination of quantum dots and protein. The interaction between AIZS-GO QDs and human serum albumin (HSA) has significant meaning in vivo biological application. Herein, the binding of AIZS-GO QDs and HSA were researched using fluorescence spectra, Uv-visible absorption spectra, FT-IR spectra, and circular dichroism (CD) spectra. The results of fluorescence spectra demonstrate that AIZS-GO QDs have an obvious fluorescence quenching effect on HSA. The quenching mechanism is static quenching, which implies that some type of complex was produced by the binding of QDs and HSA. These results were further proved by Uv-visible absorption spectroscopy. The Stern-Volmer quenching constant Ksv at various temperatures (298 K, 303 K, 308 K) were acquired from analyzing Stern-Volmer plots of the fluorescence quenching information. The Van't Hoff equation could describe the thermodynamic parameters, which demonstrated that the van der Waals and hydrogen bonds had an essential effect on the interaction. FT-IR spectra and CD spectra further indicate that AIZS-GO QDs can alter the structure of HSA. These spectral methods show that the quantum dot can combine well with HSA. The experimental results showed that AgInZn-GO water-soluble quantum dots have good biocompatibility, which can be combined with proteins to form new compounds which have no cytotoxicity and biological practicability. It provides an important basis for the combination of quantum dots and specific proteins as well as fluorescent labeling.
Collapse
Affiliation(s)
- Chi Song
- Department of Life Science and Technology, Changshu Institute of Technology, Changshu, China
| | - Haoyue Luo
- Key Laboratory of Optoelectronic Technology and Systems of Ministry of Education of China, Chongqing University, Chongqing, China
| | - Xiaogang Lin
- Key Laboratory of Optoelectronic Technology and Systems of Ministry of Education of China, Chongqing University, Chongqing, China
| | - Zhijia Peng
- Key Laboratory of Optoelectronic Technology and Systems of Ministry of Education of China, Chongqing University, Chongqing, China
| | - Lingdong Weng
- Key Laboratory of Optoelectronic Technology and Systems of Ministry of Education of China, Chongqing University, Chongqing, China
| | - Xiaosheng Tang
- Key Laboratory of Optoelectronic Technology and Systems of Ministry of Education of China, Chongqing University, Chongqing, China
| | - Shibin Xu
- Key Laboratory of Optoelectronic Technology and Systems of Ministry of Education of China, Chongqing University, Chongqing, China
| | - Ming Song
- Key Laboratory of Optoelectronic Technology and Systems of Ministry of Education of China, Chongqing University, Chongqing, China
| | - Lifeng Jin
- Key Laboratory of Optoelectronic Technology and Systems of Ministry of Education of China, Chongqing University, Chongqing, China
| | - Xiaodong Zheng
- Chongqing University Cancer Hospital, Chongqing University, Chongqing, China
| |
Collapse
|
37
|
Yuan Z, Bariya M, Fahad HM, Wu J, Han R, Gupta N, Javey A. Trace-Level, Multi-Gas Detection for Food Quality Assessment Based on Decorated Silicon Transistor Arrays. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1908385. [PMID: 32285547 DOI: 10.1002/adma.201908385] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/28/2020] [Accepted: 03/16/2020] [Indexed: 05/23/2023]
Abstract
Multiplexed gas detection at room temperature is critical for practical applications, such as for tracking the complex chemical environments associated with food decomposition and spoilage. An integrated array of multiple silicon-based, chemical-sensitive field effect transistors (CSFETs) is presented to realize selective, sensitive, and simultaneous measurement of gases typically associated with food spoilage. CSFETs decorated with sensing materials based on ruthenium, silver, and silicon oxide are used to obtain stable room-temperature responses to ammonia (NH3 ), hydrogen sulfide (H2 S), and humidity, respectively. For example, one multi-CSFET sensor signal changes from its baseline by 13.34 in response to 1 ppm of NH3 , 724.45 under 1 ppm H2 S, and 23.46 under 80% relative humidity, with sensitive detection down to 10 ppb of NH3 and H2 S. To demonstrate this sensor for practical applications, the CSFET sensor array is combined with a custom-printed circuit board into a compact, fully integrated, and portable system to conduct real-time monitoring of gases generated by decomposing food. By using existing silicon-based manufacturing methodologies, this room-temperature gas sensing array can be fabricated reproducibly and at low cost, making it an attractive platform for ambient gas measurement needed in food safety applications.
Collapse
Affiliation(s)
- Zhen Yuan
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA, 94720, USA
- Berkeley Sensor and Actuator Center, University of California, Berkeley, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Mallika Bariya
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA, 94720, USA
- Berkeley Sensor and Actuator Center, University of California, Berkeley, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Hossain M Fahad
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA, 94720, USA
- Berkeley Sensor and Actuator Center, University of California, Berkeley, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jingbo Wu
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA, 94720, USA
- Berkeley Sensor and Actuator Center, University of California, Berkeley, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Rui Han
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA, 94720, USA
- Berkeley Sensor and Actuator Center, University of California, Berkeley, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Niharika Gupta
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA, 94720, USA
- Berkeley Sensor and Actuator Center, University of California, Berkeley, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Ali Javey
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA, 94720, USA
- Berkeley Sensor and Actuator Center, University of California, Berkeley, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| |
Collapse
|
38
|
Wang Z, Hu T, Liang R, Wei M. Application of Zero-Dimensional Nanomaterials in Biosensing. Front Chem 2020; 8:320. [PMID: 32373593 PMCID: PMC7182656 DOI: 10.3389/fchem.2020.00320] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 03/30/2020] [Indexed: 12/15/2022] Open
Abstract
Zero-dimensional (0D) nanomaterials, including graphene quantum dots (GQDs), carbon quantum dots (CQDs), fullerenes, inorganic quantum dots (QDs), magnetic nanoparticles (MNPs), noble metal nanoparticles, upconversion nanoparticles (UCNPs) and polymer dots (Pdots), have attracted extensive research interest in the field of biosensing in recent years. Benefiting from the ultra-small size, quantum confinement effect, excellent physical and chemical properties and good biocompatibility, 0D nanomaterials have shown great potential in ion detection, biomolecular recognition, disease diagnosis and pathogen detection. Here we first introduce the structures and properties of different 0D nanomaterials. On this basis, recent progress and application examples of 0D nanomaterials in the field of biosensing are discussed. In the last part, we summarize the research status of 0D nanomaterials in the field of biosensing and anticipate the development prospects and future challenges in this field.
Collapse
Affiliation(s)
| | | | - Ruizheng Liang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Min Wei
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
39
|
Güntner AT, Wied M, Pineau NJ, Pratsinis SE. Rapid and Selective NH 3 Sensing by Porous CuBr. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1903390. [PMID: 32274318 PMCID: PMC7140997 DOI: 10.1002/advs.201903390] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/11/2020] [Indexed: 05/25/2023]
Abstract
Fast and selective detection of NH3 at parts-per-billion (ppb) concentrations with inexpensive and low-power sensors represents a long-standing challenge. Here, a room temperature, solid-state sensor is presented consisting of nanostructured porous (78%) CuBr films. These are prepared by flame-aerosol deposition of CuO onto sensor substrates followed by dry reduction and bromination. Each step is monitored in situ through the film resistance affording excellent process control. Such porous CuBr films feature an order of magnitude higher NH3 sensitivity and five times faster response times than conventional denser CuBr films. That way, rapid (within 2.2 min) sensing of even the lowest (e.g., 5 ppb) NH3 concentrations at 90% relative humidity is attained with outstanding selectivity (30-260) over typical confounders including ethanol, acetone, H2, CH4, isoprene, acetic acid, formaldehyde, methanol, and CO, superior to state-of-the-art sensors. This sensor is ideal for hand-held and battery-driven devices or integration into wearable electronics as it does not require heating. From a broader perspective, the process opens exciting new avenues to also explore other bromides and classes of semiconductors (e.g., sulfides, nitrides, carbides) currently not accessible by flame-aerosol technology.
Collapse
Affiliation(s)
- Andreas T. Güntner
- Particle Technology LaboratoryDepartment of Mechanical and Process EngineeringETH ZurichSonneggstrasse 3Zurich8092Switzerland
| | - Markus Wied
- Particle Technology LaboratoryDepartment of Mechanical and Process EngineeringETH ZurichSonneggstrasse 3Zurich8092Switzerland
| | - Nicolay J. Pineau
- Particle Technology LaboratoryDepartment of Mechanical and Process EngineeringETH ZurichSonneggstrasse 3Zurich8092Switzerland
| | - Sotiris E. Pratsinis
- Particle Technology LaboratoryDepartment of Mechanical and Process EngineeringETH ZurichSonneggstrasse 3Zurich8092Switzerland
| |
Collapse
|
40
|
Zhou C, Zhang X, Tang N, Fang Y, Zhang H, Duan X. Rapid response flexible humidity sensor for respiration monitoring using nano-confined strategy. NANOTECHNOLOGY 2020; 31:125302. [PMID: 31778983 DOI: 10.1088/1361-6528/ab5cda] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Development of wearable devices for continuous respiration monitoring is of great importance for evaluating human health. Here, we propose a new strategy to achieve rapid respiration response by confining conductive polymers into 1D nanowires which facilitates the water molecules absorption/desorption and maximizes the sensor response to moisture. The nanowires arrays were fabricated through a low-cost nanoscale printing approach on flexible substrate. The nanoscale humidity sensor shows a high sensitivity (5.46%) and ultrafast response (0.63 s) when changing humidity between 0% and 13% and can tolerate 1000 repetitions of bending to a curvature radius of 10 mm without influencing its performance. Benefited by its fast response and low power assumption, the humidity sensor was demonstrated to monitor human respiration in real time. Different respiration patterns including normal, fast and deep respiration can be distinguished accurately.
Collapse
|
41
|
Zhou C, Tang N, Zhang X, Fang Y, Jiang Y, Zhang H, Duan X. Simultaneously Optimize the Response Speed and Sensitivity of Low Dimension Conductive Polymers for Epidermal Temperature Sensing Applications. Front Chem 2020; 8:194. [PMID: 32266213 PMCID: PMC7098694 DOI: 10.3389/fchem.2020.00194] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 03/02/2020] [Indexed: 12/25/2022] Open
Abstract
Low dimension poly(3,4-ethylenedioxythiophene) poly (styrenesulfonate) (PEDOT: PSS) has been applied as resistor-type devices for temperature sensing applications. However, their response speed and thermal sensitivity is still not good enough for practical application. In this work, we proposed a new strategy to improve the thermal sensing performance of PEDOT: PSS by combined micro/nano confinement and materials doping. The dimension effect is carefully studied by fabricating different sized micro/nanowires through a low-cost printing approach. It was found that response speed can be regulated by adjusting the surface/volume (S/V) ratio of PEDOT: PSS. The fastest response (<3.5 s) was achieved by using nanowires with a maximum S/V ratio. Besides, by doping PEDOT: PSS nanowires with Graphene oxide (GO), its thermo-sensitivity can be maximized at specific doping ratio. The optimized nanowires-based temperature sensor was further integrated as a flexible epidermal electronic system (FEES) by connecting with wireless communication components. Benefited by its flexibility, fast and sensitive response, the FEES was demonstrated as a facile tool for different mobile healthcare applications.
Collapse
Affiliation(s)
- Cheng Zhou
- State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin, China
| | - Ning Tang
- State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin, China
| | - Xiaoshuang Zhang
- State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin, China
| | - Ye Fang
- State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin, China
| | - Yang Jiang
- State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin, China
| | - Hainan Zhang
- State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin, China
| | - Xuexin Duan
- State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin, China
| |
Collapse
|
42
|
Zehra N, Kalita A, Malik AH, Barman U, Adil Afroz M, Iyer PK. Conjugated Polymer-Based Electrical Sensor for Ultratrace Vapor-Phase Detection of Nerve Agent Mimics. ACS Sens 2020; 5:191-198. [PMID: 31876402 DOI: 10.1021/acssensors.9b02031] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Considering the vital need to strengthen the national security emanating from chemical threats, a low-cost, portable ultrasensitive electrical sensor for real-time monitoring of diethylchlorophosphate (DCP) (nerve gas mimic) has been developed. The device consists of a "simple to be fabricated" two-terminal resistor and an electronic combinational circuit for rapid onsite detection of lethal nerve gas vapors with high degree of accuracy in milliseconds. This device is a smart readout electronic model that detects ultratrace DCP vapors by bright visual alerts from light-emitting diode (LED) and loud alarm signal without the need for employing a sophisticated instrument. To obtain high sensitivity and discriminating response, a novel amine-functionalized conjugated polymer (CP) is designed as a sensory channel material for two-terminal sensor. The low-powered poly(3-(9,9-dioctyl-9H-fluoren-2-yl)benzene-1,2-diamine) (PFPDA) fabricated two-terminal electrical sensor is tested at ambient conditions, which shows excellent sensitivity toward nerve gas mimic DCP, with a rapid response in 3 s and a very low limit of detection (LOD) of 5.88 ppb. The amine moiety of PFPDA CP plays a vital role in redox interaction between the semiconductor CP and organophosphates, which ultimately leads to the amplified current signal. The redox interactions occurring among the organophosphate analytes and the amine functional group on the PFPDA backbone provided insights into the mechanism of sensing, which formed the basis of the excellent sensitivity and discriminating ability of this sensor device. The newly designed PFPDA CP-based portable electrical sensor device demonstrates a key contribution in the field of portable electronics for defense safety and environmental monitoring applications.
Collapse
|
43
|
Zhou Y, Berda EB, Ma Q, Liu X, Wang C, Chao D. Flexible and Robust Electro‐Optically Responsive Films Based on Novel Silica/Oligoaniline/Carbon Dots Composite. ChemElectroChem 2019. [DOI: 10.1002/celc.201901487] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Yan Zhou
- College of Chemistry, Jilin University Changchun 130012 P.R. China
| | - Erik B. Berda
- Department of Chemistry and Materials Science ProgramUniversity of New Hampshire Durham New Hampshire 03824 USA
| | - Qiang Ma
- College of Chemistry, Jilin University Changchun 130012 P.R. China
| | - Xincai Liu
- College of Chemistry, Jilin University Changchun 130012 P.R. China
| | - Ce Wang
- College of Chemistry, Jilin University Changchun 130012 P.R. China
| | - Danming Chao
- College of Chemistry, Jilin University Changchun 130012 P.R. China
| |
Collapse
|
44
|
Li T, Zhou M, Fan Z, Li X, Huang J, Wu Y, Zhao H, Zhang S. Online Conductimetric Flow-Through Analyzer Based on Membrane Diffusion for Ammonia Control in Wastewater Treatment Process. ACS Sens 2019; 4:1881-1888. [PMID: 31244006 DOI: 10.1021/acssensors.9b00768] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Ammonia is a necessary monitoring parameter that should be controlled within an optimum range in the whole process of wastewater treatment and recycling, but few reliable real-time monitoring technologies are available currently under such harsh water conditions. This study proposes a continuous conductometric flow-through analyzer for ammonia monitoring (CFAA) in the wastewater treatment process. It is developed based on the gas diffusion mechanisms, and the proposed analytical principle has been validated in which the real-time conductivity increment rate is linearly proportional to the real-time ammonia concentration in the sample. This method could be generally applicable in monitoring a wide ammonia concentration range (10.2 μg L-1 to 500 mg L-1), and it is capable of achieving long-term ammonia monitoring by periodic renewal of the receiving solution. The potential impact factors and corresponding calibration principles are also developed to avoid tedious ongoing calibration. The field application results demonstrate that CFAA can effectively and directly achieve real-time and average ammoniacal nitrogen monitoring at different treatment stages regardless of the complexity of wastewater, not requiring any sample pretreatment. Compared with other ammonia online monitoring technologies, the proposed CFAA shows remarkable advantages in high reliability, durability, and accuracy, especially under severe monitoring condition. It can be a useful monitoring tool for continuous ammonia control in the wastewater treatment process.
Collapse
Affiliation(s)
- Tianling Li
- Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Reading Academy, Nanjing University of Information Science & Technology, Nanjing, Jiangsu 210044, P. R. China
- Centre for Clean Environment and Energy, School of Environment, Griffith University, Gold Coast Campus, Southport, Queensland 4222, Australia
| | - Ming Zhou
- Centre for Clean Environment and Energy, School of Environment, Griffith University, Gold Coast Campus, Southport, Queensland 4222, Australia
| | - Zhaoyi Fan
- Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Reading Academy, Nanjing University of Information Science & Technology, Nanjing, Jiangsu 210044, P. R. China
| | - Xiaoxiao Li
- Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Reading Academy, Nanjing University of Information Science & Technology, Nanjing, Jiangsu 210044, P. R. China
| | - Jianyin Huang
- Centre for Clean Environment and Energy, School of Environment, Griffith University, Gold Coast Campus, Southport, Queensland 4222, Australia
- Division of Information Technology, Engineering and Environment, School of Natural and Built Environment, Mason Lakes Campus, University of South Australia, Adelaide, South Australia 5095, Australia
| | - Yonghong Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing, Jiangsu 210008, P. R. China
| | - Huijun Zhao
- Centre for Clean Environment and Energy, School of Environment, Griffith University, Gold Coast Campus, Southport, Queensland 4222, Australia
| | - Shanqing Zhang
- Centre for Clean Environment and Energy, School of Environment, Griffith University, Gold Coast Campus, Southport, Queensland 4222, Australia
| |
Collapse
|