1
|
Xing J, Han R, Zhao J, Zhang Y, Zhang M, Zhang Y, Zhang H, Nang SC, Zhai Y, Yuan L, Wang S, Wu H. Revisiting therapeutic options against resistant klebsiella pneumoniae infection: Phage therapy is key. Microbiol Res 2025; 293:128083. [PMID: 39904002 DOI: 10.1016/j.micres.2025.128083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/10/2025] [Accepted: 01/23/2025] [Indexed: 02/06/2025]
Abstract
Multi-drug resistant and carbapenem-resistant hypervirulent Klebsiella pneumoniae strains are spreading globally at an alarming rate, emerging as one of the most serious threats to global public health. The formidable challenges posed by the current arsenal of antimicrobials highlight the urgent need for novel strategies to combat K. pneumoniae infections. This review begins with a comprehensive analysis of the global dissemination of virulence factors and critical resistance profiles in K. pneumoniae, followed by an evaluation of the accessibility of novel therapeutic approaches for treating K. pneumoniae in clinical settings. Among these, phage therapy stands out for its considerable potential in addressing life-threatening K. pneumoniae infections. We critically examine the existing preclinical and clinical evidence supporting phage therapy, identifying key limitations that impede its broader clinical adoption. Additionally, we rigorously explore the role of genetic engineering in expanding the host range of K. pneumoniae phages, and discuss the future trajectory of this technology. In light of the 'Bad Bugs, No Drugs' era, we advocate leveraging artificial intelligence and deep learning to optimize and expand the application of phage therapy, representing a crucial advancement in the fight against the escalating threat of K. pneumoniae infections.
Collapse
Affiliation(s)
- Jiabao Xing
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Rongjia Han
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Jinxin Zhao
- Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Yuying Zhang
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Meng Zhang
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Yichao Zhang
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Hang Zhang
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Sue C Nang
- Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Yajun Zhai
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Li Yuan
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Shanmei Wang
- Department of Microbiology Laboratory, Henan Provincial People's Hospital, Zhengzhou, China.
| | - Hua Wu
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China; Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
2
|
Ghaznavi G, Vosough P, Ghasemian A, Tabar MMM, Tayebi L, Taghizadeh S, Savardashtaki A. Engineering bacteriophages for targeted superbug eradication. Mol Biol Rep 2025; 52:221. [PMID: 39934535 DOI: 10.1007/s11033-025-10332-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 02/03/2025] [Indexed: 02/13/2025]
Abstract
The rise of antibiotic-resistant bacteria, termed "superbugs," presents a formidable challenge to global health. These pathogens, often responsible for persistent nosocomial infections, threaten the effectiveness of conventional antibiotic therapies. This review delves into the potential of bacteriophages, viruses specifically targeting bacteria, as a powerful tool to combat superbugs. We examined the latest developments in genetic engineering that improve the efficacy of bacteriophages, focusing on modifications in host range, lysis mechanisms, and their ability to overcome bacterial defense systems. This review article highlights the CRISPR-Cas system as a promising method for precisely manipulating phage genomes, enabling the development of novel phage therapies with enhanced efficacy and specificity. Furthermore, we discussed developing novel phage-based strategies, such as phage cocktails and phage-antibiotic combinations. We also analyzed the challenges and ethical considerations associated with phage engineering, emphasizing the need for responsible and rigorous research to ensure this technology's safe and effective deployment to combat the growing threat of antibiotic resistance.
Collapse
Affiliation(s)
- Ghazal Ghaznavi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Parisa Vosough
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abdolmajid Ghasemian
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | | | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI, 53233, USA
| | - Saeed Taghizadeh
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
- Pharmaceutical Science Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
3
|
Santos LF, Baldo DÂ, Oliveira JM, Vila MMDC, Balcão VM. An environmental "fairytail": Removal of mercury from water via phage virion-based biosorption. Enzyme Microb Technol 2025; 183:110548. [PMID: 39577276 DOI: 10.1016/j.enzmictec.2024.110548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/15/2024] [Accepted: 11/16/2024] [Indexed: 11/24/2024]
Abstract
Contamination of water with mercury constitutes a serious public health problem, especially in locations where the use of Hg occurs improperly/illegally and negligently, as is the case in the Amazon region (Brazil). The riverside populations in the Amazon are frequently invaded by illegal mining, exposing these populations to significant risks, of which contamination by heavy metals such as mercury (Hg2+) has the potential to cause serious illnesses. Furthermore, exposure to this metal causes neurological, cardiovascular, immune and digestive system disorders, in addition to damaging the lungs, kidneys, skin and eyes. The aquatic biome is extremely important for the local economy and population, being drastically affected by Hg2+ contamination and its effects. Therefore, it is necessary to develop bioremediation/biomitigation methods that are effective and less harmful to the environment, aiming to remove Hg2+ from water. Hence, when we think about new methodologies that can lead to the reduction of mercury in water, the use of protein entities is a potential option and, for this reason, we can highlight the possibility of using bacteriophage virions to remove Hg2+ ions from water by biosorption using their negative Zeta Potential for this purpose. In this sense, the main goal of the research work undertaken was to test the possibility of mitigating the presence of mercury (II) ions in water through the immobilization of a bacteriophage isolated and already characterized by our research group (EcoM021, T4 myovirus of the Straboviridae family and genus Tequatrovirus), on a chitosan-coated Ca-alginate microparticle support, through which water contaminated with Hg2+ ions was percolated. The system developed in microparticle form integrating trapped phage virions showed to be very promising for retaining mercury ions through biosorption (electrostatic attraction), thus enabling the removal of ionic mercury from water.
Collapse
Affiliation(s)
- Larissa F Santos
- VBlab - Laboratory of Bacterial Viruses, University of Sorocaba, Sorocaba, SP 18023-000, Brazil
| | - Denicezar  Baldo
- LaFiNAU - Laboratory of Applied Nuclear Physics, University of Sorocaba, Sorocaba, SP 18023-000, Brazil
| | - José M Oliveira
- LaFiNAU - Laboratory of Applied Nuclear Physics, University of Sorocaba, Sorocaba, SP 18023-000, Brazil
| | - Marta M D C Vila
- VBlab - Laboratory of Bacterial Viruses, University of Sorocaba, Sorocaba, SP 18023-000, Brazil
| | - Victor M Balcão
- VBlab - Laboratory of Bacterial Viruses, University of Sorocaba, Sorocaba, SP 18023-000, Brazil; Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, Aveiro P-3810-193, Portugal.
| |
Collapse
|
4
|
Peng H, Chen IA, Qimron U. Engineering Phages to Fight Multidrug-Resistant Bacteria. Chem Rev 2025; 125:933-971. [PMID: 39680919 PMCID: PMC11758799 DOI: 10.1021/acs.chemrev.4c00681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 12/18/2024]
Abstract
Facing the global "superbug" crisis due to the emergence and selection for antibiotic resistance, phages are among the most promising solutions. Fighting multidrug-resistant bacteria requires precise diagnosis of bacterial pathogens and specific cell-killing. Phages have several potential advantages over conventional antibacterial agents such as host specificity, self-amplification, easy production, low toxicity as well as biofilm degradation. However, the narrow host range, uncharacterized properties, as well as potential risks from exponential replication and evolution of natural phages, currently limit their applications. Engineering phages can not only enhance the host bacteria range and improve phage efficacy, but also confer new functions. This review first summarizes major phage engineering techniques including both chemical modification and genetic engineering. Subsequent sections discuss the applications of engineered phages for bacterial pathogen detection and ablation through interdisciplinary approaches of synthetic biology and nanotechnology. We discuss future directions and persistent challenges in the ongoing exploration of phage engineering for pathogen control.
Collapse
Affiliation(s)
- Huan Peng
- Cellular
Signaling Laboratory, International Research Center for Sensory Biology
and Technology of MOST, Key Laboratory of Molecular Biophysics of
MOE, College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, Hubei China
| | - Irene A. Chen
- Department
of Chemical and Biomolecular Engineering, Department of Chemistry
and Biochemistry, University of California
Los Angeles, Los Angeles, California 90095-1592, United States
| | - Udi Qimron
- Department
of Clinical Microbiology and Immunology, School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
5
|
Liu S, Lin M, Zhou X. T4 Phage Displaying Dual Antigen Clusters Against H3N2 Influenza Virus Infection. Vaccines (Basel) 2025; 13:70. [PMID: 39852849 PMCID: PMC11769387 DOI: 10.3390/vaccines13010070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/09/2025] [Accepted: 01/11/2025] [Indexed: 01/26/2025] Open
Abstract
BACKGROUND The current H3N2 influenza subunit vaccine exhibits weak immunogenicity, which limits its effectiveness in preventing and controlling influenza virus infections. METHODS In this study, we aimed to develop a T4 phage-based nanovaccine designed to enhance the immunogenicity of two antigens by displaying the HA1 and M2e antigens of the H3N2 influenza virus on each phage nanoparticle. Specifically, we fused the Soc protein with the HA1 antigen and the Hoc protein with the M2e antigen, assembling them onto a T4 phage that lacks Soc and Hoc proteins (Soc-Hoc-T4), thereby constructing a nanovaccine that concurrently presents both HA1 and M2e antigens. RESULTS The analysis of the optical density of the target protein bands indicated that each particle could display approximately 179 HA1 and 68 M2e antigen molecules. Additionally, animal experiments demonstrated that this nanoparticle vaccine displaying dual antigen clusters induced a stronger specific immune response, higher antibody titers, a more balanced Th1/Th2 immune response, and enhanced CD4+ and CD8+ T cell effects compared to immunization with HA1 and M2e antigen molecules alone. Importantly, mice immunized with the T4 phage displaying dual antigen clusters achieved full protection (100% protection) against the H3N2 influenza virus, highlighting its robust protective efficacy. CONCLUSIONS In summary, our findings indicate that particles based on a T4 phage displaying antigen clusters exhibit ideal immunogenicity and protective effects, providing a promising strategy for the development of subunit vaccines against various viruses beyond influenza.
Collapse
Affiliation(s)
- Shenglong Liu
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China; (S.L.); (M.L.)
| | - Mengzhou Lin
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China; (S.L.); (M.L.)
| | - Xin Zhou
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China; (S.L.); (M.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou 225009, China
| |
Collapse
|
6
|
Bhoobalan-Chitty Y, Stouf M, De Paepe M. Genetic manipulation of bacteriophage T4 utilizing the CRISPR-Cas13b system. Front Genome Ed 2024; 6:1495968. [PMID: 39749289 PMCID: PMC11693715 DOI: 10.3389/fgeed.2024.1495968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 12/02/2024] [Indexed: 01/04/2025] Open
Abstract
CRISPR-Cas type II and type V systems are inefficient in modifying bacteriophage T4 genome, due to hypermodification of its DNA. Here, we present a genome editing technique for bacteriophage T4 using the type VI CRISPR-Cas system. Using BzCas13b targeting of T4 phage, we were able to individually delete both T4 glucosyl transferase genes, α-gt and β-gt. Furthermore, we employed this method to mutate two conserved residues within the T4 DNA polymerase and to introduce the yellow fluorescent protein (YFP) coding sequence into T4 phage genome, enabling us to visualize phage infections. This T4 genome editing protocol was optimized to generate recombinant phages within a 6-hour timescale. Finally, spacers homologous to a variety of T4 genes were used to study the generality of Cas13b targeting, revealing important variability in targeting efficiency. Overall, this method constitutes a rapid and effective means of generating specific T4 phage mutants, which could be extended to other T4-like phages.
Collapse
Affiliation(s)
- Yuvaraj Bhoobalan-Chitty
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Mathieu Stouf
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Marianne De Paepe
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| |
Collapse
|
7
|
He Y, Chen J. CRISPR/Cas9-Mediated Genome Editing of T4 Bacteriophage for High-Throughput Antimicrobial Susceptibility Testing. Anal Chem 2024; 96:18301-18310. [PMID: 39474820 PMCID: PMC11561875 DOI: 10.1021/acs.analchem.4c05177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/17/2024] [Accepted: 10/23/2024] [Indexed: 11/13/2024]
Abstract
The accurate and effective determination of antimicrobial resistance is essential to limiting the spread of infectious diseases and ensuring human health. Herein, a simple, accurate, and high-throughput phage-based colorimetric sensing strategy was developed for antimicrobial susceptibility testing (AST). Taking advantage of the CRISPR/Cas9 system, the genome of the T4 phage was modularly engineered to carry lacZ-α (lacZa), a marker gene encoding the α-fragment of β-galactosidase (β-gal). T4lacZa phages were identified by blue-white selection and then used for a biosensing application. In this strategy, the bacterial solution is exposed to the T4lacZa phage, causing target bacteria to overexpress β-gal. Upon the addition of a colorimetric substrate, the β-gal initiates an enzymatic reaction, resulting in a solution color change from yellow to red. This sensing strategy offers a visual way to monitor bacterial growth in the presence of antibiotics, enabling the determination of bacterial antimicrobial susceptibility. As a proof of concept, our developed sensing strategy was successfully applied to identify 9 different multidrug-resistant Escherichia coli (E. coli) in urine samples with 100% specificity. Compared with conventional disk diffusion susceptibility tests, the engineered phage-based sensing strategy can shorten the detection time by at least half without losing detection sensitivity, providing an alternative high-throughput method for AST in clinical diagnosis.
Collapse
Affiliation(s)
- Yawen He
- Department
of Biological Systems Engineering, Virginia
Tech, Blacksburg, Virginia 24061, United States
| | - Juhong Chen
- Department
of Biological Systems Engineering, Virginia
Tech, Blacksburg, Virginia 24061, United States
- Department
of Bioengineering, University of California, Riverside, California 92521, United States
| |
Collapse
|
8
|
de Souza CC, Glória JC, da Silva ERD, de Lima Guerra Corado A, de Alcântara KÁG, Cordeiro IB, de Andrade EV, Mariúba LAM. Single-Stranded Variable Fragment Gene Libraries Built for Phage Display: An Updated Review of Design, Selection and Application. J Microbiol Biotechnol 2024; 35:e2407049. [PMID: 39631781 PMCID: PMC11813352 DOI: 10.4014/jmb.2407.07049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 12/07/2024]
Abstract
The development of the phage display technique has brought practicality and speed when selecting high-affinity molecules. It is used to obtain single-chain variable fragments (scFvs) and has revolutionized several branches of research and industry. These are developed from gene libraries that differ in their construction strategies, which causes a diversity of sequences, specificity and binding strength of the projected molecule to its antigen. In this review, we present the recent studies that demonstrate methods and approaches using immune, naïve, synthetic and semi-synthetic libraries to construct and select scFvs. Subsequently, the characteristics of these libraries, the functionality of the scFvs and the cost-benefits of production will be discussed. In addition, we highlight the methodological trends and challenges to be overcome in order to optimize the production and application of these antibody fragments.
Collapse
Affiliation(s)
- Caio Coutinho de Souza
- Programa de Pós-graduação em Biotecnologia (PPGBIOTEC), Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil
- Laboratório de Diagnóstico e Controle de Doenças Infecciosas na Amazônia (DCDIA), Instituto Leônidas e Maria Deane (ILMD/Fiocruz-Amazônia), Manaus, AM, Brazil
| | - Juliane Corrêa Glória
- Laboratório de Diagnóstico e Controle de Doenças Infecciosas na Amazônia (DCDIA), Instituto Leônidas e Maria Deane (ILMD/Fiocruz-Amazônia), Manaus, AM, Brazil
- Programa de Pós-Graduação em Biologia da Interação Patógeno-Hospedeiro (PPGBIO-Interação), Instituto Leônidas e Maria Deane (ILMD/Fiocruz-Amazônia), Manaus, AM, Brazil
| | - Eliza Raquel Duarte da Silva
- Laboratório de Diagnóstico e Controle de Doenças Infecciosas na Amazônia (DCDIA), Instituto Leônidas e Maria Deane (ILMD/Fiocruz-Amazônia), Manaus, AM, Brazil
| | - André de Lima Guerra Corado
- Laboratório de Diagnóstico e Controle de Doenças Infecciosas na Amazônia (DCDIA), Instituto Leônidas e Maria Deane (ILMD/Fiocruz-Amazônia), Manaus, AM, Brazil
- Universidade Nilton Lins, Manaus, AM, Brazil
| | - Kelson Ávila Graça de Alcântara
- Laboratório de Diagnóstico e Controle de Doenças Infecciosas na Amazônia (DCDIA), Instituto Leônidas e Maria Deane (ILMD/Fiocruz-Amazônia), Manaus, AM, Brazil
- Faculdade Estácio do Amazonas, Manaus, AM, Brazil
| | - Isabelle Bezerra Cordeiro
- Programa de Pós-graduação em Biotecnologia (PPGBIOTEC), Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil
- Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil
| | - Edmar Vaz de Andrade
- Programa de Pós-graduação em Biotecnologia (PPGBIOTEC), Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil
- Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil
| | - Luis André Morais Mariúba
- Programa de Pós-graduação em Biotecnologia (PPGBIOTEC), Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil
- Laboratório de Diagnóstico e Controle de Doenças Infecciosas na Amazônia (DCDIA), Instituto Leônidas e Maria Deane (ILMD/Fiocruz-Amazônia), Manaus, AM, Brazil
- Programa de Pós-Graduação em Biologia da Interação Patógeno-Hospedeiro (PPGBIO-Interação), Instituto Leônidas e Maria Deane (ILMD/Fiocruz-Amazônia), Manaus, AM, Brazil
- Programa de Pós-graduação em Imunologia Básica e Aplicada (PPGIBA), Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil
- Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil
| |
Collapse
|
9
|
Yuan S, Li Y, Kou C, Sun Y, Ma Y. CRISPR/Cas12a-based genome editing for cyanophage of Anabeana sp. Synth Syst Biotechnol 2024; 10:140-147. [PMID: 39493338 PMCID: PMC11530783 DOI: 10.1016/j.synbio.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/26/2024] [Accepted: 09/28/2024] [Indexed: 11/05/2024] Open
Abstract
Efforts have been conducted on cyanobacterial genome editing, yet achieving genome editing in cyanophages remains challenging. Editing cyanophage genomes is crucial for understanding and manipulating their interactions with cyanobacterial hosts, offering potential solutions for controlling cyanobacterial blooms. In this study, we developed a streamlined CRISPR-Cas12a-based method for efficient cyanophage genome editing and then applied this method to the cyanophages A-1(L) and A-4(L) of Anabeana sp. PCC.7120. Multiple hypothetical genes were edited and knocked out from these two cyanophage genomes, generating viable mutants with varying capabilities to inhibit cyanobacterial growth. All these mutants displayed significant inhibitory effects on the host, indicating that these genes were non-essential for phage life cycle and the deletion led to little impairment of the cyanophages in infectious efficiency to their host. By iterative and simultaneous gene knockouts in cyanophage A-4(L), we achieved the minimal genome mutant with a 2400 bp reduction in genome size, representing a 5.75 % decrease compared to the wild type (WT). In conclusion, these cyanophage mutants can facilitate the identification of nonessential genes for cyanophages biology and the insertion of foreign genes for synthetic biology research. This advancement holds promise in addressing the widespread issue of water blooms and the associated environmental hazards.
Collapse
Affiliation(s)
- Shengjian Yuan
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yanchen Li
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Chunhua Kou
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - YiChen Sun
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yingfei Ma
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
10
|
Pozhydaieva N, Billau FA, Wolfram-Schauerte M, Ramírez Rojas AA, Paczia N, Schindler D, Höfer K. Temporal epigenome modulation enables efficient bacteriophage engineering and functional analysis of phage DNA modifications. PLoS Genet 2024; 20:e1011384. [PMID: 39231196 PMCID: PMC11404850 DOI: 10.1371/journal.pgen.1011384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/16/2024] [Accepted: 08/01/2024] [Indexed: 09/06/2024] Open
Abstract
Lytic bacteriophages hold substantial promise in medical and biotechnological applications. Therefore a comprehensive understanding of phage infection mechanisms is crucial. CRISPR-Cas systems offer a way to explore these mechanisms via site-specific phage mutagenesis. However, phages can resist Cas-mediated cleavage through extensive DNA modifications like cytosine glycosylation, hindering mutagenesis efficiency. Our study utilizes the eukaryotic enzyme NgTET to temporarily reduce phage DNA modifications, facilitating Cas nuclease cleavage and enhancing mutagenesis efficiency. This approach enables precise DNA targeting and seamless point mutation integration, exemplified by deactivating specific ADP-ribosyltransferases crucial for phage infection. Furthermore, by temporally removing DNA modifications, we elucidated the effects of these modifications on T4 phage infections without necessitating gene deletions. Our results present a strategy enabling the investigation of phage epigenome functions and streamlining the engineering of phages with cytosine DNA modifications. The described temporal modulation of the phage epigenome is valuable for synthetic biology and fundamental research to comprehend phage infection mechanisms through the generation of mutants.
Collapse
Affiliation(s)
| | | | | | | | - Nicole Paczia
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Daniel Schindler
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Katharina Höfer
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| |
Collapse
|
11
|
Zhang F, Wang JY, Li CL, Zhang WG. HyCas9-12aGEP: an efficient genome editing platform for Corynebacterium glutamicum. Front Bioeng Biotechnol 2024; 12:1327172. [PMID: 38532881 PMCID: PMC10963414 DOI: 10.3389/fbioe.2024.1327172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/27/2024] [Indexed: 03/28/2024] Open
Abstract
Corynebacterium glutamicum plays a crucial role as a significant industrial producer of metabolites. Despite the successful development of CRISPR-Cas9 and CRISPR-Cas12a-assisted genome editing technologies in C. glutamicum, their editing resolution and efficiency are hampered by the diverse on-target activities of guide RNAs (gRNAs). To address this problem, a hybrid CRISPR-Cas9-Cas12a genome editing platform (HyCas9-12aGEP) was developed in C. glutamicum in this study to co-express sgRNA (corresponding to SpCas9 guide RNA), crRNA (corresponding to FnCas12a guide RNA), or hfgRNA (formed by the fusion of sgRNA and crRNA). HyCas9-12aGEP improves the efficiency of mapping active gRNAs and outperforms both CRISPR-Cas9 and CRISPR-Cas12a in genome editing resolution and efficiency. In the experiment involving the deletion of the cg0697-0740 gene segment, an unexpected phenotype was observed, and HyCas9-12aGEP efficiently identified the responsible genotype from more than 40 genes. Here, HyCas9-12aGEP greatly improve our capability in terms of genome reprogramming in C. glutamicum.
Collapse
Affiliation(s)
- Feng Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | | | | | - Wei-Guo Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
12
|
Chen C, Zhang N, Li M, Guo A, Zheng Y, Humak F, Qian P, Tao P. Recombinant bacteriophage T4 displaying key epitopes of the foot-and-mouth disease virus as a novel nanoparticle vaccine. Int J Biol Macromol 2024; 258:128837. [PMID: 38128800 DOI: 10.1016/j.ijbiomac.2023.128837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/06/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Foot-and-mouth disease virus (FMDV) is a highly contagious pathogen that has caused significant economic losses in the livestock industry. Peptide vaccines engineered with the protective epitopes of FMDV have provided a safer alternative for disease prevention than the traditional inactivated vaccines. However, the immunogenicity of the peptide is usually poor and therefore an adjuvant is required. Here, we showed that recombinant T4 phages displaying the B-cell epitope of the FMDV VP1 protein (VP1130-158), without additional adjuvants, induced similar levels of antigen-specific IgG1 but higher levels of IgG2a compared to the peptide vaccine. Incorporation of a CD4+ T cell epitope, either 3A21-35 of FMDV 3A protein or P2830-844 of tetanus toxoid, further enhanced the immunogenicity of VP1-T4 phage nanoparticles. Interestingly, the extrinsic adjuvant cannot enhance the immunogenicity of the nanoparticles, indicating the intrinsic adjuvant activities of T4 phage. Furthermore, the recombinant T4 phage can be produced on a large scale within a short period of time at a relatively low-cost using Escherichia coli, heralding its potential in the development of a safe and effective FMDV vaccine.
Collapse
Affiliation(s)
- Cen Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Lab, Wuhan, Hubei 430070, China
| | - Nan Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Lab, Wuhan, Hubei 430070, China
| | - Mengling Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Lab, Wuhan, Hubei 430070, China
| | - Aili Guo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Lab, Wuhan, Hubei 430070, China
| | - Yifei Zheng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Lab, Wuhan, Hubei 430070, China
| | - Farwa Humak
- Antimicrobial Resistance Research Lab, Institute of Microbiology, University of Agriculture Faisalabad, 38000, Pakistan
| | - Ping Qian
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Lab, Wuhan, Hubei 430070, China.
| | - Pan Tao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Lab, Wuhan, Hubei 430070, China.
| |
Collapse
|
13
|
Carmody CM, Nugen SR. Monomeric streptavidin phage display allows efficient immobilization of bacteriophages on magnetic particles for the capture, separation, and detection of bacteria. Sci Rep 2023; 13:16207. [PMID: 37758721 PMCID: PMC10533843 DOI: 10.1038/s41598-023-42626-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Immobilization of bacteriophages onto solid supports such as magnetic particles has demonstrated ultralow detection limits as biosensors for the separation and detection of their host bacteria. While the potential impact of magnetized phages is high, the current methods of immobilization are either weak, costly, inefficient, or laborious making them less viable for commercialization. In order to bridge this gap, we have developed a highly efficient, site-specific, and low-cost method to immobilize bacteriophages onto solid supports. While streptavidin-biotin represents an ideal conjugation method, the functionalization of magnetic particles with streptavidin requires square meters of coverage and therefore is not amenable to a low-cost assay. Here, we genetically engineered bacteriophages to allow synthesis of a monomeric streptavidin during infection of the bacterial host. The monomeric streptavidin was fused to a capsid protein (Hoc) to allow site-specific self-assembly of up to 155 fusion proteins per capsid. Biotin coated magnetic nanoparticles were functionalized with mSA-Hoc T4 phage demonstrated in an E. coli detection assay with a limit of detection of < 10 CFU in 100 mLs of water. This work highlights the creation of genetically modified bacteriophages with a novel capsid modification, expanding the potential for bacteriophage functionalized biotechnologies.
Collapse
Affiliation(s)
- Caitlin M Carmody
- Department of Food Science, Cornell University, Ithaca, NY, 14853, USA
| | - Sam R Nugen
- Department of Food Science, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
14
|
Li M, Chen C, Wang X, Guo P, Feng H, Zhang X, Zhang W, Gu C, Zhu J, Wen G, Feng Y, Xiao L, Peng G, Rao VB, Tao P. T4 bacteriophage nanoparticles engineered through CRISPR provide a versatile platform for rapid development of flu mucosal vaccines. Antiviral Res 2023; 217:105688. [PMID: 37516153 DOI: 10.1016/j.antiviral.2023.105688] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/18/2023] [Accepted: 07/25/2023] [Indexed: 07/31/2023]
Abstract
Vaccines that trigger mucosal immune responses at the entry portals of pathogens are highly desired. Here, we showed that antigen-decorated nanoparticle generated through CRISPR engineering of T4 bacteriophage can serve as a universal platform for the rapid development of mucosal vaccines. Insertion of Flu viral M2e into phage T4 genome through fusion to Soc (Small Outer Capsid protein) generated a recombinant phage, and the Soc-M2e proteins self-assembled onto phage capsids to form 3M2e-T4 nanoparticles during propagation of T4 in E. coli. Intranasal administration of 3M2e-T4 nanoparticles maintains antigen persistence in the lungs, resulting in increased uptake and presentation by antigen-presenting cells. M2e-specific secretory IgA, effector (TEM), central (TCM), and tissue-resident memory CD4+ T cells (TRM) were efficiently induced in the local mucosal sites, which mediated protections against divergent influenza viruses. Our studies demonstrated the mechanisms of immune protection following 3M2e-T4 nanoparticles vaccination and provide a versatile T4 platform that can be customized to rapidly develop mucosal vaccines against future emerging epidemics.
Collapse
Affiliation(s)
- Mengling Li
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Hubei Hongshan Lab, Wuhan, Hubei, 430070, China
| | - Cen Chen
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Hubei Hongshan Lab, Wuhan, Hubei, 430070, China
| | - Xialin Wang
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Hubei Hongshan Lab, Wuhan, Hubei, 430070, China
| | - Pengju Guo
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Hubei Hongshan Lab, Wuhan, Hubei, 430070, China
| | - Helong Feng
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, 430070, China
| | - Xueqi Zhang
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Hubei Hongshan Lab, Wuhan, Hubei, 430070, China
| | - Wanpo Zhang
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Changqin Gu
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Jingen Zhu
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC, 20064, USA
| | - Guoyuan Wen
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, 430070, China
| | - Yaoyu Feng
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Lihua Xiao
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Guiqing Peng
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Hubei Hongshan Lab, Wuhan, Hubei, 430070, China
| | - Venigalla B Rao
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC, 20064, USA
| | - Pan Tao
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Hubei Hongshan Lab, Wuhan, Hubei, 430070, China.
| |
Collapse
|
15
|
Wang S, Sun E, Liu Y, Yin B, Zhang X, Li M, Huang Q, Tan C, Qian P, Rao VB, Tao P. Landscape of New Nuclease-Containing Antiphage Systems in Escherichia coli and the Counterdefense Roles of Bacteriophage T4 Genome Modifications. J Virol 2023; 97:e0059923. [PMID: 37306585 PMCID: PMC10308915 DOI: 10.1128/jvi.00599-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 05/19/2023] [Indexed: 06/13/2023] Open
Abstract
Many phages, such as T4, protect their genomes against the nucleases of bacterial restriction-modification (R-M) and CRISPR-Cas systems through covalent modification of their genomes. Recent studies have revealed many novel nuclease-containing antiphage systems, raising the question of the role of phage genome modifications in countering these systems. Here, by focusing on phage T4 and its host Escherichia coli, we depicted the landscape of the new nuclease-containing systems in E. coli and demonstrated the roles of T4 genome modifications in countering these systems. Our analysis identified at least 17 nuclease-containing defense systems in E. coli, with type III Druantia being the most abundant system, followed by Zorya, Septu, Gabija, AVAST type 4, and qatABCD. Of these, 8 nuclease-containing systems were found to be active against phage T4 infection. During T4 replication in E. coli, 5-hydroxymethyl dCTP is incorporated into the newly synthesized DNA instead of dCTP. The 5-hydroxymethylcytosines (hmCs) are further modified by glycosylation to form glucosyl-5-hydroxymethylcytosine (ghmC). Our data showed that the ghmC modification of the T4 genome abolished the defense activities of Gabija, Shedu, Restriction-like, type III Druantia, and qatABCD systems. The anti-phage T4 activities of the last two systems can also be counteracted by hmC modification. Interestingly, the Restriction-like system specifically restricts phage T4 containing an hmC-modified genome. The ghmC modification cannot abolish the anti-phage T4 activities of Septu, SspBCDE, and mzaABCDE, although it reduces their efficiency. Our study reveals the multidimensional defense strategies of E. coli nuclease-containing systems and the complex roles of T4 genomic modification in countering these defense systems. IMPORTANCE Cleavage of foreign DNA is a well-known mechanism used by bacteria to protect themselves from phage infections. Two well-known bacterial defense systems, R-M and CRISPR-Cas, both contain nucleases that cleave the phage genomes through specific mechanisms. However, phages have evolved different strategies to modify their genomes to prevent cleavage. Recent studies have revealed many novel nuclease-containing antiphage systems from various bacteria and archaea. However, no studies have systematically investigated the nuclease-containing antiphage systems of a specific bacterial species. In addition, the role of phage genome modifications in countering these systems remains unknown. Here, by focusing on phage T4 and its host Escherichia coli, we depicted the landscape of the new nuclease-containing systems in E. coli using all 2,289 genomes available in NCBI. Our studies reveal the multidimensional defense strategies of E. coli nuclease-containing systems and the complex roles of genomic modification of phage T4 in countering these defense systems.
Collapse
Affiliation(s)
- Shuangshuang Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Lab, Wuhan, Hubei, China
| | - Erchao Sun
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Lab, Wuhan, Hubei, China
| | - Yuepeng Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Lab, Wuhan, Hubei, China
| | - Baoqi Yin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Lab, Wuhan, Hubei, China
| | - Xueqi Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Lab, Wuhan, Hubei, China
| | - Mengling Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Lab, Wuhan, Hubei, China
| | - Qi Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Chen Tan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Lab, Wuhan, Hubei, China
| | - Ping Qian
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Venigalla B. Rao
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC, USA
| | - Pan Tao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Lab, Wuhan, Hubei, China
| |
Collapse
|
16
|
Jia HJ, Jia PP, Yin S, Bu LK, Yang G, Pei DS. Engineering bacteriophages for enhanced host range and efficacy: insights from bacteriophage-bacteria interactions. Front Microbiol 2023; 14:1172635. [PMID: 37323893 PMCID: PMC10264812 DOI: 10.3389/fmicb.2023.1172635] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/10/2023] [Indexed: 06/17/2023] Open
Abstract
Bacteriophages, the most abundant organisms on earth, have the potential to address the rise of multidrug-resistant bacteria resulting from the overuse of antibiotics. However, their high specificity and limited host range can hinder their effectiveness. Phage engineering, through the use of gene editing techniques, offers a means to enhance the host range of bacteria, improve phage efficacy, and facilitate efficient cell-free production of phage drugs. To engineer phages effectively, it is necessary to understand the interaction between phages and host bacteria. Understanding the interaction between the receptor recognition protein of bacteriophages and host receptors can serve as a valuable guide for modifying or replacing these proteins, thereby altering the receptor range of the bacteriophage. Research and development focused on the CRISPR-Cas bacterial immune system against bacteriophage nucleic acids can provide the necessary tools to promote recombination and counter-selection in engineered bacteriophage programs. Additionally, studying the transcription and assembly functions of bacteriophages in host bacteria can facilitate the engineered assembly of bacteriophage genomes in non-host environments. This review highlights a comprehensive summary of phage engineering methods, including in-host and out-of-host engineering, and the use of high-throughput methods to understand their role. The main aim of these techniques is to harness the intricate interactions between bacteriophages and hosts to inform and guide the engineering of bacteriophages, particularly in the context of studying and manipulating the host range of bacteriophages. By employing advanced high-throughput methods to identify specific bacteriophage receptor recognition genes, and subsequently introducing modifications or performing gene swapping through in-host recombination or out-of-host synthesis, it becomes possible to strategically alter the host range of bacteriophages. This capability holds immense significance for leveraging bacteriophages as a promising therapeutic approach against antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Huang-Jie Jia
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
| | - Pan-Pan Jia
- School of Public Health, Chongqing Medical University, Chongqing, China
| | - Supei Yin
- Urinary Nephropathy Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ling-Kang Bu
- College of Life Science, Henan Normal University, Xinxiang, China
| | - Guan Yang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
| | - De-Sheng Pei
- School of Public Health, Chongqing Medical University, Chongqing, China
| |
Collapse
|
17
|
Hussain W, Yang X, Ullah M, Wang H, Aziz A, Xu F, Asif M, Ullah MW, Wang S. Genetic engineering of bacteriophages: Key concepts, strategies, and applications. Biotechnol Adv 2023; 64:108116. [PMID: 36773707 DOI: 10.1016/j.biotechadv.2023.108116] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/03/2023] [Accepted: 02/05/2023] [Indexed: 02/12/2023]
Abstract
Bacteriophages are the most abundant biological entity in the world and hold a tremendous amount of unexplored genetic information. Since their discovery, phages have drawn a great deal of attention from researchers despite their small size. The development of advanced strategies to modify their genomes and produce engineered phages with desired traits has opened new avenues for their applications. This review presents advanced strategies for developing engineered phages and their potential antibacterial applications in phage therapy, disruption of biofilm, delivery of antimicrobials, use of endolysin as an antibacterial agent, and altering the phage host range. Similarly, engineered phages find applications in eukaryotes as a shuttle for delivering genes and drugs to the targeted cells, and are used in the development of vaccines and facilitating tissue engineering. The use of phage display-based specific peptides for vaccine development, diagnostic tools, and targeted drug delivery is also discussed in this review. The engineered phage-mediated industrial food processing and biocontrol, advanced wastewater treatment, phage-based nano-medicines, and their use as a bio-recognition element for the detection of bacterial pathogens are also part of this review. The genetic engineering approaches hold great potential to accelerate translational phages and research. Overall, this review provides a deep understanding of the ingenious knowledge of phage engineering to move them beyond their innate ability for potential applications.
Collapse
Affiliation(s)
- Wajid Hussain
- Advanced Biomaterials & Tissues Engineering Center, College of Life Sciences and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaohan Yang
- Advanced Biomaterials & Tissues Engineering Center, College of Life Sciences and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Mati Ullah
- Department of Biotechnology, College of Life Sciences and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Huan Wang
- Advanced Biomaterials & Tissues Engineering Center, College of Life Sciences and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ayesha Aziz
- Advanced Biomaterials & Tissues Engineering Center, College of Life Sciences and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Fang Xu
- Huazhong University of Science and Technology Hospital, Wuhan 430074, China
| | - Muhammad Asif
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Muhammad Wajid Ullah
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Shenqi Wang
- Advanced Biomaterials & Tissues Engineering Center, College of Life Sciences and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
18
|
Sun Q, Shen L, Zhang BL, Yu J, Wei F, Sun Y, Chen W, Wang S. Advance on Engineering of Bacteriophages by Synthetic Biology. Infect Drug Resist 2023; 16:1941-1953. [PMID: 37025193 PMCID: PMC10072152 DOI: 10.2147/idr.s402962] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/16/2023] [Indexed: 04/03/2023] Open
Abstract
Since bacteriophages (phages) were firstly reported at the beginning of the 20th century, the study on them experiences booming-fading-emerging with discovery and overuse of antibiotics. Although they are the hotspots for therapy of antibiotic-resistant strains nowadays, natural phage applications encounter some challenges such as limited host range and bacterial resistance to phages. Synthetic biology, one of the most dramatic directions in the recent 20-years study of microbiology, has generated numerous methods and tools and has contributed a lot to understanding phage evolution, engineering modification, and controlling phage-bacteria interactions. In order to better modify and apply phages by using synthetic biology techniques in the future, in this review, we comprehensively introduce various strategies on engineering or modification of phage genome and rebooting of recombinant phages, summarize the recent researches and potential directions of phage synthetic biology, and outline the current application of engineered phages in practice.
Collapse
Affiliation(s)
- Qingqing Sun
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, the College of Life Sciences, Northwest University, Xi’an, 710069, People’s Republic of China
| | - Lixin Shen
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, the College of Life Sciences, Northwest University, Xi’an, 710069, People’s Republic of China
| | - Bai-Ling Zhang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, People’s Republic of China
| | - Jiaoyang Yu
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, the College of Life Sciences, Northwest University, Xi’an, 710069, People’s Republic of China
- Clinical Research Center, the Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, 210003, People’s Republic of China
| | - Fu Wei
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, the College of Life Sciences, Northwest University, Xi’an, 710069, People’s Republic of China
| | - Yanmei Sun
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, the College of Life Sciences, Northwest University, Xi’an, 710069, People’s Republic of China
| | - Wei Chen
- Clinical Research Center, the Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, 210003, People’s Republic of China
- The Clinical Infectious Disease Center of Nanjing, Nanjing, 210003, People’s Republic of China
- Correspondence: Wei Chen; Shiwei Wang, Email ;
| | - Shiwei Wang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, the College of Life Sciences, Northwest University, Xi’an, 710069, People’s Republic of China
| |
Collapse
|
19
|
Mahler M, Costa AR, van Beljouw SPB, Fineran PC, Brouns SJJ. Approaches for bacteriophage genome engineering. Trends Biotechnol 2022; 41:669-685. [PMID: 36117025 DOI: 10.1016/j.tibtech.2022.08.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/08/2022] [Accepted: 08/22/2022] [Indexed: 12/26/2022]
Abstract
In recent years, bacteriophage research has been boosted by a rising interest in using phage therapy to treat antibiotic-resistant bacterial infections. In addition, there is a desire to use phages and their unique proteins for specific biocontrol applications and diagnostics. However, the ability to manipulate phage genomes to understand and control gene functions, or alter phage properties such as host range, has remained challenging due to a lack of universal selectable markers. Here, we discuss the state-of-the-art techniques to engineer and select desired phage genomes using advances in cell-free methodologies and clustered regularly interspaced short palindromic repeats-CRISPR associated protein (CRISPR-Cas) counter-selection approaches.
Collapse
Affiliation(s)
- Marina Mahler
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand; Department of Bionanoscience, Delft University of Technology, Delft, the Netherlands
| | - Ana Rita Costa
- Department of Bionanoscience, Delft University of Technology, Delft, the Netherlands; Kavli Institute of Nanoscience, Delft, the Netherlands
| | - Sam P B van Beljouw
- Department of Bionanoscience, Delft University of Technology, Delft, the Netherlands; Kavli Institute of Nanoscience, Delft, the Netherlands
| | - Peter C Fineran
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand; Bioprotection Aotearoa, University of Otago, Dunedin, New Zealand; Genetics Otago, University of Otago, Dunedin, New Zealand
| | - Stan J J Brouns
- Department of Bionanoscience, Delft University of Technology, Delft, the Netherlands; Kavli Institute of Nanoscience, Delft, the Netherlands.
| |
Collapse
|
20
|
Lee C, Kim H, Ryu S. Bacteriophage and endolysin engineering for biocontrol of food pathogens/pathogens in the food: recent advances and future trends. Crit Rev Food Sci Nutr 2022; 63:8919-8938. [PMID: 35400249 DOI: 10.1080/10408398.2022.2059442] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Despite advances in modern technologies, various foodborne outbreaks have continuously threatened the food safety. The overuse of and abuse/misuse of antibiotics have escalated this threat due to the prevalence of multidrug-resistant (MDR) pathogens. Therefore, the development of new methodologies for controlling microbial contamination is extremely important to ensure the food safety. As an alternative to antibiotics, bacteriophages(phages) and derived endolysins have been proposed as novel, effective, and safe antimicrobial agents and applied for the prevention and/or eradication of bacterial contaminants even in foods and food processing facilities. In this review, we describe recent genetic and protein engineering tools for phages and endolysins. The major aim of engineering is to overcome limitations such as a narrow host range, low antimicrobial activity, and low stability of phages and endolysins. Phage engineering also aims to deter the emergence of phage resistance. In the case of endolysin engineering, enhanced antibacterial ability against Gram-negative and Gram-positive bacteria is another important goal. Here, we summarize the successful studies of phages and endolysins treatment in different types of food. Moreover, this review highlights the recent advances in engineering techniques for phages and endolysins, discusses existing challenges, and suggests technical opportunities for further development, especially in terms of antimicrobial agents in the food industry.
Collapse
Affiliation(s)
- Chanyoung Lee
- Department of Food and Animal Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea
| | - Hyeongsoon Kim
- Department of Food and Animal Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|