1
|
Abdel Aziz I, Tullii G, Antognazza MR, Criado-Gonzalez M. Poly(3-hexylthiophene) as a versatile semiconducting polymer for cutting-edge bioelectronics. MATERIALS HORIZONS 2025. [PMID: 40331312 PMCID: PMC12056706 DOI: 10.1039/d5mh00096c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 04/15/2025] [Indexed: 05/08/2025]
Abstract
Semiconducting polymers (SPs), widely used in organic optoelectronics, are gaining interest in bioelectronics owing to their intrinsic optical properties, conductivity, biocompatibility, flexibility, and chemical tunability. Among them, poly(3-hexylthiophene) (P3HT) has attracted great attention as a versatile SP, being both optically active and conductive, for the fabrication of smart materials (e.g., films and nanoparticles), allowing the modulation of their performance and final biomedical applications. This review article provides an overview of the design of different kinds of P3HT-based materials, from chemical properties to structural engineering, to be used as key opto-electronic components in the development of opto-transducers for the modulation of cell fate, as well as biosensors such as organic electrochemical transistors (OECTs) and organic field effect transistors (OEFTs). Finally, their foremost applications in the biomedical field ranging from tissue engineering to biosensing will be discussed, including the future perspectives of P3HT derivatives towards cutting-edge applications for bioelectronics, in which optoceutics plays a key role.
Collapse
Affiliation(s)
- Ilaria Abdel Aziz
- POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa 72, 20018, Donostia-San Sebastián, Spain
| | - Gabriele Tullii
- Center for Nano Science andTechnology@PoliMi, Istituto Italiano di Tecnologia, 20134 Milano, Italy.
| | - Maria Rosa Antognazza
- Center for Nano Science andTechnology@PoliMi, Istituto Italiano di Tecnologia, 20134 Milano, Italy.
| | - Miryam Criado-Gonzalez
- POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa 72, 20018, Donostia-San Sebastián, Spain
- Institute of Polymer Science and Technology (ICTP-CSIC), 28006 Madrid, Spain.
| |
Collapse
|
2
|
Zhao X, You X, Wang Z, Liu Y, Fu H, Li G, Zheng W, Yu S, Tang Z, Zhang K, Song F, Zhao J, Wang J, Pang Y, Yang C, Li Q, Zhang L, Ma H, Zhao X, Xiang X, Hao Y, Jing Q, Wang Y, Liu B. Noninvasive Diagnosis of Early-Stage Chronic Kidney Disease and Monitoring of the Hemodialysis Process in Clinical Practice via Exhaled Breath Analysis Using an Ultrasensitive Flexible NH 3 Sensor Assisted by Pattern Recognition. ACS Sens 2025; 10:2823-2839. [PMID: 40131827 DOI: 10.1021/acssensors.4c03583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
To achieve the early diagnosis of chronic kidney disease (CKD), noninvasive hemodialysis monitoring, and accurate determination of dialysis duration and adequacy, a noninvasive, point-of-care, user-friendly device should be developed. Here, a flexible, room temperature NH3 gas sensor sensitive to the key breath biomarkers of CKD─NH3 and creatinine─was fabricated. The sensor had detection limits of 100 ppb for NH3 and 1 ppm for creatinine. Clinically, a total of 96 exhaled breath samples, half from 39 CKD patients and the other half from 48 healthy controls were collected and analyzed. With the assistance of a pattern recognition algorithm , the early diagnosis of CKD was achieved by the sensor, with PCA being used due to sensor's cross-sensitivity to CKD biomarkers. Diagnostic models distinguishing CKD versus non-CKD and early-stage CKD versus advanced-stage CKD were constructed using the SVM algorithm, achieving an overall accuracy of 0.93 and 0.94, with area under the curve (AUC) values of 0.97 and 0.99 for all subjects in receiver operating characteristic (ROC) analysis, respectively. The hemodialysis processes of patients were monitored in real-time, with the sensor response values exhibiting ideal exponential decay over time. The sensor response values showed a strong positive correlation with serum creatinine levels (r = 0.85) and a moderate positive correlation with blood urea nitrogen levels (r = 0.62), both of which are key clinical diagnostic indicators for CKD. These are good results, as 54% of CKD samples are from early-stage CKD patients. These results suggest that the sensor could serve as a noninvasive alternative to traditional blood tests for renal function evaluation and CKD diagnosis. Overall, this sensor demonstrates great potential in clinical practice for early diagnosis of CKD, monitoring the daily health status of CKD patients, optimizing the dialysis schedule, and monitoring the dialysis process in real-time.
Collapse
Affiliation(s)
- Xin Zhao
- School of Mechanical Engineering, Shandong University of Technology, Zibo 255000, China
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China
| | - Xiaoyu You
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China
- School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China
| | - Zhenzhen Wang
- Department of Endocrinology, Zibo Central Hospital, Zibo 255000, China
| | - Yanjie Liu
- Department of Nephrology, Zibo Central Hospital, Zibo 255000, China
| | - Huaian Fu
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China
| | - Ge Li
- Department of Nephrology, Binzhou Medical University Hospital, Binzhou 256603, China
| | - Wenxiang Zheng
- Center of Translational Medicine, Zibo Central Hospital, Zibo 255000, China
| | - Shanshan Yu
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China
| | - Zhipeng Tang
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China
| | - Kai Zhang
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China
| | - Fei Song
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China
| | - Jie Zhao
- Department of Oncology, Binzhou Medical University Hospital, Binzhou 256603, China
| | - Jinshun Wang
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China
| | - Yuhao Pang
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China
| | - Chen Yang
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China
| | - Qiuxia Li
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China
| | - Lixin Zhang
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China
| | - Hongbo Ma
- Department of Nephrology, Zibo Central Hospital, Zibo 255000, China
| | - Xiaodong Zhao
- Department of Endocrinology, Zibo Central Hospital, Zibo 255000, China
| | - Xinxin Xiang
- Center of Translational Medicine, Zibo Central Hospital, Zibo 255000, China
| | - Yanzhang Hao
- Department of Oncology, Binzhou Medical University Hospital, Binzhou 256603, China
| | - Qiang Jing
- School of Mechanical Engineering, Shandong University of Technology, Zibo 255000, China
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China
- School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China
| | - Yaning Wang
- Department of Nephrology, Binzhou Medical University Hospital, Binzhou 256603, China
| | - Bo Liu
- School of Mechanical Engineering, Shandong University of Technology, Zibo 255000, China
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China
- School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China
| |
Collapse
|
3
|
Barandun G, Sanli A, Yap CL, Silva Pinto Collins A, Grell M, Kasimatis M, Levy JB, Güder F. Wearable face mask-attached disposable printed sensor arrays for point-of-need monitoring of alkaline gases in breath. PNAS NEXUS 2025; 4:pgaf116. [PMID: 40303001 PMCID: PMC12038690 DOI: 10.1093/pnasnexus/pgaf116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 03/25/2025] [Indexed: 05/02/2025]
Abstract
Blood sampling, despite its historical significance in clinical diagnostics, poses challenges, such as invasiveness, infection risks, and limited temporal fidelity for continuous monitoring. In contrast, exhaled breath offers a noninvasive, pain-free, and continuous sampling method, carrying biochemical information through volatile compounds like ammonia (NH3). NH3 in exhaled breath, influenced by kidney function, emerges as a promising biomarker for renal health assessment, particularly in resource-limited settings lacking extensive healthcare infrastructure. Current analytical methods for breath NH3, though effective, often face practical limitations. In this work, we introduce a low-cost, internet-connected, paper-based wearable device for measuring exhaled NH3, designed for early detection of kidney dysfunction at the point of need. The device, which attaches to disposable face masks, utilizes an array of disposable paper-based sensors to detect NH3 with the readout being changes in electrical impedance that correlate with the concentration of NH3. The sensor array is housed in a biodegradable plastic enclosure to mitigate high relative humidity issues in breath analysis. We validated our technology using a laboratory setup and human subjects who consumed ammonium chloride-containing candy to simulate elevated breath NH3. Our wearable sensor offers a promising solution for rapid, point-of-need kidney dysfunction screening, particularly valuable in resource-limited settings. This approach has potential applications beyond kidney health monitoring, including chemical industry safety and environmental sensing, paving the way for accessible, continuous health monitoring.
Collapse
Affiliation(s)
- Giandrin Barandun
- Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
- BlakBear Ltd, 185 Tower Bridge Rd, London SE1 2UF, United Kingdom
| | - Abdulkadir Sanli
- Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Chun Lin Yap
- Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| | | | - Max Grell
- Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
- BlakBear Ltd, 185 Tower Bridge Rd, London SE1 2UF, United Kingdom
| | - Michael Kasimatis
- Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
- BlakBear Ltd, 185 Tower Bridge Rd, London SE1 2UF, United Kingdom
| | - Jeremy B Levy
- Department of Immunology and Inflammation, Hammersmith Hospital, Imperial College London, London W12 0HS, United Kingdom
| | - Firat Güder
- Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
4
|
Linto Sibi SP, Rajkumar M, Manoharan M, Mobika J, Nithya Priya V, Rajendra Kumar RT. Humidity activated ultra-selective room temperature gas sensor based on W doped MoS 2/RGO composites for trace level ammonia detection. Anal Chim Acta 2024; 1287:342075. [PMID: 38182340 DOI: 10.1016/j.aca.2023.342075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/24/2023] [Accepted: 11/25/2023] [Indexed: 01/07/2024]
Abstract
The lack of highly efficient, cost effective and stable ammonia gas sensors functionable at room temperature even in extreme humid environments poses significant challenge for the future generation gas sensors. The prime factors that impede the development of such next generation gas sensors are the strong interference of humidity and sluggish selectivity. Herein, we fabricated tungsten doped molybdenum disulphide/reduced graphene oxide composite by an in-situ hydrothermal method to exploit the adsorption, dissolution (solubility), ionization and transmission process of ammonia and thereby to effectuate its trace level detection even in indispensable humid environments. The protype based on 5 at.% Tungsten doped MoS2/RGO (W5) gas sensor exhibited 3.8-fold increment in its response to 50 ppm of ammonia when the relative humidity varied from 20 % to 70 % with ultra-high selectivity at room temperature. The as prepared gas sensor revealed a practical detection limit down to 1 ppm with a substantial response and rapid recovery time. Furthermore, W5 gas sensor exhibited a 42-fold increment in response to 50 ppm of ammonia relative to its pristine (MoS2/RGO) MG composite with a RH of 70 %. The proton hopping mechanism accountable for such an enormous enhancement in ammonia sensing and its potential for breath sensor are briefly annotated.
Collapse
Affiliation(s)
- S P Linto Sibi
- Department of Physics, PSG College of Arts and Science, Coimbatore, 641014, Tamil Nadu, India
| | - M Rajkumar
- Department of Physics, PSG College of Arts and Science, Coimbatore, 641014, Tamil Nadu, India.
| | - Mathankumar Manoharan
- Advanced Materials and Devices Laboratory (AMDL), Department of Nanoscience and Technology, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| | - J Mobika
- Department of Physics, Nandha Engineering College, Erode, Tamil Nadu, 638052, India
| | - V Nithya Priya
- Department of Physics, PSG College of Arts and Science, Coimbatore, 641014, Tamil Nadu, India
| | - R T Rajendra Kumar
- Advanced Materials and Devices Laboratory (AMDL), Department of Nanoscience and Technology, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| |
Collapse
|
5
|
Kim SH, Jo MS, Choi KW, Yoo JY, Kim BJ, Yang JS, Chung MK, Kim TS, Yoon JB. Ultrathin Serpentine Insulation Layer Architecture for Ultralow Power Gas Sensor. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304555. [PMID: 37649204 DOI: 10.1002/smll.202304555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/01/2023] [Indexed: 09/01/2023]
Abstract
Toxic gases have surreptitiously influenced the health and environment of contemporary society with their odorless/colorless characteristics. As a result, a pressing need for reliable and portable gas-sensing devices has continuously increased. However, with their negligence to efficiently microstructure their bulky supportive layer on which the sensing and heating materials are located, previous semiconductor metal-oxide gas sensors have been unable to fully enhance their power efficiency, a critical factor in power-stringent portable devices. Herein, an ultrathin insulation layer with a unique serpentine architecture is proposed for the development of a power-efficient gas sensor, consuming only 2.3 mW with an operating temperature of 300 °C (≈6% of the leading commercial product). Utilizing a mechanically robust serpentine design, this work presents a fully suspended standalone device with a supportive layer thickness of only ≈50 nm. The developed gas sensor shows excellent mechanical durability, operating over 10 000 on/off cycles and ≈2 years of life expectancy under continuous operation. The gas sensor detected carbon monoxide concentrations from 30 to 1 ppm with an average response time of ≈15 s and distinguishable sensitivity to 1 ppm (ΔR/R0 = 5%). The mass-producible fabrication and heating efficiency presented here provide an exemplary platform for diverse power-efficient-related devices.
Collapse
Affiliation(s)
- Sung-Ho Kim
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Min-Seung Jo
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Kwang-Wook Choi
- Samsung Electronics Co., Ltd., 1, Samsungjeonja-ro, Hwaseong-si, Gyeonggi-do, 18448, Republic of Korea
| | - Jae-Young Yoo
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, 60208, USA
| | - Beom-Jun Kim
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jae-Soon Yang
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Myung-Kun Chung
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Tae-Soo Kim
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jun-Bo Yoon
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| |
Collapse
|
6
|
Khamidy NI, Aflaha R, Nurfani E, Djamal M, Triyana K, Wasisto HS, Rianjanu A. Influence of dopant concentration on the ammonia sensing performance of citric acid-doped polyvinyl acetate nanofibers. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:4956-4966. [PMID: 36440647 DOI: 10.1039/d2ay01382g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The chemical modification of polymer nanofiber-based ammonia sensors by introducing dopants into the active layers has been proven as one of the low-cost routes to enhance their sensing performance. Herein, we investigate the influence of different citric acid (CA) concentrations on electrospun polyvinyl acetate (PVAc) nanofibers coated on quartz crystal microbalance (QCM) transducers as gravimetric ammonia sensors. The developed CA-doped PVAc nanofiber sensors are tested against various concentrations of ammonia vapors, in which their key sensing performance parameters (i.e., sensitivity, limit of detection (LOD), limit of quantification (LOQ), and repeatability) are studied in detail. The sensitivity and LOD values of 1.34 Hz ppm-1 and 1 ppm, respectively, can be obtained during ammonia exposure assessment. Adding CA dopants with a higher concentration not only increases the sensor sensitivity linearly, but also prolongs both response and recovery times. This finding allows us to better understand the dopant concentration effect, which subsequently can result in an appropriate strategy for manufacturing high-performance portable nanofiber-based sensing devices.
Collapse
Affiliation(s)
- Nur Istiqomah Khamidy
- Department of Materials Engineering, Institut Teknologi Sumatera, Terusan Ryacudu, Way Hui, Jati Agung 35365, Lampung, Indonesia.
| | - Rizky Aflaha
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara PO Box BLS 21, Yogyakarta 55281, Indonesia
| | - Eka Nurfani
- Department of Materials Engineering, Institut Teknologi Sumatera, Terusan Ryacudu, Way Hui, Jati Agung 35365, Lampung, Indonesia.
| | - Mitra Djamal
- Department of Physics, Institut Teknologi Sumatera, Terusan Ryacudu, Way Hui, Jati Agung 35365, Lampung, Indonesia
| | - Kuwat Triyana
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara PO Box BLS 21, Yogyakarta 55281, Indonesia
| | | | - Aditya Rianjanu
- Department of Materials Engineering, Institut Teknologi Sumatera, Terusan Ryacudu, Way Hui, Jati Agung 35365, Lampung, Indonesia.
- Research and Innovation Center for Advanced Materials, Institut Teknologi Sumatera, Terusan Ryacudu, Way Hui, Jati Agung 35365, Lampung, Indonesia
| |
Collapse
|
7
|
Ahmed SA, Xing XL, Liao QB, Li ZQ, Li CY, Xi K, Wang K, Xia XH. Study on Ammonia Content and Distribution in the Microenvironment Based on Covalent Organic Framework Nanochannels. Anal Chem 2022; 94:11224-11229. [PMID: 35917478 DOI: 10.1021/acs.analchem.2c01692] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A crack-free micrometer-sized compact structure of 1,3,5-tris(4-aminophenyl)benzene-terephthaldehyde-covalent organic frameworks (TAPB-PDA-COFs) was constructed in situ at the tip of a theta micropipette (TMP). The COF-covered theta micropipette (CTP) then created a stable liquid-gas interface inside COF nanochannels, which was utilized to electrochemically analyze the content and distribution of ammonia gas in the microenvironments. The TMP-based electrochemical ammonia sensor (TEAS) shows a high sensing response, with current increasing linearly from 0 to 50,000 ppm ammonia, owing to the absorption of ammonia gas in the solvent meniscus that connects both barrels of the TEAS. The TEAS also exhibits a short response and recovery time of 5 ± 2 s and 6 ± 2 s, respectively. This response of the ammonia sensor is remarkably stable and repeatable, with a relative standard deviation of 6% for 500 ppm ammonia gas dispensing with humidity control. Due to its fast, reproducible, and stable response to ammonia gas, the TEAS was also utilized as a scanning electrochemical microscopy (SECM) probe for imaging the distribution of ammonia gas in a microspace. This study unlocks new possibilities for using a TMP in designing microscale probes for gas sensing and imaging.
Collapse
Affiliation(s)
- Saud Asif Ahmed
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong 518114, P.R. China.,State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| | - Xiao-Lei Xing
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| | - Qiao-Bo Liao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| | - Zhong-Qiu Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| | - Cheng-Yong Li
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong 518114, P.R. China.,School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, P.R. China
| | - Kai Xi
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| | - Kang Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| | - Xing-Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| |
Collapse
|
8
|
Chang WL, Sun IM, Tsai JA, Meng HF, Zan HW, Chen LY, Lu CJ. Rapid quality test for drinking water by vertical-channel organic semiconductor gas sensor. Anal Chim Acta 2022; 1206:339729. [DOI: 10.1016/j.aca.2022.339729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/09/2022] [Accepted: 03/13/2022] [Indexed: 11/01/2022]
|
9
|
Su Y, Chen G, Chen C, Gong Q, Xie G, Yao M, Tai H, Jiang Y, Chen J. Self-Powered Respiration Monitoring Enabled By a Triboelectric Nanogenerator. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2101262. [PMID: 34240473 DOI: 10.1002/adma.202101262] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/23/2021] [Indexed: 05/26/2023]
Abstract
In mammals, physiological respiration involves respiratory cycles of inhaled and exhaled breaths, which has traditionally been an underutilized resource potentially encompassing a wealth of physiologically relevant information as well as clues to potential diseases. Recently, triboelectric nanogenerators (TENGs) have been widely adopted for self-powered respiration monitoring owing to their compelling features, such as decent biocompatibility, wearing comfort, low-cost, and high sensitivity to respiration activities in the aspect of low frequency and slight amplitude body motions. Physiological respiration behaviors and exhaled chemical regents can be precisely and continuously monitored by TENG-based respiration sensors for personalized health care. This article presents an overview of TENG enabled self-powered respiration monitoring, with a focus on the working principle, sensing materials, functional structures, and related applications in both physical respiration motion detection and chemical breath analysis. Concepts and approaches for acquisition of physical information associated with respiratory rate and depth are covered in the first part. Then the sensing mechanism, theoretical modeling, and applications related to detection of chemicals released from breathing gases are systemically summarized. Finally, the opportunities and challenges of triboelectric effect enabled self-powered respiration monitoring are comprehensively discussed and criticized.
Collapse
Affiliation(s)
- Yuanjie Su
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Guorui Chen
- Department of Bioengineering, University of California, Los Angeles, CA, 90095, USA
| | - Chunxu Chen
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Qichen Gong
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Guangzhong Xie
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Mingliang Yao
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Huiling Tai
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Yadong Jiang
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Jun Chen
- Department of Bioengineering, University of California, Los Angeles, CA, 90095, USA
| |
Collapse
|
10
|
Madhaiyan G, Sun AT, Zan HW, Meng HF, Horng SF, Chen LY, Hung HW. Solution-Processed Chloroaluminum Phthalocyanine (ClAlPc) Ammonia Gas Sensor with Vertical Organic Porous Diodes. SENSORS (BASEL, SWITZERLAND) 2021; 21:5783. [PMID: 34502673 PMCID: PMC8433672 DOI: 10.3390/s21175783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/19/2021] [Accepted: 08/24/2021] [Indexed: 02/03/2023]
Abstract
In this research work, the gas sensing properties of halogenated chloroaluminum phthalocyanine (ClAlPc) thin films were studied at room temperature. We fabricated an air-stable ClAlPc gas sensor based on a vertical organic diode (VOD) with a porous top electrode by the solution process method. The surface morphology of the solution-processed ClAlPc thin film was examined by field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM). The proposed ClAlPc-based VOD sensor can detect ammonia (NH3) gas at the ppb level (100~1000 ppb) at room temperature. Additionally, the ClAlPc sensor was highly selective towards NH3 gas compared to other interfering gases (NO2, ACE, NO, H2S, and CO). In addition, the device lifetime was tested by storing the device at ambient conditions. The effect of relative humidity (RH) on the ClAlPc NH3 gas sensor was also explored. The aim of this study is to extend these findings on halogenated phthalocyanine-based materials to practical electronic nose applications in the future.
Collapse
Affiliation(s)
- Govindsamy Madhaiyan
- Institute of Physics, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan;
| | - An-Ting Sun
- Department of Electrical Engineering, National Tsing Hua University, Hsinchu 30010, Taiwan; (A.-T.S.); (S.-F.H.)
| | - Hsiao-Wen Zan
- Department of Photonics, Institute of Electro-Optical Engineering, College of Electrical and Computer, Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan;
| | - Hsin-Fei Meng
- Institute of Physics, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan;
| | - Sheng-Fu Horng
- Department of Electrical Engineering, National Tsing Hua University, Hsinchu 30010, Taiwan; (A.-T.S.); (S.-F.H.)
| | - Li-Yin Chen
- Department of Photonics, Institute of Electro-Optical Engineering, College of Electrical and Computer, Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan;
| | - Hsiao-Wen Hung
- Intelligent Energy-Saving Systems Division, Green Energy and Environment Research Laboratories, Industrial Technology Research Institute, Hsinchu 30010, Taiwan;
| |
Collapse
|
11
|
Salimi M, Rahmani F, Hosseini SMRM. Copper Fluoride Doped Polypyrrole for Portable and Enhanced Ammonia Sensing at Room Temperature. ChemistrySelect 2021. [DOI: 10.1002/slct.202101444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mohsen Salimi
- Analytical Chemistry Iran University of science and technology Real Samples Analysis Department of Analytical Chemistry Faculty of Chemistry Iran University of Science and Technology Tehran 1684613114 Ir
| | - Fereidoon Rahmani
- Department of Physico Chemistry Razi Vaccine & Serum Research Institute Department of Physico Chemistry, Razi Vaccine & Serum Research Institute,Agricultural Research, Education and Extension Organization (AREEO) P.O. Box 31975/148 Karaj Iran
| | - Seyed Mohammad R. M. Hosseini
- Analytical Chemistry Iran University of science and technology Real Samples Analysis Department of Analytical Chemistry Faculty of Chemistry Iran University of Science and Technology Tehran 1684613114 Ir
| |
Collapse
|
12
|
Shahmoradi A, Hosseini A, Akbarinejad A, Alizadeh N. Noninvasive Detection of Ammonia in the Breath of Hemodialysis Patients Using a Highly Sensitive Ammonia Sensor Based on a Polypyrrole/Sulfonated Graphene Nanocomposite. Anal Chem 2021; 93:6706-6714. [PMID: 33881307 DOI: 10.1021/acs.analchem.1c00171] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In this work, we fabricated fast-responsive and highly sensitive chemiresistive sensors based on nanocomposites of polypyrrole and graphitic materials such as graphene oxide (GO), reduced graphene oxide (RGO), and sulfonated graphene (SRGO) by an in situ chemical oxidative polymerization method. The synthesized nanocomposites were characterized using field emission scanning electron microscopy (FESEM), energy-dispersive spectroscopy (EDS), Fourier transform infrared (FT-IR) spectroscopy, and X-ray diffraction (XRD). The effects of the operating temperature of different nanocomposites were investigated at four temperatures (28, 40, 50, and 60 °C), and the results were compared with that of the polypyrrole-based sensor. The experimental results for sensors indicate that the proposed PPy/SRGO sensor could be an appropriate choice for NH3 detection at 28 °C in the range of 0.50 parts per billion (ppb) to 12 parts per million (ppm). The PPy/SRGO nanocomposite gas sensor exhibited fast responsivity, good repeatability, and high chemical selectivity to low-concentration ammonia against humidity, methanol, ethanol, acetone, formaldehyde, dibutylamine, dimethylamine, methylamine, carbon monoxide, and nitrogen oxide at 28 °C. We utilized the PPy/SRGO sensor for studying the variation of the ammonia concentration in hemodialysis (HD) patients' breath before and after dialysis and correlated it with the blood urea nitrogen (BUN) levels. The results of the PPy/SRGO sensor indicated that the breath ammonia concentration significantly decreased after dialysis in agreement with BUN. The results demonstrate the potential application of the PPy/SRGO sensor for noninvasive detection of ammonia in breath and make this type of sensor a promising tool for the diagnosis of renal and liver diseases.
Collapse
Affiliation(s)
- Atefeh Shahmoradi
- Department of Chemistry, Faculty of Basic Sciences, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran
| | - Abolghasem Hosseini
- Department of Chemistry, Faculty of Basic Sciences, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran
| | - Alireza Akbarinejad
- Department of Chemistry, Faculty of Basic Sciences, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran.,Polymer Biointerface Centre, School of Chemical Sciences, University of Auckland, Auckland 1010, New Zealand
| | - Naader Alizadeh
- Department of Chemistry, Faculty of Basic Sciences, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran.,Faculty of Interdisciplinary Science and Technology, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
13
|
|
14
|
Bannov AG, Popov MV, Brester AE, Kurmashov PB. Recent Advances in Ammonia Gas Sensors Based on Carbon Nanomaterials. MICROMACHINES 2021; 12:186. [PMID: 33673142 PMCID: PMC7918724 DOI: 10.3390/mi12020186] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/04/2021] [Accepted: 02/09/2021] [Indexed: 02/07/2023]
Abstract
This review paper is devoted to an extended analysis of ammonia gas sensors based on carbon nanomaterials. It provides a detailed comparison of various types of active materials used for the detection of ammonia, e.g., carbon nanotubes, carbon nanofibers, graphene, graphene oxide, and related materials. Different parameters that can affect the performance of chemiresistive gas sensors are discussed. The paper also gives a comparison of the sensing characteristics (response, response time, recovery time, operating temperature) of gas sensors based on carbon nanomaterials. The results of our tests on ammonia gas sensors using various techniques are analyzed. The problems related to the recovery of sensors using various approaches are also considered. Finally, the impact of relative humidity on the sensing behavior of carbon nanomaterials of various different natures was estimated.
Collapse
Affiliation(s)
- Alexander G. Bannov
- Department of Chemistry and Chemical Engineering, Novosibirsk State Technical University, 630073 Novosibirsk, Russia; (M.V.P.); (A.E.B.); (P.B.K.)
| | - Maxim V. Popov
- Department of Chemistry and Chemical Engineering, Novosibirsk State Technical University, 630073 Novosibirsk, Russia; (M.V.P.); (A.E.B.); (P.B.K.)
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Andrei E. Brester
- Department of Chemistry and Chemical Engineering, Novosibirsk State Technical University, 630073 Novosibirsk, Russia; (M.V.P.); (A.E.B.); (P.B.K.)
| | - Pavel B. Kurmashov
- Department of Chemistry and Chemical Engineering, Novosibirsk State Technical University, 630073 Novosibirsk, Russia; (M.V.P.); (A.E.B.); (P.B.K.)
| |
Collapse
|
15
|
Shin ES, Go JY, Ryu GS, Liu A, Noh YY. Highly Reliable Organic Field-Effect Transistors with Molecular Additives for a High-Performance Printed Gas Sensor. ACS APPLIED MATERIALS & INTERFACES 2021; 13:4278-4283. [PMID: 33433990 DOI: 10.1021/acsami.0c20957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Organic semiconductors (OSCs) are promising sensing materials for printed flexible gas sensors. However, OSCs are unstable in the humid air, which limits the realization of gas sensors for multiple usages. In this paper, we report a facile and effective way to improve the air stability of an OSC film to realize multiple reversibly used printed gas sensors by adding molecular additives. The tetracyanoquinodimethane (TCNQ) or 4-aminobenzonitrile (ABN) additives effectively prevent adsorption of moisture from the air on the OSC layer, thereby providing a stable gas sensor operation. The organic field-effect transistor (OFET)-based indacenodithiophene-co-benzothiadiazole with TCNQ or ABN shows highly reliable ammonia (NH3) gas sensing up to 10 ppm in air, with 23.14% sensitivity, and the gas sensor signal can recover up to 100%. In particular, the stability of gas detection is greatly improved by the additives, which can be performed in the air for 16 days. The result indicates that the elimination of moisture trapped in OSCs with molecule additives is critical in the improvement of device air/operational stabilities and the achievement of high-performance OFET-based gas sensors.
Collapse
Affiliation(s)
- Eun-Sol Shin
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea
| | - Ji-Young Go
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea
| | - Gi-Seong Ryu
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea
| | - Ao Liu
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea
| | - Yong-Young Noh
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea
| |
Collapse
|
16
|
Breath Ammonia Is a Useful Biomarker Predicting Kidney Function in Chronic Kidney Disease Patients. Biomedicines 2020; 8:biomedicines8110468. [PMID: 33142890 PMCID: PMC7692127 DOI: 10.3390/biomedicines8110468] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/27/2020] [Accepted: 10/27/2020] [Indexed: 12/28/2022] Open
Abstract
Chronic kidney disease (CKD) is a public health problem and its prevalence has increased worldwide; patients are commonly unaware of the condition. The present study aimed to investigate whether exhaled breath ammonia via vertical-channel organic semiconductor (V-OSC) sensor measurement could be used for rapid CKD screening. We enrolled 121 CKD stage 1–5 patients, including 19 stage 1 patients, 26 stage 2 patients, 38 stage 3 patients, 21 stage 4 patients, and 17 stage 5 patients, from July 2019 to January 2020. Demographic and laboratory data were recorded. The exhaled ammonia was collected and rapidly measured by the V-OSC sensor to correlate with kidney function. Results showed no significant difference in age, sex, body weight, hemoglobin, albumin level, and comorbidities in different CKD stage patients. Correlation analysis demonstrated a good correlation between breath ammonia and blood urea nitrogen levels, serum creatinine levels, and estimated glomerular filtration rate (eGFR). Breath ammonia concentration was significantly elevated with increased CKD stage compared with the previous stage (CKD stage 1/2/3/4/5: 636 ± 94; 1020 ± 120; 1943 ± 326; 4421 ± 1042; 12781 ± 1807 ppb, p < 0.05). The receiver operating characteristic curve analysis showed an area under the curve (AUC) of 0.835 (p < 0.0001) for distinguishing CKD stage 1 from other CKD stages at 974 ppb (sensitivity, 69%; specificity, 95%). The AUC was 0.831 (p < 0.0001) for distinguishing between patients with/without eGFR < 60 mL/min/1.73 m2 (cutoff 1187 ppb: sensitivity, 71%; specificity, 78%). At 886 ppb, the sensitivity increased to 80% but the specificity decreased to 69%. This value is suitable for kidney function screening. Breath ammonia detection with V-OSC is a real time, inexpensive, and easy to administer measurement device for screening CKD with reliable diagnostic accuracy.
Collapse
|
17
|
Qasem Moreno AL, Sáez PO, Calle PF, Del Peso Gilsanz G, Ramos SA, Almirón MD, Soto AB. Clinical, Operative, and Economic Outcomes of the Point-of-Care Blood Gases in the Nephrology Department of a Third-Level Hospital. Arch Pathol Lab Med 2020; 144:1209-1216. [PMID: 32649215 DOI: 10.5858/arpa.2019-0679-ra] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2020] [Indexed: 11/06/2022]
Abstract
CONTEXT.— Point-of-care testing allows rapid analysis and short turnaround times. To the best of our knowledge, the present study assesses, for the first time, clinical, operative, and economic outcomes of point-of-care blood gas analysis in a nephrology department. OBJECTIVE.— To evaluate the impact after implementing blood gas analysis in the nephrology department, considering clinical (differences in blood gas analysis results, critical results), operative (turnaround time, elapsed time between consecutive blood gas analysis, preanalytical errors), and economic (total cost per process) outcomes. DESIGN.— A total amount of 3195 venous blood gas analyses from 688 patients of the nephrology department before and after point-of-care blood gas analyzer installation were included. Blood gas analysis results obtained by ABL90 FLEX PLUS were acquired from the laboratory information system. Statistical analyses were performed using SAS 9.3 software. RESULTS.— During the point-of-care testing period, there was an increase in blood glucose levels and a decrease in pCO2, lactate, and sodium as well as fewer critical values (especially glucose and lactate). The turnaround time and the mean elapsed time were shorter. By the beginning of this period, the number of preanalytical errors increased; however, no statistically significant differences were found during year-long monitoring. Although there was an increase in the total number of blood gas analysis requests, the total cost per process decreased. CONCLUSIONS.— The implementation of a point-of-care blood gas analysis in a nephrology department has a positive impact on clinical, operative, and economic terms of patient care.
Collapse
Affiliation(s)
- Ana Laila Qasem Moreno
- From the Department of Laboratory Medicine, La Paz University Hospital, Madrid, Spain (Qasem Moreno, Sáez, Calle, Soto)
| | - Paloma Oliver Sáez
- From the Department of Laboratory Medicine, La Paz University Hospital, Madrid, Spain (Qasem Moreno, Sáez, Calle, Soto)
| | - Pilar Fernández Calle
- From the Department of Laboratory Medicine, La Paz University Hospital, Madrid, Spain (Qasem Moreno, Sáez, Calle, Soto)
| | - Gloria Del Peso Gilsanz
- Department of Nephrology, La Paz University Hospital, Madrid, Spain (del Peso Gilsanz, Ramos)
| | - Sara Afonso Ramos
- Department of Nephrology, La Paz University Hospital, Madrid, Spain (del Peso Gilsanz, Ramos)
| | - Mariana Díaz Almirón
- Department of Biostatistics, La Paz University Hospital, Madrid, Spain (Almirón)
| | - Antonio Buño Soto
- From the Department of Laboratory Medicine, La Paz University Hospital, Madrid, Spain (Qasem Moreno, Sáez, Calle, Soto)
| |
Collapse
|
18
|
Mukhopadhyaya T, Wagner JS, Fan H, Katz HE. Design and Synthesis of Air-Stable p-Channel-Conjugated Polymers for High Signal-to-Drift Nitrogen Dioxide and Ammonia Sensing. ACS APPLIED MATERIALS & INTERFACES 2020; 12:21974-21984. [PMID: 32315154 DOI: 10.1021/acsami.0c04810] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The development of high-performance-conjugated polymer-based gas sensors involves detailed structural tailoring such that high sensitivities are achieved without compromising the stability of the fabricated devices. In this work, we systematically developed a series of diketopyrrolopyrrole (DPP)-based polymer semiconductors by modifying the polymer backbone to achieve and rationalize enhancements in gas sensitivities and electronic stability in air. NO2- and NH3-responsive polymer-based organic field-effect transistors (OFETs) are described with improved air stability compared to all-thiophene conjugated polymers. Five DPP-fluorene-based polymers were synthesized and compared to two control polymers and used as active layers to detect a concentration of NO2 at least as low as 0.5 ppm. The hypothesis that the less electron-donating fluorene main-chain subunit would lead to increased signal/drift compared to thiophene and carbazole subunits was tested. The sensitivities exhibited a bias voltage-dependent behavior. The proportional on-current change of OFETs using a dithienyl DPP-fluorene polymer reached ∼614% for an exposure to 20 ppm of NO2 for 5 min, testing at a bias voltage of -33 V, among the higher reported NO2 sensitivities for conjugated polymers. Electronic and morphological studies reveal that introduction of the fluorene unit in the DPP backbone decreases the ease of backbone oxidation and induces traps in the thin films. The combination of thin-film morphology and oxidation potentials governs the gas-absorbing properties of these materials. The ratio of responses on exposure to NO2 and NH3 compared to drifts while taking the device through repeated gate voltage sweeps is the highest for two polymers incorporating electron-donating linkers connecting the DPP and thiophene units in the backbone, in this category of organic semiconductors. The responses to NO2 were much larger than that to NH3, indicating increased susceptibility to oxidizing vs reducing gases, and that the capability of oxidizing gases to induce additional charge density has a more dramatic electronic effect than when reducing gases create traps. This work demonstrates the capability of achieving improved stability with the retention of high sensitivity in conjugated polymer-based OFET sensors by modulating redox and morphological properties of polymer semiconductors by structural control.
Collapse
Affiliation(s)
- Tushita Mukhopadhyaya
- Department of Materials Science and Engineering and Department of Chemistry, Johns Hopkins University, 206 Maryland Hall, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Justine S Wagner
- Department of Materials Science and Engineering and Department of Chemistry, Johns Hopkins University, 206 Maryland Hall, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Huidong Fan
- Department of Materials Science and Engineering and Department of Chemistry, Johns Hopkins University, 206 Maryland Hall, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Howard E Katz
- Department of Materials Science and Engineering and Department of Chemistry, Johns Hopkins University, 206 Maryland Hall, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
19
|
|
20
|
Chen CC, Hsieh JC, Chao CH, Yang WS, Cheng HT, Chan CK, Lu CJ, Meng HF, Zan HW. Correlation between breath ammonia and blood urea nitrogen levels in chronic kidney disease and dialysis patients. J Breath Res 2020; 14:036002. [DOI: 10.1088/1752-7163/ab728b] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
21
|
Zhou X, Xue Z, Chen X, Huang C, Bai W, Lu Z, Wang T. Nanomaterial-based gas sensors used for breath diagnosis. J Mater Chem B 2020; 8:3231-3248. [DOI: 10.1039/c9tb02518a] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Gas-sensing applications commonly use nanomaterials (NMs) because of their unique physicochemical properties, including a high surface-to-volume ratio, enormous number of active sites, controllable morphology, and potential for miniaturisation.
Collapse
Affiliation(s)
- Xinyuan Zhou
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Analytical Chemistry for Living Biosystems
- Institute of Chemistry
- Chinese Academy of Sciences
- China
| | - Zhenjie Xue
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Analytical Chemistry for Living Biosystems
- Institute of Chemistry
- Chinese Academy of Sciences
- China
| | - Xiangyu Chen
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Analytical Chemistry for Living Biosystems
- Institute of Chemistry
- Chinese Academy of Sciences
- China
| | - Chuanhui Huang
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Analytical Chemistry for Living Biosystems
- Institute of Chemistry
- Chinese Academy of Sciences
- China
| | - Wanqiao Bai
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Analytical Chemistry for Living Biosystems
- Institute of Chemistry
- Chinese Academy of Sciences
- China
| | - Zhili Lu
- Key Laboratory of Materials Processing and Mold
- Ministry of Education
- Zhengzhou Universit
- P. R. China
| | - Tie Wang
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Analytical Chemistry for Living Biosystems
- Institute of Chemistry
- Chinese Academy of Sciences
- China
| |
Collapse
|
22
|
Yu SH, Girma HG, Sim KM, Yoon S, Park JM, Kong H, Chung DS. Polymer-based flexible NO x sensors with ppb-level detection at room temperature using breath-figure molding. NANOSCALE 2019; 11:17709-17717. [PMID: 31545332 DOI: 10.1039/c9nr06096k] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
A strategically designed polymer semiconductor thin film morphology with both high responsivity to the specific gas analyte and high signal transport efficiency is reported to realize high-performance flexible NOx gas sensors. Breath-figure (BF) molding of polymer semiconductors enables a finely defined degree of nano-porosity in polymer films with high reproducibility while maintaining high charge carrier mobility characteristics of organic field effect transistors (OFETs). The optimized BF-OFET with a donor-acceptor copolymer exhibits a maximum responsivity of over 104%, sensitivity of 774% ppm-1, and limit of detection (LOD) of 110 ppb against NO at room temperature. When tested across at NO concentrations of 0.2-10 ppm, the BF-OFET gas sensor exhibits a response time of 100-300 s, which is suitable for safety purposes in practical applications. Furthermore, BF-OFETs show a high reproducibility as confirmed by statistical analysis on 64 independently fabricated devices. The selectivity of NOx analytes is tested by comparing the sensing ability of BF-OFETs with those of other reducing gases and volatile organic compounds; the BF-OFET gas sensor platform monitors specific gas analytes based on their polarity and magnitude of sensitivity. Finally, flexible BF-OFETs conjugated with plastic substrates are demonstrated and they exhibit a sensitivity of 500% ppm-1 and a LOD of 215 ppb, with a responsivity degradation of only 14.2% after 10 000 bending cycles at 1% strain.
Collapse
Affiliation(s)
- Seong Hoon Yu
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea.
| | | | | | | | | | | | | |
Collapse
|