1
|
Ruolo I, Napolitano S, Postiglione L, Napolitano G, Ballabio A, di Bernardo D. Investigation of dynamic regulation of TFEB nuclear shuttling by microfluidics and quantitative modelling. Commun Biol 2025; 8:443. [PMID: 40089585 PMCID: PMC11910602 DOI: 10.1038/s42003-025-07870-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 03/03/2025] [Indexed: 03/17/2025] Open
Abstract
Transcription Factor EB (TFEB) controls lysosomal biogenesis and autophagy in response to nutritional status and other stress factors. Although its regulation by nuclear translocation is known to involve a complex network of well-studied regulatory processes, the precise contribution of each of these mechanisms is unclear. Using microfluidics technology and real-time imaging coupled with mathematical modelling, we explored the dynamic regulation of TFEB under different conditions. We found that TFEB nuclear translocation upon nutrient deprivation happens in two phases: a fast one characterised by a transient boost in TFEB dephosphorylation dependent on transient calcium release mediated by mucolipin 1 (MCOLN1) followed by activation of the Calcineurin phosphatase, and a slower one driven by inhibition of mTORC1-dependent phosphorylation of TFEB. Upon refeeding, TFEB cytoplasmic relocalisation kinetics are determined by Exportin 1 (XPO1). Collectively, our results show how different mechanisms interact to regulate TFEB activation and the power of microfluidics and quantitative modelling to elucidate complex biological mechanisms.
Collapse
Affiliation(s)
- Iacopo Ruolo
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Naples, Italy
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sara Napolitano
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Naples, Italy
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
- Institut Pasteur, Inria, Université Paris Cité, Paris, France
| | - Lorena Postiglione
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Naples, Italy
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Gennaro Napolitano
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
- Medical Genetics Unit, Department of Medical and Translational Science, Federico II University, Naples, Italy
- SSM School for Advanced Studies, Federico II University, Naples, Italy
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
- Department of Translational Medicine, University of Naples "Federico II", Naples, Italy
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, US
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, US
| | - Diego di Bernardo
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Naples, Italy.
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.
- SSM School for Advanced Studies, Federico II University, Naples, Italy.
| |
Collapse
|
2
|
Kaya M, Abuaisha A, Süer İ, Alptekin MS, Abanoz F, Emiroğlu S, Palanduz Ş, Cefle K, Öztürk Ş. Overexpression of CDC25A, AURKB, and TOP2A Genes Could Be an Important Clue for Luminal A Breast Cancer. Eur J Breast Health 2024; 20:284-291. [PMID: 39323324 PMCID: PMC11589183 DOI: 10.4274/ejbh.galenos.2024.2024-4-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/07/2024] [Indexed: 09/27/2024]
Abstract
Objective Breast cancer (BC) is highly heterogeneous and one of the most common cancers. Luminal A (LUM A) is a subtype of BC with a better prognosis than other BC subtypes. The molecular mechanisms underlying the initiation and progression of the LUM A subtype are still unclear. Big data generated from microarray and sequencing systems can be re-analyzed, especially with the help of various in silico tools developed in recent years, and made applicable for in vitro and in vivo research. This work aimed to identify genes that may play a role in the progression of LUM A subtype of BC using both computational and laboratory-based methods. Materials and Methods Overlapping genes associated with BC were identified from the The Cancer Genome Atlas database, GSE233242, GSE100925 geodata sets, and the geneshot tool. The network functional analysis between overlapping genes was determined with STRING 12.0. Expression levels of overlapping genes in BC were investigated with the TNMplot (https://tnmplot.com/analysis/) in silico tool. The effect of overlapping genes on the overall survival of LUM A cancer patients was defined using the Kaplan-Meier plotter tool. Expressions of genes identified using bioinformatics data were investigated via quantitative real-time -polymerase chain reaction (qRT-PCR) in LUM A tumor and adjacent tissue samples. The data were evaluated using the t-test. Both the sensitivity and specificity of selected genes have been determined using the receiver operating characteristic curve. Results In silico investigation showed that eleven genes were possibly associated with BC. Among them CDC25A, AURKB, and TOP2A were considerably increased in LUM A samples according to qRT-PCR results. An overall survival analysis also showed that overexpression of these three genes could reduce the overall survival of LUM A patients. Conclusion The genes CDC25A, AURKB, and TOP2A may play crucial functions in LUM A pathogenesis. Therapeutic strategies that diminish the expression of these connected genes may enhance the prognosis of LUM A patients.
Collapse
Affiliation(s)
- Murat Kaya
- Division of Medical Genetics, Department of Internal Medicine, İstanbul Faculty of Medicine, İstanbul University, İstanbul, Turkey
| | - Asmaa Abuaisha
- Department of Genetics, Institute of Graduate Studies in Health Sciences, İstanbul University, İstanbul, Turkey
| | - İlknur Süer
- Department of Medical Genetics Department, İstanbul Faculty of Medicine, İstanbul University, İstanbul, Turkey
| | - Melike Sultan Alptekin
- Department of Molecular Biology and Genetics, İstanbul Health and Technology University, İstanbul, Turkey
| | - Fahrünnisa Abanoz
- Department of Genetics, Institute of Graduate Studies in Health Sciences, İstanbul University, İstanbul, Turkey
| | - Selman Emiroğlu
- Division of Breast Surgery, Department of General Surgery, İstanbul Faculty of Medicine, İstanbul University, İstanbul, Turkey
- Department of Molecular and Medical Genetics, Graduate School of Education, Biruni University, İstanbul, Turkey
| | - Şükrü Palanduz
- Division of Medical Genetics, Department of Internal Medicine, İstanbul Faculty of Medicine, İstanbul University, İstanbul, Turkey
| | - Kıvanç Cefle
- Division of Medical Genetics, Department of Internal Medicine, İstanbul Faculty of Medicine, İstanbul University, İstanbul, Turkey
| | - Şükrü Öztürk
- Division of Medical Genetics, Department of Internal Medicine, İstanbul Faculty of Medicine, İstanbul University, İstanbul, Turkey
| |
Collapse
|
3
|
Lugagne JB, Blassick CM, Dunlop MJ. Deep model predictive control of gene expression in thousands of single cells. Nat Commun 2024; 15:2148. [PMID: 38459057 PMCID: PMC10923782 DOI: 10.1038/s41467-024-46361-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 02/26/2024] [Indexed: 03/10/2024] Open
Abstract
Gene expression is inherently dynamic, due to complex regulation and stochastic biochemical events. However, the effects of these dynamics on cell phenotypes can be difficult to determine. Researchers have historically been limited to passive observations of natural dynamics, which can preclude studies of elusive and noisy cellular events where large amounts of data are required to reveal statistically significant effects. Here, using recent advances in the fields of machine learning and control theory, we train a deep neural network to accurately predict the response of an optogenetic system in Escherichia coli cells. We then use the network in a deep model predictive control framework to impose arbitrary and cell-specific gene expression dynamics on thousands of single cells in real time, applying the framework to generate complex time-varying patterns. We also showcase the framework's ability to link expression patterns to dynamic functional outcomes by controlling expression of the tetA antibiotic resistance gene. This study highlights how deep learning-enabled feedback control can be used to tailor distributions of gene expression dynamics with high accuracy and throughput without expert knowledge of the biological system.
Collapse
Affiliation(s)
- Jean-Baptiste Lugagne
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, 02215, USA.
- Biological Design Center, Boston University, Boston, Massachusetts, 02215, USA.
| | - Caroline M Blassick
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, 02215, USA
- Biological Design Center, Boston University, Boston, Massachusetts, 02215, USA
| | - Mary J Dunlop
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, 02215, USA.
- Biological Design Center, Boston University, Boston, Massachusetts, 02215, USA.
| |
Collapse
|
4
|
Grob A, Enrico Bena C, Di Blasi R, Pessina D, Sood M, Yunyue Z, Bosia C, Isalan M, Ceroni F. Mammalian cell growth characterisation by a non-invasive plate reader assay. Nat Commun 2024; 15:57. [PMID: 38167870 PMCID: PMC10761699 DOI: 10.1038/s41467-023-44396-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
Automated and non-invasive mammalian cell analysis is currently lagging behind due to a lack of methods suitable for a variety of cell lines and applications. Here, we report the development of a high throughput non-invasive method for tracking mammalian cell growth and performance based on plate reader measurements. We show the method to be suitable for both suspension and adhesion cell lines, and we demonstrate it can be adopted when cells are grown under different environmental conditions. We establish that the method is suitable to inform on effective drug treatments to be used depending on the cell line considered, and that it can support characterisation of engineered mammalian cells over time. This work provides the scientific community with an innovative approach to mammalian cell screening, also contributing to the current efforts towards high throughput and automated mammalian cell engineering.
Collapse
Affiliation(s)
- Alice Grob
- Department of Chemical Engineering, Imperial College London, London, UK
- Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
| | - Chiara Enrico Bena
- Italian Institute for Genomic Medicine, Torino, Italy
- Université Paris-Saclay (INRAE), AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Roberto Di Blasi
- Department of Chemical Engineering, Imperial College London, London, UK
- Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
| | - Daniele Pessina
- Department of Chemical Engineering, Imperial College London, London, UK
| | - Matthew Sood
- Department of Chemical Engineering, Imperial College London, London, UK
| | - Zhou Yunyue
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Carla Bosia
- Italian Institute for Genomic Medicine, Torino, Italy.
- Department of Applied Science and Technology, Politecnico di Torino, Torino, Italy.
| | - Mark Isalan
- Imperial College Centre for Synthetic Biology, Imperial College London, London, UK.
- Department of Life Sciences, Imperial College London, London, United Kingdom.
| | - Francesca Ceroni
- Department of Chemical Engineering, Imperial College London, London, UK.
- Imperial College Centre for Synthetic Biology, Imperial College London, London, UK.
| |
Collapse
|
5
|
Grob A, Enrico Bena C, Redwood-Sawyerr C, Polizzi K, Bosia C, Isalan M, Ceroni F. Simultaneous Plate-Reader Characterization of Promoter Activity and Cell Growth in Engineered Mammalian Cells. Methods Mol Biol 2024; 2844:85-96. [PMID: 39068333 DOI: 10.1007/978-1-0716-4063-0_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Automated high-throughput methods that support tracking of mammalian cell growth are currently needed to advance cell line characterization and identification of desired genetic components required for cell engineering. Here, we describe a high-throughput noninvasive assay based on plate reader measurements. The assay relies on the change in absorbance of the pH indicator phenol red. We show that its basic and acidic absorbance profiles can be converted into a cell growth index consistent with cell count profiles, and that, by adopting a computational pipeline and calibration measurements, it is possible to identify a conversion that enables prediction of cell numbers from plate measurements alone. The assay is suitable for growth characterization of both suspension and adherent cell lines when these are grown under different environmental conditions and treated with chemotherapeutic drugs. The method also supports characterization of stably engineered cell lines and identification of desired promoters based on fluorescence output.
Collapse
Affiliation(s)
- Alice Grob
- Department of Chemical Engineering, Imperial College London, London, UK
- Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
| | - Chiara Enrico Bena
- Italian Institute for Genomic Medicine, Torino, Italy
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Chileab Redwood-Sawyerr
- Department of Chemical Engineering, Imperial College London, London, UK
- Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
| | - Karen Polizzi
- Department of Chemical Engineering, Imperial College London, London, UK
- Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
| | - Carla Bosia
- Italian Institute for Genomic Medicine, Torino, Italy
- Department of Applied Science and Technology, Politecnico di Torino, Torino, Italy
| | - Mark Isalan
- Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
- Department of Life Sciences, Imperial College London, London, UK
| | - Francesca Ceroni
- Department of Chemical Engineering, Imperial College London, London, UK.
- Imperial College Centre for Synthetic Biology, Imperial College London, London, UK.
| |
Collapse
|
6
|
Kumar S, Anastassov S, Aoki SK, Falkenstein J, Chang CH, Frei T, Buchmann P, Argast P, Khammash M. Diya - A universal light illumination platform for multiwell plate cultures. iScience 2023; 26:107862. [PMID: 37810238 PMCID: PMC10551653 DOI: 10.1016/j.isci.2023.107862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/25/2023] [Accepted: 09/06/2023] [Indexed: 10/10/2023] Open
Abstract
Recent progress in protein engineering has established optogenetics as one of the leading external non-invasive stimulation strategies, with many optogenetic tools being designed for in vivo operation. Characterization and optimization of these tools require a high-throughput and versatile light delivery system targeting micro-titer culture volumes. Here, we present a universal light illumination platform - Diya, compatible with a wide range of cell culture plates and dishes. Diya hosts specially designed features ensuring active thermal management, homogeneous illumination, and minimal light bleedthrough. It offers light induction programming via a user-friendly custom-designed GUI. Through extensive characterization experiments with multiple optogenetic tools in diverse model organisms (bacteria, yeast, and human cell lines), we show that Diya maintains viable conditions for cell cultures undergoing light induction. Finally, we demonstrate an optogenetic strategy for in vivo biomolecular controller operation. With a custom-designed antithetic integral feedback circuit, we exhibit robust perfect adaptation and light-controlled set-point variation using Diya.
Collapse
Affiliation(s)
- Sant Kumar
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zürich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Stanislav Anastassov
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zürich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Stephanie K. Aoki
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zürich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Johannes Falkenstein
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zürich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Ching-Hsiang Chang
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zürich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Timothy Frei
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zürich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Peter Buchmann
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zürich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Paul Argast
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zürich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Mustafa Khammash
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zürich, Mattenstrasse 26, 4058 Basel, Switzerland
| |
Collapse
|
7
|
Chatani T, Shiraishi S, Miyazako H, Onoe H, Hori Y. L-2L ladder digital-to-analogue converter for dynamics generation of chemical concentrations. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230085. [PMID: 37090965 PMCID: PMC10113815 DOI: 10.1098/rsos.230085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/09/2023] [Indexed: 05/03/2023]
Abstract
Cellular response to dynamic chemical stimulation encodes rich information about the underlying reaction pathways and their kinetics. Microfluidic chemical stimulators play a key role in generating dynamic concentration waveforms by mixing several aqueous solutions. In this article, we propose a multi-layer microfluidic chemical stimulator capable of modulating chemical concentrations by a simple binary logic based on the electronic-hydraulic analogy of electronic R-2R ladder circuits. The proposed device, which we call L-2L ladder digital-to-analogue converter (DAC), allows us to systematically modulate 2 n levels of concentrations from single sources of solution and solvent by a single operation of 2n membrane valves, which contrasts with existing devices that require complex channel geometry with multiple input sources and valve operations. We fabricated the L-2L ladder DAC with n = 3 bit resolution and verified the concept by comparing the generated waveforms with computational simulations. The response time of the proposed DAC was within the order of seconds because of its simple operation logic of membrane valves. Furthermore, detailed analysis of the waveforms revealed that the transient concentration can be systematically predicted by a simple addition of the transient waveforms of 2n = 6 base patterns, enabling facile optimization of the channel geometry to fine-tune the output waveforms.
Collapse
Affiliation(s)
- Tomohito Chatani
- Department of Applied Physics and Physico-informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Suguru Shiraishi
- Department of Applied Physics and Physico-informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Hiroki Miyazako
- Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hiroaki Onoe
- Department of Mechanical Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Yutaka Hori
- Department of Applied Physics and Physico-informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| |
Collapse
|
8
|
Täuber S, Grünberger A. Microfluidic single-cell scale-down systems: introduction, application, and future challenges. Curr Opin Biotechnol 2023; 81:102915. [PMID: 36871470 DOI: 10.1016/j.copbio.2023.102915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/17/2023] [Accepted: 02/02/2023] [Indexed: 03/06/2023]
Abstract
Performance losses during the scaling-up of bioprocesses from the laboratory to the production scale are common obstacles caused by the formation of concentration gradients in bioreactors. To overcome these obstacles, so-called scale-down bioreactors are used to analyze selected large-scale conditions and are one of the most important predictive tools for the successful transfer of bioprocesses from the lab to the industrial scale. In this regard, cellular behavior is usually measured as an averaged value, neglecting possible cell-to-cell heterogeneity within the culture. In contrast, microfluidic single-cell cultivation (MSCC) systems offer the possibility of understanding cellular processes on a single-cell level. To date, most MSCC systems have a limited choice of cultivation parameters that are not representative of bioprocess-relevant environmental conditions. Herein, we critically review recent advances in MSCC that allow the cultivation and analysis of cells under dynamic (bioprocess-relevant) environmental conditions. Finally, we discuss what technological advances and efforts are needed to bridge the gap between current MSCC systems and the use of these systems as single-cell scale-down devices.
Collapse
Affiliation(s)
- Sarah Täuber
- Multiscale Bioengineering, Technical Faculty, Bielefeld University, Bielefeld, Germany; Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Alexander Grünberger
- Multiscale Bioengineering, Technical Faculty, Bielefeld University, Bielefeld, Germany; Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany; Microsystems in Bioprocess Engineering, Institute of Process Engineering in Life Sciences, Karlsruhe Institute of Technology, Karlsruhe, Germany.
| |
Collapse
|
9
|
Kumar S, Khammash M. Platforms for Optogenetic Stimulation and Feedback Control. Front Bioeng Biotechnol 2022; 10:918917. [PMID: 35757811 PMCID: PMC9213687 DOI: 10.3389/fbioe.2022.918917] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
Harnessing the potential of optogenetics in biology requires methodologies from different disciplines ranging from biology, to mechatronics engineering, to control engineering. Light stimulation of a synthetic optogenetic construct in a given biological species can only be achieved via a suitable light stimulation platform. Emerging optogenetic applications entail a consistent, reproducible, and regulated delivery of light adapted to the application requirement. In this review, we explore the evolution of light-induction hardware-software platforms from simple illumination set-ups to sophisticated microscopy, microtiter plate and bioreactor designs, and discuss their respective advantages and disadvantages. Here, we examine design approaches followed in performing optogenetic experiments spanning different cell types and culture volumes, with induction capabilities ranging from single cell stimulation to entire cell culture illumination. The development of automated measurement and stimulation schemes on these platforms has enabled researchers to implement various in silico feedback control strategies to achieve computer-controlled living systems—a theme we briefly discuss in the last part of this review.
Collapse
Affiliation(s)
- Sant Kumar
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zürich, Basel, Switzerland
| | - Mustafa Khammash
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zürich, Basel, Switzerland
| |
Collapse
|
10
|
Henrion L, Delvenne M, Bajoul Kakahi F, Moreno-Avitia F, Delvigne F. Exploiting Information and Control Theory for Directing Gene Expression in Cell Populations. Front Microbiol 2022; 13:869509. [PMID: 35547126 PMCID: PMC9081792 DOI: 10.3389/fmicb.2022.869509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
Microbial populations can adapt to adverse environmental conditions either by appropriately sensing and responding to the changes in their surroundings or by stochastically switching to an alternative phenotypic state. Recent data point out that these two strategies can be exhibited by the same cellular system, depending on the amplitude/frequency of the environmental perturbations and on the architecture of the genetic circuits involved in the adaptation process. Accordingly, several mitigation strategies have been designed for the effective control of microbial populations in different contexts, ranging from biomedicine to bioprocess engineering. Technically, such control strategies have been made possible by the advances made at the level of computational and synthetic biology combined with control theory. However, these control strategies have been applied mostly to synthetic gene circuits, impairing the applicability of the approach to natural circuits. In this review, we argue that it is possible to expand these control strategies to any cellular system and gene circuits based on a metric derived from this information theory, i.e., mutual information (MI). Indeed, based on this metric, it should be possible to characterize the natural frequency of any gene circuits and use it for controlling gene circuits within a population of cells.
Collapse
Affiliation(s)
- Lucas Henrion
- Microbial Processes and Interactions (MiPI), Terra Research and Teaching Centre, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Mathéo Delvenne
- Microbial Processes and Interactions (MiPI), Terra Research and Teaching Centre, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Fatemeh Bajoul Kakahi
- Microbial Processes and Interactions (MiPI), Terra Research and Teaching Centre, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Fabian Moreno-Avitia
- Microbial Processes and Interactions (MiPI), Terra Research and Teaching Centre, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Frank Delvigne
- Microbial Processes and Interactions (MiPI), Terra Research and Teaching Centre, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| |
Collapse
|
11
|
Kumar S, Rullan M, Khammash M. Rapid prototyping and design of cybergenetic single-cell controllers. Nat Commun 2021; 12:5651. [PMID: 34561433 PMCID: PMC8463601 DOI: 10.1038/s41467-021-25754-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/26/2021] [Indexed: 12/22/2022] Open
Abstract
The design and implementation of synthetic circuits that operate robustly in the cellular context is fundamental for the advancement of synthetic biology. However, their practical implementation presents challenges due to low predictability of synthetic circuit design and time-intensive troubleshooting. Here, we present the Cyberloop, a testing framework to accelerate the design process and implementation of biomolecular controllers. Cellular fluorescence measurements are sent in real-time to a computer simulating candidate stochastic controllers, which in turn compute the control inputs and feed them back to the controlled cells via light stimulation. Applying this framework to yeast cells engineered with optogenetic tools, we examine and characterize different biomolecular controllers, test the impact of non-ideal circuit behaviors such as dilution on their operation, and qualitatively demonstrate improvements in controller function with certain network modifications. From this analysis, we derive conditions for desirable biomolecular controller performance, thereby avoiding pitfalls during its biological implementation.
Collapse
Affiliation(s)
- Sant Kumar
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zürich, Mattenstrasse 26, 4058, Basel, Switzerland
| | - Marc Rullan
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zürich, Mattenstrasse 26, 4058, Basel, Switzerland
| | - Mustafa Khammash
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zürich, Mattenstrasse 26, 4058, Basel, Switzerland.
| |
Collapse
|
12
|
Perrino G, Napolitano S, Galdi F, La Regina A, Fiore D, Giuliano T, di Bernardo M, di Bernardo D. Automatic synchronisation of the cell cycle in budding yeast through closed-loop feedback control. Nat Commun 2021; 12:2452. [PMID: 33907191 PMCID: PMC8079375 DOI: 10.1038/s41467-021-22689-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/24/2021] [Indexed: 12/18/2022] Open
Abstract
The cell cycle is the process by which eukaryotic cells replicate. Yeast cells cycle asynchronously with each cell in the population budding at a different time. Although there are several experimental approaches to synchronise cells, these usually work only in the short-term. Here, we build a cyber-genetic system to achieve long-term synchronisation of the cell population, by interfacing genetically modified yeast cells with a computer by means of microfluidics to dynamically change medium, and a microscope to estimate cell cycle phases of individual cells. The computer implements a controller algorithm to decide when, and for how long, to change the growth medium to synchronise the cell-cycle across the population. Our work builds upon solid theoretical foundations provided by Control Engineering. In addition to providing an avenue for yeast cell cycle synchronisation, our work shows that control engineering can be used to automatically steer complex biological processes towards desired behaviours similarly to what is currently done with robots and autonomous vehicles.
Collapse
Affiliation(s)
| | - Sara Napolitano
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Naples, Italy
| | - Francesca Galdi
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | | | - Davide Fiore
- Department of Mathematics and Applications "R. Caccioppoli", University of Naples Federico II, Naples, Italy
| | - Teresa Giuliano
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Mario di Bernardo
- Department of Electrical Engineering and Information Technology, University of Naples Federico II, Naples, Italy
- SSM - School for Advanced Studies, Naples, Italy
| | - Diego di Bernardo
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Naples, Italy.
| |
Collapse
|
13
|
Soffer G, Perry JM, Shih SCC. Real-Time Optogenetics System for Controlling Gene Expression Using a Model-Based Design. Anal Chem 2021; 93:3181-3188. [PMID: 33543619 DOI: 10.1021/acs.analchem.0c04594] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Optimization of engineered biological systems requires precise control over the rates and timing of gene expression. Optogenetics is used to dynamically control gene expression as an alternative to conventional chemical-based methods since it provides a more convenient interface between digital control software and microbial culture. Here, we describe the construction of a real-time optogenetics platform, which performs closed-loop control over the CcaR-CcaS two-plasmid system in Escherichia coli. We showed the first model-based design approach by constructing a nonlinear representation of the CcaR-CcaS system, tuned the model through open-loop experimentation to capture the experimental behavior, and applied the model in silico to inform the necessary changes to build a closed-loop optogenetic control system. Our system periodically induces and represses the CcaR-CcaS system while recording optical density and fluorescence using image processing techniques. We highlight the facile nature of constructing our system and how our model-based design approach will potentially be used to model other systems requiring closed-loop optogenetic control.
Collapse
Affiliation(s)
- Guy Soffer
- Department of Electrical and Computer Engineering, Concordia University, 1455 de Maisonneuve Blvd West, Montréal, Québec H3G1M8, Canada.,Centre for Applied Synthetic Biology, Concordia University, 7141 Sherbrooke St. West, Montréal, Québec H4B1R6, Canada
| | - James M Perry
- Centre for Applied Synthetic Biology, Concordia University, 7141 Sherbrooke St. West, Montréal, Québec H4B1R6, Canada.,Department of Biology, Concordia University, 7141 Sherbrooke St. West, Montréal, Québec H4B1R6, Canada
| | - Steve C C Shih
- Department of Electrical and Computer Engineering, Concordia University, 1455 de Maisonneuve Blvd West, Montréal, Québec H3G1M8, Canada.,Centre for Applied Synthetic Biology, Concordia University, 7141 Sherbrooke St. West, Montréal, Québec H4B1R6, Canada.,Department of Biology, Concordia University, 7141 Sherbrooke St. West, Montréal, Québec H4B1R6, Canada
| |
Collapse
|
14
|
de Cesare I, Zamora-Chimal CG, Postiglione L, Khazim M, Pedone E, Shannon B, Fiore G, Perrino G, Napolitano S, di Bernardo D, Savery NJ, Grierson C, di Bernardo M, Marucci L. ChipSeg: An Automatic Tool to Segment Bacterial and Mammalian Cells Cultured in Microfluidic Devices. ACS OMEGA 2021; 6:2473-2476. [PMID: 33553865 PMCID: PMC7859942 DOI: 10.1021/acsomega.0c03906] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 11/20/2020] [Indexed: 05/14/2023]
Abstract
Extracting quantitative measurements from time-lapse images is necessary in external feedback control applications, where segmentation results are used to inform control algorithms. We describe ChipSeg, a computational tool that segments bacterial and mammalian cells cultured in microfluidic devices and imaged by time-lapse microscopy, which can be used also in the context of external feedback control. The method is based on thresholding and uses the same core functions for both cell types. It allows us to segment individual cells in high cell density microfluidic devices, to quantify fluorescent protein expression over a time-lapse experiment, and to track individual mammalian cells. ChipSeg enables robust segmentation in external feedback control experiments and can be easily customized for other experimental settings and research aims.
Collapse
Affiliation(s)
- Irene de Cesare
- Department
of Engineering Mathematics, University of
Bristol, Woodland Road, Bristol BS8 1UB, U.K.
| | - Criseida G. Zamora-Chimal
- Department
of Engineering Mathematics, University of
Bristol, Woodland Road, Bristol BS8 1UB, U.K.
- BrisSynBio,
Life Sciences Building, University of Bristol, Tyndall Avenue, Bristol BS8 1TQ, U.K.
| | - Lorena Postiglione
- Department
of Engineering Mathematics, University of
Bristol, Woodland Road, Bristol BS8 1UB, U.K.
| | - Mahmoud Khazim
- Department
of Engineering Mathematics, University of
Bristol, Woodland Road, Bristol BS8 1UB, U.K.
- School
of Cellular and Molecular Medicine, University
of Bristol, University Walk, Bristol BS8 1TD, U.K.
| | - Elisa Pedone
- Department
of Engineering Mathematics, University of
Bristol, Woodland Road, Bristol BS8 1UB, U.K.
- School
of Cellular and Molecular Medicine, University
of Bristol, University Walk, Bristol BS8 1TD, U.K.
| | - Barbara Shannon
- BrisSynBio,
Life Sciences Building, University of Bristol, Tyndall Avenue, Bristol BS8 1TQ, U.K.
- School
of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, U.K.
| | - Gianfranco Fiore
- Department
of Engineering Mathematics, University of
Bristol, Woodland Road, Bristol BS8 1UB, U.K.
- BrisSynBio,
Life Sciences Building, University of Bristol, Tyndall Avenue, Bristol BS8 1TQ, U.K.
| | - Giansimone Perrino
- Telethon
Institute of Genetic and Medicine Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Sara Napolitano
- Telethon
Institute of Genetic and Medicine Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Diego di Bernardo
- Telethon
Institute of Genetic and Medicine Via Campi Flegrei 34, 80078 Pozzuoli, Italy
- Department
of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, 80125 Naples, Italy
| | - Nigel J. Savery
- BrisSynBio,
Life Sciences Building, University of Bristol, Tyndall Avenue, Bristol BS8 1TQ, U.K.
- School
of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, U.K.
| | - Claire Grierson
- BrisSynBio,
Life Sciences Building, University of Bristol, Tyndall Avenue, Bristol BS8 1TQ, U.K.
- School
of Biological Sciences, University of Bristol, Tyndall Avenue, Bristol BS8 1TQ, U.K.
| | - Mario di Bernardo
- Department
of Engineering Mathematics, University of
Bristol, Woodland Road, Bristol BS8 1UB, U.K.
- BrisSynBio,
Life Sciences Building, University of Bristol, Tyndall Avenue, Bristol BS8 1TQ, U.K.
- Department
of EE and ICT, University of Naples Federico
II, Via Claudio 21, 80125 Naples, Italy
| | - Lucia Marucci
- Department
of Engineering Mathematics, University of
Bristol, Woodland Road, Bristol BS8 1UB, U.K.
- BrisSynBio,
Life Sciences Building, University of Bristol, Tyndall Avenue, Bristol BS8 1TQ, U.K.
- School
of Cellular and Molecular Medicine, University
of Bristol, University Walk, Bristol BS8 1TD, U.K.
| |
Collapse
|
15
|
Khazim M, Pedone E, Postiglione L, di Bernardo D, Marucci L. A Microfluidic/Microscopy-Based Platform for on-Chip Controlled Gene Expression in Mammalian Cells. Methods Mol Biol 2021; 2229:205-219. [PMID: 33405224 DOI: 10.1007/978-1-0716-1032-9_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Applications of control engineering to mammalian cell biology have been recently implemented for precise regulation of gene expression. In this chapter, we report the main experimental and computational methodologies to implement automatic feedback control of gene expression in mammalian cells using a microfluidics/microscopy platform.
Collapse
Affiliation(s)
- Mahmoud Khazim
- Department of Engineering Mathematics, University of Bristol, Bristol, UK
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
- BrisSynBio, Bristol, UK
| | - Elisa Pedone
- Department of Engineering Mathematics, University of Bristol, Bristol, UK
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
- BrisSynBio, Bristol, UK
| | - Lorena Postiglione
- Department of Engineering Mathematics, University of Bristol, Bristol, UK
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
- BrisSynBio, Bristol, UK
| | | | - Lucia Marucci
- Department of Engineering Mathematics, University of Bristol, Bristol, UK.
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK.
- BrisSynBio, Bristol, UK.
| |
Collapse
|
16
|
Täuber S, von Lieres E, Grünberger A. Dynamic Environmental Control in Microfluidic Single-Cell Cultivations: From Concepts to Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1906670. [PMID: 32157796 DOI: 10.1002/smll.201906670] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 01/16/2020] [Indexed: 06/10/2023]
Abstract
Microfluidic single-cell cultivation (MSCC) is an emerging field within fundamental as well as applied biology. During the last years, most MSCCs were performed at constant environmental conditions. Recently, MSCC at oscillating and dynamic environmental conditions has started to gain significant interest in the research community for the investigation of cellular behavior. Herein, an overview of this topic is given and microfluidic concepts that enable oscillating and dynamic control of environmental conditions with a focus on medium conditions are discussed, and their application in single-cell research for the cultivation of both mammalian and microbial cell systems is demonstrated. Furthermore, perspectives for performing MSCC at complex dynamic environmental profiles of single parameters and multiparameters (e.g., pH and O2 ) in amplitude and time are discussed. The technical progress in this field provides completely new experimental approaches and lays the foundation for systematic analysis of cellular metabolism at fluctuating environments.
Collapse
Affiliation(s)
- Sarah Täuber
- Multiscale Bioengineering, Faculty of Technology, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Eric von Lieres
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Alexander Grünberger
- Multiscale Bioengineering, Faculty of Technology, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| |
Collapse
|
17
|
Scott HL, Buckner N, Fernandez-Albert F, Pedone E, Postiglione L, Shi G, Allen N, Wong LF, Magini L, Marucci L, O'Sullivan GA, Cole S, Powell J, Maycox P, Uney JB. A dual druggable genome-wide siRNA and compound library screening approach identifies modulators of parkin recruitment to mitochondria. J Biol Chem 2020; 295:3285-3300. [PMID: 31911436 PMCID: PMC7062187 DOI: 10.1074/jbc.ra119.009699] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 12/20/2019] [Indexed: 01/07/2023] Open
Abstract
Genetic and biochemical evidence points to an association between mitochondrial dysfunction and Parkinson's disease (PD). PD-associated mutations in several genes have been identified and include those encoding PTEN-induced putative kinase 1 (PINK1) and parkin. To identify genes, pathways, and pharmacological targets that modulate the clearance of damaged or old mitochondria (mitophagy), here we developed a high-content imaging-based assay of parkin recruitment to mitochondria and screened both a druggable genome-wide siRNA library and a small neuroactive compound library. We used a multiparameter principal component analysis and an unbiased parameter-agnostic machine-learning approach to analyze the siRNA-based screening data. The hits identified in this analysis included specific genes of the ubiquitin proteasome system, and inhibition of ubiquitin-conjugating enzyme 2 N (UBE2N) with a specific antagonist, Bay 11-7082, indicated that UBE2N modulates parkin recruitment and downstream events in the mitophagy pathway. Screening of the compound library identified kenpaullone, an inhibitor of cyclin-dependent kinases and glycogen synthase kinase 3, as a modulator of parkin recruitment. Validation studies revealed that kenpaullone augments the mitochondrial network and protects against the complex I inhibitor MPP+. Finally, we used a microfluidics platform to assess the timing of parkin recruitment to depolarized mitochondria and its modulation by kenpaullone in real time and with single-cell resolution. We demonstrate that the high-content imaging-based assay presented here is suitable for both genetic and pharmacological screening approaches, and we also provide evidence that pharmacological compounds modulate PINK1-dependent parkin recruitment.
Collapse
Affiliation(s)
- Helen L Scott
- Bristol Medical School, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Nicola Buckner
- Bristol Medical School, University of Bristol, Bristol BS8 1TD, United Kingdom
| | | | - Elisa Pedone
- Department of Engineering and Mathematics, University of Bristol, Bristol BS8 1TD, United Kingdom; School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Lorena Postiglione
- Department of Engineering and Mathematics, University of Bristol, Bristol BS8 1TD, United Kingdom; School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Gongyu Shi
- Bristol Medical School, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Nicholas Allen
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, United Kingdom
| | - Liang-Fong Wong
- Bristol Medical School, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Lorenzo Magini
- Bristol Medical School, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Lucia Marucci
- Department of Engineering and Mathematics, University of Bristol, Bristol BS8 1TD, United Kingdom; BrisSynBio, Bristol BS8 1QU, United Kingdom
| | - Gregory A O'Sullivan
- Takeda Cambridge Ltd., Cambridge Science Park, Cambridge CB4 0PZ, United Kingdom
| | - Sarah Cole
- Takeda Ventures, Inc., 61 Aldwych, London WC2B 4A, United Kingdom
| | - Justin Powell
- Takeda Cambridge Ltd., Cambridge Science Park, Cambridge CB4 0PZ, United Kingdom
| | - Peter Maycox
- Takeda Ventures, Inc., 61 Aldwych, London WC2B 4A, United Kingdom
| | - James B Uney
- Bristol Medical School, University of Bristol, Bristol BS8 1TD, United Kingdom.
| |
Collapse
|
18
|
Pedone E, Postiglione L, Aulicino F, Rocca DL, Montes-Olivas S, Khazim M, di Bernardo D, Pia Cosma M, Marucci L. A tunable dual-input system for on-demand dynamic gene expression regulation. Nat Commun 2019; 10:4481. [PMID: 31578371 PMCID: PMC6775159 DOI: 10.1038/s41467-019-12329-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 08/28/2019] [Indexed: 12/14/2022] Open
Abstract
Cellular systems have evolved numerous mechanisms to adapt to environmental stimuli, underpinned by dynamic patterns of gene expression. In addition to gene transcription regulation, modulation of protein levels, dynamics and localization are essential checkpoints governing cell functions. The introduction of inducible promoters has allowed gene expression control using orthogonal molecules, facilitating its rapid and reversible manipulation to study gene function. However, differing protein stabilities hinder the generation of protein temporal profiles seen in vivo. Here, we improve the Tet-On system integrating conditional destabilising elements at the post-translational level and permitting simultaneous control of gene expression and protein stability. We show, in mammalian cells, that adding protein stability control allows faster response times, fully tunable and enhanced dynamic range, and improved in silico feedback control of gene expression. Finally, we highlight the effectiveness of our dual-input system to modulate levels of signalling pathway components in mouse Embryonic Stem Cells.
Collapse
Affiliation(s)
- Elisa Pedone
- Department of Engineering Mathematics, University of Bristol, Bristol, BS8 1UB, UK.
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK.
| | - Lorena Postiglione
- Department of Engineering Mathematics, University of Bristol, Bristol, BS8 1UB, UK
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | - Francesco Aulicino
- BrisSynBio, Bristol, BS8 1TQ, UK
- Department of Biochemistry, Bristol, BS8 1TD, UK
| | - Dan L Rocca
- Department of Engineering Mathematics, University of Bristol, Bristol, BS8 1UB, UK.
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK.
- BrisSynBio, Bristol, BS8 1TQ, UK.
| | - Sandra Montes-Olivas
- Department of Engineering Mathematics, University of Bristol, Bristol, BS8 1UB, UK
| | - Mahmoud Khazim
- Department of Engineering Mathematics, University of Bristol, Bristol, BS8 1UB, UK
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | - Diego di Bernardo
- Telethon Institute of Genetics and Medicine Via Campi Flegrei 34, 80078, Pozzuoli, Italy
| | - Maria Pia Cosma
- Centre for Genomic Regulation (CRG), Dr Aiguader 88, 08002, Barcelona, Spain
- Universitati Pompeu Fabra (UPF), Barcelona, Spain
- ICREA, Pg. Luis Companys, 08010, Barcelona, Spain
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), 510005, Guangzhou, China
- Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Science, 510530, Guangzhou, China
| | - Lucia Marucci
- Department of Engineering Mathematics, University of Bristol, Bristol, BS8 1UB, UK.
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK.
- BrisSynBio, Bristol, BS8 1TQ, UK.
| |
Collapse
|
19
|
Scott TD, Sweeney K, McClean MN. Biological signal generators: integrating synthetic biology tools and in silico control. ACTA ACUST UNITED AC 2019; 14:58-65. [PMID: 31673669 DOI: 10.1016/j.coisb.2019.02.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Biological networks sense extracellular stimuli and generate appropriate outputs within the cell that determine cellular response. Biological signal generators are becoming an important tool for understanding how information is transmitted in these networks and controlling network behavior. Signal generators produce well-defined, dynamic, intracellular signals of important network components, such as kinase activity or the concentration of a specific transcription factor. Synthetic biology tools coupled with in silico control have enabled the construction of these sophisticated biological signal generators. Here we review recent advances in biological signal generator construction and their use in systems biology studies. Challenges for constructing signal generators for a wider range of biological networks and generalizing their use are discussed.
Collapse
Affiliation(s)
- Taylor D Scott
- Department of Biomedical Engineering, University of Wisconsin-Madison, 1550 Engineering Drive, Madison, Wisconsin 53706 USA
| | - Kieran Sweeney
- Department of Biomedical Engineering, University of Wisconsin-Madison, 1550 Engineering Drive, Madison, Wisconsin 53706 USA
| | - Megan N McClean
- Department of Biomedical Engineering, University of Wisconsin-Madison, 1550 Engineering Drive, Madison, Wisconsin 53706 USA
| |
Collapse
|
20
|
Lugagne JB, Dunlop MJ. Cell-machine interfaces for characterizing gene regulatory network dynamics. ACTA ACUST UNITED AC 2019; 14:1-8. [PMID: 31579842 DOI: 10.1016/j.coisb.2019.01.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Gene regulatory networks and the dynamic responses they produce offer a wealth of information about how biological systems process information about their environment. Recently, researchers interested in dissecting these networks have been outsourcing various parts of their experimental workflow to computers. Here we review how, using microfluidic or optogenetic tools coupled with fluorescence imaging, it is now possible to interface cells and computers. These platforms enable scientists to perform informative dynamic stimulations of genetic pathways and monitor their reaction. It is also possible to close the loop and regulate genes in real time, providing an unprecedented view of how signals propagate through the network. Finally, we outline new tools that can be used within the framework of cell-machine interfaces.
Collapse
Affiliation(s)
- Jean-Baptiste Lugagne
- Department of Biomedical Engineering, Boston University, Boston, MA, USA.,Biological Design Center, Boston University, Boston, MA, USA
| | - Mary J Dunlop
- Department of Biomedical Engineering, Boston University, Boston, MA, USA.,Biological Design Center, Boston University, Boston, MA, USA
| |
Collapse
|
21
|
Pasotti L, Bellato M, Politi N, Casanova M, Zucca S, Cusella De Angelis MG, Magni P. A Synthetic Close-Loop Controller Circuit for the Regulation of an Extracellular Molecule by Engineered Bacteria. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2019; 13:248-258. [PMID: 30489274 DOI: 10.1109/tbcas.2018.2883350] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Feedback control is ubiquitous in biological systems. It can also play a crucial role in the design of synthetic circuits implementing novel functions in living systems, to achieve self-regulation of gene expression, noise reduction, rise time decrease, or adaptive pathway control. Despite in vitro, in vivo, and ex vivo implementations have been successfully reported, the design of biological close-loop systems with quantitatively predictable behavior is still a major challenge. In this work, we tested a model-based bottom-up design of a synthetic close-loop controller in engineered Escherichia coli, aimed to automatically regulate the concentration of an extracellular molecule, N-(3-oxohexanoyl)-L-homoserine lactone (HSL), by rewiring the elements of heterologous quorum sensing/quenching networks. The synthetic controller was successfully constructed and experimentally validated. Relying on mathematical model and experimental characterization of individual regulatory parts and enzymes, we evaluated the predictability of the interconnected system behavior in vivo. The culture was able to reach an HSL steady-state level of 72 nM, accurately predicted by the model, and showed superior capabilities in terms of robustness against cell density variation and disturbance rejection, compared with a corresponding open-loop circuit. This engineering-inspired design approach may be adopted for the implementation of other close-loop circuits for different applications and contribute to decreasing trial-and-error steps.
Collapse
|
22
|
Khazim M, Postiglione L, Pedone E, Rocca DL, Zahra C, Marucci L. Towards automated control of embryonic stem cell pluripotency. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.ifacol.2019.12.240] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
23
|
Postiglione L, Napolitano S, Pedone E, Rocca DL, Aulicino F, Santorelli M, Tumaini B, Marucci L, di Bernardo D. Regulation of Gene Expression and Signaling Pathway Activity in Mammalian Cells by Automated Microfluidics Feedback Control. ACS Synth Biol 2018; 7:2558-2565. [PMID: 30346742 DOI: 10.1021/acssynbio.8b00235] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Gene networks and signaling pathways display complex topologies and, as a result, complex nonlinear behaviors. Accumulating evidence shows that both static (concentration) and dynamical (rate-of-change) features of transcription factors, ligands and environmental stimuli control downstream processes and ultimately cellular functions. Currently, however, methods to generate stimuli with the desired features to probe cell response are still lacking. Here, combining tools from Control Engineering and Synthetic Biology (cybergenetics), we propose a simple and cost-effective microfluidics-based platform to precisely regulate gene expression and signaling pathway activity in mammalian cells by means of real-time feedback control. We show that this platform allows (i) to automatically regulate gene expression from inducible promoters in different cell types, including mouse embryonic stem cells; (ii) to precisely regulate the activity of the mTOR signaling pathway in single cells; (iii) to build a biohybrid oscillator in single embryonic stem cells by interfacing biological parts with virtual in silico counterparts. Ultimately, this platform can be used to probe gene networks and signaling pathways to understand how they process static and dynamic features of specific stimuli, as well as for the rapid prototyping of synthetic circuits for biotechnology and biomedical purposes.
Collapse
Affiliation(s)
- Lorena Postiglione
- Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy
| | - Sara Napolitano
- Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy
| | - Elisa Pedone
- Department of Engineering Mathematics, University of Bristol, Bristol BS8 1UB, U.K
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1UB, U.K
| | - Daniel L. Rocca
- Department of Engineering Mathematics, University of Bristol, Bristol BS8 1UB, U.K
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1UB, U.K
- BrisSynBio, Bristol BS8 1TQ, U.K
| | - Francesco Aulicino
- BrisSynBio, Bristol BS8 1TQ, U.K
- Department of Biochemistry, University of Bristol, Bristol BS8 1UB, U.K
| | - Marco Santorelli
- Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy
| | - Barbara Tumaini
- Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy
| | - Lucia Marucci
- Department of Engineering Mathematics, University of Bristol, Bristol BS8 1UB, U.K
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1UB, U.K
- BrisSynBio, Bristol BS8 1TQ, U.K
| | - Diego di Bernardo
- Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy
- Department of Chemical, Materials and Industrial Engineering, University of Naples Federico II, Piazzale V. Tecchio 80, 80125 Naples, Italy
| |
Collapse
|
24
|
Optimal control of bacterial growth for the maximization of metabolite production. J Math Biol 2018; 78:985-1032. [PMID: 30334073 DOI: 10.1007/s00285-018-1299-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 09/18/2018] [Indexed: 12/24/2022]
Abstract
Microorganisms have evolved complex strategies for controlling the distribution of available resources over cellular functions. Biotechnology aims at interfering with these strategies, so as to optimize the production of metabolites and other compounds of interest, by (re)engineering the underlying regulatory networks of the cell. The resulting reallocation of resources can be described by simple so-called self-replicator models and the maximization of the synthesis of a product of interest formulated as a dynamic optimal control problem. Motivated by recent experimental work, we are specifically interested in the maximization of metabolite production in cases where growth can be switched off through an external control signal. We study various optimal control problems for the corresponding self-replicator models by means of a combination of analytical and computational techniques. We show that the optimal solutions for biomass maximization and product maximization are very similar in the case of unlimited nutrient supply, but diverge when nutrients are limited. Moreover, external growth control overrides natural feedback growth control and leads to an optimal scheme consisting of a first phase of growth maximization followed by a second phase of product maximization. This two-phase scheme agrees with strategies that have been proposed in metabolic engineering. More generally, our work shows the potential of optimal control theory for better understanding and improving biotechnological production processes.
Collapse
|
25
|
Lugagne JB, Sosa Carrillo S, Kirch M, Köhler A, Batt G, Hersen P. Balancing a genetic toggle switch by real-time feedback control and periodic forcing. Nat Commun 2017; 8:1671. [PMID: 29150615 PMCID: PMC5693866 DOI: 10.1038/s41467-017-01498-0] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 09/21/2017] [Indexed: 11/23/2022] Open
Abstract
Cybergenetics is a novel field of research aiming at remotely pilot cellular processes in real-time with to leverage the biotechnological potential of synthetic biology. Yet, the control of only a small number of genetic circuits has been tested so far. Here we investigate the control of multistable gene regulatory networks, which are ubiquitously found in nature and play critical roles in cell differentiation and decision-making. Using an in silico feedback control loop, we demonstrate that a bistable genetic toggle switch can be dynamically maintained near its unstable equilibrium position for extended periods of time. Importantly, we show that a direct method based on dual periodic forcing is sufficient to simultaneously maintain many cells in this undecided state. These findings pave the way for the control of more complex cell decision-making systems at both the single cell and the population levels, with vast fundamental and biotechnological applications. Cybergenetics aims to monitor and regulate cellular processes in real-time using computer monitoring and feedback of biological readouts. Here the authors use a feedback loop and periodic forcing to maintain cells with a bistable synthetic circuit near its unstable state.
Collapse
Affiliation(s)
- Jean-Baptiste Lugagne
- Laboratoire Matière et Systèmes Complexes, UMR 7057 CNRS & Université Paris Diderot, 10 rue Alice Domon et Léonie Duquet, 75013, Paris, France.,Inria Saclay-Ile-de-France and Université Paris Saclay, 1 rue Honoré d'Estienne d'Orves, Bâtiment Alan Turing, Campus de l'Ecole Polytechnique, 91120, Palaiseau, France
| | - Sebastián Sosa Carrillo
- Inria Saclay-Ile-de-France and Université Paris Saclay, 1 rue Honoré d'Estienne d'Orves, Bâtiment Alan Turing, Campus de l'Ecole Polytechnique, 91120, Palaiseau, France.,Institut Pasteur, 25-28 Rue du Docteur Roux, 75015, Paris, France
| | - Melanie Kirch
- Laboratoire Matière et Systèmes Complexes, UMR 7057 CNRS & Université Paris Diderot, 10 rue Alice Domon et Léonie Duquet, 75013, Paris, France.,Inria Saclay-Ile-de-France and Université Paris Saclay, 1 rue Honoré d'Estienne d'Orves, Bâtiment Alan Turing, Campus de l'Ecole Polytechnique, 91120, Palaiseau, France
| | - Agnes Köhler
- Laboratoire Matière et Systèmes Complexes, UMR 7057 CNRS & Université Paris Diderot, 10 rue Alice Domon et Léonie Duquet, 75013, Paris, France.,Inria Saclay-Ile-de-France and Université Paris Saclay, 1 rue Honoré d'Estienne d'Orves, Bâtiment Alan Turing, Campus de l'Ecole Polytechnique, 91120, Palaiseau, France
| | - Gregory Batt
- Inria Saclay-Ile-de-France and Université Paris Saclay, 1 rue Honoré d'Estienne d'Orves, Bâtiment Alan Turing, Campus de l'Ecole Polytechnique, 91120, Palaiseau, France. .,Institut Pasteur, 25-28 Rue du Docteur Roux, 75015, Paris, France.
| | - Pascal Hersen
- Laboratoire Matière et Systèmes Complexes, UMR 7057 CNRS & Université Paris Diderot, 10 rue Alice Domon et Léonie Duquet, 75013, Paris, France.
| |
Collapse
|
26
|
Banerjee A, Weaver I, Thorsen T, Sarpeshkar R. Bioelectronic measurement and feedback control of molecules in living cells. Sci Rep 2017; 7:12511. [PMID: 28970494 PMCID: PMC5624954 DOI: 10.1038/s41598-017-12655-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 09/13/2017] [Indexed: 12/19/2022] Open
Abstract
We describe an electrochemical measurement technique that enables bioelectronic measurements of reporter proteins in living cells as an alternative to traditional optical fluorescence. Using electronically programmable microfluidics, the measurement is in turn used to control the concentration of an inducer input that regulates production of the protein from a genetic promoter. The resulting bioelectronic and microfluidic negative-feedback loop then serves to regulate the concentration of the protein in the cell. We show measurements wherein a user-programmable set-point precisely alters the protein concentration in the cell with feedback-loop parameters affecting the dynamics of the closed-loop response in a predictable fashion. Our work does not require expensive optical fluorescence measurement techniques that are prone to toxicity in chronic settings, sophisticated time-lapse microscopy, or bulky/expensive chemo-stat instrumentation for dynamic measurement and control of biomolecules in cells. Therefore, it may be useful in creating a: cheap, portable, chronic, dynamic, and precise all-electronic alternative for measurement and control of molecules in living cells.
Collapse
Affiliation(s)
- Areen Banerjee
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, 03755, USA
| | - Isaac Weaver
- MIT Lincoln Laboratory, Massachusetts, 02421, USA
| | - Todd Thorsen
- MIT Lincoln Laboratory, Massachusetts, 02421, USA
| | - Rahul Sarpeshkar
- Departments of Engineering, Microbiology & Immunology, Physics, and Physiology & Neurobiology, Dartmouth College, Hanover, New Hampshire, 03755, USA.
| |
Collapse
|
27
|
Quantitative Systems Biology to decipher design principles of a dynamic cell cycle network: the "Maximum Allowable mammalian Trade-Off-Weight" (MAmTOW). NPJ Syst Biol Appl 2017; 3:26. [PMID: 28944079 PMCID: PMC5605530 DOI: 10.1038/s41540-017-0028-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 08/18/2017] [Accepted: 08/24/2017] [Indexed: 12/11/2022] Open
Abstract
Network complexity is required to lend cellular processes flexibility to respond timely to a variety of dynamic signals, while simultaneously warranting robustness to protect cellular integrity against perturbations. The cell cycle serves as a paradigm for such processes; it maintains its frequency and temporal structure (although these may differ among cell types) under the former, but accelerates under the latter. Cell cycle molecules act together in time and in different cellular compartments to execute cell type-specific programs. Strikingly, the timing at which molecular switches occur is controlled by abundance and stoichiometry of multiple proteins within complexes. However, traditional methods that investigate one effector at a time are insufficient to understand how modulation of protein complex dynamics at cell cycle transitions shapes responsiveness, yet preserving robustness. To overcome this shortcoming, we propose a multidisciplinary approach to gain a systems-level understanding of quantitative cell cycle dynamics in mammalian cells from a new perspective. By suggesting advanced experimental technologies and dedicated modeling approaches, we present innovative strategies (i) to measure absolute protein concentration in vivo, and (ii) to determine how protein dosage, e.g., altered protein abundance, and spatial (de)regulation may affect timing and robustness of phase transitions. We describe a method that we name “Maximum Allowable mammalian Trade–Off–Weight” (MAmTOW), which may be realized to determine the upper limit of gene copy numbers in mammalian cells. These aspects, not covered by current systems biology approaches, are essential requirements to generate precise computational models and identify (sub)network-centered nodes underlying a plethora of pathological conditions.
Collapse
|
28
|
Fiore G, Matyjaszkiewicz A, Annunziata F, Grierson C, Savery NJ, Marucci L, di Bernardo M. In-Silico Analysis and Implementation of a Multicellular Feedback Control Strategy in a Synthetic Bacterial Consortium. ACS Synth Biol 2017; 6:507-517. [PMID: 27997140 DOI: 10.1021/acssynbio.6b00220] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Living organisms employ endogenous negative feedback loops to maintain homeostasis despite environmental fluctuations. A pressing open challenge in Synthetic Biology is to design and implement synthetic circuits to control host cells' behavior, in order to regulate and maintain desired conditions. To cope with the high degree of circuit complexity required to accomplish this task and the intrinsic modularity of classical control schemes, we suggest the implementation of synthetic endogenous feedback loops across more than one cell population. The distribution of the sensing, computation, and actuation functions required to achieve regulation across different cell populations within a consortium allows the genetic engineering in a particular cell to be reduced, increases the robustness, and makes it possible to reuse the synthesized modules for different control applications. Here, we analyze, in-silico, the design of a synthetic feedback controller implemented across two cell populations in a consortium. We study the effects of distributing the various functions required to build a control system across two populations, prove the robustness and modularity of the strategy described, and provide a computational proof-of-concept of its feasibility.
Collapse
Affiliation(s)
- Gianfranco Fiore
- Department
of Engineering Mathematics, University of Bristol, Merchant Venturers’
Building, Woodland Road, Bristol BS8 1UB, U.K
- BrisSynBio, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, U.K
| | - Antoni Matyjaszkiewicz
- Department
of Engineering Mathematics, University of Bristol, Merchant Venturers’
Building, Woodland Road, Bristol BS8 1UB, U.K
- BrisSynBio, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, U.K
| | - Fabio Annunziata
- BrisSynBio, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, U.K
- School
of Biochemistry, University of Bristol, Biomedical Sciences Building, University
Walk, Bristol BS8 1TD, U.K
| | - Claire Grierson
- BrisSynBio, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, U.K
- School
of Biological Sciences, University of Bristol, Life Sciences Building, Tyndall
Avenue, Bristol BS8 1TQ, U.K
| | - Nigel J. Savery
- BrisSynBio, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, U.K
- School
of Biochemistry, University of Bristol, Biomedical Sciences Building, University
Walk, Bristol BS8 1TD, U.K
| | - Lucia Marucci
- Department
of Engineering Mathematics, University of Bristol, Merchant Venturers’
Building, Woodland Road, Bristol BS8 1UB, U.K
- BrisSynBio, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, U.K
| | - Mario di Bernardo
- Department
of Engineering Mathematics, University of Bristol, Merchant Venturers’
Building, Woodland Road, Bristol BS8 1UB, U.K
- BrisSynBio, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, U.K
- Department
of Electrical Engineering and Information Technology, University of Naples Federico II, 80125, Naples, Italy
| |
Collapse
|
29
|
Murakami Y, Koyama M, Oba S, Kuroda S, Ishii S. Model-based control of the temporal patterns of intracellular signaling in silico. Biophys Physicobiol 2017; 14:29-40. [PMID: 28275530 PMCID: PMC5325056 DOI: 10.2142/biophysico.14.0_29] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 01/11/2017] [Indexed: 12/01/2022] Open
Abstract
The functions of intracellular signal transduction systems are determined by the temporal behavior of intracellular molecules and their interactions. Of the many dynamical properties of the system, the relationship between the dynamics of upstream molecules and downstream molecules is particularly important. A useful tool in understanding this relationship is a methodology to control the dynamics of intracellular molecules with an extracellular stimulus. However, this is a difficult task because the relationship between the levels of upstream molecules and those of downstream molecules is often not only stochastic, but also time-inhomogeneous, nonlinear, and not one-to-one. In this paper, we present an easy-to-implement model-based control method that makes the target downstream molecule to trace a desired time course by changing the concentration of a controllable upstream molecule. Our method uses predictions from Monte Carlo simulations of the model to decide the strength of the stimulus, while using a particle-based approach to make inferences regarding unobservable states. We applied our method to in silico control problems of insulin-dependent AKT pathway model and EGF-dependent Akt pathway model with system noise. We show that our method can robustly control the dynamics of the intracellular molecules against unknown system noise of various strengths, even in the absence of complete knowledge of the true model of the target system.
Collapse
Affiliation(s)
- Yohei Murakami
- Department of Systems Science, Graduate School of Informatics, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan; CREST, Japan Science and Technology Agency, Japan
| | - Masanori Koyama
- Department of Systems Science, Graduate School of Informatics, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan; Department of Mathematics, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan; CREST, Japan Science and Technology Agency, Japan
| | - Shigeyuki Oba
- Department of Systems Science, Graduate School of Informatics, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan; CREST, Japan Science and Technology Agency, Japan
| | - Shinya Kuroda
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan; CREST, Japan Science and Technology Agency, Japan
| | - Shin Ishii
- Department of Systems Science, Graduate School of Informatics, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan; CREST, Japan Science and Technology Agency, Japan
| |
Collapse
|
30
|
Kusen PM, Wandrey G, Probst C, Grünberger A, Holz M, Meyer zu Berstenhorst S, Kohlheyer D, Büchs J, Pietruszka J. Optogenetic Regulation of Tunable Gene Expression in Yeast Using Photo-Labile Caged Methionine. ACS Chem Biol 2016; 11:2915-2922. [PMID: 27570879 DOI: 10.1021/acschembio.6b00462] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Light-mediated gene expression enables the noninvasive regulation of cellular functions. Apart from their classical application of regulating single cells with high spatiotemporal resolution, we highlight the potential of light-mediated gene expression for biotechnological issues. Here, we demonstrate the first light-mediated gene regulation in Saccharomyces cerevisiae using the repressible pMET17 promoter and the photolabile NVOC methionine that releases methionine upon irradiation with UVA light. In this system, the expression can be repressed upon irradiation and is reactivated due to consumption of methionine. The photolytic release allows precise control over the methionine concentration and therefore over the repression duration. Using this light regulation mechanism, we were able to apply an in-house constructed 48-well cultivation system which allows parallelized and automated irradiation programs as well as online detection of fluorescence and growth. This system enables screening of multiple combinations of several repression/derepression intervals to realize complex expression programs (e.g., a stepwise increase of temporally constant expression levels, linear expression rates with variable slopes, and accurate control over the expression induction, although we used a repressible promoter.) Thus, we were able to control all general parameters of a gene expression experiment precisely, namely start, pause, and stop at desired time points, as well as the ongoing expression rate. Furthermore, we gained detailed insights into single-cell expression dynamics with spatiotemporal resolution by applying microfluidics cultivation technology combined with fluorescence time-lapse microscopy.
Collapse
Affiliation(s)
- Peter M. Kusen
- Institute
for Bioorganic Chemistry, Heinrich Heine University Düsseldorf at the Forschungszentrum Jülich, 52426 Jülich, Germany
| | - Georg Wandrey
- AVT
− Biochemical Engineering, RWTH Aachen University, Worringer
Weg 1, 52074 Aachen, Germany
| | - Christopher Probst
- Institute
of Bio- and Geosciences (IBG-1: Biotechnology), Forschungszentrum Jülich GmbH, 52426 Jülich, Germany
| | - Alexander Grünberger
- Institute
of Bio- and Geosciences (IBG-1: Biotechnology), Forschungszentrum Jülich GmbH, 52426 Jülich, Germany
| | - Martina Holz
- Institute
for Bioorganic Chemistry, Heinrich Heine University Düsseldorf at the Forschungszentrum Jülich, 52426 Jülich, Germany
| | - Sonja Meyer zu Berstenhorst
- Institute
for Bioorganic Chemistry, Heinrich Heine University Düsseldorf at the Forschungszentrum Jülich, 52426 Jülich, Germany
| | - Dietrich Kohlheyer
- Institute
of Bio- and Geosciences (IBG-1: Biotechnology), Forschungszentrum Jülich GmbH, 52426 Jülich, Germany
| | - Jochen Büchs
- AVT
− Biochemical Engineering, RWTH Aachen University, Worringer
Weg 1, 52074 Aachen, Germany
| | - Jörg Pietruszka
- Institute
for Bioorganic Chemistry, Heinrich Heine University Düsseldorf at the Forschungszentrum Jülich, 52426 Jülich, Germany
- Institute
of Bio- and Geosciences (IBG-1: Biotechnology), Forschungszentrum Jülich GmbH, 52426 Jülich, Germany
| |
Collapse
|