1
|
Xin Y, Guo T, Qiao M. Current application and future prospects of CRISPR-Cas in lactic acid Bacteria: A review. Food Res Int 2025; 209:116315. [PMID: 40253208 DOI: 10.1016/j.foodres.2025.116315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/12/2025] [Accepted: 03/16/2025] [Indexed: 04/21/2025]
Abstract
Lactic acid bacteria (LABs) have a long history of use in food and beverages fermentation. Recently, several LABs have gained attention as starter or non-starter cultures and probiotics for making functional fermented foods, which have the potential to enhance human health. In addition, certain LABs show great potential as microbial cell factories for producing food-related chemicals. However, enhancing the outcomes of starter and non-starter cultures, exploring the complicated probiotic mechanism of LABs, and engineering strains to enhance the yields of high-value compounds for precision fermentation remains challenging due to the time-consuming and labor-intensive current genome editing tools. The clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR associated proteins (Cas) system, originally an adaptive immune system in bacteria, has revolutionized genome editing, metabolic engineering and synthetic biology. Its versatility has resulted in extensive applications across diverse organisms. The widespread distribution of CRISPR-Cas systems and the diversity of CRISPR arrays in LAB genomes highlight their potential for studying the evolution of LABs. This review discusses the current advancement of CRISPR-Cas systems in engineering LABs for food application. Moreover, it outlines future research directions aimed at harnessing CRISPR-Cas systems to advance lactic acid bacterial research and drive innovation in food science.
Collapse
Affiliation(s)
- Yongping Xin
- School of Life Science, Shanxi University, Taiyuan 030006, PR China
| | - Tingting Guo
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Mingqiang Qiao
- School of Life Science, Shanxi University, Taiyuan 030006, PR China; The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, PR China.
| |
Collapse
|
2
|
Mitsunobu H, Kita Y, Nambu-Nishida Y, Miyazaki S, Nakajima K, Taoka KI, Kondo A, Nishida K. Development of a highly efficient base editing system for Lactobacilli to improve probiotics and dissect essential functions. Appl Microbiol Biotechnol 2025; 109:96. [PMID: 40261411 PMCID: PMC12014835 DOI: 10.1007/s00253-025-13489-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/07/2025] [Accepted: 04/10/2025] [Indexed: 04/24/2025]
Abstract
Lactobacilli play essential roles in the food industry and have a significant potential as probiotics and therapeutic agents. Genomic and genetic information has increasingly accumulated and been linked to their various functions, to which transgenic approaches are being performed to verify crucial genes. In order to reasonably develop more useful strains, beneficial traits need to be introduced into any given strains and enhanced or combined based on such genotype characterization. However, for practical use as probiotics or foods, organisms with transgene are hardly acceptable. Here, we have introduced the base editing Target-AID system specifically for Lactobacilli, enabling precise installation of point mutations without donor DNA and at multiple genomic loci simultaneously. Lactiplantibacillus plantarum has been successfully engineered to reduce production of imidazole propionate, which has been reported to be associated with type 2 diabetes by impairing glucose tolerance and insulin signaling. Additionally, this system enabled transient knock-out of an essential gene, such as one involved in cell division, resulting in severe filamentous cell phenotype. This demonstrates Target-AID is a promising genetic tool for Lactobacilli and can accelerate both applied and fundamental research. KEY POINTS: • Efficient and multiplexable cytosine base editing established in Lactobacilli. • Edited Lactobacillus reducing imidazole propionate associated with the risk of type 2 diabetes. • Transient knock-out and dissection of an essential gene function.
Collapse
Affiliation(s)
- Hitoshi Mitsunobu
- Engineering Biology Research Center, Kobe University, Kobe, Hyogo, Japan
| | - Yudai Kita
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Hyogo, Japan
| | | | | | | | - Ken-Ichiro Taoka
- Engineering Biology Research Center, Kobe University, Kobe, Hyogo, Japan
| | - Akihiko Kondo
- Engineering Biology Research Center, Kobe University, Kobe, Hyogo, Japan
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Hyogo, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Keiji Nishida
- Engineering Biology Research Center, Kobe University, Kobe, Hyogo, Japan.
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Hyogo, Japan.
| |
Collapse
|
3
|
Chen C, Zhang Y, Chen R, Liu K, Wu H, Qiao J, Caiyin Q. Development of a Pre-Modification Strategy to Overcome Restriction-Modification Barriers and Enhance Genetic Engineering in Lactococcus lactis for Nisin Biosynthesis. Int J Mol Sci 2025; 26:2200. [PMID: 40076820 PMCID: PMC11900431 DOI: 10.3390/ijms26052200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 02/24/2025] [Accepted: 02/27/2025] [Indexed: 03/14/2025] Open
Abstract
Due to the barriers imposed by the restriction-modification (RM) system, Nisin-producing industrial strains of Lactococcus lactis often encounter low transformation efficiency, which seriously hinders the widespread application of genetic engineering in non-model L. lactis. Herein, we present a novel pre-modification strategy (PMS) coupled with optimized plasmid delivery systems designed to systematically evade RM barriers and substantially improve Nisin biosynthesis in L. lactis. Through the use of engineered Escherichia coli strains with methylation profiles specifically optimized for L. lactis C20, we have effectively evaded RM barriers, thereby facilitating the efficient introduction of large Nisin biosynthetic gene clusters into L. lactis. The PMS tools, which significantly improve the transformation efficiency (~103 transformants per microgram of DNA), have been further improved in combination with a Rolling Circle Amplification, resulting in a higher enhancement in transformation efficiency (~104 transformants per microgram of DNA). Using this strategy, large Nisin biosynthetic gene clusters and the expression regulation of all genes within the cluster were introduced and analyzed in L. lactis, leading to a highest Nisin titer of 11,052.9 IU/mL through a fed-batch fermentation in a 5 L bioreactor. This is the first systematic report on the expression regulation and application of a complete Nisin biosynthesis gene cluster in L. lactis. Taken together, our studies provide a versatile and efficient strategy for systematic evasion and enhancement of RM barriers and Nisin biosynthesis, thereby paving the way for genetic modification and metabolic engineering in L. lactis.
Collapse
Affiliation(s)
- Chen Chen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (C.C.); (Y.Z.); (R.C.); (J.Q.)
- State Key Laboratory of Synthetic Biology, Tianjin University, Tianjin 300072, China
- Zhejiang Institute of Tianjin University, Shaoxing 312300, China;
| | - Yue Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (C.C.); (Y.Z.); (R.C.); (J.Q.)
- State Key Laboratory of Synthetic Biology, Tianjin University, Tianjin 300072, China
- Zhejiang Institute of Tianjin University, Shaoxing 312300, China;
| | - Ruiqi Chen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (C.C.); (Y.Z.); (R.C.); (J.Q.)
- State Key Laboratory of Synthetic Biology, Tianjin University, Tianjin 300072, China
- Zhejiang Institute of Tianjin University, Shaoxing 312300, China;
| | - Ke Liu
- Zhejiang Institute of Tianjin University, Shaoxing 312300, China;
| | - Hao Wu
- Zhejiang Institute of Tianjin University, Shaoxing 312300, China;
| | - Jianjun Qiao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (C.C.); (Y.Z.); (R.C.); (J.Q.)
- State Key Laboratory of Synthetic Biology, Tianjin University, Tianjin 300072, China
- Zhejiang Institute of Tianjin University, Shaoxing 312300, China;
| | - Qinggele Caiyin
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (C.C.); (Y.Z.); (R.C.); (J.Q.)
- State Key Laboratory of Synthetic Biology, Tianjin University, Tianjin 300072, China
- Zhejiang Institute of Tianjin University, Shaoxing 312300, China;
| |
Collapse
|
4
|
Garay‐Novillo JN, Ruiz‐Masó JÁ, del Solar G, Barra JL. Easy-Curing and pH-Regulated CRISPR-Cas9 Plasmids for Gene Editing and Plasmid Curing in Lactococcus cremoris. Microb Biotechnol 2024; 17:e70060. [PMID: 39707688 PMCID: PMC11662139 DOI: 10.1111/1751-7915.70060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 12/23/2024] Open
Abstract
In this work, we developed a plasmid-based CRISPR-Cas9 strategy for editing Lactococcus cremoris, which allows easy generation of plasmid-free strains with the desired modification. We constructed versatile shuttle vectors based on the theta-type pAMβ1 promiscuous replicon and p15A ori, expressing both the Cas9 nuclease gene (under pH-regulated promoters derived from P170) and a single-guide RNA for specific targeting (under a strong constitutive promoter). The vectors designed for plasmid targeting were very effective for low- and high-copy-number plasmid curing in L. cremoris, and their targeting efficiency was shown to be tunable by regulating cas9 expression. For chromosome editing, we implemented a host-independent method that enhances double-homologous recombination events using plasmids expressing the genes encoding λRed-phage Redβ recombinase and Escherichia coli single-stranded DNA binding protein (EcSSB). By coupling either the endogenous recombination machinery or the Redβ-EcSSB-assisted recombination system with our novel chromosome-targeting CRISPR-Cas9 plasmids, we efficiently generated and selected thousands of gene-edited cells. Examination of the impact of the constructed CRISPR-Cas9 vectors on host fitness revealed no Cas9-associated toxicity, and, remarkably, these vectors exhibited a very high loss rate when growing the bacterial host cells in the absence of selective pressure.
Collapse
Affiliation(s)
- Javier Nicolás Garay‐Novillo
- Departamento de Química Biológica Ranwel Caputto, CIQUIBIC‐CONICET, Facultad de Ciencias QuímicasUniversidad Nacional de CórdobaCórdobaArgentina
- Departamento de Biotecnología Microbiana y de PlantasCentro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones CientíficasMadridSpain
| | - José Ángel Ruiz‐Masó
- Departamento de Biotecnología Microbiana y de PlantasCentro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones CientíficasMadridSpain
| | - Gloria del Solar
- Departamento de Biotecnología Microbiana y de PlantasCentro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones CientíficasMadridSpain
| | - José Luis Barra
- Departamento de Química Biológica Ranwel Caputto, CIQUIBIC‐CONICET, Facultad de Ciencias QuímicasUniversidad Nacional de CórdobaCórdobaArgentina
| |
Collapse
|
5
|
Guzmán-Herrador DL, Fernández-Gómez A, Depardieu F, Bikard D, Llosa M. Delivery of functional Cas:DNA nucleoprotein complexes into recipient bacteria through a type IV secretion system. Proc Natl Acad Sci U S A 2024; 121:e2408509121. [PMID: 39413137 PMCID: PMC11513951 DOI: 10.1073/pnas.2408509121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 09/17/2024] [Indexed: 10/18/2024] Open
Abstract
CRISPR-associated (Cas) endonucleases and their derivatives are widespread tools for the targeted genetic modification of both prokaryotic and eukaryotic genomes. A critical step of all CRISPR-Cas technologies is the delivery of the Cas endonuclease to the target cell. Here, we investigate the possibility of using bacterial conjugation to translocate Cas proteins into recipient bacteria. Conjugative relaxases are translocated through a type IV secretion system into the recipient cell, covalently attached to the transferred DNA strand. We fused relaxase R388-TrwC with the endonuclease Cas12a and confirmed that it can be transported through a T4SS. The fusion protein maintained its activity upon translocation by conjugation into the recipient cell, as evidenced by the induction of the SOS signal resulting from DNA breaks produced by the endonuclease in the recipient cell, and the detection of mutations at the target position. We further show how a template DNA provided on the transferred DNA can be used to introduce specific mutations. The guide RNA can also be encoded by the transferred DNA, enabling its production in the recipient cells where it can form a complex with the Cas nuclease transferred as a protein. This self-contained setup enables to target wild-type bacterial cells. Finally, we extended this strategy to the delivery of relaxases fused to base editors. Using TrwC and MobA relaxases as drivers, we achieved precise editing of transconjugants. Thus, conjugation provides a delivery system for Cas-derived editing tools, bypassing the need to deliver and express a cas gene in the target cells.
Collapse
Affiliation(s)
- Dolores L. Guzmán-Herrador
- Departamento de Biología Molecular, Universidad de Cantabria (UC), Santander39011, Spain
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria - Consejo Superior de Investigaciones Científicas – Sociedad para el Desarrollo de Cantabria (UC–CSIC–SODERCAN), Santander39011, Spain
| | - Andrea Fernández-Gómez
- Departamento de Biología Molecular, Universidad de Cantabria (UC), Santander39011, Spain
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria - Consejo Superior de Investigaciones Científicas – Sociedad para el Desarrollo de Cantabria (UC–CSIC–SODERCAN), Santander39011, Spain
| | - Florence Depardieu
- Institut Pasteur, Université Paris Cité, Microbiology Department, Synthetic Biology, Paris75015, France
| | - David Bikard
- Institut Pasteur, Université Paris Cité, Microbiology Department, Synthetic Biology, Paris75015, France
| | - Matxalen Llosa
- Departamento de Biología Molecular, Universidad de Cantabria (UC), Santander39011, Spain
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria - Consejo Superior de Investigaciones Científicas – Sociedad para el Desarrollo de Cantabria (UC–CSIC–SODERCAN), Santander39011, Spain
| |
Collapse
|
6
|
Zhang Y, Zheng Y, Hu Q, Hu Z, Sun J, Cheng P, Rao X, Jiang XR. Simultaneous multiplex genome loci editing of Halomonas bluephagenesis using an engineered CRISPR-guided base editor. Synth Syst Biotechnol 2024; 9:586-593. [PMID: 38720820 PMCID: PMC11076302 DOI: 10.1016/j.synbio.2024.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/15/2024] [Accepted: 04/23/2024] [Indexed: 05/12/2024] Open
Abstract
Halomonas bluephagenesis TD serves as an exceptional chassis for next generation industrial biotechnology to produce various products. However, the simultaneous editing of multiple loci in H. bluephagenesis TD remains a significant challenge. Herein, we report the development of a multiple loci genome editing system, named CRISPR-deaminase-assisted base editor (CRISPR-BE) in H. bluephagenesis TD. This system comprises two components: a cytidine (CRISPR-cBE) and an adenosine (CRISPR-aBE) deaminase-based base editor. CRISPR-cBE can introduce a cytidine to thymidine mutation with an efficiency of up to 100 % within a 7-nt editing window in H. bluephagenesis TD. Similarly, CRISPR-aBE demonstrates an efficiency of up to 100 % in converting adenosine to guanosine mutation within a 7-nt editing window. CRISPR-cBE has been further validated and successfully employed for simultaneous multiplexed editing in H. bluephagenesis TD. Our findings reveal that CRISPR-cBE efficiently inactivated all six copies of the IS1086 gene simultaneously by introducing stop codon. This system achieved an editing efficiency of 100 % and 41.67 % in inactivating two genes and three genes, respectively. By substituting the Pcas promoter with the inducible promoter PMmp1, we optimized CRISPR-cBE system and ultimately achieved 100 % editing efficiency in inactivating three genes. In conclusion, our research offers a robust and efficient method for concurrently modifying multiple loci in H. bluephagenesis TD, opening up vast possibilities for industrial applications in the future.
Collapse
Affiliation(s)
- Yulin Zhang
- Medical Research Institute, Southwest University, Chongqing, 400716, China
| | - Yang Zheng
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Qiwen Hu
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Zhen Hu
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Jiyuan Sun
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Ping Cheng
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Xiancai Rao
- Medical Research Institute, Southwest University, Chongqing, 400716, China
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Xiao-Ran Jiang
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| |
Collapse
|
7
|
Lim SR, Lee SJ. Multiplex CRISPR-Cas Genome Editing: Next-Generation Microbial Strain Engineering. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11871-11884. [PMID: 38744727 PMCID: PMC11141556 DOI: 10.1021/acs.jafc.4c01650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
Genome editing is a crucial technology for obtaining desired phenotypes in a variety of species, ranging from microbes to plants, animals, and humans. With the advent of CRISPR-Cas technology, it has become possible to edit the intended sequence by modifying the target recognition sequence in guide RNA (gRNA). By expressing multiple gRNAs simultaneously, it is possible to edit multiple targets at the same time, allowing for the simultaneous introduction of various functions into the cell. This can significantly reduce the time and cost of obtaining engineered microbial strains for specific traits. In this review, we investigate the resolution of multiplex genome editing and its application in engineering microorganisms, including bacteria and yeast. Furthermore, we examine how recent advancements in artificial intelligence technology could assist in microbial genome editing and engineering. Based on these insights, we present our perspectives on the future evolution and potential impact of multiplex genome editing technologies in the agriculture and food industry.
Collapse
Affiliation(s)
- Se Ra Lim
- Department of Systems Biotechnology
and Institute of Microbiomics, Chung-Ang
University, Anseong 17546, Republic
of Korea
| | - Sang Jun Lee
- Department of Systems Biotechnology
and Institute of Microbiomics, Chung-Ang
University, Anseong 17546, Republic
of Korea
| |
Collapse
|
8
|
Li K, Qin LY, Zhang ZX, Yan CX, Gu Y, Sun XM, Huang H. Powerful Microbial Base-Editing Toolbox: From Optimization Strategies to Versatile Applications. ACS Synth Biol 2023; 12:1586-1598. [PMID: 37224027 DOI: 10.1021/acssynbio.3c00141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Base editors (BE) based on CRISPR systems are practical gene-editing tools which continue to drive frontier advances of life sciences. BEs are able to efficiently induce point mutations at target sites without double-stranded DNA cleavage. Hence, they are widely employed in the fields of microbial genome engineering. As applications of BEs continue to expand, the demands for base-editing efficiency, fidelity, and versatility are also on the rise. In recent years, a series of optimization strategies for BEs have been developed. By engineering the core components of BEs or adopting different assembly methods, the performance of BEs has been well optimized. Moreover, series of newly established BEs have significantly expanded the base-editing toolsets. In this Review, we will summarize the current efforts for BE optimization, introduce several novel BEs with versatility, and look forward to the broadened applications for industrial microorganisms.
Collapse
Affiliation(s)
- Ke Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210046, People's Republic of China
| | - Ling-Yun Qin
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210046, People's Republic of China
| | - Zi-Xu Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210046, People's Republic of China
| | - Chun-Xiao Yan
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210046, People's Republic of China
| | - Yang Gu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210046, People's Republic of China
| | - Xiao-Man Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210046, People's Republic of China
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210046, People's Republic of China
| |
Collapse
|
9
|
Dong H, Wang H, Fu S, Zhang D. CRISPR/Cas tools for enhancing the biopreservation ability of lactic acid bacteria in aquatic products. Front Bioeng Biotechnol 2022; 10:1114588. [PMID: 36619383 PMCID: PMC9816425 DOI: 10.3389/fbioe.2022.1114588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Lactic acid bacteria (LAB) plays a crucial role in aquatic products biopreservation as it can inhibit many bacteria, in particular the specific spoilage organisms (SSOs) of aquatic products, by competing for nutrients or producing one or more metabolites which have antimicrobial activity, such as bacteriocins. Lactobacillus spp. and Lactococcus spp. are the most commonly used Lactic acid bacterias in aquatic products preservation. The improvement of gene editing tools is particularly important for developing new lactic acid bacteria strains with superior properties for aquatic products biopreservation. This review summarized the research progress of the most widely used CRISPR/Cas-based genome editing tools in Lactobacillus spp. and Lactococcus spp. The genome editing tools based on homologous recombination and base editor were described. Then, the research status of CRISPRi in transcriptional regulation was reviewed briefly. This review may provide a reference for the application of CRISPR/Cas-based genome editing tools to other lactic acid bacteria species.
Collapse
Affiliation(s)
- Huina Dong
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China,*Correspondence: Huina Dong, ; Dawei Zhang,
| | - Huiying Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Shaoping Fu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Dawei Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China,University of Chinese Academy of Sciences, Beijing, China,*Correspondence: Huina Dong, ; Dawei Zhang,
| |
Collapse
|