1
|
Ranzau B, Robinson TD, Scully JM, Kapelczak ED, Dean TS, TeSlaa T, Schmitt DL. A Genetically Encoded Fluorescent Biosensor for Intracellular Measurement of Malonyl-CoA. ACS BIO & MED CHEM AU 2025; 5:184-193. [PMID: 39990938 PMCID: PMC11843332 DOI: 10.1021/acsbiomedchemau.4c00103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 02/25/2025]
Abstract
Malonyl-CoA is the essential building block of fatty acids and regulates cell function through protein malonylation and allosteric regulation of signaling networks. Accordingly, the production and use of malonyl-CoA is finely tuned by the cellular energy status. Most studies of malonyl-CoA dynamics rely on bulk approaches that take only a snapshot of the average metabolic state of a population of cells, missing out on heterogeneous differences in malonyl-CoA and fatty acid biosynthesis that could be occurring among a cell population. To overcome this limitation, we have developed a genetically encoded fluorescent protein-based biosensor for malonyl-CoA that can be used to capture malonyl-CoA dynamics in single cells. This biosensor, termed Malibu (malonyl-CoA intracellular biosensor to understand dynamics), exhibits an excitation-ratiometric change in response to malonyl-CoA binding. We first used Malibu to monitor malonyl-CoA dynamics during inhibition of fatty acid biosynthesis using cerulenin in Escherichia coli, observing an increase in Malibu response in a time- and dose-dependent manner. In HeLa cells, we used Malibu to monitor the impact of fatty acid biosynthesis inhibition on malonyl-CoA dynamics in single cells, finding that two inhibitors of fatty acid biosynthesis, cerulenin and orlistat, which inhibit different steps of fatty acid biosynthesis, increase malonyl-CoA levels. Altogether, we have developed a new genetically encoded biosensor for malonyl-CoA, which can be used to study malonyl-CoA dynamics in single cells, providing an unparalleled view into fatty acid biosynthesis.
Collapse
Affiliation(s)
- Brodie
L. Ranzau
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los Angeles, California 90095, United States
| | - Tiffany D. Robinson
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los Angeles, California 90095, United States
| | - Jack M. Scully
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los Angeles, California 90095, United States
| | - Edmund D. Kapelczak
- Department
of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Teagan S. Dean
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los Angeles, California 90095, United States
| | - Tara TeSlaa
- Department
of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, United States
- Molecular
Biology Institute, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Danielle L. Schmitt
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los Angeles, California 90095, United States
- Molecular
Biology Institute, University of California,
Los Angeles, Los Angeles, California 90095, United States
- Institute
for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
2
|
Li Q, Chang X, Han Y, Guo Z, Liu Y, Guo B, Liu C, Yang B, Fan Z, Jiang H, Chang X. Consumption of Endogenous Caspase-3 Activates Molecular Theranostic Nanoplatform against Inflammation-Induced Profibrotic Positive Feedback in Pulmonary Fibrosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412303. [PMID: 39686776 PMCID: PMC11809389 DOI: 10.1002/advs.202412303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/30/2024] [Indexed: 12/18/2024]
Abstract
The limited and backward diagnostic approaches elicit high mortality associated with pulmonary fibrosis (PF) because they fail to identify injury phase of PF. Developing a precisely theranostic nanoplatform presents a promising shortcut to reverse PF. Herein, a specific molecular nanotheranostic (Casp-GNMT), which is triggered by endogenous cysteinyl aspartate specific proteinase-3 (caspase-3), boosts antifibrotic efficacy through bioimaging synergistic with chemotherapy at molecular level, facilitating by ionizable lipid and reactive oxygen species sensitive lipid for precise and manageable therapy. The activation of molecular imaging probe (pCY-pairs) by consumption of endogenous caspase-3 initiates fluorescence resonance energy transfer-guided theranostic pattern, aiming to restore mitochondrial dysfunction-induced oxidative stress and inflammatory responses in alveolar epithelial cells II (AECs II). This process sequentially resists the expression of interleukin-1β and vascular endothelial growth factor receptor through combined with nintedanib, further suppressing abnormal injury of AECs II and persistent migration and proliferation of inflammatory cells. Especially, the homeostasis of injured AECs II diminishes excessive accumulation of transforming growth factor-β to restrain myofibroblasts proliferation and collagen deposition, thereby amplifying the possibility of reversing PF. This theranostic nanoplatform is proposed to provide a prompt and exact approach to enhance diagnostic authenticity and treating efficiency through harnessing endogenous indicator for PF reversal.
Collapse
Affiliation(s)
- Qiu‐Ling Li
- School of PharmacyJinzhou Medical UniversityJinzhouLiaoning121001China
| | - Xin Chang
- School of PharmacyJinzhou Medical UniversityJinzhouLiaoning121001China
- Liaoning Provincial Key Laboratory of Marine Bioactive SubstancesJinzhou Medical UniversityJinzhouLiaoning121001China
| | - Yu‐Mo Han
- School of PharmacyJinzhou Medical UniversityJinzhouLiaoning121001China
| | - Zi‐Chao Guo
- The First Affiliated Hospital of Jinzhou Medical UniversityJinzhou Medical UniversityJinzhouLiaoning121001China
| | - Yi‐Na Liu
- School of PharmacyJinzhou Medical UniversityJinzhouLiaoning121001China
| | - Bin Guo
- School of PharmacyJinzhou Medical UniversityJinzhouLiaoning121001China
- Liaoning Provincial Key Laboratory of Marine Bioactive SubstancesJinzhou Medical UniversityJinzhouLiaoning121001China
| | - Chang Liu
- School of PharmacyJinzhou Medical UniversityJinzhouLiaoning121001China
| | - Bin‐Rong Yang
- School of PharmacyJinzhou Medical UniversityJinzhouLiaoning121001China
- Liaoning Provincial Key Laboratory of Marine Bioactive SubstancesJinzhou Medical UniversityJinzhouLiaoning121001China
| | - Zhong‐Kai Fan
- The First Affiliated Hospital of Jinzhou Medical UniversityJinzhou Medical UniversityJinzhouLiaoning121001China
| | - Hu‐Lin Jiang
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjingJiangsu210009China
- Jiangsu Key Laboratory of Druggability of BiopharmaceuticalsChina Pharmaceutical UniversityNanjingJiangsu210009China
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and ExcipientsChina Pharmaceutical UniversityNanjingJiangsu210009China
| | - Xin Chang
- School of PharmacyJinzhou Medical UniversityJinzhouLiaoning121001China
- Liaoning Provincial Key Laboratory of Marine Bioactive SubstancesJinzhou Medical UniversityJinzhouLiaoning121001China
| |
Collapse
|
3
|
Soleja N, Mohsin M. Exploring the landscape of FRET-based molecular sensors: Design strategies and recent advances in emerging applications. Biotechnol Adv 2024; 77:108466. [PMID: 39419421 DOI: 10.1016/j.biotechadv.2024.108466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 10/09/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024]
Abstract
Probing biological processes in living organisms that could provide one-of-a-kind insights into real-time alterations of significant physiological parameters is a formidable task that calls for specialized analytic devices. Classical biochemical methods have significantly aided our understanding of the mechanisms that regulate essential biological processes. These methods, however, are typically insufficient for investigating transient molecular events since they focus primarily on the end outcome. Fluorescence resonance energy transfer (FRET) microscopy is a potent tool used for exploring non-invasively real-time dynamic interactions between proteins and a variety of biochemical signaling events using sensors that have been meticulously constructed. Due to their versatility, FRET-based sensors have enabled the rapid and standardized assessment of a large array of biological variables, facilitating both high-throughput research and precise subcellular measurements with exceptional temporal and spatial resolution. This review commences with a brief introduction to FRET theory and a discussion of the fluorescent molecules that can serve as tags in different sensing modalities for studies in chemical biology, followed by an outlining of the imaging techniques currently utilized to quantify FRET highlighting their strengths and shortcomings. The article also discusses the various donor-acceptor combinations that can be utilized to construct FRET scaffolds. Specifically, the review provides insights into the latest real-time bioimaging applications of FRET-based sensors and discusses the common architectures of such devices. There has also been discussion of FRET systems with multiplexing capabilities and multi-step FRET protocols for use in dual/multi-analyte detections. Future research directions in this exciting field are also mentioned, along with the obstacles and opportunities that lie ahead.
Collapse
Affiliation(s)
- Neha Soleja
- Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Mohd Mohsin
- Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
4
|
Wang W, Yang J. Development of mKate3/HaloTag7 (JFX650) and CFP/YFP Dual-Fluorescence (or Förster) Resonance Energy Transfer Pairs for Visualizing Dual-Molecular Activity. ACS Sens 2024; 9:5264-5274. [PMID: 39340466 DOI: 10.1021/acssensors.4c01444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2024]
Abstract
Although several imaging strategies for dual fluorescence (or Förster) resonance energy transfer (FRET) biosensors have been reported, their implementation is challenging because of the limited performance of fluorescent proteins and the spectral overlap of FRET biosensors. These processes often require additional data calibration to eliminate artifacts. Many CFP/YFP FRET biosensors have been developed. In this study, we introduced the mKate3/HT7(JFX650) FRET pair, which effectively formed two pairs of FRET pairs for dual-FRET imaging when combined with the CFP/YFP FRET pair. The FRET donor mKate3 exhibited higher brightness than its predecessor mKate. The FRET acceptor, HT7(JFX650), is a HaloTag7 protein covalently conjugated with a far-red JFX650-THL ligand. The pair comprising mKate3 and HT7(JFX650) represents an excellent FRET dyad, exhibiting a high FRET efficiency ratio. To use the FRET pair for dual FRET biosensor imaging, we constructed PKA and K+ biosensors based on the mKate3/HT7(JFX650) FRET pair. These biosensors can be used along with CFP/YFP biosensors to simultaneously detect the responses of intracellular PKA/Src, PKA/Ca2+, and K+/Ca2+ under different stimuli. The findings revealed that dual FRET biosensors, which are based on the combination of CFP/YFP and mKate3/HT7 (JFX650), exhibit adequate compatibility and can be used to visualize multiple molecular activities in a live cell.
Collapse
Affiliation(s)
- Wenjing Wang
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Jie Yang
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
5
|
Ranzau BL, Robinson TD, Scully JM, Kapelczack ED, Dean TS, TeSlaa T, Schmitt DL. A Genetically Encoded Fluorescent Biosensor for Intracellular Measurement of Malonyl-CoA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.27.615526. [PMID: 39386450 PMCID: PMC11463626 DOI: 10.1101/2024.09.27.615526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Malonyl-CoA is the essential building block of fatty acids and regulates cell function through protein malonylation and allosteric regulation of signaling networks. Accordingly, the production and use of malonyl-CoA is finely tuned by the cellular energy status. Most studies of malonyl-CoA dynamics rely on bulk approaches that take only a snapshot of the average metabolic state of a population of cells, missing out on dynamic changes in malonyl-CoA and fatty acid biosynthesis that could be occurring within a single cell. To overcome this limitation, we have developed a genetically encoded fluorescent protein-based biosensor for malonyl-CoA that can be used to capture malonyl-CoA dynamics in single cells. This biosensor, termed Malibu (malonyl-CoA intracellular biosensor to understand dynamics), exhibits an excitation-ratiometric change in response to malonyl-CoA binding. We first used Malibu to monitor malonyl-CoA dynamics during inhibition of fatty acid biosynthesis using cerulenin in E. coli, observing an increase in Malibu response in a time- and dose-dependent manner. In HeLa cells, we used Malibu to monitor the impact of fatty acid biosynthesis inhibition on malonyl-CoA dynamics in single cells, finding that two inhibitors of fatty acid biosynthesis, cerulenin and orlistat, which inhibit different steps of fatty acid biosynthesis, increase malonyl-CoA levels. Altogether, we have developed a new genetically encoded biosensor for malonyl-CoA, which can be used to sensitively study malonyl-CoA dynamics in single cells, providing an unparalleled view into fatty acid biosynthesis.
Collapse
Affiliation(s)
- Brodie L. Ranzau
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
- These authors contributed equally
| | - Tiffany D. Robinson
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
- These authors contributed equally
| | - Jack M. Scully
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Edmund D. Kapelczack
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Teagan S. Dean
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Tara TeSlaa
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Danielle L. Schmitt
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
6
|
Lin W, Phatarphekar A, Zhong Y, Liu L, Kwon HB, Gerwick WH, Wang Y, Mehta S, Zhang J. Light-gated integrator for highlighting kinase activity in living cells. Nat Commun 2024; 15:7804. [PMID: 39242543 PMCID: PMC11379911 DOI: 10.1038/s41467-024-51270-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 08/02/2024] [Indexed: 09/09/2024] Open
Abstract
Protein kinases are key signaling nodes that regulate fundamental biological and disease processes. Illuminating kinase signaling from multiple angles can provide deeper insights into disease mechanisms and improve therapeutic targeting. While fluorescent biosensors are powerful tools for visualizing live-cell kinase activity dynamics in real time, new molecular tools are needed that enable recording of transient signaling activities for post hoc analysis and targeted manipulation. Here, we develop a light-gated kinase activity coupled transcriptional integrator (KINACT) that converts dynamic kinase signals into "permanent" fluorescent marks. KINACT enables robust monitoring of kinase activity across scales, accurately recording subcellular PKA activity, highlighting PKA activity distribution in 3D cultures, and identifying PKA activators and inhibitors in high-throughput screens. We further leverage the ability of KINACT to drive signaling effector expression to allow feedback manipulation of the balance of GαsR201C-induced PKA and ERK activation and dissect the mechanisms of oncogenic G protein signaling.
Collapse
Affiliation(s)
- Wei Lin
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA.
| | | | - Yanghao Zhong
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Longwei Liu
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Hyung-Bae Kwon
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - William H Gerwick
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Yingxiao Wang
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Sohum Mehta
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Jin Zhang
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA.
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA.
- Shu Chien - Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
7
|
Shang A, Shao S, Zhao L, Liu B. Far-Red Fluorescent Proteins: Tools for Advancing In Vivo Imaging. BIOSENSORS 2024; 14:359. [PMID: 39194588 DOI: 10.3390/bios14080359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/29/2024]
Abstract
Far-red fluorescent proteins (FPs) have emerged as indispensable tools in in vivo imaging, playing a pivotal role in elucidating fundamental mechanisms and addressing application issues in biotechnology and biomedical fields. Their ability for deep penetration, coupled with reduced light scattering and absorption, robust resistance to autofluorescence, and diminished phototoxicity, has positioned far-red biosensors at the forefront of non-invasive visualization techniques for observing intracellular activities and intercellular behaviors. In this review, far-red FPs and their applications in living systems are mainly discussed. Firstly, various far-red FPs, characterized by emission peaks spanning from 600 nm to 650 nm, are introduced. This is followed by a detailed presentation of the fundamental principles enabling far-red biosensors to detect biomolecules and environmental changes. Furthermore, the review accentuates the superiority of far-red FPs in multi-color imaging. In addition, significant emphasis is placed on the value of far-red FPs in improving imaging resolution, highlighting their great contribution to the advancement of in vivo imaging.
Collapse
Affiliation(s)
- Angyang Shang
- Cancer Hospital of Dalian University of Technology, Shenyang 110042, China
- Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Faculty of Medicine, Dalian University of Technology, Dalian 116024, China
| | - Shuai Shao
- Cancer Hospital of Dalian University of Technology, Shenyang 110042, China
- Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Faculty of Medicine, Dalian University of Technology, Dalian 116024, China
| | - Luming Zhao
- Cancer Hospital of Dalian University of Technology, Shenyang 110042, China
- Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Faculty of Medicine, Dalian University of Technology, Dalian 116024, China
| | - Bo Liu
- Cancer Hospital of Dalian University of Technology, Shenyang 110042, China
- Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Faculty of Medicine, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
8
|
Matsuda T, Sakai S, Okazaki KI, Nagai T. Improvement of the Green-Red Förster Resonance Energy Transfer-Based Ca 2+ Indicator by Using the Green Fluorescent Protein, Gamillus, with a Trans Chromophore as the Donor. ACS Sens 2024; 9:1743-1748. [PMID: 38515268 PMCID: PMC11059083 DOI: 10.1021/acssensors.3c02398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 02/29/2024] [Accepted: 03/06/2024] [Indexed: 03/23/2024]
Abstract
To monitor the Ca2+ dynamics in cells, various genetically encoded Ca2+ indicators (GECIs) based on Förster resonance energy transfer (FRET) between fluorescent proteins are widely used for live imaging. Conventionally, cyan and yellow fluorescent proteins have been often used as FRET pairs. Meanwhile, bathochromically shifted indicators with green and red fluorescent protein pairs have various advantages, such as low toxicity and autofluorescence in cells. However, it remains difficult to develop them with a similar level of dynamic range as cyan and yellow fluorescent protein pairs. To improve this, we used Gamillus, which has a unique trans-configuration chromophore, as a green fluorescent protein. Based on one of the best high-dynamic-range GECIs, Twitch-NR, we developed a GECI with 1.5-times higher dynamic range (253%), Twitch-GmRR, using RRvT as a red fluorescent protein. Twitch-GmRR had high brightness and photostability and was successfully applied for imaging the Ca2+ dynamics in live cells. Our results suggest that Gamillus with trans-type chromophores contributes to improving the dynamic range of GECIs. Therefore, selection of the cis-trans isomer of the chromophore may be a fundamental approach to improve the dynamic range of green-red FRET indicators, unlimited by GECIs.
Collapse
Affiliation(s)
- Tomoki Matsuda
- SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Shinya Sakai
- SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Kei-ichi Okazaki
- Research
Center for Computational Science, Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8585, Japan
- Graduate
Institute for Advanced Studies, SOKENDAI, Okazaki, Aichi 444-8585, Japan
| | - Takeharu Nagai
- SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| |
Collapse
|
9
|
Lin W, Phatarphekar A, Zhong Y, Liu L, Kwon HB, Gerwick WH, Wang Y, Mehta S, Zhang J. Light-gated Integrator for Highlighting Kinase Activity in Living Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.18.585554. [PMID: 38562887 PMCID: PMC10983958 DOI: 10.1101/2024.03.18.585554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Protein kinases are key signaling nodes that regulate fundamental biological and disease processes. Illuminating kinase signaling from multiple angles can provide deeper insights into disease mechanisms and improve therapeutic targeting. While fluorescent biosensors are powerful tools for visualizing live-cell kinase activity dynamics in real time, new molecular tools are needed that enable recording of transient signaling activities for post hoc analysis and targeted manipulation. Here, we develop a light-gated kinase activity coupled transcriptional integrator (KINACT) that converts dynamic kinase signals into "permanent" fluorescent marks. KINACT enables robust monitoring of kinase activity across scales, accurately recording subcellular PKA activity, highlighting PKA signaling heterogeneity in 3D cultures, and identifying PKA activators and inhibitors in high-throughput screens. We further leverage the ability of KINACT to drive signaling effector expression to allow feedback manipulation of the balance of GαsR201C-induced PKA and ERK activation and dissect the mechanisms of oncogenic G protein signaling.
Collapse
Affiliation(s)
- Wei Lin
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | | | - Yanghao Zhong
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Longwei Liu
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Hyung-Bae Kwon
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - William H. Gerwick
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Yingxiao Wang
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Sohum Mehta
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Jin Zhang
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
10
|
Watabe T, Yamahira S, Takakura K, Thumkeo D, Narumiya S, Matsuda M, Terai K. Calcium transients trigger switch-like discharge of prostaglandin E 2 in an extracellular signal-regulated kinase-dependent manner. eLife 2024; 12:RP86727. [PMID: 38276879 PMCID: PMC10945702 DOI: 10.7554/elife.86727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024] Open
Abstract
Prostaglandin E2 (PGE2) is a key player in a plethora of physiological and pathological events. Nevertheless, little is known about the dynamics of PGE2 secretion from a single cell and its effect on the neighboring cells. Here, by observing confluent Madin-Darby canine kidney (MDCK) epithelial cells expressing fluorescent biosensors, we demonstrate that calcium transients in a single cell cause PGE2-mediated radial spread of PKA activation (RSPA) in neighboring cells. By in vivo imaging, RSPA was also observed in the basal layer of the mouse epidermis. Experiments with an optogenetic tool revealed a switch-like PGE2 discharge in response to the increasing cytoplasmic Ca2+ concentrations. The cell density of MDCK cells correlated with the frequencies of calcium transients and the following RSPA. The extracellular signal-regulated kinase (ERK) activation also enhanced the frequency of RSPA in MDCK and in vivo. Thus, the PGE2 discharge is regulated temporally by calcium transients and ERK activity.
Collapse
Affiliation(s)
- Tetsuya Watabe
- Research Center for Dynamic Living Systems, Graduate School of Biostudies, Kyoto UniversityKyotoJapan
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto UniversityKyotoJapan
| | - Shinya Yamahira
- Research Center for Dynamic Living Systems, Graduate School of Biostudies, Kyoto UniversityKyotoJapan
| | - Kanako Takakura
- Research Center for Dynamic Living Systems, Graduate School of Biostudies, Kyoto UniversityKyotoJapan
| | - Dean Thumkeo
- Department of Drug Discovery Medicine, Graduate School of Medicine, Kyoto UniversityKyotoJapan
| | - Shuh Narumiya
- Department of Drug Discovery Medicine, Graduate School of Medicine, Kyoto UniversityKyotoJapan
| | - Michiyuki Matsuda
- Research Center for Dynamic Living Systems, Graduate School of Biostudies, Kyoto UniversityKyotoJapan
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto UniversityKyotoJapan
- Institute for Integrated Cell-Material Sciences, Kyoto UniversityKyotoJapan
| | - Kenta Terai
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto UniversityKyotoJapan
| |
Collapse
|
11
|
Qian T, Bao J, Liu X, Oudeng G, Ye W. A "turn-on" fluorescence resonance energy transfer aptasensor based on carbon dots and gold nanoparticles for 17β-estradiol detection in sea salt. RSC Adv 2023; 13:27772-27781. [PMID: 37731834 PMCID: PMC10507534 DOI: 10.1039/d3ra05410a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/08/2023] [Indexed: 09/22/2023] Open
Abstract
17β-estradiol is abused in the food industry. Excess 17β-estradiol can disturb the endocrine system or cause many diseases including obesity, diabetes, cardiac-cerebral vascular disease, and cancers in the human body. A "turn-on" fluorescence resonance energy transfer (FRET) aptasensor based on carbon dots (CDs) and gold nanoparticles (AuNPs) was developed for the detection of 17β-estradiol. A thiol-modified oligonucleotide was conjugated to AuNPs and amino modified oligonucleotide was linked to CDs. The 17β-estradiol aptamer was hybridized with the two oligonucleotides, shortening the distance between CDs and AuNPs. With 360 nm UV light excitation, FRET occurred between CDs and AuNPs. The system was "turn-off". When 17β-estradiol was detected, the aptamer specifically bound to 17β-estradiol, and the FRET system was destroyed, leading to the "turn-on" phenomenon. The fluorescence intensity recovery was detected in the concentration range of 400 pM to 5.5 μM. The limit of detection (LOD) was 245 pM. The FRET aptasensor demonstrated good selectivity for 17β-estradiol detection. Reasonable spiked recoveries were obtained in sea salt samples. It showed the potential for estrogen detection in food safety and environmental applications.
Collapse
Affiliation(s)
- Tianrun Qian
- College of Mechanical Engineering, Zhejiang University of Technology Hangzhou 310014 People's Republic of China
- College of Food Science and Technology, Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Jia Bao
- The Science Technology Department of Zhejiang Province Hangzhou 310006 People's Republic of China
| | - Xuepeng Liu
- College of Mechanical Engineering, Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Gerile Oudeng
- Department of Hematology and Oncology, Shenzhen Children's Hospital Shenzhen 518000 People's Republic of China
| | - Weiwei Ye
- College of Mechanical Engineering, Zhejiang University of Technology Hangzhou 310014 People's Republic of China
- Ninghai ZJUT Academy of Science and Technology Ningbo 315615 People's Republic of China
| |
Collapse
|
12
|
Hellweg L, Edenhofer A, Barck L, Huppertz MC, Frei MS, Tarnawski M, Bergner A, Koch B, Johnsson K, Hiblot J. A general method for the development of multicolor biosensors with large dynamic ranges. Nat Chem Biol 2023; 19:1147-1157. [PMID: 37291200 PMCID: PMC10449634 DOI: 10.1038/s41589-023-01350-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 04/25/2023] [Indexed: 06/10/2023]
Abstract
Fluorescent biosensors enable the study of cell physiology with spatiotemporal resolution; yet, most biosensors suffer from relatively low dynamic ranges. Here, we introduce a family of designed Förster resonance energy transfer (FRET) pairs with near-quantitative FRET efficiencies based on the reversible interaction of fluorescent proteins with a fluorescently labeled HaloTag. These FRET pairs enabled the straightforward design of biosensors for calcium, ATP and NAD+ with unprecedented dynamic ranges. The color of each of these biosensors can be readily tuned by changing either the fluorescent protein or the synthetic fluorophore, which enables simultaneous monitoring of free NAD+ in different subcellular compartments following genotoxic stress. Minimal modifications of these biosensors furthermore allow their readout to be switched to fluorescence intensity, fluorescence lifetime or bioluminescence. These FRET pairs thus establish a new concept for the development of highly sensitive and tunable biosensors.
Collapse
Affiliation(s)
- Lars Hellweg
- Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Anna Edenhofer
- Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Lucas Barck
- Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Magnus-Carsten Huppertz
- Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Michelle S Frei
- Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Miroslaw Tarnawski
- Protein Expression and Characterization Facility, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Andrea Bergner
- Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Birgit Koch
- Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Kai Johnsson
- Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg, Germany
- Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Julien Hiblot
- Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg, Germany.
| |
Collapse
|
13
|
Hirose H, Nakata E, Zhang Z, Shibano Y, Maekawa M, Morii T, Futaki S. Macropinoscope: Real-Time Simultaneous Tracking of pH and Cathepsin B Activity in Individual Macropinosomes. Anal Chem 2023. [PMID: 37468434 DOI: 10.1021/acs.analchem.3c01645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
A fluorescent sensor that allows simultaneous analysis of environmental factors in a limited cellular space is useful for understanding precise molecular interactions in live cells and their biological responses. Macropinocytosis is a ubiquitous endocytic pathway for massive uptake of extracellular fluids, resulting in the formation of macropinosomes. Although macropinocytosis may impact intracellular delivery and cancer proliferation, information on the intracellular behaviors of macropinosomes is limited. Here, we aimed to develop a macropinoscope, a sensor that simultaneously detects pH and cathepsin B activity in individual macropinosomes. A macropinosome-specific marker, dextran (70 kDa), was employed as a platform, onto which fluorescein, Oregon Green, and tetramethylrhodamine were loaded for ratiometric pH sensing and imaging. A cathepsin-B-cleavable peptide sequence bearing sulfo-Cy5 and the quencher BHQ-3 was also mounted; cleavage of the sequence was detected as an increase in sulfo-Cy5 fluorescence. A steep decrease in pH was observed 5-10 min after macropinosome formation, which was accompanied by an immediate increase in cathepsin B activity. Our design concept will lead to the development of other macropinoscopes for the simultaneous detection of other parameters in individual macropinosomes.
Collapse
Affiliation(s)
- Hisaaki Hirose
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Eiji Nakata
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Zhengxiao Zhang
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Yuya Shibano
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Masashi Maekawa
- Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Minato, Tokyo 105-8512, Japan
| | - Takashi Morii
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Shiroh Futaki
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
14
|
Konishi Y, Terai K. In vivo imaging of inflammatory response in cancer research. Inflamm Regen 2023; 43:10. [PMID: 36750856 PMCID: PMC9903460 DOI: 10.1186/s41232-023-00261-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/27/2023] [Indexed: 02/09/2023] Open
Abstract
Inflammation can contribute to the development and progression of cancer. The inflammatory responses in the tumor microenvironment are shaped by complex sequences of dynamic intercellular cross-talks among diverse types of cells, and recapitulation of these dynamic events in vitro has yet to be achieved. Today, intravital microscopy with two-photon excitation microscopes (2P-IVM) is the mainstay technique for observing intercellular cross-talks in situ, unraveling cellular and molecular mechanisms in the context of their spatiotemporal dynamics. In this review, we summarize the current state of 2P-IVM with fluorescent indicators of signal transduction to reveal the cross-talks between cancer cells and surrounding cells including both immune and non-immune cells. We also discuss the potential application of red-shifted indicators along with optogenetic tools to 2P-IVM. In an era of single-cell transcriptomics and data-driven research, 2P-IVM will remain a key advantage in delivering the missing spatiotemporal context in the field of cancer research.
Collapse
Affiliation(s)
- Yoshinobu Konishi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Kenta Terai
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| |
Collapse
|
15
|
Scheele CLGJ, Herrmann D, Yamashita E, Celso CL, Jenne CN, Oktay MH, Entenberg D, Friedl P, Weigert R, Meijboom FLB, Ishii M, Timpson P, van Rheenen J. Multiphoton intravital microscopy of rodents. NATURE REVIEWS. METHODS PRIMERS 2022; 2:89. [PMID: 37621948 PMCID: PMC10449057 DOI: 10.1038/s43586-022-00168-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/12/2022] [Indexed: 08/26/2023]
Abstract
Tissues are heterogeneous with respect to cellular and non-cellular components and in the dynamic interactions between these elements. To study the behaviour and fate of individual cells in these complex tissues, intravital microscopy (IVM) techniques such as multiphoton microscopy have been developed to visualize intact and live tissues at cellular and subcellular resolution. IVM experiments have revealed unique insights into the dynamic interplay between different cell types and their local environment, and how this drives morphogenesis and homeostasis of tissues, inflammation and immune responses, and the development of various diseases. This Primer introduces researchers to IVM technologies, with a focus on multiphoton microscopy of rodents, and discusses challenges, solutions and practical tips on how to perform IVM. To illustrate the unique potential of IVM, several examples of results are highlighted. Finally, we discuss data reproducibility and how to handle big imaging data sets.
Collapse
Affiliation(s)
- Colinda L. G. J. Scheele
- Laboratory for Intravital Imaging and Dynamics of Tumor Progression, VIB Center for Cancer Biology, KU Leuven, Leuven, Belgium
- Department of Oncology, KU Leuven, Leuven, Belgium
| | - David Herrmann
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Department, Sydney, New South Wales, Australia
- St. Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia
| | - Erika Yamashita
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Osaka, Japan
- WPI-Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Laboratory of Bioimaging and Drug Discovery, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Cristina Lo Celso
- Department of Life Sciences and Centre for Hematology, Imperial College London, London, UK
- Sir Francis Crick Institute, London, UK
| | - Craig N. Jenne
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Maja H. Oktay
- Department of Pathology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Integrated Imaging Program, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - David Entenberg
- Department of Pathology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Integrated Imaging Program, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Peter Friedl
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, Netherlands
- David H. Koch Center for Applied Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Roberto Weigert
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Franck L. B. Meijboom
- Department of Population Health Sciences, Sustainable Animal Stewardship, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
- Faculty of Humanities, Ethics Institute, Utrecht University, Utrecht, Netherlands
| | - Masaru Ishii
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Osaka, Japan
- WPI-Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Laboratory of Bioimaging and Drug Discovery, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Paul Timpson
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Department, Sydney, New South Wales, Australia
- St. Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia
| | - Jacco van Rheenen
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, Netherlands
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, Netherlands
| |
Collapse
|
16
|
Vecchia MD, Conte-Daban A, Cappe B, Vandenberg W, Vandenabeele P, Riquet FB, Dedecker P. Spectrally Tunable Förster Resonance Energy Transfer-Based Biosensors Using Organic Dye Grafting. ACS Sens 2022; 7:2920-2927. [PMID: 36162130 DOI: 10.1021/acssensors.2c00066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Biosensors based on Förster resonance energy transfer (FRET) have revolutionized cellular biology by allowing the direct measurement of biochemical processes in situ. Many genetically encoded sensors make use of fluorescent proteins that are limited in spectral versatility and that allow few ways to change the spectral properties once the construct has been created. In this work, we developed genetically encoded FRET biosensors based on the chemigenetic SNAP and HaloTag domains combined with matching organic fluorophores. We found that the resulting constructs can display comparable responses, kinetics, and reversibility compared to their fluorescent protein-based ancestors, but with the added advantage of spectral versatility, including the availability of red-shifted dye pairs. However, we also find that the introduction of these tags can alter the sensor readout, showing that careful validation is required before applying such constructs in practice. Overall, our approach delivers an innovative methodology that can readily expand the spectral variety and versatility of FRET-based biosensors.
Collapse
Affiliation(s)
- Marco Dalla Vecchia
- Lab for NanoBiology, Department of Chemistry, 3001 Leuven, Belgium.,Molecular Signaling and Cell Death Unit, Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium.,Cell Death and Inflammation Unit, VIB-UGent Center for Inflammation Research (IRC), Technologiepark 71, Zwijnaarde, 9052 Ghent, Belgium
| | | | - Benjamin Cappe
- Molecular Signaling and Cell Death Unit, Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium.,Cell Death and Inflammation Unit, VIB-UGent Center for Inflammation Research (IRC), Technologiepark 71, Zwijnaarde, 9052 Ghent, Belgium
| | - Wim Vandenberg
- Lab for NanoBiology, Department of Chemistry, 3001 Leuven, Belgium
| | - Peter Vandenabeele
- Molecular Signaling and Cell Death Unit, Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium.,Cell Death and Inflammation Unit, VIB-UGent Center for Inflammation Research (IRC), Technologiepark 71, Zwijnaarde, 9052 Ghent, Belgium
| | - Franck B Riquet
- Molecular Signaling and Cell Death Unit, Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium.,Cell Death and Inflammation Unit, VIB-UGent Center for Inflammation Research (IRC), Technologiepark 71, Zwijnaarde, 9052 Ghent, Belgium.,Université de Lille, CNRS, UMR 8523-PhLAM-Physique des Lasers Atomes et Molécules, 59000 Lille, France
| | - Peter Dedecker
- Lab for NanoBiology, Department of Chemistry, 3001 Leuven, Belgium
| |
Collapse
|
17
|
Two-step förster resonance energy transfer amplification for ratiometric detection of pathogenic bacteria in food samples. Food Chem 2022; 404:134492. [DOI: 10.1016/j.foodchem.2022.134492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/08/2022] [Accepted: 09/29/2022] [Indexed: 11/21/2022]
|
18
|
Kim H, Choi G, Suk ME, Kim TJ. Resource for FRET-Based Biosensor Optimization. Front Cell Dev Biol 2022; 10:885394. [PMID: 35794864 PMCID: PMC9251444 DOI: 10.3389/fcell.2022.885394] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/17/2022] [Indexed: 11/13/2022] Open
Abstract
After the development of Cameleon, the first fluorescence resonance energy transfer (FRET)-based calcium indicator, a variety of FRET-based genetically encoded biosensors (GEBs) have visualized numerous target players to monitor their cell physiological dynamics spatiotemporally. Many attempts have been made to optimize GEBs, which require labor-intensive effort, novel approaches, and precedents to develop more sensitive and versatile biosensors. However, researchers face considerable trial and error in upgrading biosensors because examples and methods of improving FRET-based GEBs are not well documented. In this review, we organize various optimization strategies after assembling the existing cases in which the non-fluorescent components of biosensors are upgraded. In addition, promising areas to which optimized biosensors can be applied are briefly discussed. Therefore, this review could serve as a resource for researchers attempting FRET-based GEB optimization.
Collapse
Affiliation(s)
- Heonsu Kim
- Institute of Systems Biology, Pusan National University, Busan, South Korea
| | - Gyuho Choi
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
| | - Myung Eun Suk
- Department of Mechanical Engineering, IT Convergence College of Materials and Components Engineering, Dong-Eui University, Busan, South Korea
- *Correspondence: Myung Eun Suk, ; Tae-Jin Kim,
| | - Tae-Jin Kim
- Institute of Systems Biology, Pusan National University, Busan, South Korea
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
- Department of Biological Sciences, Pusan National University, Busan, South Korea
- *Correspondence: Myung Eun Suk, ; Tae-Jin Kim,
| |
Collapse
|
19
|
Si Y, Grazon C, Clavier G, Audibert JF, Sclavi B, Méallet-Renault R. FRET-mediated quenching of BODIPY fluorescent nanoparticles by methylene blue and its application to bacterial imaging. Photochem Photobiol Sci 2022; 21:1249-1255. [PMID: 35428949 DOI: 10.1007/s43630-022-00215-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/21/2022] [Indexed: 11/28/2022]
Abstract
High resolution and a good signal to noise ratio are a requirement in cell imaging. However, after labelling with fluorescent entities, and after several washing steps, there is often an unwanted fluorescent background that reduces the images resolution. For this purpose, we developed an approach to remove the signal from extra-cellular fluorescent nanoparticles (FNPs) during bacteria imaging, without the need for any washing steps. Our idea is to use methylene blue to quench > 90% of the emission of BODIPY-based fluorescent polymer nanoparticle by a FRET process. This "Hide-and-Seek Game" approach offers a novel strategy to apply fluorescence quenching in bioimaging to improve image accuracy.
Collapse
Affiliation(s)
- Yang Si
- PPSM, Université Paris-Saclay, ENS Paris-Saclay, CNRS, 91190, Gif-sur-Yvette, France.,LBPA, Université Paris-Saclay, ENS Paris-Saclay, CNRS, 91190, Gif-sur-Yvette, France.,Epigenetic Chemical Biology, CNRS UMR3523, Institut Pasteur, 28 Rue du Dr Roux, 75015, Paris, France
| | - Chloé Grazon
- PPSM, Université Paris-Saclay, ENS Paris-Saclay, CNRS, 91190, Gif-sur-Yvette, France.,University of Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, 33400, Talence, France
| | - Gilles Clavier
- PPSM, Université Paris-Saclay, ENS Paris-Saclay, CNRS, 91190, Gif-sur-Yvette, France
| | | | - Bianca Sclavi
- LBPA, Université Paris-Saclay, ENS Paris-Saclay, CNRS, 91190, Gif-sur-Yvette, France. .,LCQB, CNRS UMR 7238, Sorbonne Université, 4 Place Jussieu, 75005, Paris, France.
| | - Rachel Méallet-Renault
- PPSM, Université Paris-Saclay, ENS Paris-Saclay, CNRS, 91190, Gif-sur-Yvette, France. .,ISMO, Université Paris-Saclay, CNRS, 91405, Orsay, France.
| |
Collapse
|
20
|
Fujii H, Bito H. Deciphering Ca2+-controlled biochemical computation governing neural circuit dynamics via multiplex imaging. Neurosci Res 2022; 179:79-90. [DOI: 10.1016/j.neures.2022.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 12/25/2022]
|
21
|
Fonseca JP, Aslankoohi E, Ng AH, Chevalier M. Analysis of localized cAMP perturbations within a tissue reveal the effects of a local, dynamic gap junction state on ERK signaling. PLoS Comput Biol 2022; 18:e1009873. [PMID: 35353814 PMCID: PMC9000136 DOI: 10.1371/journal.pcbi.1009873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 04/11/2022] [Accepted: 01/27/2022] [Indexed: 11/19/2022] Open
Abstract
Beyond natural stimuli such as growth factors and stresses, the ability to experimentally modulate at will the levels or activity of specific intracellular signaling molecule(s) in specified cells within a tissue can be a powerful tool for uncovering new regulation and tissue behaviors. Here we perturb the levels of cAMP within specific cells of an epithelial monolayer to probe the time-dynamic behavior of cell-cell communication protocols implemented by the cAMP/PKA pathway and its coupling to the ERK pathway. The time-dependent ERK responses we observe in the perturbed cells for spatially uniform cAMP perturbations (all cells) can be very different from those due to spatially localized perturbations (a few cells). Through a combination of pharmacological and genetic perturbations, signal analysis, and computational modeling, we infer how intracellular regulation and regulated cell-cell coupling each impact the intracellular ERK response in single cells. Our approach reveals how a dynamic gap junction state helps sculpt the intracellular ERK response over time in locally perturbed cells.
Collapse
Affiliation(s)
| | - Elham Aslankoohi
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Andrew H. Ng
- Outpace Bio, Seattle, Washington, United States of America
| | - Michael Chevalier
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
22
|
Lai WQ, Chang YF, Chou FN, Yang DM. Portable FRET-Based Biosensor Device for On-Site Lead Detection. BIOSENSORS 2022; 12:bios12030157. [PMID: 35323427 PMCID: PMC8946079 DOI: 10.3390/bios12030157] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/24/2022] [Accepted: 02/28/2022] [Indexed: 05/31/2023]
Abstract
Most methods for measuring environmental lead (Pb) content are time consuming, expensive, hazardous, and restricted to specific analytical systems. To provide a facile, safe tool to detect Pb, we created pMet-lead, a portable fluorescence resonance energy transfer (FRET)-based Pb-biosensor. The pMet-lead device comprises a 3D-printed frame housing a 405-nm laser diode-an excitation source for fluorescence emission images (YFP and CFP)-accompanied by optical filters, a customized sample holder with a Met-lead 1.44 M1 (the most recent version)-embedded biochip, and an optical lens aligned for smartphone compatibility. Measuring the emission ratios (Y/C) of the FRET components enabled Pb detection with a dynamic range of nearly 2 (1.96), a pMet-lead/Pb dissociation constant (Kd) 45.62 nM, and a limit of detection 24 nM (0.474 μg/dL, 4.74 ppb). To mitigate earlier problems with a lack of selectivity for Pb vs. zinc, we preincubated samples with tricine, a low-affinity zinc chelator. We validated the pMet-lead measurements of the characterized laboratory samples and unknown samples from six regions in Taiwan by inductively coupled plasma mass spectrometry (ICP-MS). Notably, two unknown samples had Y/C ratios significantly higher than that of the control (3.48 ± 0.08 and 3.74 ± 0.12 vs. 2.79 ± 0.02), along with Pb concentrations (10.6 ppb and 15.24 ppb) above the WHO-permitted level of 10 ppb in tap water, while the remaining four unknowns showed no detectable Pb upon ICP-MS. These results demonstrate that pMet-lead provides a rapid, sensitive means for on-site Pb detection in water from the environment and in living/drinking supply systems to prevent potential Pb poisoning.
Collapse
Affiliation(s)
- Wei-Qun Lai
- Microscopy Service Laboratory, Basic Research Division, Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (W.-Q.L.); (F.-N.C.)
- Institute of Biophotonics, School of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Yu-Fen Chang
- LumiSTAR Biotechnology, Inc., Taipei City 115, Taiwan;
| | - Fang-Ning Chou
- Microscopy Service Laboratory, Basic Research Division, Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (W.-Q.L.); (F.-N.C.)
| | - De-Ming Yang
- Microscopy Service Laboratory, Basic Research Division, Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (W.-Q.L.); (F.-N.C.)
- Institute of Biophotonics, School of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| |
Collapse
|
23
|
Hirota K, Hirashima T, Horikawa K, Yasoda A, Matsuda M. C-type Natriuretic Peptide-induced PKA Activation Promotes Endochondral Bone Formation in Hypertrophic Chondrocytes. Endocrinology 2022; 163:6511000. [PMID: 35041746 PMCID: PMC8826897 DOI: 10.1210/endocr/bqac005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Indexed: 11/28/2022]
Abstract
Longitudinal bone growth is achieved by a tightly controlled process termed endochondral bone formation. C-type natriuretic peptide (CNP) stimulates endochondral bone formation through binding to its specific receptor, guanylyl cyclase (GC)-B. However, CNP/GC-B signaling dynamics in different stages of endochondral bone formation have not been fully clarified, especially in terms of the interaction between the cyclic guanine monophosphate (cGMP) and cyclic adenosine monophosphate (cAMP) pathways. Here, we demonstrated that CNP activates the cAMP/protein kinase A (PKA) pathway and that this activation contributed to the elongation of the hypertrophic zone in the growth plate. Cells of the chondrogenic line ATDC5 were transfected with Förster resonance energy transfer (FRET)-based cGMP and PKA biosensors. Dual-FRET imaging revealed that CNP increased intracellular cGMP levels and PKA activities in chondrocytes. Further, CNP-induced PKA activation was enhanced following differentiation of ATDC5 cells. Live imaging of the fetal growth plate of transgenic mice, expressing a FRET biosensor for PKA, PKAchu mice, showed that CNP predominantly activates the PKA in the hypertrophic chondrocytes. Additionally, histological analysis of the growth plate of PKAchu mice demonstrated that CNP increased the length of the growth plate, but coadministration of a PKA inhibitor, H89, inhibited the growth-promoting effect of CNP only in the hypertrophic zone. In summary, we revealed that CNP-induced cGMP elevation activated the cAMP/PKA pathway, and clarified that this PKA activation contributed to the bone growth-promoting effect of CNP in hypertrophic chondrocytes. These results provide insights regarding the cross-talk between cGMP and cAMP signaling in endochondral bone formation and in the physiological role of the CNP/GC-B system.
Collapse
Affiliation(s)
- Keisho Hirota
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Correspondence: Keisho Hirota, Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-Cho, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Tsuyoshi Hirashima
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- The Hakubi Center, Kyoto University, Kyoto, Japan
- Science and Technology Agency, PRESTO, Kawaguchi, Japan
| | - Kazuki Horikawa
- Department of Optical Imaging, Advanced Research Promotion Center, Tokushima University Graduate School, Tokushima, Japan
| | - Akihiro Yasoda
- Clinical Research Center, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Michiyuki Matsuda
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
24
|
Yang S, Constantin OM, Sachidanandan D, Hofmann H, Kunz TC, Kozjak-Pavlovic V, Oertner TG, Nagel G, Kittel RJ, Gee CE, Gao S. PACmn for improved optogenetic control of intracellular cAMP. BMC Biol 2021; 19:227. [PMID: 34663304 PMCID: PMC8522238 DOI: 10.1186/s12915-021-01151-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 09/10/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Cyclic adenosine monophosphate (cAMP) is a ubiquitous second messenger that transduces extracellular signals in virtually all eukaryotic cells. The soluble Beggiatoa photoactivatable adenylyl cyclase (bPAC) rapidly raises cAMP in blue light and has been used to study cAMP signaling pathways cell-autonomously. But low activity in the dark might raise resting cAMP in cells expressing bPAC, and most eukaryotic cyclases are membrane-targeted rather than soluble. Our aim was to engineer a plasma membrane-anchored PAC with no dark activity (i.e., no cAMP accumulation in the dark) that rapidly increases cAMP when illuminated. RESULTS Using a streamlined method based on expression in Xenopus oocytes, we compared natural PACs and confirmed bPAC as the best starting point for protein engineering efforts. We identified several modifications that reduce bPAC dark activity. Mutating a phenylalanine to tyrosine at residue 198 substantially decreased dark cyclase activity, which increased 7000-fold when illuminated. Whereas Drosophila larvae expressing bPAC in mechanosensory neurons show nocifensive-like behavior even in the dark, larvae expressing improved soluble (e.g., bPAC(R278A)) and membrane-anchored PACs exhibited nocifensive responses only when illuminated. The plasma membrane-anchored PAC (PACmn) had an undetectable dark activity which increased >4000-fold in the light. PACmn does not raise resting cAMP nor, when expressed in hippocampal neurons, affect cAMP-dependent kinase (PKA) activity in the dark, but rapidly and reversibly increases cAMP and PKA activity in the soma and dendrites upon illumination. The peak responses to brief (2 s) light flashes exceed the responses to forskolin-induced activation of endogenous cyclases and return to baseline within seconds (cAMP) or ~10 min (PKA). CONCLUSIONS PACmn is a valuable optogenetic tool for precise cell-autonomous and transient stimulation of cAMP signaling pathways in diverse cell types.
Collapse
Affiliation(s)
- Shang Yang
- Department of Neurophysiology, Institute of Physiology, Biocenter, Julius-Maximilians-University of Würzburg, Röntgenring 9, 97070, Würzburg, Germany
| | - Oana M Constantin
- Institute for Synaptic Physiology, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Divya Sachidanandan
- Department of Animal Physiology, Institute of Biology, Leipzig University, Talstraße 33, 04103, Leipzig, Germany.,Carl-Ludwig-Institute for Physiology, Leipzig University, Liebigstraße 27, 04103, Leipzig, Germany
| | - Hannes Hofmann
- Department of Animal Physiology, Institute of Biology, Leipzig University, Talstraße 33, 04103, Leipzig, Germany.,Carl-Ludwig-Institute for Physiology, Leipzig University, Liebigstraße 27, 04103, Leipzig, Germany
| | - Tobias C Kunz
- Department of Microbiology, Biocenter, Julius-Maximilians-University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Vera Kozjak-Pavlovic
- Department of Microbiology, Biocenter, Julius-Maximilians-University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Thomas G Oertner
- Institute for Synaptic Physiology, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Georg Nagel
- Department of Neurophysiology, Institute of Physiology, Biocenter, Julius-Maximilians-University of Würzburg, Röntgenring 9, 97070, Würzburg, Germany
| | - Robert J Kittel
- Department of Animal Physiology, Institute of Biology, Leipzig University, Talstraße 33, 04103, Leipzig, Germany. .,Carl-Ludwig-Institute for Physiology, Leipzig University, Liebigstraße 27, 04103, Leipzig, Germany.
| | - Christine E Gee
- Institute for Synaptic Physiology, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany.
| | - Shiqiang Gao
- Department of Neurophysiology, Institute of Physiology, Biocenter, Julius-Maximilians-University of Würzburg, Röntgenring 9, 97070, Würzburg, Germany.
| |
Collapse
|
25
|
Massengill CI, Day-Cooney J, Mao T, Zhong H. Genetically encoded sensors towards imaging cAMP and PKA activity in vivo. J Neurosci Methods 2021; 362:109298. [PMID: 34339753 PMCID: PMC8659126 DOI: 10.1016/j.jneumeth.2021.109298] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/22/2021] [Accepted: 07/29/2021] [Indexed: 12/26/2022]
Abstract
Cyclic adenosine monophosphate (cAMP) is a universal second messenger that plays a crucial role in diverse biological functions, ranging from transcription to neuronal plasticity, and from development to learning and memory. In the nervous system, cAMP integrates inputs from many neuromodulators across a wide range of timescales - from seconds to hours - to modulate neuronal excitability and plasticity in brain circuits during different animal behavioral states. cAMP signaling events are both cell-specific and subcellularly compartmentalized. The same stimulus may result in different, sometimes opposite, cAMP dynamics in different cells or subcellular compartments. Additionally, the activity of protein kinase A (PKA), a major cAMP effector, is also spatiotemporally regulated. For these reasons, many laboratories have made great strides toward visualizing the intracellular dynamics of cAMP and PKA. To date, more than 80 genetically encoded sensors, including original and improved variants, have been published. It is starting to become possible to visualize cAMP and PKA signaling events in vivo, which is required to study behaviorally relevant cAMP/PKA signaling mechanisms. Despite significant progress, further developments are needed to enhance the signal-to-noise ratio and practical utility of these sensors. This review summarizes the recent advances and challenges in genetically encoded cAMP and PKA sensors with an emphasis on in vivo imaging in the brain during behavior.
Collapse
Affiliation(s)
| | - Julian Day-Cooney
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Tianyi Mao
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA.
| | - Haining Zhong
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
26
|
He J, Yamamoto M, Sumiyama K, Konagaya Y, Terai K, Matsuda M, Sato S. Two-photon AMPK and ATP imaging reveals the bias between rods and cones in glycolysis utility. FASEB J 2021; 35:e21880. [PMID: 34449091 DOI: 10.1096/fj.202101121r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/08/2021] [Accepted: 08/11/2021] [Indexed: 12/15/2022]
Abstract
In vertebrates, retinal rod and cone photoreceptor cells rely significantly on glycolysis. Lactate released from photoreceptor cells fuels neighboring retinal pigment epithelium cells and Müller glial cells through oxidative phosphorylation. To understand this highly heterogeneous metabolic environment around photoreceptor cells, single-cell analysis is needed. Here, we visualized cellular AMP-activated protein kinase (AMPK) activity and ATP levels in the retina by two-photon microscopy. Transgenic mice expressing a hyBRET-AMPK biosensor were used for measuring the AMPK activity. GO-ATeam2 transgenic mice were used for measuring the ATP level. Temporal metabolic responses were successfully detected in the live retinal explants upon drug perfusion. A glycolysis inhibitor, 2-deoxy-d-glucose (2-DG), activated AMPK and reduced ATP. These effects were clearly stronger in rods than in cones. Notably, rod AMPK and ATP started to recover at 30 min from the onset of 2-DG perfusion. Consistent with these findings, ex vivo electroretinogram recordings showed a transient slowdown in rod dim flash responses during a 60-min 2-DG perfusion, whereas cone responses were not affected. Based on these results, we propose that cones surrounded by highly glycolytic rods become less dependent on glycolysis, and rods also become less dependent on glycolysis within 60 min upon the glycolysis inhibition.
Collapse
Affiliation(s)
- Jiazhou He
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Masamichi Yamamoto
- Department of Research Promotion and Management, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Kenta Sumiyama
- Laboratory for Mouse Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Osaka, Japan
| | - Yumi Konagaya
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Kenta Terai
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Michiyuki Matsuda
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University, Kyoto, Japan.,Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto, Japan
| | - Shinya Sato
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|
27
|
Nakamura A, Goto Y, Kondo Y, Aoki K. Shedding light on developmental ERK signaling with genetically encoded biosensors. Development 2021; 148:271153. [PMID: 34338283 DOI: 10.1242/dev.199767] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The extracellular signal-regulated kinase (ERK) pathway governs cell proliferation, differentiation and migration, and therefore plays key roles in various developmental and regenerative processes. Recent advances in genetically encoded fluorescent biosensors have unveiled hitherto unrecognized ERK activation dynamics in space and time and their functional importance mainly in cultured cells. However, ERK dynamics during embryonic development have still only been visualized in limited numbers of model organisms, and we are far from a sufficient understanding of the roles played by developmental ERK dynamics. In this Review, we first provide an overview of the biosensors used for visualization of ERK activity in live cells. Second, we highlight the applications of the biosensors to developmental studies of model organisms and discuss the current understanding of how ERK dynamics are encoded and decoded for cell fate decision-making.
Collapse
Affiliation(s)
- Akinobu Nakamura
- Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan.,Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| | - Yuhei Goto
- Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan.,Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan.,Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| | - Yohei Kondo
- Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan.,Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan.,Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| | - Kazuhiro Aoki
- Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan.,Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan.,Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan.,IRCC International Research Collaboration Center, National Institutes of Natural Sciences, 4-3-13 Toranomon, Minato-ku, Tokyo 105-0001, Japan
| |
Collapse
|
28
|
Recent advances in FRET-Based biosensors for biomedical applications. Anal Biochem 2021; 630:114323. [PMID: 34339665 DOI: 10.1016/j.ab.2021.114323] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/21/2021] [Accepted: 07/29/2021] [Indexed: 01/12/2023]
Abstract
Fluorescence resonance energy transfer (FRET)-based biosensors are effective analytical tools extensively used in fields of biomedicine, pharmacology, toxicology, and food sciences. Ratiometric imaging of substantial cellular processes, molecular components, and biological interactions is widely performed by these biosensors. A variety of FRET-based biosensors have provided comprehensive insights into underlying mechanisms of pathological conditions in live cells, tissues, and organisms. Moreover, integration of FRET-based biosensors with the current bioanalytical techniques allows for accurate, rapid, and sensitive diagnosis and proposes the advanced strategies for treatment. Precise analysis of ligand-receptor interactions by FRET-based biosensors has presented a basis for determination of novel therapeutic agents. Therefore, this study was designed to review the recent developments in FRET-based biosensors and their biomedical applications. In addition, characteristics, challenges, and outlooks of these biosensors were discussed.
Collapse
|
29
|
Zhang D, Redington E, Gong Y. Rational engineering of ratiometric calcium sensors with bright green and red fluorescent proteins. Commun Biol 2021; 4:924. [PMID: 34326458 PMCID: PMC8322158 DOI: 10.1038/s42003-021-02452-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 07/14/2021] [Indexed: 12/17/2022] Open
Abstract
Ratiometric genetically encoded calcium indicators (GECIs) record neural activity with high brightness while mitigating motion-induced artifacts. Recently developed ratiometric GECIs primarily employ cyan and yellow-fluorescent fluorescence resonance energy transfer pairs, and thus fall short in some applications that require deep tissue penetration and resistance to photobleaching. We engineered a set of green-red ratiometric calcium sensors that fused two fluorescent proteins and calcium sensing domain within an alternate configuration. The best performing elements of this palette of sensors, Twitch-GR and Twitch-NR, inherited the superior photophysical properties of their constituent fluorescent proteins. These properties enabled our sensors to outperform existing ratiometric calcium sensors in brightness and photobleaching metrics. In turn, the shot-noise limited signal fidelity of our sensors when reporting action potentials in cultured neurons and in the awake behaving mice was higher than the fidelity of existing sensors. Our sensor enabled a regime of imaging that simultaneously captured neural structure and function down to the deep layers of the mouse cortex.
Collapse
Affiliation(s)
- Diming Zhang
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
| | - Emily Redington
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Yiyang Gong
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
| |
Collapse
|
30
|
Murphy KJ, Reed DA, Trpceski M, Herrmann D, Timpson P. Quantifying and visualising the nuances of cellular dynamics in vivo using intravital imaging. Curr Opin Cell Biol 2021; 72:41-53. [PMID: 34091131 DOI: 10.1016/j.ceb.2021.04.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/23/2021] [Accepted: 04/28/2021] [Indexed: 12/14/2022]
Abstract
Intravital imaging is a powerful technology used to quantify and track dynamic changes in live cells and tissues within an intact environment. The ability to watch cell biology in real-time 'as it happens' has provided novel insight into tissue homeostasis, as well as disease initiation, progression and response to treatment. In this minireview, we highlight recent advances in the field of intravital microscopy, touching upon advances in awake versus anaesthesia-based approaches, as well as the integration of biosensors into intravital imaging. We also discuss current challenges that, in our opinion, need to be overcome to further advance the field of intravital imaging at the single-cell, subcellular and molecular resolution to reveal nuances of cell behaviour that can be targeted in complex disease settings.
Collapse
Affiliation(s)
- Kendelle J Murphy
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Cancer Theme, Sydney, NSW, 2010, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, 2010, Australia
| | - Daniel A Reed
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Cancer Theme, Sydney, NSW, 2010, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, 2010, Australia
| | - Michael Trpceski
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Cancer Theme, Sydney, NSW, 2010, Australia
| | - David Herrmann
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Cancer Theme, Sydney, NSW, 2010, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, 2010, Australia.
| | - Paul Timpson
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Cancer Theme, Sydney, NSW, 2010, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, 2010, Australia.
| |
Collapse
|
31
|
Konishi Y, Ichise H, Watabe T, Oki C, Tsukiji S, Hamazaki Y, Murakawa Y, Takaori-Kondo A, Terai K, Matsuda M. Intravital Imaging Identifies the VEGF-TXA 2 Axis as a Critical Promoter of PGE 2 Secretion from Tumor Cells and Immune Evasion. Cancer Res 2021; 81:4124-4132. [PMID: 34035084 DOI: 10.1158/0008-5472.can-20-4245] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 04/14/2021] [Accepted: 05/11/2021] [Indexed: 11/16/2022]
Abstract
Prostaglandin E2 (PGE2) promotes tumor progression through evasion of antitumor immunity. In stark contrast to cyclooxygenase-dependent production of PGE2, little is known whether PGE2 secretion is regulated within tumor tissues. Here, we show that VEGF-dependent release of thromboxane A2 (TXA2) triggers Ca2+ transients in tumor cells, culminating in PGE2 secretion and subsequent immune evasion in the early stages of tumorigenesis. Ca2+ transients caused cPLA2 activation and triggered the arachidonic acid cascade. Ca2+ transients were monitored as the surrogate marker of PGE2 secretion. Intravital imaging of BrafV600E mouse melanoma cells revealed that the proportion of cells exhibiting Ca2+ transients is markedly higher in vivo than in vitro. The TXA2 receptor was indispensable for the Ca2+ transients in vivo, high intratumoral PGE2 concentration, and evasion of antitumor immunity. Notably, treatment with a VEGF receptor antagonist and an anti-VEGF antibody rapidly suppressed Ca2+ transients and reduced TXA2 and PGE2 concentrations in tumor tissues. These results identify the VEGF-TXA2 axis as a critical promoter of PGE2-dependent tumor immune evasion, providing a molecular basis underlying the immunomodulatory effect of anti-VEGF therapies. SIGNIFICANCE: This study identifies the VEGF-TXA2 axis as a potentially targetable regulator of PGE2 secretion, which provides novel strategies for prevention and treatment of multiple types of malignancies.
Collapse
Affiliation(s)
- Yoshinobu Konishi
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University, Kyoto, Japan.,Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,RIKEN-IFOM Joint Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Hematology, Kansai Electric Power Medical Research Institute, Osaka, Japan
| | - Hiroshi Ichise
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Tetsuya Watabe
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Choji Oki
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Nagoya, Japan
| | - Shinya Tsukiji
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Nagoya, Japan
| | - Yoko Hamazaki
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Yasuhiro Murakawa
- RIKEN-IFOM Joint Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Akifumi Takaori-Kondo
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kenta Terai
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University, Kyoto, Japan.
| | - Michiyuki Matsuda
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University, Kyoto, Japan.,Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
32
|
Zhang G, Li M, Yu K, Chai H, Xu S, Xu T, Qu L, Zhang X. Two-Dimensional Metalloporphyrinic Framework Nanosheet-Based Dual-Mechanism-Driven Ratiometric Electrochemiluminescent Biosensing of Protein Kinase Activity. ACS APPLIED BIO MATERIALS 2021; 4:1616-1623. [PMID: 35014510 DOI: 10.1021/acsabm.0c01453] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A dual-mechanism-driven ratiometric electrochemiluminescent (ECL) biosensor was developed for the ultrasensitive detection of protein kinase activity, which was based on a competitive catalytic reaction and resonance energy transfer (RET) by assembling gold nanoparticles (GNPs) on two-dimensional (2D) porphyrinic metal-organic framework (MOF) nanosheets. In this work, an ECL catalytic reaction competing for dissolved O2 proceeded between 2D copper-based zinc porphyrinic MOF (Cu-TCPP(Zn)) nanosheets and luminol. Meanwhile, the cathodic ECL of singlet oxygen (1O2), derived from the electrocatalytic reaction of 2D Cu-TCPP(Zn), would be reduced by the assembled GNPs due to RET, while the anodic emission of luminol could be enhanced by GNPs with excellent electrocatalytic activity. With the detection of protein kinase A (PKA) as an example, this dual-mechanism-driven ECL biosensor exhibited a broad linear range (0.005-5.0 U mL-1) and a sensitive detection limit (0.0037 U mL-1). Compared with the traditional single-mechanism-driven sensing strategies, the developed dual-mechanism-driven ratiometric ECL biosensor may provide an effective method for the design of green and ultrasensitive ECL sensors.
Collapse
Affiliation(s)
- Guangyao Zhang
- Intelligent Wearable Engineering Research Center of Qingdao, Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Mengjie Li
- Intelligent Wearable Engineering Research Center of Qingdao, Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Kun Yu
- Intelligent Wearable Engineering Research Center of Qingdao, Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Huining Chai
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China
| | - Shenghao Xu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Tailin Xu
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Lijun Qu
- Intelligent Wearable Engineering Research Center of Qingdao, Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Xueji Zhang
- Intelligent Wearable Engineering Research Center of Qingdao, Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China.,School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
33
|
Kinjo T, Watabe T, Kobachi K, Terai K, Matsuda M. Single-Cell Activation of the cAMP-Signaling Pathway in 3D Tissues with FRET-Assisted Two-Photon Activation of bPAC. ACS Chem Biol 2020; 15:2848-2853. [PMID: 33074647 DOI: 10.1021/acschembio.0c00333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Bacterial photoactivated adenylyl cyclase (bPAC) has been widely used in signal transduction research. However, due to its low two-photon absorption, bPAC cannot be efficiently activated by two-photon (2P) excitation. Taking advantage of the high two-photon absorption of monomeric teal fluorescent protein 1 (mTFP1), we herein developed 2P-activatable bPAC (2pabPAC), a fusion protein consisting of bPAC and mTFP1. In 2pabPAC, the energy absorbed by mTFP1 excites bPAC by Fürster resonance energy transfer (FRET) at ca. 43% efficiency. The light-induced increase in cAMP was monitored by a red-shifted FRET biosensor for PKA. In 3D MDCK cells and mouse liver, PKA was activated at single-cell resolution under a 2P microscope. We found that PKA activation in a single hepatocyte caused PKA activation in neighboring cells, indicating the propagation of PKA activation. Thus, 2pabPAC will provide a versatile platform for controlling the cAMP signaling pathway and investigating cell-to-cell communication in vivo.
Collapse
Affiliation(s)
- Tomoaki Kinjo
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tetsuya Watabe
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kenju Kobachi
- Research Center for Dynamic Living Systems, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Kenta Terai
- Research Center for Dynamic Living Systems, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Michiyuki Matsuda
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Research Center for Dynamic Living Systems, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|
34
|
A Novel NIR-FRET Biosensor for Reporting PS/γ-Secretase Activity in Live Cells. SENSORS 2020; 20:s20215980. [PMID: 33105735 PMCID: PMC7660074 DOI: 10.3390/s20215980] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/15/2020] [Accepted: 10/19/2020] [Indexed: 12/26/2022]
Abstract
Presenilin (PS)/γ-secretase plays a pivotal role in essential cellular events via proteolytic processing of transmembrane proteins that include APP and Notch receptors. However, how PS/γ-secretase activity is spatiotemporally regulated by other molecular and cellular factors and how the changes in PS/γ-secretase activity influence signaling pathways in live cells are poorly understood. These questions could be addressed by engineering a new tool that enables multiplexed imaging of PS/γ-secretase activity and additional cellular events in real-time. Here, we report the development of a near-infrared (NIR) FRET-based PS/γ-secretase biosensor, C99 720-670 probe, which incorporates an immediate PS/γ-secretase substrate APP C99 with miRFP670 and miRFP720 as the donor and acceptor fluorescent proteins, respectively. Extensive validation demonstrates that the C99 720-670 biosensor enables quantitative monitoring of endogenous PS/γ-secretase activity on a cell-by-cell basis in live cells (720/670 ratio: 2.47 ± 0.66 (vehicle) vs. 3.02 ± 1.17 (DAPT), ** p < 0.01). Importantly, the C99 720-670 and the previously developed APP C99 YPet-Turquoise-GL (C99 Y-T) biosensors simultaneously report PS/γ-secretase activity. This evidences the compatibility of the C99 720-670 biosensor with cyan (CFP)-yellow fluorescent protein (YFP)-based FRET biosensors for reporting other essential cellular events. Multiplexed imaging using the novel NIR biosensor C99 720-670 would open a new avenue to better understand the regulation and consequences of changes in PS/γ-secretase activity.
Collapse
|
35
|
Imamura H, Sakamoto S, Yoshida T, Matsui Y, Penuela S, Laird DW, Mizukami S, Kikuchi K, Kakizuka A. Single-cell dynamics of pannexin-1-facilitated programmed ATP loss during apoptosis. eLife 2020; 9:61960. [PMID: 33052098 PMCID: PMC7556867 DOI: 10.7554/elife.61960] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/25/2020] [Indexed: 12/16/2022] Open
Abstract
ATP is essential for all living cells. However, how dead cells lose ATP has not been well investigated. In this study, we developed new FRET biosensors for dual imaging of intracellular ATP level and caspase-3 activity in single apoptotic cultured human cells. We show that the cytosolic ATP level starts to decrease immediately after the activation of caspase-3, and this process is completed typically within 2 hr. The ATP decrease was facilitated by caspase-dependent cleavage of the plasma membrane channel pannexin-1, indicating that the intracellular decrease of the apoptotic cell is a 'programmed' process. Apoptotic cells deficient of pannexin-1 sustained the ability to produce ATP through glycolysis and to consume ATP, and did not stop wasting glucose much longer period than normal apoptotic cells. Thus, the pannexin-1 plays a role in arresting the metabolic activity of dead apoptotic cells, most likely through facilitating the loss of intracellular ATP.
Collapse
Affiliation(s)
- Hiromi Imamura
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | | | - Tomoki Yoshida
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Yusuke Matsui
- Graduate School of Engineering, Osaka University, Suita, Japan
| | - Silvia Penuela
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Canada
| | - Dale W Laird
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Canada
| | - Shin Mizukami
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Japan
| | - Kazuya Kikuchi
- Graduate School of Engineering, Osaka University, Suita, Japan
| | - Akira Kakizuka
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|
36
|
Yang DM, Fu TF, Lin CS, Chiu TY, Huang CC, Huang HY, Chung MW, Lin YS, Manurung RV, Nguyen PNN, Chang YF. High-performance FRET biosensors for single-cell and in vivo lead detection. Biosens Bioelectron 2020; 168:112571. [PMID: 32892119 DOI: 10.1016/j.bios.2020.112571] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 12/31/2022]
Abstract
Forms of lead (Pb) have been insidiously invading human life for thousands of years without obvious signs of their considerable danger to human health. Blood lead level (BLL) is the routine measure used for diagnosing the degree of lead intoxication, although it is unclear whether there is any safe range of BLL. To develop a practical detection tool for living organisms, we engineered a genetically encoded fluorescence resonance energy transfer (FRET)-based Pb2+ biosensor, 'Met-lead 1.44 M1', with excellent performance. Met-lead 1.44 M1 has an apparent dissociation constant (Kd) of 25.97 nM, a detection limit (LOD) of 10 nM (2.0 ppb/0.2 μg/dL), and an enhancement dynamic ratio of nearly ~ 5-fold upon Pb2+ binding. The 10 nM sensitivity of Met-lead 1.44 M1 is five times below the World Health Organization-permitted level of lead in tap water (10 ppb; WHO, 2017), and fifteen times lower than the maximum BLL for children (3 μg/dL). We deployed Met-lead 1.44 M1 to measure Pb2+ concentrations in different living models, including two general human cell lines and one specific line, induced pluripotent stem cell (iPSC)-derived cardiomyocytes, as well as in widely used model species in plant (Arabidopsis thaliana) and animal (Drosophila melanogaster) research. Our results suggest that this new biosensor is suitable for lead toxicological research in vitro and in vivo, and will pave the way toward potential applications for both low BLL measures and rapid detection of environmental lead in its divalent form.
Collapse
Affiliation(s)
- De-Ming Yang
- Microscopy Service Laboratory, Basic Research Division, Department of Medical Research, Taipei Veterans General Hospital, Taipei, 11217, Taiwan; Institute of Biophotonics, National Yang-Ming University, 155 Sec-2, Li Nong Street, Taipei, 11221, Taiwan; Biophotonics and Molecular Imaging Research Center (BMIRC), National Yang-Ming University, Taipei, 11221, Taiwan.
| | - Tsai-Feng Fu
- Department of Applied Chemistry, National Chi-Nan University, Nantou, 54561, Taiwan
| | - Choun-Sea Lin
- Agricultural Biotechnology Research Center (ABRC), Academia Sinica, Taipei, 115, Taiwan
| | - Tai-Yu Chiu
- Microscopy Service Laboratory, Basic Research Division, Department of Medical Research, Taipei Veterans General Hospital, Taipei, 11217, Taiwan
| | - Chien-Chang Huang
- Core Facilities for Translational Medicines, BioTReC, Academia Sinica, Taipei, 115, Taiwan
| | - Hsin-Yi Huang
- Microscopy Service Laboratory, Basic Research Division, Department of Medical Research, Taipei Veterans General Hospital, Taipei, 11217, Taiwan; LumiSTAR Biotechnology, Inc., National Biotechnology Research Park, Taipei, 115, Taiwan
| | - Min-Wen Chung
- LumiSTAR Biotechnology, Inc., National Biotechnology Research Park, Taipei, 115, Taiwan
| | - Yu-Syuan Lin
- Microscopy Service Laboratory, Basic Research Division, Department of Medical Research, Taipei Veterans General Hospital, Taipei, 11217, Taiwan
| | - Robeth Viktoria Manurung
- Research Center for Electronics and Telecommunication, Indonesian Institute of Sciences (LIPI), Indonesia
| | | | - Yu-Fen Chang
- LumiSTAR Biotechnology, Inc., National Biotechnology Research Park, Taipei, 115, Taiwan.
| |
Collapse
|
37
|
Liang KH, Chang TJ, Wang ML, Tsai PH, Lin TH, Wang CT, Yang DM. Novel biosensor platforms for the detection of coronavirus infection and severe acute respiratory syndrome coronavirus 2. J Chin Med Assoc 2020; 83:701-703. [PMID: 32349033 PMCID: PMC7493778 DOI: 10.1097/jcma.0000000000000337] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 04/16/2020] [Indexed: 12/18/2022] Open
Abstract
The recent outbreak of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has been causing respiratory diseases globally, damaging wide ranges of social-economic activities. This virus is transmitted through personal contact and possibly also through ambient air. Effective biosensor platforms for the detection of this virus and the related host response are in urgent demand. These platforms can facilitate routine diagnostic assays in certified clinical laboratories. They can also be integrated into point-of-care products. Furthermore, environmental biosensors can be designed to detect SARS-CoV-2 in the ambient air or in the intensive care ventilators. Here, we evaluate technical components of biosensors, including the biological targets of recognition, the recognition methods, and the signal amplification and transduction systems. Effective SARS-CoV-2 detectors can be designed by an adequate combination of these technologies.
Collapse
Affiliation(s)
- Kung-Hao Liang
- Laboratory of Systems Biomedical Science, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Institute of Food Safety and Health Risk Assessment, National Yang-Ming University, Taipei, Taiwan, ROC
- Institute of Biomedical Informatics, School of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Tai-Jay Chang
- Laboratory of Genome Research, Basic Research Division, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- School of Biomedical science and Engineering, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Mong-Lien Wang
- Institute of Food Safety and Health Risk Assessment, National Yang-Ming University, Taipei, Taiwan, ROC
- Laboratory of Molecular Oncology, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Ping-Hsing Tsai
- Laboratory of Stem Cell Research II, Division of Basic Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Ta-Hsien Lin
- Institute of Biomedical Informatics, School of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
- Laboratory of Nuclear Magnetic Resonance, Basic Research Division, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Chin-Tien Wang
- Laboratory of Molecular Virology, Basic Research Division, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
| | - De-Ming Yang
- Microscopy Service Laboratory, Basic Research Division, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Institute of Biophotonics, School of Biomedical Science and Engineering, National Yang-Ming University, Taipei, Taiwan, ROC
- Biophotonics and Molecular Imaging Research Center (BMIRC), National Yang-Ming University, Taipei, Taiwan, ROC
| |
Collapse
|
38
|
Moeyaert B, Dedecker P. Genetically encoded biosensors based on innovative scaffolds. Int J Biochem Cell Biol 2020; 125:105761. [PMID: 32504671 DOI: 10.1016/j.biocel.2020.105761] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 12/12/2022]
Abstract
Genetically encoded biosensors are indispensable tools for visualizing the spatiotemporal dynamics of analytes or processes in living cells in vitro and in vivo. Their widespread adaptation has gone hand in hand with the development of sensors for new analytes or processes and improved functionality and robustness. In this review, we highlight some of the recent advances in genetically encoded biosensor development, with a special focus on novel and innovative scaffolds that will lead to new possibilities in the future.
Collapse
Affiliation(s)
- Benjamien Moeyaert
- Laboratory for Nanobiology, Department of Chemistry, KU Leuven, Celestijnenlaan 200G, 3001 Heverlee, Belgium
| | - Peter Dedecker
- Laboratory for Nanobiology, Department of Chemistry, KU Leuven, Celestijnenlaan 200G, 3001 Heverlee, Belgium.
| |
Collapse
|