1
|
Hao C, Hu K, Xie J, Tong X, Zhang X, Qi Z, Tang S. Recent Advancements in the Biomanufacturing of Crocetin and Crocins: Key Enzymes and Metabolic Engineering. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:6400-6415. [PMID: 40056449 DOI: 10.1021/acs.jafc.4c12576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2025]
Abstract
Crocetin and crocins are high-value apocarotenoids recognized for their role as food colorants as well as for their numerous industrial and therapeutic applications. Biotechnological platforms have the potential to replace traditional plant-based extraction of these compounds with a more sustainable approach. This review first introduced the catalytic characteristics of key enzymes involved in the biosynthetic pathway of crocetin and crocins, including carotenoid cleavage dioxygenases, aldehyde dehydrogenases, and uridine diphosphate glycosyltransferases. Next, we highlighted advanced metabolic engineering strategies aimed at enhancing crocetin and crocin production, such as increasing the pool of precursors and cofactors, protein mining and engineering, tuning protein expression, biosensor, genomic integration, and process optimization. Finally, the paper proposed potential strategies and tools associated with further boosting the heterologous production of crocetin and crocins to meet commercial-scale demands.
Collapse
Affiliation(s)
- Chengpeng Hao
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China
| | - Kefa Hu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China
| | - Jingcong Xie
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, Jiangsu 210042, China
| | - Xinyi Tong
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Xiaomeng Zhang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhipeng Qi
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China
| | - Shaoheng Tang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China
| |
Collapse
|
2
|
Lee Y, Hwang CY, Cho ES, Seo MJ. Water-soluble carotenoid: focused on natural carotenoid crocin. Food Sci Biotechnol 2025; 34:1119-1138. [PMID: 40093551 PMCID: PMC11904046 DOI: 10.1007/s10068-025-01832-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/21/2025] [Accepted: 01/26/2025] [Indexed: 03/19/2025] Open
Abstract
Carotenoids are natural isoprenoid compounds with diverse health benefits, widely used in food, cosmetics, and pharmaceuticals. However, low bioavailability and chemical instability limit their effect according to their fat-soluble property. Some strategies such as nanoencapsulation, emulsions, complexation, and glycosylation have been explored to enhance carotenoid bioavailability. In addition, there is growing interest in water-soluble carotenoids in nature. This review focuses on recent advancements in improving the water solubility of carotenoids, with special attention to naturally occurring water-soluble carotenoids like crocin. Research progress on the biosynthetic pathways of crocin derived from natural plants is summarized. In addition, heterologous production using genetic and metabolic engineering in plants and microorganisms is discussed, along with its potential applications in bio-industries. Finally, the promising pharmacological properties of crocin, including antioxidant, anti-inflammatory and anticancer effects, are presented. The sustainable production of water-soluble carotenoids through biological synthesis offers a potential for improved absorption and functionality.
Collapse
Affiliation(s)
- Yosub Lee
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon, 22012 Republic of Korea
| | - Chi Young Hwang
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon, 22012 Republic of Korea
| | - Eui-Sang Cho
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon, 22012 Republic of Korea
- BioTechnology Institute, University of Minnesota, St. Paul, MN 55108 USA
| | - Myung-Ji Seo
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon, 22012 Republic of Korea
- Division of Bioengineering, Incheon National University, Incheon, 22012 Republic of Korea
- Research Center for Bio Materials and Process Development, Incheon National University, Incheon, 22012 Republic of Korea
| |
Collapse
|
3
|
Wang X, Zhuhuang C, He Y, Zhang X, Wang Y, Ni Q, Zhang Y, Xu G. Selective transformation of crocin-1 to crocetin-glucosyl esters by β-glucosidase (Lf18920) from Leifsonia sp. ZF2019: Insights from molecular docking and point mutations. Enzyme Microb Technol 2024; 181:110522. [PMID: 39378560 DOI: 10.1016/j.enzmictec.2024.110522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/30/2024] [Accepted: 10/02/2024] [Indexed: 10/10/2024]
Abstract
Crocetin di/mono-glucosyl esters (crocin-4 and crocin-5) are rarely distributed in nature, limiting their potential applications in the food and pharmaceutical industries. In the present study, a novel GH3 family β-glucosidase Lf18920 was identified from Leifsonia sp. ZF2019, which selectively hydrolyzed crocin-1 (crocetin di-gentiobiosyl ester) to crocin-5 and crocin-4, but not to its aglycone, crocetin. Under the optimal condition of 40 °C and pH 6.0 for 120 min, Lf18920 almost completely hydrolyzed crocin-1, yielding 73.50±5.66 % crocin-4 and 16.19±1.38 % crocin-5. Molecular docking and point mutation studies revealed that Lf18920 formed a narrow binding channel that facilitated crocin-1 binding. Five single amino acid variants (D50A, D53A, W274A, G420A, and Q421A) were constructed, all of which showed reduced hydrolytic activity. Mutations at D50 and D53, located distal to the active site, increased binding energy and decreased hydrolytic activity, while mutations at W274, G420, and Q421, proximal to the active site, disrupted hydrolytic function. These findings suggest that the narrow binding channel and specific enzyme-substrate interactions are crucial for Lf18920's selective hydrolytic activity. Overall, this study is the first to report a β-glucosidase capable of selectively transforming crocin-1 to crocetin di/mono-glucosyl esters, offering potential for synthesizing crocin-4 and crocin-5.
Collapse
Affiliation(s)
- Xi Wang
- College of Food Science and Health, Zhejiang Agriculture and Forestry University, Lin'an, Zhejiang 311300, China
| | - Chenzhi Zhuhuang
- College of Food Science and Health, Zhejiang Agriculture and Forestry University, Lin'an, Zhejiang 311300, China
| | - Yi He
- College of Food Science and Health, Zhejiang Agriculture and Forestry University, Lin'an, Zhejiang 311300, China
| | - Xiaolong Zhang
- College of Food Science and Health, Zhejiang Agriculture and Forestry University, Lin'an, Zhejiang 311300, China
| | - Yan Wang
- College of Food Science and Health, Zhejiang Agriculture and Forestry University, Lin'an, Zhejiang 311300, China
| | - Qinxue Ni
- College of Food Science and Health, Zhejiang Agriculture and Forestry University, Lin'an, Zhejiang 311300, China.
| | - Youzuo Zhang
- College of Food Science and Health, Zhejiang Agriculture and Forestry University, Lin'an, Zhejiang 311300, China
| | - Guangzhi Xu
- College of Food Science and Health, Zhejiang Agriculture and Forestry University, Lin'an, Zhejiang 311300, China.
| |
Collapse
|
4
|
Li S, Zhou Z, Li Y, Hu Y, Huang Z, Hu G, Wang Y, Wang X, Lou Q, Gao L, Shen C, Gao R, Xu Z, Song J, Pu X. Construction of a high-efficiency GjCCD4a mutant and its application for de novo biosynthesis of five crocins in Escherichia coli. Int J Biol Macromol 2024; 277:133985. [PMID: 39033887 DOI: 10.1016/j.ijbiomac.2024.133985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/02/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Crocins are bioactive natural products that rarely exist in plants. High costs and resource shortage severely limit its development and application. Synthetic biology studies on crocins are of considerable global interest. However, the lack of high-efficiency genetic tools and complex cascade biocatalytic systems have substantially hindered progress in crocin biosynthesis-related research. Based on mutagenesis, a high-efficiency GjCCD4a mutant (N212m) was constructed with a catalytic efficiency that was 25.08-fold higher than that of the wild-type. Solubilized GjCCD4a was expressed via fusion with an MBP tag. Moreover, N212m and ten other genes were introduced into Escherichia coli for the de novo biosynthesis of five crocins. The engineered E57 strain produced crocins III and V with a total yield of 11.50 mg/L, and the E579 strain produced crocins I-V with a total output of 8.43 mg/L at shake-flask level. This study identified a marvelous genetic element (N212m) for crocin biosynthesis and achieved its de novo biosynthesis in E. coli using glucose. This study provides a reference for the large-scale production of five crocins using E. coli cell factories.
Collapse
Affiliation(s)
- Siqi Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ze Zhou
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Yufang Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Yan Hu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ziyi Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ge Hu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ying Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Xu Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Qian Lou
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Longlong Gao
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Chuanpu Shen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ranran Gao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Zhichao Xu
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Jingyuan Song
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Xiangdong Pu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Center of Traditional Chinese Medicine Formula Granule, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
5
|
Hua Z, Liu N, Yan X. Research progress on the pharmacological activity, biosynthetic pathways, and biosynthesis of crocins. Beilstein J Org Chem 2024; 20:741-752. [PMID: 38633914 PMCID: PMC11022409 DOI: 10.3762/bjoc.20.68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/22/2024] [Indexed: 04/19/2024] Open
Abstract
Crocins are water-soluble apocarotenoids isolated from the flowers of crocus and gardenia. They exhibit various pharmacological effects, including neuroprotection, anti-inflammatory properties, hepatorenal protection, and anticancer activity. They are often used as coloring and seasoning agents. Due to the limited content of crocins in plants and the high cost of chemical synthesis, the supply of crocins is insufficient to meet current demand. The biosynthetic pathways for crocins have been elucidated to date, which allows the heterologous production of these valuable compounds in microorganisms by fermentation. This review article provides a comprehensive overview of the chemistry, pharmacological activity, biosynthetic pathways, and heterologous production of crocins, aiming to lay the foundation for the large-scale production of these valuable natural products by using engineered microbial cell factories.
Collapse
Affiliation(s)
- Zhongwei Hua
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, No. 10 Poyang Lake Road, Tuanbo New Town, Jinghai District, Tianjin 301617, China
| | - Nan Liu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, No. 10 Poyang Lake Road, Tuanbo New Town, Jinghai District, Tianjin 301617, China
| | - Xiaohui Yan
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, No. 10 Poyang Lake Road, Tuanbo New Town, Jinghai District, Tianjin 301617, China
| |
Collapse
|
6
|
Xu Z, Chen S, Wang Y, Tian Y, Wang X, Xin T, Li Z, Hua X, Tan S, Sun W, Pu X, Yao H, Gao R, Song J. Crocus genome reveals the evolutionary origin of crocin biosynthesis. Acta Pharm Sin B 2024; 14:1878-1891. [PMID: 38572115 PMCID: PMC10985130 DOI: 10.1016/j.apsb.2023.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/22/2023] [Accepted: 11/09/2023] [Indexed: 04/05/2024] Open
Abstract
Crocus sativus (saffron) is a globally autumn-flowering plant, and its stigmas are the most expensive spice and valuable herb medicine. Crocus specialized metabolites, crocins, are biosynthesized in distant species, Gardenia (eudicot) and Crocus (monocot), and the evolution of crocin biosynthesis remains poorly understood. With the chromosome-level Crocus genome assembly, we revealed that two rounds of lineage-specific whole genome triplication occurred, contributing important roles in the production of carotenoids and apocarotenoids. According to the kingdom-wide identification, phylogenetic analysis, and functional assays of carotenoid cleavage dioxygenases (CCDs), we deduced that the duplication, site positive selection, and neofunctionalization of Crocus-specific CCD2 from CCD1 members are responsible for the crocin biosynthesis. In addition, site mutation of CsCCD2 revealed the key amino acids, including I143, L146, R161, E181, T259, and S292 related to the catalytic activity of zeaxanthin cleavage. Our study provides important insights into the origin and evolution of plant specialized metabolites, which are derived by duplication events of biosynthetic genes.
Collapse
Affiliation(s)
- Zhichao Xu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- State Key Laboratory of Basis and New Drug Development of Natural and Nuclear Drugs, Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing 100193, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Shanshan Chen
- College of Life Science, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, Beijing 100700, China
| | - Yalin Wang
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Ya Tian
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Xiaotong Wang
- College of Life Science, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, Beijing 100700, China
| | - Tianyi Xin
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- State Key Laboratory of Basis and New Drug Development of Natural and Nuclear Drugs, Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing 100193, China
| | - Zishan Li
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Xin Hua
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Shengnan Tan
- Analysis and Testing Center of Northeast Forestry University, Harbin 150040, China
| | - Wei Sun
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, Beijing 100700, China
| | - Xiangdong Pu
- School of Pharmacy, Anhui Medical University, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei 230032, China
| | - Hui Yao
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- State Key Laboratory of Basis and New Drug Development of Natural and Nuclear Drugs, Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing 100193, China
| | - Ranran Gao
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, Beijing 100700, China
| | - Jingyuan Song
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- State Key Laboratory of Basis and New Drug Development of Natural and Nuclear Drugs, Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing 100193, China
| |
Collapse
|
7
|
Yin S, Niu L, Zhang J, Liu Y. Gardenia yellow pigment: Extraction methods, biological activities, current trends, and future prospects. Food Res Int 2024; 179:113981. [PMID: 38342530 DOI: 10.1016/j.foodres.2024.113981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 02/13/2024]
Abstract
Food coloring plays a vital role in influencing consumers' food choices, imparting vibrant and appealing colors to various food and beverage products. Synthetic food colorants have been the most commonly used coloring agents in the food industry. However, concerns about potential health issues related to synthetic colorants, coupled with increasing consumer demands for food safety and health, have led food manufacturers to explore natural alternatives. Natural pigments not only offer a wide range of colors to food products but also exhibit beneficial bioactive properties. Gardenia yellow pigment is a water-soluble natural pigment with various biological activities, widely present in gardenia fruits. Therefore, this paper aims to delve into Gardenia Yellow Pigment, highlighting its significance as a food colorant. Firstly, a thorough understanding and exploration of various methods for obtaining gardenia yellow pigment. Subsequently, the potential functionality of gardenia yellow pigment was elaborated, especially its excellent antioxidant and neuroprotective properties. Finally, the widespread application trend of gardenia yellow pigment in the food industry was explored, as well as the challenges faced by the future development of gardenia yellow pigment in the field of food and health. Some feasible solutions were proposed, providing valuable references and insights for researchers, food industry professionals, and policy makers.
Collapse
Affiliation(s)
- Shipeng Yin
- School of Food Science and Technology, Jiangnan University, Wuxi, China.
| | - Liqiong Niu
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Jian Zhang
- Future Food (Bai Ma) Research Institute, Nanjing, China
| | - Yuanfa Liu
- School of Food Science and Technology, Jiangnan University, Wuxi, China.
| |
Collapse
|
8
|
Lee JH, Lee SR, Lee SY, Lee PC. Complete microbial synthesis of crocetin and crocins from glycerol in Escherichia coli. Microb Cell Fact 2024; 23:10. [PMID: 38178149 PMCID: PMC10765794 DOI: 10.1186/s12934-023-02287-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 12/23/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Crocin, a glycosylated apocarotenoid pigment predominantly found in saffron, has garnered significant interest in the field of biotechnology for its bioactive properties. Traditional production of crocins and their aglycone, crocetin, typically involves extraction from crocin-producing plants. This study aimed to develop an alternative biosynthetic method for these compounds by engineering the metabolic pathways of zeaxanthin, crocetin, and crocin in Escherichia coli strains. RESULTS Employing a series of genetic modifications and the strategic overexpression of key enzymes, we successfully established a complete microbial pathway for synthesizing crocetin and four glycosylated derivatives of crocetin, utilizing glycerol as the primary carbon source. The overexpression of zeaxanthin cleavage dioxygenase and a novel variant of crocetin dialdehyde dehydrogenase resulted in a notable yield of crocetin (34.77 ± 1.03 mg/L). Further optimization involved the overexpression of new types of crocetin and crocin-2 glycosyltransferases, facilitating the production of crocin-1 (6.29 ± 0.19 mg/L), crocin-2 (5.29 ± 0.24 mg/L), crocin-3 (1.48 ± 0.10 mg/L), and crocin-4 (2.72 ± 0.13 mg/L). CONCLUSIONS This investigation introduces a pioneering and integrated microbial synthesis method for generating crocin and its derivatives, employing glycerol as a sustainable carbon feedstock. The substantial yields achieved highlight the commercial potential of microbial-derived crocins as an eco-friendly alternative to plant extraction methods. The development of these microbial processes not only broadens the scope for crocin production but also suggests significant implications for the exploitation of bioengineered compounds in pharmaceutical and food industries.
Collapse
Affiliation(s)
- Jun Ho Lee
- Department of Molecular Science and Technology, Department of Applied Chemical and Biological Engineering, Ajou University, Woncheon-dong, Yeongtong-gu, Suwon, 16499, Republic of Korea
| | - Seong-Rae Lee
- Department of Molecular Science and Technology, Department of Applied Chemical and Biological Engineering, Ajou University, Woncheon-dong, Yeongtong-gu, Suwon, 16499, Republic of Korea
| | - Sang Yup Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Pyung Cheon Lee
- Department of Molecular Science and Technology, Department of Applied Chemical and Biological Engineering, Ajou University, Woncheon-dong, Yeongtong-gu, Suwon, 16499, Republic of Korea.
| |
Collapse
|
9
|
Zhou J, Huang D, Liu C, Hu Z, Li H, Lou S. Research Progress in Heterologous Crocin Production. Mar Drugs 2023; 22:22. [PMID: 38248646 PMCID: PMC10820313 DOI: 10.3390/md22010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/23/2023] [Accepted: 12/25/2023] [Indexed: 01/23/2024] Open
Abstract
Crocin is one of the most valuable components of the Chinese medicinal plant Crocus sativus and is widely used in the food, cosmetics, and pharmaceutical industries. Traditional planting of C. sativus is unable to fulfill the increasing demand for crocin in the global market, however, such that researchers have turned their attention to the heterologous production of crocin in a variety of hosts. At present, there are reports of successful heterologous production of crocin in Escherichia coli, Saccharomyces cerevisiae, microalgae, and plants that do not naturally produce crocin. Of these, the microalga Dunaliella salina, which produces high levels of β-carotene, the substrate for crocin biosynthesis, is worthy of attention. This article describes the biosynthesis of crocin, compares the features of each heterologous host, and clarifies the requirements for efficient production of crocin in microalgae.
Collapse
Affiliation(s)
- Junjie Zhou
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (J.Z.); (D.H.); (C.L.); (Z.H.); (H.L.)
| | - Danqiong Huang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (J.Z.); (D.H.); (C.L.); (Z.H.); (H.L.)
| | - Chenglong Liu
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (J.Z.); (D.H.); (C.L.); (Z.H.); (H.L.)
| | - Zhangli Hu
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (J.Z.); (D.H.); (C.L.); (Z.H.); (H.L.)
- Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, Shenzhen University, Shenzhen 518060, China
| | - Hui Li
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (J.Z.); (D.H.); (C.L.); (Z.H.); (H.L.)
- Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, Shenzhen University, Shenzhen 518060, China
| | - Sulin Lou
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (J.Z.); (D.H.); (C.L.); (Z.H.); (H.L.)
- Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
10
|
Wang Y, Li S, Zhou Z, Sun L, Sun J, Shen C, Gao R, Song J, Pu X. The Functional Characteristics and Soluble Expression of Saffron CsCCD2. Int J Mol Sci 2023; 24:15090. [PMID: 37894770 PMCID: PMC10606151 DOI: 10.3390/ijms242015090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Crocins are important natural products predominantly obtained from the stigma of saffron, and that can be utilized as a medicinal compound, spice, and colorant with significant promise in the pharmaceutical, food, and cosmetic industries. Carotenoid cleavage dioxygenase 2 (CsCCD2) is a crucial limiting enzyme that has been reported to be responsible for the cleavage of zeaxanthin in the crocin biosynthetic pathway. However, the catalytic activity of CsCCD2 on β-carotene/lycopene remains elusive, and the soluble expression of CsCCD2 remains a big challenge. In this study, we reported the functional characteristics of CsCCD2, that can catalyze not only zeaxanthin cleavage but also β-carotene and lycopene cleavage. The molecular basis of the divergent functionality of CsCCD2 was elucidated using bioinformatic analysis and truncation studies. The protein expression optimization results demonstrated that the use of a maltose-binding protein (MBP) tag and the optimization of the induction conditions resulted in the production of more soluble protein. Correspondingly, the catalytic efficiency of soluble CsCCD2 was higher than that of the insoluble one, and the results further validated its functional verification. This study not only broadened the substrate profile of CsCCD2, but also achieved the soluble expression of CsCCD2. It provides a firm platform for CsCCD2 crystal structure resolution and facilitates the synthesis of crocetin and crocins.
Collapse
Affiliation(s)
- Ying Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
- Center of Traditional Chinese Medicine Formula Granule, Anhui Medical University, Hefei 230032, China
| | - Siqi Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
- Center of Traditional Chinese Medicine Formula Granule, Anhui Medical University, Hefei 230032, China
| | - Ze Zhou
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
- Center of Traditional Chinese Medicine Formula Granule, Anhui Medical University, Hefei 230032, China
| | - Lifen Sun
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
- Center of Traditional Chinese Medicine Formula Granule, Anhui Medical University, Hefei 230032, China
| | - Jing Sun
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
- Center of Traditional Chinese Medicine Formula Granule, Anhui Medical University, Hefei 230032, China
| | - Chuanpu Shen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
- Center of Traditional Chinese Medicine Formula Granule, Anhui Medical University, Hefei 230032, China
| | - Ranran Gao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jingyuan Song
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Xiangdong Pu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
- Center of Traditional Chinese Medicine Formula Granule, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
11
|
Xie L, Luo Z, Jia X, Mo C, Huang X, Suo Y, Cui S, Zang Y, Liao J, Ma X. Synthesis of Crocin I and Crocin II by Multigene Stacking in Nicotiana benthamiana. Int J Mol Sci 2023; 24:14139. [PMID: 37762441 PMCID: PMC10532124 DOI: 10.3390/ijms241814139] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/04/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Crocins are a group of highly valuable water-soluble carotenoids that are reported to have many pharmacological activities, such as anticancer properties, and the potential for treating neurodegenerative diseases including Alzheimer's disease. Crocins are mainly biosynthesized in the stigmas of food-medicine herbs Crocus sativus L. and Gardenia jasminoides fruits. The distribution is narrow in nature and deficient in resources, which are scarce and expensive. Recently, the synthesis of metabolites in the heterologous host has opened up the potential for large-scale and sustainable production of crocins, especially for the main active compounds crocin I and crocin II. In this study, GjCCD4a, GjALDH2C3, GjUGT74F8, and GjUGT94E13 from G. jasminoides fruits were expressed in Nicotiana benthamiana. The highest total content of crocins in T1 generation tobacco can reach 78,362 ng/g FW (fresh weight) and the dry weight is expected to reach 1,058,945 ng/g DW (dry weight). Surprisingly, the primary effective constituents crocin I and crocin II can account for 99% of the total crocins in transgenic plants. The strategy mentioned here provides an alternative platform for the scale-up production of crocin I and crocin II in tobacco.
Collapse
Affiliation(s)
- Lei Xie
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; (L.X.); (Z.L.); (X.J.); (S.C.); (Y.Z.)
| | - Zuliang Luo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; (L.X.); (Z.L.); (X.J.); (S.C.); (Y.Z.)
| | - Xunli Jia
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; (L.X.); (Z.L.); (X.J.); (S.C.); (Y.Z.)
| | - Changming Mo
- Guangxi Crop Genetic Improvement and Biotechnology Lab, Guangxi Academy of Agricultural Science, Nanning 530007, China;
| | - Xiyang Huang
- Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China;
| | - Yaran Suo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China;
| | - Shengrong Cui
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; (L.X.); (Z.L.); (X.J.); (S.C.); (Y.Z.)
| | - Yimei Zang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; (L.X.); (Z.L.); (X.J.); (S.C.); (Y.Z.)
| | - Jingjing Liao
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China;
| | - Xiaojun Ma
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; (L.X.); (Z.L.); (X.J.); (S.C.); (Y.Z.)
| |
Collapse
|
12
|
Cui C, Yan J, Liu Y, Zhang Z, Su Q, Kong M, Zhou C, Ming H. One-pot biosynthesis of gastrodin using UDP-glycosyltransferase itUGT2 with an in situ UDP-glucose recycling system. Enzyme Microb Technol 2023; 166:110226. [PMID: 36913860 DOI: 10.1016/j.enzmictec.2023.110226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023]
Abstract
Gastrodin, the major effective ingredient in Tianma (Gastrodia elata), is a p-hydroxybenzoic acid derivative with various activities. Gastrodin has been widely investigated for food and medical applications. The last biosynthetic step for gastrodin is UDP-glycosyltransferase (UGT)-mediated glycosylation with UDP-glucose (UDPG) as glycosyl donor. In this study, we performed a one-pot reaction both in vitro and in vivo to synthesize gastrodin from p-hydroxybenzyl alcohol (pHBA) by coupling UDP-glucosyltransferase from Indigofera tinctoria (itUGT2) to sucrose synthase from Glycine max (GmSuSy) for regeneration of UDPG. The in vitro results showed that itUGT2 transferred a glucosyl group to pHBA to generate gastrodin. After 37 UDPG regeneration cycles with 2.5% (molar ratio) UDP, the pHBA conversion reached 93% at 8 h. Furthermore, a recombinant strain with itUGT2 and GmSuSy genes was constructed. Through optimizing the incubation conditions, a 95% pHBA conversion rate (220 mg/L gastrodin titer) was achieved in vivo without addition of UDPG, which was 2.6-fold higher than that without GmSuSy. This in situ system for gastrodin biosynthesis provides a highly efficient strategy for both in vitro gastrodin synthesis and in vivo biosynthesis of gastrodin in E. coli with UDPG regeneration.
Collapse
Affiliation(s)
- Caixia Cui
- Department of Biopharmaceutical Sciences, Synthetic Biology Engineering Lab of Henan Province, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, PR China.
| | - Jinyuan Yan
- Changdu Bureau of Science and Technology, Changdu 854000, PR China
| | - Yongtao Liu
- Department of Biopharmaceutical Sciences, Synthetic Biology Engineering Lab of Henan Province, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, PR China
| | - Zhao Zhang
- Department of Biopharmaceutical Sciences, Synthetic Biology Engineering Lab of Henan Province, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, PR China
| | - Qingyang Su
- Department of Biopharmaceutical Sciences, Synthetic Biology Engineering Lab of Henan Province, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, PR China
| | - Mengyuan Kong
- Department of Biopharmaceutical Sciences, Synthetic Biology Engineering Lab of Henan Province, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, PR China
| | - Chenyan Zhou
- Department of Biopharmaceutical Sciences, Synthetic Biology Engineering Lab of Henan Province, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, PR China
| | - Hong Ming
- Department of Biopharmaceutical Sciences, Synthetic Biology Engineering Lab of Henan Province, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, PR China.
| |
Collapse
|
13
|
UDP-Glycosyltransferases in Edible Fungi: Function, Structure, and Catalytic Mechanism. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9020164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
UDP-glycosyltransferases (UGTs) are the most studied glycosyltransferases, and belong to large GT1 family performing the key roles in antibiotic synthesis, the development of bacterial glycosyltransferase inhibitors, and in animal inflammation. They transfer the glycosyl groups from nucleotide UDP-sugars (UDP-glucose, UDP-galactose, UDP-xylose, and UDP-rhamnose) to the acceptors including saccharides, proteins, lipids, and secondary metabolites. The present review summarized the recent of UDP-glycosyltransferases, including their structures, functions, and catalytic mechanism, especially in edible fungi. The future perspectives and new challenges were also summarized to understand of their structure–function relationships in the future. The outputs in this field could provide a reference to recognize function, structure, and catalytic mechanism of UDP-glycosyltransferases for understanding the biosynthesis pathways of secondary metabolites, such as hydrocarbons, monoterpenes, sesquiterpene, and polysaccharides in edible fungi.
Collapse
|
14
|
Singh G, Sharma S, Rawat S, Sharma RK. Plant Specialised Glycosides (PSGs): their biosynthetic enzymatic machinery, physiological functions and commercial potential. FUNCTIONAL PLANT BIOLOGY : FPB 2022; 49:1009-1028. [PMID: 36038144 DOI: 10.1071/fp21294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Plants, the primary producers of our planet, have evolved from simple aquatic life to very complex terrestrial habitat. This habitat transition coincides with evolution of enormous chemical diversity, collectively termed as 'Plant Specialised Metabolisms (PSMs)', to cope the environmental challenges. Plant glycosylation is an important process of metabolic diversification of PSMs to govern their in planta stability, solubility and inter/intra-cellular transport. Although, individual category of PSMs (terpenoids, phenylpropanoids, flavonoids, saponins, alkaloids, phytohormones, glucosinolates and cyanogenic glycosides) have been well studied; nevertheless, deeper insights of physiological functioning and genomic aspects of plant glycosylation/deglycosylation processes including enzymatic machinery (CYPs, GTs, and GHs) and regulatory elements are still elusive. Therefore, this review discussed the paradigm shift on genomic background of enzymatic machinery, transporters and regulatory mechanism of 'Plant Specialised Glycosides (PSGs)'. Current efforts also update the fundamental understanding about physiological, evolutionary and adaptive role of glycosylation/deglycosylation processes during the metabolic diversification of PSGs. Additionally, futuristic considerations and recommendations for employing integrated next-generation multi-omics (genomics, transcriptomics, proteomics and metabolomics), including gene/genome editing (CRISPR-Cas) approaches are also proposed to explore commercial potential of PSGs.
Collapse
Affiliation(s)
- Gopal Singh
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India; and Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad 201002, Uttar Pradesh, India; and Present address: Department of Plant Functional Metabolomics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Shikha Sharma
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India; and Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad 201002, Uttar Pradesh, India
| | - Sandeep Rawat
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India; and Present address: G. B. Pant National Institute of Himalayan Environment and Sustainable Development, Sikkim Regional Centre, Pangthang, Gangtok 737101, Sikkim, India
| | - Ram Kumar Sharma
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India; and Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
15
|
Shahbaz K, Chang D, Zhou X, Low M, Seto SW, Li CG. Crocins for Ischemic Stroke: A Review of Current Evidence. Front Pharmacol 2022; 13:825842. [PMID: 35991882 PMCID: PMC9388830 DOI: 10.3389/fphar.2022.825842] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 04/28/2022] [Indexed: 11/13/2022] Open
Abstract
Crocins (CRs) and the related active constituents derived from Crocus sativus L. (Saffron) have demonstrated protective effects against cerebral ischemia and ischemic stroke, with various bioactivities including neuroprotection, anti-neuroinflammation, antioxidant, and cardiovascular protection. Among CRs, crocin (CR) has been shown to act on multiple mechanisms and signaling pathways involved in ischemic stroke, including mitochondrial apoptosis, nuclear factor kappa light chain enhancer of B cells pathway, S100 calcium-binding protein B, interleukin-6 and vascular endothelial growth factor-A. CR is generally safe and well-tolerated. Pharmacokinetic studies indicate that CR has poor bioavailability and needs to convert to crocetin (CC) in order to cross the blood-brain barrier. Clinical studies have shown the efficacy of saffron and CR in treating various conditions, including metabolic syndrome, depression, Alzheimer’s disease, and coronary artery disease. There is evidence supporting CR as a treatment for ischemic stroke, although further studies are needed to confirm their efficacy and safety in clinical settings.
Collapse
Affiliation(s)
- Kiran Shahbaz
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
- *Correspondence: Kiran Shahbaz, ; Chung Guang Li,
| | - Dennis Chang
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| | - Xian Zhou
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| | - Mitchell Low
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| | - Sai Wang Seto
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
- Reserach Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Chung Guang Li
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
- *Correspondence: Kiran Shahbaz, ; Chung Guang Li,
| |
Collapse
|
16
|
Bi H, Qu G, Wang S, Zhuang Y, Sun Z, Liu T, Ma Y. Biosynthesis of a rosavin natural product in Escherichia coli by glycosyltransferase rational design and artificial pathway construction. Metab Eng 2021; 69:15-25. [PMID: 34715353 DOI: 10.1016/j.ymben.2021.10.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/23/2021] [Accepted: 10/20/2021] [Indexed: 12/30/2022]
Abstract
Phytochemicals are rich resources for pharmaceutical and nutraceutical agents. A key challenge of accessing these precious compounds can present significant bottlenecks for development. The cinnamyl alcohol disaccharides also known as rosavins are the major bioactive ingredients of the notable medicinal plant Rhodiola rosea L. Cinnamyl-(6'-O-β-xylopyranosyl)-O-β-glucopyranoside (rosavin E) is a natural rosavin analogue with the arabinopyranose unit being replaced by its diastereomer xylose, which was only isolated in minute quantity from R. rosea. Herein, we described the de novo production of rosavin E in Escherichia coli. The 1,6-glucosyltransferase CaUGT3 was engineered into a xylosyltransferase converting cinnamyl alcohol monoglucoside (rosin) into rosavin E by replacing the residue T145 with valine. The enzyme activity was further elevated 2.9 times by adding the mutation N375Q. The synthesis of rosavin E from glucose was achieved with a titer of 92.9 mg/L by combining the variant CaUGT3T145V/N375Q, the UDP-xylose synthase from Sinorhizobium meliloti 1021 (SmUXS) and enzymes for rosin biosynthesis into a phenylalanine overproducing E. coli strain. The production of rosavin E was further elevated by co-overexpressing UDP-xylose synthase from Arabidopsis thaliana (AtUXS3) and SmUXS, and the titer in a 5 L bioreactor with fed-batch fermentation reached 782.0 mg/L. This work represents an excellent example of producing a natural product with a disaccharide chain by glycosyltransferase engineering and artificial pathway construction.
Collapse
Affiliation(s)
- Huiping Bi
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Ge Qu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Shuai Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Yibin Zhuang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Zhoutong Sun
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
| | - Tao Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
| | - Yanhe Ma
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| |
Collapse
|
17
|
Guan S, Pu Q, Liu Y, Wu H, Yu W, Pi Z, Liu S, Song F, Li J, Guo DA. Scale-Up Preparation of Crocins I and II from Gardeniajasminoides by a Two-Step Chromatographic Approach and Their Inhibitory Activity Against ATP Citrate Lyase. Molecules 2021; 26:molecules26113137. [PMID: 34073936 PMCID: PMC8197369 DOI: 10.3390/molecules26113137] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 11/16/2022] Open
Abstract
Crocins are highly valuable natural compounds for treating human disorders, and they are also high-end spices and colorants in the food industry. Due to the limitation of obtaining this type of highly polar compound, the commercial prices of crocins I and II are expensive. In this study, macroporous resin column chromatography combined with high-speed counter-current chromatography (HSCCC) was used to purify crocins I and II from natural sources. With only two chromatographic steps, both compounds were simultaneously isolated from the dry fruit of Gardenia jasminoides, which is a cheap herbal medicine distributed in a number of countries. In an effort to shorten the isolation time and reduce solvent usage, forward and reverse rotations were successively utilized in the HSCCC isolation procedure. Crocins I and II were simultaneously obtained from a herbal resource with high recoveries of 0.5% and 0.1%, respectively, and high purities of 98.7% and 99.1%, respectively, by HPLC analysis. The optimized preparation method was proven to be highly efficient, convenient, and cost-effective. Crocins I and II exhibited inhibitory activity against ATP citrate lyase, and their IC50 values were determined to be 36.3 ± 6.24 and 29.7 ± 7.41 μM, respectively.
Collapse
Affiliation(s)
- Shuguang Guan
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (S.G.); (Q.P.); (W.Y.)
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (S.L.); (F.S.)
| | - Qiaoli Pu
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (S.G.); (Q.P.); (W.Y.)
| | - Yinan Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (Y.L.); (J.L.)
| | - Honghong Wu
- University of Chinese Academy of Sciences, Beijing 100049, China;
| | - Wenbo Yu
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (S.G.); (Q.P.); (W.Y.)
| | - Zifeng Pi
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (S.L.); (F.S.)
- Changchun Sunnytech Co., Ltd., Changchun 130061, China
- Correspondence: (Z.P.); (D.-A.G.); Tel.: +86-21-50271516 (D.-A.G.); Fax: +86-21-50271516 (D.-A.G.)
| | - Shu Liu
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (S.L.); (F.S.)
| | - Fengrui Song
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (S.L.); (F.S.)
| | - Jingya Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (Y.L.); (J.L.)
| | - De-An Guo
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (S.G.); (Q.P.); (W.Y.)
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (Y.L.); (J.L.)
- Correspondence: (Z.P.); (D.-A.G.); Tel.: +86-21-50271516 (D.-A.G.); Fax: +86-21-50271516 (D.-A.G.)
| |
Collapse
|
18
|
Liang MH, He YJ, Liu DM, Jiang JG. Regulation of carotenoid degradation and production of apocarotenoids in natural and engineered organisms. Crit Rev Biotechnol 2021; 41:513-534. [PMID: 33541157 DOI: 10.1080/07388551.2021.1873242] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Carotenoids are important precursors of a wide range of apocarotenoids with their functions including: hormones, pigments, retinoids, volatiles, and signals, which can be used in the food, flavors, fragrances, cosmetics, and pharmaceutical industries. This article focuses on the formation of these multifaceted apocarotenoids and their diverse biological roles in all living systems. Carotenoid degradation pathways include: enzymatic oxidation by specific carotenoid cleavage oxygenases (CCOs) or nonspecific enzymes such as lipoxygenases and peroxidases and non-enzymatic oxidation by reactive oxygen species. Recent advances in the regulation of carotenoid cleavage genes and the biotechnological production of multiple apocarotenoids are also covered. It is suggested that different developmental stages and environmental stresses can influence both the expression of carotenoid cleavage genes and the formation of apocarotenoids at multiple levels of regulation including: transcriptional, transcription factors, posttranscriptional, posttranslational, and epigenetic modification. Regarding the biotechnological production of apocarotenoids especially: crocins, retinoids, and ionones, enzymatic biocatalysis and metabolically engineered microorganisms have been a promising alternative route. New substrates, carotenoid cleavage enzymes, biosynthetic pathways for apocarotenoids, and new biological functions of apocarotenoids will be discussed with the improvement of our understanding of apocarotenoid biology, biochemistry, function, and formation from different organisms.
Collapse
Affiliation(s)
- Ming-Hua Liang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Yu-Jing He
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Dong-Mei Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Jian-Guo Jiang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
19
|
Liu T, Yu S, Xu Z, Tan J, Wang B, Liu YG, Zhu Q. Prospects and progress on crocin biosynthetic pathway and metabolic engineering. Comput Struct Biotechnol J 2020; 18:3278-3286. [PMID: 33209212 PMCID: PMC7653203 DOI: 10.1016/j.csbj.2020.10.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/15/2020] [Accepted: 10/17/2020] [Indexed: 12/22/2022] Open
Abstract
Crocins are a group of highly valuable apocarotenoid-derived pigments mainly produced in Crocus sativus stigmas and Gardenia jasminoides fruits, which display great pharmacological activities for human health, such as anticancer, reducing the risk of atherosclerosis, and preventing Alzheimer's disease. However, traditional sources of crocins are no longer sufficient to meet current demands. The recent clarification of the crocin biosynthetic pathway opens up the possibility of large-scale production of crocins by synthetic metabolic engineering methods. In this review, we mainly introduce the crocin biosynthetic pathway, subcellular route, related key enzymes, and its synthetic metabolic engineering, as well as its challenges and prospects, with a view to providing useful references for further studies on the synthetic metabolic engineering of crocins.
Collapse
Affiliation(s)
- Taoli Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Suize Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Zhichao Xu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jiantao Tan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Bin Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yao-Guang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Qinlong Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|