1
|
Liang G, Gao C, Wu J, Hu G, Li X, Liu L. Enhancing electron transfer efficiency in microbial electrochemical systems for bioelectricity and chemical production. BIORESOURCE TECHNOLOGY 2025; 428:132445. [PMID: 40147568 DOI: 10.1016/j.biortech.2025.132445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 03/23/2025] [Accepted: 03/23/2025] [Indexed: 03/29/2025]
Abstract
Microbial electrochemical systems have emerged as promising platforms for chemical production and bioelectricity generation by utilizing cost-effective substrates. However, their performance is limited by the efficiency of both intracellular and extracellular electron transfer. This review systematically summarizes strategies to enhance electron transfer from a microbial perspective, including improvements in extracellular electron transfer, intracellular electron regeneration, and the establishment of electroactive microbial consortia. In addition, the working mechanisms and limitations of these strategies are analyzed. Furthermore, the potential applications of microbial electrochemical systems in bioelectricity production, chemical synthesis, and industrial-scale applications are explored. Finally, the current challenges of microbial electrochemical systems are discussed, and potential solutions are proposed to advance their practical applications.
Collapse
Affiliation(s)
- Guangjie Liang
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Cong Gao
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China.
| | - Jing Wu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China.
| | - Guipeng Hu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China.
| | - Xiaomin Li
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China.
| | - Liming Liu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
2
|
Liu YN, Liu Z, Liu J, Hu Y, Cao B. Unlocking the potential of Shewanella in metabolic engineering: Current status, challenges, and opportunities. Metab Eng 2025; 89:1-11. [PMID: 39952391 DOI: 10.1016/j.ymben.2025.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/29/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
Shewanella species are facultative anaerobes with distinctive electrochemical properties, making them valuable for applications in energy conversion and environmental bioremediation. Due to their well-characterized electron transfer mechanisms and ease of genetic manipulation, Shewanella spp. have emerged as a promising chassis for metabolic engineering. In this review, we provide a comprehensive overview of the advancements in Shewanella-based metabolic engineering. We begin by discussing the physiological characteristics of Shewanella, with a particular focus on its extracellular electron transfer (EET) capability. Next, we outline the use of Shewanella as a metabolic engineering chassis, presenting a general framework for strain construction based on the Design-Build-Test-Learn (DBTL) cycle and summarizing key advancements in the engineering of Shewanella's metabolic modules. Finally, we offer a perspective on the future development of Shewanella chassis, highlighting the need for deeper mechanistic insights, rational strain design, and interdisciplinary collaboration to drive further progress.
Collapse
Affiliation(s)
- Yi-Nan Liu
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore; Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 637551, Singapore
| | - Zhourui Liu
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore; Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 637551, Singapore
| | - Jian Liu
- Department of Biological Sciences and Technology, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Yidan Hu
- Department of Biological Sciences and Technology, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China.
| | - Bin Cao
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore; Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 637551, Singapore.
| |
Collapse
|
3
|
Bennett DT, Meyer AS. Robust measurement of microbial reduction of graphene oxide nanoparticles using image analysis. Appl Environ Microbiol 2025; 91:e0036025. [PMID: 40145756 PMCID: PMC12016504 DOI: 10.1128/aem.00360-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 02/28/2025] [Indexed: 03/28/2025] Open
Abstract
Shewanella oneidensis (S. oneidensis) has the capacity to reduce electron acceptors within a medium and is thus used frequently in microbial fuel generation, pollutant breakdown, and nanoparticle fabrication. Microbial fuel setups, however, often require costly or labor-intensive components, thus making optimization of their performance onerous. For rapid optimization of setup conditions, a model reduction assay can be employed to allow simultaneous, large-scale experiments at lower cost and effort. Since S. oneidensis uses different extracellular electron transfer pathways depending on the electron acceptor, it is essential to use a reduction assay that mirrors the pathways employed in the microbial fuel system. For microbial fuel setups that use nanoparticles to stimulate electron transfer, reduction of graphene oxide provides a more accurate model than other commonly used assays as it is a bulk material that forms flocculates in solutions with a large ionic component. However, graphene oxide flocculates can interfere with traditional absorbance-based measurement techniques. This study introduces a novel image analysis method for quantifying graphene oxide reduction, showing improved performance and statistical accuracy over traditional methods. A comparative analysis shows that the image analysis method produces smaller errors between replicates and reveals more statistically significant differences between samples than traditional plate reader measurements under conditions causing graphene oxide flocculation. Image analysis can also detect reduction activity at earlier time points due to its use of larger solution volumes, enhancing color detection. These improvements in accuracy make image analysis a promising method for optimizing microbial fuel cells that use nanoparticles or bulk substrates.IMPORTANCEShewanella oneidensis (S. oneidensis) is widely used in reduction processes such as microbial fuel generation due to its capacity to reduce electron acceptors. Often, these setups are labor-intensive to operate and require days to produce results, so use of a model assay would reduce the time and expenses needed for optimization. Our research developed a novel digital analysis method for analysis of graphene oxide flocculates that may be utilized as a model assay for reduction platforms featuring nanoparticles. Use of this model reduction assay will enable rapid optimization and drive improvements in the microbial fuel generation sector.
Collapse
Affiliation(s)
| | - Anne S. Meyer
- Department of Biology, University of Rochester, Rochester, New York, USA
| |
Collapse
|
4
|
Zhao F, Niman CM, Ostovar G, Chavez MS, Atkinson JT, Bonis BM, Gralnick JA, El-Naggar MY, Boedicker JQ. Red-Light-Induced Genetic System for Control of Extracellular Electron Transfer. ACS Synth Biol 2024; 13:1467-1476. [PMID: 38696739 DOI: 10.1021/acssynbio.3c00684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
Optogenetics is a powerful tool for spatiotemporal control of gene expression. Several light-inducible gene regulators have been developed to function in bacteria, and these regulatory circuits have been ported to new host strains. Here, we developed and adapted a red-light-inducible transcription factor for Shewanella oneidensis. This regulatory circuit is based on the iLight optogenetic system, which controls gene expression using red light. A thermodynamic model and promoter engineering were used to adapt this system to achieve differential gene expression in light and dark conditions within a S. oneidensis host strain. We further improved the iLight optogenetic system by adding a repressor to invert the genetic circuit and activate gene expression under red light illumination. The inverted iLight genetic circuit was used to control extracellular electron transfer within S. oneidensis. The ability to use both red- and blue-light-induced optogenetic circuits simultaneously was also demonstrated. Our work expands the synthetic biology capabilities in S. oneidensis, which could facilitate future advances in applications with electrogenic bacteria.
Collapse
Affiliation(s)
- Fengjie Zhao
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States
| | - Christina M Niman
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States
| | - Ghazaleh Ostovar
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States
| | - Marko S Chavez
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States
| | - Joshua T Atkinson
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States
- Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey 08540, United States
- Omenn-Darling Bioengineering Institute, Princeton University, Princeton, New Jersey 08540, United States
| | - Benjamin M Bonis
- BioTechnology Institute and Department of Plant and Microbial Biology, University of Minnesota─Twin Cities, St. Paul, Minnesota 55108, United States
| | - Jeffrey A Gralnick
- BioTechnology Institute and Department of Plant and Microbial Biology, University of Minnesota─Twin Cities, St. Paul, Minnesota 55108, United States
| | - Mohamed Y El-Naggar
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States
- Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, United States
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - James Q Boedicker
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States
- Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
5
|
Zhang J, Li F, Liu D, Liu Q, Song H. Engineering extracellular electron transfer pathways of electroactive microorganisms by synthetic biology for energy and chemicals production. Chem Soc Rev 2024; 53:1375-1446. [PMID: 38117181 DOI: 10.1039/d3cs00537b] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
The excessive consumption of fossil fuels causes massive emission of CO2, leading to climate deterioration and environmental pollution. The development of substitutes and sustainable energy sources to replace fossil fuels has become a worldwide priority. Bio-electrochemical systems (BESs), employing redox reactions of electroactive microorganisms (EAMs) on electrodes to achieve a meritorious combination of biocatalysis and electrocatalysis, provide a green and sustainable alternative approach for bioremediation, CO2 fixation, and energy and chemicals production. EAMs, including exoelectrogens and electrotrophs, perform extracellular electron transfer (EET) (i.e., outward and inward EET), respectively, to exchange energy with the environment, whose rate determines the efficiency and performance of BESs. Therefore, we review the synthetic biology strategies developed in the last decade for engineering EAMs to enhance the EET rate in cell-electrode interfaces for facilitating the production of electricity energy and value-added chemicals, which include (1) progress in genetic manipulation and editing tools to achieve the efficient regulation of gene expression, knockout, and knockdown of EAMs; (2) synthetic biological engineering strategies to enhance the outward EET of exoelectrogens to anodes for electricity power production and anodic electro-fermentation (AEF) for chemicals production, including (i) broadening and strengthening substrate utilization, (ii) increasing the intracellular releasable reducing equivalents, (iii) optimizing c-type cytochrome (c-Cyts) expression and maturation, (iv) enhancing conductive nanowire biosynthesis and modification, (v) promoting electron shuttle biosynthesis, secretion, and immobilization, (vi) engineering global regulators to promote EET rate, (vii) facilitating biofilm formation, and (viii) constructing cell-material hybrids; (3) the mechanisms of inward EET, CO2 fixation pathway, and engineering strategies for improving the inward EET of electrotrophic cells for CO2 reduction and chemical production, including (i) programming metabolic pathways of electrotrophs, (ii) rewiring bioelectrical circuits for enhancing inward EET, and (iii) constructing microbial (photo)electrosynthesis by cell-material hybridization; (4) perspectives on future challenges and opportunities for engineering EET to develop highly efficient BESs for sustainable energy and chemical production. We expect that this review will provide a theoretical basis for the future development of BESs in energy harvesting, CO2 fixation, and chemical synthesis.
Collapse
Affiliation(s)
- Junqi Zhang
- Frontier Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| | - Feng Li
- Frontier Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| | - Dingyuan Liu
- Frontier Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| | - Qijing Liu
- Frontier Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| | - Hao Song
- Frontier Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
6
|
Li S, De Groote Tavares C, Tolar JG, Ajo-Franklin CM. Selective bioelectronic sensing of pharmacologically relevant quinones using extracellular electron transfer in Lactiplantibacillus plantarum. Biosens Bioelectron 2024; 243:115762. [PMID: 37875059 DOI: 10.1016/j.bios.2023.115762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 10/26/2023]
Abstract
Redox-active small molecules containing quinone functional groups play important roles as pharmaceuticals, but can be toxic if overdosed. Despite the need for a fast and quantitative method to detect quinone and its derivatives, current sensing strategies are often slow and struggle to differentiate between structural analogs. Leveraging the discovery that microorganisms use certain quinones to perform extracellular electron transfer (EET), we investigated the use of Lactiplantibacillus plantarum as a whole-cell bioelectronic sensor to selectively sense quinone analogs. By tailoring the native EET pathway in L. plantarum, we enabled quantitative quinone sensing of 1,4-dihydroxy-2-naphthoic acid (DHNA) - a gut bifidogenic growth stimulator. We found that L. plantarum could respond to environmental DHNA within seconds, producing concentration-dependent electrical signals. This sensing capacity was robust in different assay media and allowed for continuous monitoring of DHNA concentrations. In a simulated gut environment containing a mixed pool of quinone derivatives, this tailored EET pathway can selectively sense pharmacologically relevant quinone analogs, such as DHNA and menadione, amongst other structurally similar quinone derivatives. We also developed a multivariate model to describe the mechanism behind this selectivity and found a predictable correlation between quinone physiochemical properties and the corresponding electrical signals. Our work presents a new concept to selectively sense quinone using whole-cell bioelectronic sensors and opens the possibility of using probiotic L. plantarum for bioelectronic applications in human health.
Collapse
Affiliation(s)
- Siliang Li
- Department of BioSciences, Rice University, Houston, TX, USA
| | | | - Joe G Tolar
- Department of BioSciences, Rice University, Houston, TX, USA
| | - Caroline M Ajo-Franklin
- Department of BioSciences, Rice University, Houston, TX, USA; Department of Bioengineering, Rice University, Houston, TX, USA; Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA.
| |
Collapse
|
7
|
Zhu J, Wang B, Zhang Y, Wei T, Gao T. Living electrochemical biosensing: Engineered electroactive bacteria for biosensor development and the emerging trends. Biosens Bioelectron 2023; 237:115480. [PMID: 37379794 DOI: 10.1016/j.bios.2023.115480] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/30/2023] [Accepted: 06/14/2023] [Indexed: 06/30/2023]
Abstract
Bioelectrical interfaces made of living electroactive bacteria (EAB) provide a unique opportunity to bridge biotic and abiotic systems, enabling the reprogramming of electrochemical biosensing. To develop these biosensors, principles from synthetic biology and electrode materials are being combined to engineer EAB as dynamic and responsive transducers with emerging, programmable functionalities. This review discusses the bioengineering of EAB to design active sensing parts and electrically connective interfaces on electrodes, which can be applied to construct smart electrochemical biosensors. In detail, by revisiting the electron transfer mechanism of electroactive microorganisms, engineering strategies of EAB cells for biotargets recognition, sensing circuit construction, and electrical signal routing, engineered EAB have demonstrated impressive capabilities in designing active sensing elements and developing electrically conductive interfaces on electrodes. Thus, integration of engineered EAB into electrochemical biosensors presents a promising avenue for advancing bioelectronics research. These hybridized systems equipped with engineered EAB can promote the field of electrochemical biosensing, with applications in environmental monitoring, health monitoring, green manufacturing, and other analytical fields. Finally, this review considers the prospects and challenges of the development of EAB-based electrochemical biosensors, identifying potential future applications.
Collapse
Affiliation(s)
- Jin Zhu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China
| | - Baoguo Wang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China
| | - Yixin Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China
| | - Tianxiang Wei
- School of Environment, Nanjing Normal University, Nanjing, 210023, PR China
| | - Tao Gao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China.
| |
Collapse
|
8
|
Bird LJ, Leary DH, Hervey J, Compton J, Phillips D, Tender LM, Voigt CA, Glaven SM. Marine Biofilm Engineered to Produce Current in Response to Small Molecules. ACS Synth Biol 2023; 12:1007-1020. [PMID: 36926839 DOI: 10.1021/acssynbio.2c00417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Engineered electroactive bacteria have potential applications ranging from sensing to biosynthesis. In order to advance the use of engineered electroactive bacteria, it is important to demonstrate functional expression of electron transfer modules in chassis adapted to operationally relevant conditions, such as non-freshwater environments. Here, we use the Shewanella oneidensis electron transfer pathway to induce current production in a marine bacterium, Marinobacter atlanticus, during biofilm growth in artificial seawater. Genetically encoded sensors optimized for use in Escherichia coli were used to control protein expression in planktonic and biofilm attached cells. Significant current production required the addition of menaquinone, which M. atlanticus does not produce, for electron transfer from the inner membrane to the expressed electron transfer pathway. Current through the S. oneidensis pathway in M. atlanticus was observed when inducing molecules were present during biofilm formation. Electron transfer was also reversible, indicating that electron transfer into M. atlanticus could be controlled. These results show that an operationally relevant marine bacterium can be genetically engineered for environmental sensing and response using an electrical signal.
Collapse
Affiliation(s)
- Lina J Bird
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375, United States
| | - Dagmar H Leary
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375, United States
| | - Judson Hervey
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375, United States
| | - Jaimee Compton
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375, United States
| | - Daniel Phillips
- Biochemistry Branch, Oak Ridge Institute for Science and Education/US Army DEVCOM Chemical Biological Center, Aberdeen Proving Grounds, Maryland 21005, United States
| | - Leonard M Tender
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375, United States
| | - Christopher A Voigt
- Department of Biological Engineering and the Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Sarah M Glaven
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375, United States
| |
Collapse
|
9
|
Li F, Tang R, Zhang B, Qiao C, Yu H, Liu Q, Zhang J, Shi L, Song H. Systematic Full-Cycle Engineering Microbial Biofilms to Boost Electricity Production in Shewanella oneidensis. RESEARCH (WASHINGTON, D.C.) 2023; 6:0081. [PMID: 36939407 PMCID: PMC10017123 DOI: 10.34133/research.0081] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 01/31/2023] [Indexed: 02/04/2023]
Abstract
Electroactive biofilm plays a crucial rule in the electron transfer efficiency of microbial electrochemical systems (MES). However, the low ability to form biofilm and the low conductivity of the formed biofilm substantially limit the extracellular electron transfer rate of microbial cells to the electrode surfaces in MES. To promote biofilm formation and enhance biofilm conductivity, we develop synthetic biology approach to systematically engineer Shewanella oneidensis, a model exoelectrogen, via modular manipulation of the full-cycle different stages of biofilm formation, namely, from initial contact, cell adhesion, and biofilm growth stable maturity to cell dispersion. Consequently, the maximum output power density of the engineered biofilm reaches 3.62 ± 0.06 W m-2, 39.3-fold higher than that of the wild-type strain of S. oneidensis, which, to the best our knowledge, is the highest output power density that has ever been reported for the biofilms of the genetically engineered Shewanella strains.
Collapse
Affiliation(s)
- Feng Li
- Frontiers Science Center for Synthetic Biology (Ministry of Education), and Key Laboratory of Systems Bioengineering,
Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology,
Tianjin University, Tianjin 300072, China
| | - Rui Tang
- Frontiers Science Center for Synthetic Biology (Ministry of Education), and Key Laboratory of Systems Bioengineering,
Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology,
Tianjin University, Tianjin 300072, China
| | - Baocai Zhang
- Frontiers Science Center for Synthetic Biology (Ministry of Education), and Key Laboratory of Systems Bioengineering,
Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology,
Tianjin University, Tianjin 300072, China
| | - Chunxiao Qiao
- Frontiers Science Center for Synthetic Biology (Ministry of Education), and Key Laboratory of Systems Bioengineering,
Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology,
Tianjin University, Tianjin 300072, China
| | - Huan Yu
- Frontiers Science Center for Synthetic Biology (Ministry of Education), and Key Laboratory of Systems Bioengineering,
Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology,
Tianjin University, Tianjin 300072, China
| | - Qijing Liu
- Frontiers Science Center for Synthetic Biology (Ministry of Education), and Key Laboratory of Systems Bioengineering,
Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology,
Tianjin University, Tianjin 300072, China
| | - Junqi Zhang
- Frontiers Science Center for Synthetic Biology (Ministry of Education), and Key Laboratory of Systems Bioengineering,
Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology,
Tianjin University, Tianjin 300072, China
| | - Liang Shi
- Department of Biological Sciences and Technology, School of Environmental Studies,
China University of Geoscience in Wuhan, Wuhan, Hubei 430074, China
| | - Hao Song
- Frontiers Science Center for Synthetic Biology (Ministry of Education), and Key Laboratory of Systems Bioengineering,
Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology,
Tianjin University, Tianjin 300072, China
| |
Collapse
|
10
|
Atkinson JT, Chavez MS, Niman CM, El-Naggar MY. Living electronics: A catalogue of engineered living electronic components. Microb Biotechnol 2023; 16:507-533. [PMID: 36519191 PMCID: PMC9948233 DOI: 10.1111/1751-7915.14171] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/26/2022] [Accepted: 11/01/2022] [Indexed: 12/23/2022] Open
Abstract
Biology leverages a range of electrical phenomena to extract and store energy, control molecular reactions and enable multicellular communication. Microbes, in particular, have evolved genetically encoded machinery enabling them to utilize the abundant redox-active molecules and minerals available on Earth, which in turn drive global-scale biogeochemical cycles. Recently, the microbial machinery enabling these redox reactions have been leveraged for interfacing cells and biomolecules with electrical circuits for biotechnological applications. Synthetic biology is allowing for the use of these machinery as components of engineered living materials with tuneable electrical properties. Herein, we review the state of such living electronic components including wires, capacitors, transistors, diodes, optoelectronic components, spin filters, sensors, logic processors, bioactuators, information storage media and methods for assembling these components into living electronic circuits.
Collapse
Affiliation(s)
- Joshua T Atkinson
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California, USA
| | - Marko S Chavez
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California, USA
| | - Christina M Niman
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California, USA
| | - Mohamed Y El-Naggar
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California, USA.,Department of Biological Sciences, University of Southern California, Los Angeles, California, USA.,Department of Chemistry, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
11
|
Atkinson JT, Su L, Zhang X, Bennett GN, Silberg JJ, Ajo-Franklin CM. Real-time bioelectronic sensing of environmental contaminants. Nature 2022; 611:548-553. [DOI: 10.1038/s41586-022-05356-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 09/15/2022] [Indexed: 11/07/2022]
|
12
|
Hu Y, Han X, Shi L, Cao B. Electrochemically active biofilm-enabled biosensors: Current status and opportunities for biofilm engineering. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Wang Z, Bai H, Yu W, Gao Z, Chen W, Yang Z, Zhu C, Huang Y, Lv F, Wang S. Flexible bioelectronic device fabricated by conductive polymer-based living material. SCIENCE ADVANCES 2022; 8:eabo1458. [PMID: 35731871 PMCID: PMC9216517 DOI: 10.1126/sciadv.abo1458] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/06/2022] [Indexed: 05/26/2023]
Abstract
Living materials are worked as an inside collaborative system that could naturally respond to changing environmental conditions. The regulation of bioelectronic processes in living materials could be effective for collecting biological signals and detecting biomarkers. Here, we constructed a living material with conjugated polymers poly[3-(3'-N,N,N-triethylamino-1'-propyloxy)-4-methyl-2,5-thiophene chloride] (PMNT) and Shewanella oneidensis MR-1 biofilm. In addition, the living material was integrated as a flexible bioelectronic device for lactate detection in physiological fluids (sweat, urine, and plasma). Owing to the electroconductivity of conjugated polymers, PMNT could optimize the bioelectronic process in the living material. The collected electrical signal could be wirelessly transferred to a portable smartphone for reading and analyzing. Because lactate is also a biomarker for cancer treatment, the flexible bioelectronic device was further used to detect and count the cancer cells. The proof of the bioelectronic device using conductive polymer-based living material exhibits promising applications in the next-generation personal health monitoring systems.
Collapse
Affiliation(s)
- Zenghao Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100910, P. R. China
- College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Haotian Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100910, P. R. China
| | - Wen Yu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100910, P. R. China
- College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhiqiang Gao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100910, P. R. China
- College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Weijian Chen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100910, P. R. China
| | - Zhiwen Yang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100910, P. R. China
- College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chuanwei Zhu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100910, P. R. China
- College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yiming Huang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100910, P. R. China
| | - Fengting Lv
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100910, P. R. China
| | - Shu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100910, P. R. China
- College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
14
|
Zhao F, Chavez MS, Naughton KL, Niman CM, Atkinson JT, Gralnick JA, El-Naggar MY, Boedicker JQ. Light-Induced Patterning of Electroactive Bacterial Biofilms. ACS Synth Biol 2022; 11:2327-2338. [PMID: 35731987 DOI: 10.1021/acssynbio.2c00024] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Electroactive bacterial biofilms can function as living biomaterials that merge the functionality of living cells with electronic components. However, the development of such advanced living electronics has been challenged by the inability to control the geometry of electroactive biofilms relative to solid-state electrodes. Here, we developed a lithographic strategy to pattern conductive biofilms of Shewanella oneidensis by controlling aggregation protein CdrAB expression with a blue light-induced genetic circuit. This controlled deposition enabled S. oneidensis biofilm patterning on transparent electrode surfaces, and electrochemical measurements allowed us to both demonstrate tunable conduction dependent on pattern size and quantify the intrinsic conductivity of the living biofilms. The intrinsic biofilm conductivity measurements enabled us to experimentally confirm predictions based on simulations of a recently proposed collision-exchange electron transport mechanism. Overall, we developed a facile technique for controlling electroactive biofilm formation on electrodes, with implications for both studying and harnessing bioelectronics.
Collapse
Affiliation(s)
- Fengjie Zhao
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States
| | - Marko S Chavez
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States
| | - Kyle L Naughton
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States
| | - Christina M Niman
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States
| | - Joshua T Atkinson
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States
| | - Jeffrey A Gralnick
- BioTechnology Institute and Department of Plant and Microbial Biology, University of Minnesota-Twin Cities, St. Paul, Minnesota 55108, United States
| | - Mohamed Y El-Naggar
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States.,Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, United States.,Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - James Q Boedicker
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States.,Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
15
|
Tseng CP, Liu F, Zhang X, Huang PC, Campbell I, Li Y, Atkinson JT, Terlier T, Ajo-Franklin CM, Silberg JJ, Verduzco R. Solution-Deposited and Patternable Conductive Polymer Thin-Film Electrodes for Microbial Bioelectronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109442. [PMID: 35088918 DOI: 10.1002/adma.202109442] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Microbial bioelectronic devices integrate naturally occurring or synthetically engineered electroactive microbes with microelectronics. These devices have a broad range of potential applications, but engineering the biotic-abiotic interface for biocompatibility, adhesion, electron transfer, and maximum surface area remains a challenge. Prior approaches to interface modification lack simple processability, the ability to pattern the materials, and/or a significant enhancement in currents. Here, a novel conductive polymer coating that significantly enhances current densities relative to unmodified electrodes in microbial bioelectronics is reported. The coating is based on a blend of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) crosslinked with poly(2-hydroxyethylacrylate) (PHEA) along with a thin polydopamine (PDA) layer for adhesion to an underlying indium tin oxide (ITO) electrode. When used as an interface layer with the current-producing bacterium Shewanella oneidensis MR-1, this material produces a 178-fold increase in the current density compared to unmodified electrodes, a current gain that is higher than previously reported thin-film 2D coatings and 3D conductive polymer coatings. The chemistry, morphology, and electronic properties of the coatings are characterized and the implementation of these coated electrodes for use in microbial fuel cells, multiplexed bioelectronic devices, and organic electrochemical transistor based microbial sensors are demonstrated. It is envisioned that this simple coating will advance the development of microbial bioelectronic devices.
Collapse
Affiliation(s)
- Chia-Ping Tseng
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, 77005, USA
| | - Fangxin Liu
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, 77005, USA
| | - Xu Zhang
- Department of BioSciences, Rice University, Houston, TX, 77005, USA
| | - Po-Chun Huang
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, 77005, USA
| | - Ian Campbell
- Department of BioSciences, Rice University, Houston, TX, 77005, USA
| | - Yilin Li
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, 77005, USA
| | - Joshua T Atkinson
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA, 90007, USA
| | - Tanguy Terlier
- SIMS Laboratory, Shared Equipment Authority, Rice University, Houston, TX, 77005, USA
| | | | | | - Rafael Verduzco
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, 77005, USA
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, 77005, USA
| |
Collapse
|
16
|
Bird LJ, Kundu BB, Tschirhart T, Corts AD, Su L, Gralnick JA, Ajo-Franklin CM, Glaven SM. Engineering Wired Life: Synthetic Biology for Electroactive Bacteria. ACS Synth Biol 2021; 10:2808-2823. [PMID: 34637280 DOI: 10.1021/acssynbio.1c00335] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Electroactive bacteria produce or consume electrical current by moving electrons to and from extracellular acceptors and donors. This specialized process, known as extracellular electron transfer, relies on pathways composed of redox active proteins and biomolecules and has enabled technologies ranging from harvesting energy on the sea floor, to chemical sensing, to carbon capture. Harnessing and controlling extracellular electron transfer pathways using bioengineering and synthetic biology promises to heighten the limits of established technologies and open doors to new possibilities. In this review, we provide an overview of recent advancements in genetic tools for manipulating native electroactive bacteria to control extracellular electron transfer. After reviewing electron transfer pathways in natively electroactive organisms, we examine lessons learned from the introduction of extracellular electron transfer pathways into Escherichia coli. We conclude by presenting challenges to future efforts and give examples of opportunities to bioengineer microbes for electrochemical applications.
Collapse
Affiliation(s)
- Lina J. Bird
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Biki B. Kundu
- PhD Program in Systems, Synthetic, and Physical Biology, Rice University, Houston, Texas 77005, United States
| | - Tanya Tschirhart
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Anna D. Corts
- Joyn Bio, Boston, Massachusetts 02210, United States
| | - Lin Su
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210018, People’s Republic of China
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Jeffrey A. Gralnick
- Department of Plant and Microbial Biology, BioTechnology Institute, University of Minnesota, St. Paul, Minnesota 55108, United States
| | | | - Sarah M. Glaven
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, D.C. 20375, United States
| |
Collapse
|
17
|
Fan YY, Tang Q, Li Y, Li FH, Wu JH, Li WW, Yu HQ. Rapid and highly efficient genomic engineering with a novel iEditing device for programming versatile extracellular electron transfer of electroactive bacteria. Environ Microbiol 2021; 23:1238-1255. [PMID: 33369000 DOI: 10.1111/1462-2920.15374] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 12/19/2020] [Accepted: 12/20/2020] [Indexed: 12/17/2022]
Abstract
The advances in synthetic biology bring exciting new opportunities to reprogram microorganisms with novel functionalities for environmental applications. For real-world applications, a genetic tool that enables genetic engineering in a stably genomic inherited manner is greatly desired. In this work, we design a novel genetic device for rapid and efficient genome engineering based on the intron-encoded homing-endonuclease empowered genome editing (iEditing). The iEditing device enables rapid and efficient genome engineering in Shewanella oneidensis MR-1, the representative strain of the electroactive bacteria group. Moreover, combining with the Red or RecET recombination system, the genome-editing efficiency was greatly improved, up to approximately 100%. Significantly, the iEditing device itself is eliminated simultaneously when genome editing occurs, thereby requiring no follow-up to remove the encoding system. Then, we develop a new extracellular electron transfer (EET) engineering strategy by programming the parallel EET systems to enhance versatile EET. The engineered strains exhibit sufficiently enhanced electron output and pollutant reduction ability. Furthermore, this device has demonstrated its great potential to be extended for genome editing in other important microbes. This work provides a useful and efficient tool for the rapid generation of synthetic microorganisms for various environmental applications.
Collapse
Affiliation(s)
- Yang-Yang Fan
- CAS Key Laboratory of Urban Pollutant Conversion, School of Life Sciences, University of Science and Technology of China, Hefei, 230026, China.,Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Qiang Tang
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Yang Li
- CAS Key Laboratory of Urban Pollutant Conversion, School of Life Sciences, University of Science and Technology of China, Hefei, 230026, China.,Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Feng-He Li
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Jing-Hang Wu
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Wen-Wei Li
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Han-Qing Yu
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
18
|
Engineering S. oneidensis for Performance Improvement of Microbial Fuel Cell-a Mini Review. Appl Biochem Biotechnol 2020; 193:1170-1186. [PMID: 33200267 DOI: 10.1007/s12010-020-03469-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 11/09/2020] [Indexed: 02/02/2023]
Abstract
Microbial fuel cell (MFC) is a promising technology that utilizes exoelectrogens cultivated in the form of biofilm to generate power from various types of sources supplied. A metal-reducing pathway is utilized by these organisms to transfer electrons obtained from the metabolism of substrate from anaerobic respiration extracellularly. A widely established model organism that is capable of extracellular electron transfer (EET) is Shewanella oneidensis. This review highlights the strategies used in the transformation of S. oneidensis and the recent development of MFC in terms of intervention through genetic modifications. S. oneidensis was genetically engineered for several aims including the study on the underlying mechanisms of EET, and the enhancement of power generation and wastewater treating potential when used in an MFC. Through engineering S. oneidensis, genes responsible for EET are identified and strategies on enhancing the EET efficiency are studied. Overexpressing genes related to EET to enhance biofilm formation, mediator biosynthesis, and respiration appears as one of the common approaches.
Collapse
|
19
|
Zhou T, Li R, Zhang S, Zhao S, Sharma M, Kulshrestha S, Khan A, Kakade A, Han H, Niu Y, Li X. A copper-specific microbial fuel cell biosensor based on riboflavin biosynthesis of engineered Escherichia coli. Biotechnol Bioeng 2020; 118:210-222. [PMID: 32915455 DOI: 10.1002/bit.27563] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 11/07/2022]
Abstract
Copper pollution poses a serious threat to the aquatic environment; however, in situ analytical methods for copper monitoring are still scarce. In the current study, Escherichia coli Rosetta was genetically modified to express OprF and ribB with promoter Pt7 and PcusC , respectively, which could synthesize porin and senses Cu2+ to produce riboflavin. The cell membrane permeability of this engineered strain was increased and its riboflavin production (1.45-3.56 μM) was positively correlated to Cu2+ (0-0.5 mM). The biosynthetic strain was then employed in microbial fuel cell (MFC) based biosensor. Under optimal operating parameters of pH 7.1 and 37°C, the maximum voltage (248, 295, 333, 352, and 407 mV) of the constructed MFC biosensor showed a linear correlation with Cu2+ concentration (0.1, 0.2, 0.3, 0.4, 0.5 mM, respectively; R2 = 0.977). The continuous mode testing demonstrated that the MFC biosensor specifically senses Cu2+ with calculated detection limit of 28 μM, which conforms to the common Cu2+ safety standard (32 μM). The results obtained with the developed biosensor system were consistent with the existing analytical methods such as colorimetry, flame atomic absorption spectrometry, and inductively coupled plasma optical emission spectrometry. In conclusion, this MFC-based biosensor overcomes the signal conversion and transmission problems of conventional approaches, providing a fast and economic analytical alternative for in situ monitoring of Cu2+ in water.
Collapse
Affiliation(s)
- Tuoyu Zhou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Rong Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China.,Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Lanzhou, Gansu, China
| | - Shuting Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Shuai Zhao
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China.,Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Lanzhou, Gansu, China
| | - Monika Sharma
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Saurabh Kulshrestha
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India
| | - Aman Khan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Apurva Kakade
- Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Lanzhou, Gansu, China
| | - Huawen Han
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Yongyan Niu
- Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Lanzhou, Gansu, China
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
20
|
Dundas CM, Walker DJ, Keitz BK. Tuning Extracellular Electron Transfer by Shewanella oneidensis Using Transcriptional Logic Gates. ACS Synth Biol 2020; 9:2301-2315. [PMID: 32786362 DOI: 10.1021/acssynbio.9b00517] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Extracellular electron transfer (EET) pathways, such as those in the bacterium Shewanella oneidensis, interface cellular metabolism with a variety of redox-driven applications. However, designer control over EET flux in S. oneidensis has proven challenging because a functional understanding of its EET pathway proteins and their effect on engineering parametrizations (e.g., response curves, dynamic range) is generally lacking. To address this, we systematically altered transcription and translation of single genes encoding parts of the primary EET pathway of S. oneidensis, CymA/MtrCAB, and examined how expression differences affected model-fitted parameters for Fe(III) reduction kinetics. Using a suite of plasmid-based inducible circuits maintained by appropriate S. oneidensis knockout strains, we pinpointed construct/strain pairings that expressed cymA, mtrA, and mtrC with maximal dynamic range of Fe(III) reduction rate. These optimized EET gene constructs were employed to create Buffer and NOT gate architectures that predictably turn on and turn off EET flux, respectively, in response to isopropyl β-D-1-thiogalactopyranoside (IPTG). Furthermore, we found that response functions generated by these logic gates (i.e., EET activity vs inducer concentration) were comparable to those generated by conventional synthetic biology circuits, where fluorescent reporters are the output. Our results provide insight on programming EET activity with transcriptional logic gates and suggest that previously developed transcriptional circuitry can be adapted to predictably control EET flux.
Collapse
Affiliation(s)
- Christopher M. Dundas
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - David J.F. Walker
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, United States
| | - Benjamin K. Keitz
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
21
|
Yates MD, Bird LJ, Eddie BJ, Onderko EL, Voigt CA, Glaven SM. Nanoliter scale electrochemistry of natural and engineered electroactive bacteria. Bioelectrochemistry 2020; 137:107644. [PMID: 32971484 DOI: 10.1016/j.bioelechem.2020.107644] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/21/2020] [Accepted: 08/26/2020] [Indexed: 01/09/2023]
Abstract
Bacterial extracellular electron transfer (EET) is envisioned for use in applied biotechnologies, necessitating electrochemical characterization of natural and engineered electroactive biofilms under conditions similar to the target application, including small-scale biosensing or biosynthesis platforms, which is often distinct from standard 100 mL-scale stirred-batch bioelectrochemical test platforms used in the laboratory. Here, we adapted an eight chamber, nanoliter volume (500 nL) electrochemical flow cell to grow biofilms of both natural (Biocathode MCL community, Marinobacter atlanticus, and Shewanella oneidensis MR1) or genetically modified (S. oneidensis ΔMtr and S. oneidensis ΔMtr + pLB2) electroactive bacteria on electrodes held at a constant potential. Maximum current density achieved by unmodified strains was similar between the nano- and milliliter-scale reactors. However, S. oneidensis biofilms engineered to activate EET upon exposure to 2,4-diacetylphloroglucinol (DAPG) produced current at wild-type levels in the stirred-batch reactor, but not in the nanoliter flow cell. We hypothesize this was due to differences in mass transport of DAPG, naturally-produced soluble redox mediators, and oxygen between the two reactor types. Results presented here demonstrate, for the first time, nanoliter scale chronoamperometry and cyclic voltammetry of a range of electroactive bacteria in a three-electrode reactor system towards development of miniaturized, and potentially high throughput, bioelectrochemical platforms.
Collapse
Affiliation(s)
- Matthew D Yates
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, DC, USA.
| | - Lina J Bird
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, DC, USA
| | - Brian J Eddie
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, DC, USA
| | | | - Christopher A Voigt
- Department of Biological Engineering and the Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sarah M Glaven
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, DC, USA.
| |
Collapse
|
22
|
Developing a population-state decision system for intelligently reprogramming extracellular electron transfer in Shewanella oneidensis. Proc Natl Acad Sci U S A 2020; 117:23001-23010. [PMID: 32855303 PMCID: PMC7502708 DOI: 10.1073/pnas.2006534117] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The unique extracellular electron transfer (EET) ability has positioned electroactive bacteria (EAB) as a major class of cellular chassis for genetic engineering aimed at favorable environmental, energy, and geoscience applications. However, previous efforts to genetically enhance EET ability have often impaired the basal metabolism and cellular growth due to the competition for the limited cellular resource. Here, we design a quorum sensing-based population-state decision (PSD) system for intelligently reprogramming the EET regulation system, which allows the rebalanced allocation of the cellular resource upon the bacterial growth state. We demonstrate that the electron output from Shewanella oneidensis MR-1 could be greatly enhanced by the PSD system via shifting the dominant metabolic flux from initial bacterial growth to subsequent EET enhancement (i.e., after reaching a certain population-state threshold). The strain engineered with this system achieved up to 4.8-fold EET enhancement and exhibited a substantially improved pollutant reduction ability, increasing the reduction efficiencies of methyl orange and hexavalent chromium by 18.8- and 5.5-fold, respectively. Moreover, the PSD system outcompeted the constant expression system in managing EET enhancement, resulting in considerably enhanced electron output and pollutant bioreduction capability. The PSD system provides a powerful tool for intelligently managing extracellular electron transfer and may inspire the development of new-generation smart bioelectrical devices for various applications.
Collapse
|
23
|
Phillips DA, Bird LJ, Eddie BJ, Yates MD, Tender LM, Voigt CA, Glaven SM. Activation of Protein Expression in Electroactive Biofilms. ACS Synth Biol 2020; 9:1958-1967. [PMID: 32786925 DOI: 10.1021/acssynbio.0c00278] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Microbes that form biofilms on electrodes and generate electrical current responses could be integrated into devices to perform sensing, conduct signals, or act as living microprocessors. A challenge in working with these species is the ability to visualize biofilm formation and protein expression in real-time while also measuring current, which is not possible with typical bio-electrochemical reactors. Here, we present a three-dimensional-printed flow cell for simultaneous electrochemistry and fluorescence imaging. Current-producing biofilms of Marinobacter atlanticus constitutively expressing green fluorescent protein were grown on the flow cell working electrode. Increasing current corresponded with increasing surface coverage and was comparable to biofilms grown in typical stirred-batch reactors. An isopropyl β-d-1-thiogalactopyranoside (IPTG) inducible system driving yellow fluorescent protein was used to assess the spatiotemporal activation of protein expression within the biofilm at different stages of growth and induction dynamics. The response time ranged from 30 min to 5 h, depending on the conditions. These data demonstrate that the electrochemical flow cell can evaluate the performance of an electrically active environmental bacterium under conditions relevant for development as a living electronic sensor.
Collapse
Affiliation(s)
- Daniel A. Phillips
- American Society for Engineering Education, 1818 N Street N.W. Suite 600, Washington, D.C. 20036, United States
| | - Lina J. Bird
- Naval Research Laboratory, 4555 Overlook Avenue, SW, Washington, D.C. 20375, United States
| | - Brian J. Eddie
- Naval Research Laboratory, 4555 Overlook Avenue, SW, Washington, D.C. 20375, United States
| | - Matthew D. Yates
- Naval Research Laboratory, 4555 Overlook Avenue, SW, Washington, D.C. 20375, United States
| | - Leonard M. Tender
- Naval Research Laboratory, 4555 Overlook Avenue, SW, Washington, D.C. 20375, United States
| | - Christopher A. Voigt
- Department of Biological Engineering and the Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Sarah M. Glaven
- Naval Research Laboratory, 4555 Overlook Avenue, SW, Washington, D.C. 20375, United States
| |
Collapse
|
24
|
Su L, Fukushima T, Ajo-Franklin CM. A hybrid cyt c maturation system enhances the bioelectrical performance of engineered Escherichia coli by improving the rate-limiting step. Biosens Bioelectron 2020; 165:112312. [PMID: 32729471 DOI: 10.1016/j.bios.2020.112312] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 12/26/2022]
Abstract
Bioelectronic devices can use electron flux to enable communication between biotic components and abiotic electrodes. We have modified Escherichia coli to electrically interact with electrodes by expressing the cytochrome c from Shewanella oneidensis MR-1. However, we observe inefficient electrical performance, which we hypothesize is due to the limited compatibility of the E. coli cytochrome c maturation (Ccm) systems with MR-1 cytochrome c. Here we test whether the bioelectronic performance of E. coli can be improved by constructing hybrid Ccm systems containing protein domains from both E. coli and S. oneidensis MR-1. The hybrid CcmH increased cytochrome c expression by increasing the abundance of CymA 60%, while only slightly changing the abundance of the other cytochromes c. Electrochemical measurements showed that the overall current from the hybrid ccm strain increased 121% relative to the wildtype ccm strain, with an electron flux per cell of 12.3 ± 0.3 fA·cell-1. Additionally, the hybrid ccm strain doubled its electrical response with the addition of exogenous flavin, and quantitative analysis of this demonstrates CymA is the rate-limiting step in this electron conduit. These results demonstrate that this hybrid Ccm system can enhance the bioelectrical performance of the cyt c expressing E. coli, allowing the construction of more efficient bioelectronic devices.
Collapse
Affiliation(s)
- Lin Su
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210018, China; Department of BioSciences, Rice University, Houston, TX, 77005, USA; Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Tatsuya Fukushima
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Caroline M Ajo-Franklin
- Department of BioSciences, Rice University, Houston, TX, 77005, USA; Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; Molecular Biophysics and Integrated Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; Institute for Biosciences and Bioengineering, Rice University, Houston, TX, 77005, USA.
| |
Collapse
|
25
|
Su L, Fukushima T, Prior A, Baruch M, Zajdel TJ, Ajo-Franklin CM. Modifying Cytochrome c Maturation Can Increase the Bioelectronic Performance of Engineered Escherichia coli. ACS Synth Biol 2020; 9:115-124. [PMID: 31880923 DOI: 10.1021/acssynbio.9b00379] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Genetic circuits that encode extracellular electron transfer (EET) pathways allow the intracellular state of Escherichia coli to be electronically monitored and controlled. However, relatively low electron flux flows through these pathways, limiting the degree of control by these circuits. Since the EET pathway is composed of multiple multiheme cytochromes c (cyts c) from Shewanella oneidensis MR-1, we hypothesized that lower expression levels of cyt c may explain this low EET flux and may be caused by the differences in the cyt c maturation (ccm) machinery between these two species. Here, we constructed random mutations within ccmH by error-prone PCR and screened for increased cyt c production. We identified two ccmH mutants, ccmH-132 and ccmH-195, that exhibited increased heterologous cyt c expression, but had different effects on EET. The ccmH-132 strain reduced WO3 nanoparticles faster than the parental control, whereas the ccmH-195 strain reduced more slowly. The same trend is reflected in electrical current generation: ccmH-132, which has only a single mutation from WT, drastically increased current production by 77%. The percentage of different cyt c proteins in these two mutants suggests that the stoichiometry of the S. oneidensis cyts c is a key determinant of current production by Mtr-expressing E. coli. Thus, we conclude that modulating cyt c maturation effectively improves genetic circuits governing EET in engineered biological systems, enabling better bioelectronic control of E. coli.
Collapse
Affiliation(s)
- Lin Su
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210018, China
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Tatsuya Fukushima
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Andrew Prior
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Moshe Baruch
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Tom J. Zajdel
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Caroline M. Ajo-Franklin
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Molecular Biophysics and Integrated Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Synthetic Biology Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
26
|
Wu B, Atkinson JT, Kahanda D, Bennett GN, Silberg JJ. Combinatorial design of chemical‐dependent protein switches for controlling intracellular electron transfer. AIChE J 2019. [DOI: 10.1002/aic.16796] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Bingyan Wu
- Biochemistry & Cell Biology Graduate Program Rice University Houston Texas
- Department of Biosciences Rice University Houston Texas
| | - Joshua T. Atkinson
- Department of Biosciences Rice University Houston Texas
- Systems, Synthetic, & Physical Biology Graduate Program Rice University Houston Texas
| | | | - George N. Bennett
- Department of Biosciences Rice University Houston Texas
- Department of Chemical & Biomolecular Engineering Rice University Houston Texas
| | - Jonathan J. Silberg
- Department of Biosciences Rice University Houston Texas
- Department of Chemical & Biomolecular Engineering Rice University Houston Texas
- Department of Bioengineering Rice University Houston Texas
| |
Collapse
|
27
|
Glaven SM. Bioelectrochemical systems and synthetic biology: more power, more products. Microb Biotechnol 2019; 12:819-823. [PMID: 31264368 PMCID: PMC6680619 DOI: 10.1111/1751-7915.13456] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Affiliation(s)
- Sarah M Glaven
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, DC, USA
| |
Collapse
|
28
|
Reaching full potential: bioelectrochemical systems for storing renewable energy in chemical bonds. Curr Opin Biotechnol 2019; 57:66-72. [DOI: 10.1016/j.copbio.2019.01.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/16/2018] [Accepted: 01/29/2019] [Indexed: 12/11/2022]
|
29
|
Chellamuthu P, Naughton K, Pirbadian S, Silva KPT, Chavez MS, El-Naggar MY, Boedicker J. Biogenic Control of Manganese Doping in Zinc Sulfide Nanomaterial Using Shewanella oneidensis MR-1. Front Microbiol 2019; 10:938. [PMID: 31134005 PMCID: PMC6514046 DOI: 10.3389/fmicb.2019.00938] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 04/12/2019] [Indexed: 12/03/2022] Open
Abstract
Bacteria naturally alter the redox state of many compounds and perform atom-by-atom nanomaterial synthesis to create many inorganic materials. Recent advancements in synthetic biology have spurred interest in using biological systems to manufacture nanomaterials, implementing biological strategies to specify the nanomaterial characteristics such as size, shape, and optical properties. Here, we combine the natural synthetic capabilities of microbes with engineered genetic control circuits toward biogenically synthesized semiconductor nanomaterials. Using an engineered strain of Shewanella oneindensis with inducible expression of the cytochrome complex MtrCAB, we control the reduction of manganese (IV) oxide. Cytochrome expression levels were regulated using an inducer molecule, which enabled precise modulation of dopant incorporation into manganese doped zinc sulfide nanoparticles (Mn:ZnS). Thereby, a synthetic gene circuit controlled the optical properties of biogenic quantum dots. These biogenically assembled nanomaterials have similar physical and optoelectronic properties to chemically synthesized particles. Our results demonstrate the promise of implementing synthetic gene circuits for tunable control of nanomaterials made by biological systems.
Collapse
Affiliation(s)
- Prithiviraj Chellamuthu
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA, United States
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| | - Kyle Naughton
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA, United States
| | - Sahand Pirbadian
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA, United States
| | - Kalinga Pavan T. Silva
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA, United States
| | - Marko S. Chavez
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA, United States
| | - Mohamed Y. El-Naggar
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA, United States
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
- Department of Chemistry, University of Southern California, Los Angeles, CA, United States
| | - James Boedicker
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA, United States
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
30
|
Cao Y, Song M, Li F, Li C, Lin X, Chen Y, Chen Y, Xu J, Ding Q, Song H. A Synthetic Plasmid Toolkit for Shewanella oneidensis MR-1. Front Microbiol 2019; 10:410. [PMID: 30906287 PMCID: PMC6418347 DOI: 10.3389/fmicb.2019.00410] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 02/18/2019] [Indexed: 11/25/2022] Open
Abstract
Shewanella oneidensis MR-1 is a platform microorganism for understanding extracellular electron transfer (EET) with a fully sequenced and annotated genome. In comparison to other model microorganisms such as Escherichia coli, the available plasmid parts (such as promoters and replicons) are not sufficient to conveniently and quickly fine-tune the expression of multiple genes in S. oneidensis MR-1. Here, we constructed and characterized a plasmid toolkit that contains a set of expression vectors with a combination of promoters, replicons, antibiotic resistance genes, and an RK2 origin of transfer (oriT) cassette, in which each element can be easily changed by fixed restriction enzyme sites. The expression cassette is also compatible with BioBrick synthetic biology standards. Using green fluorescent protein (GFP) as a reporter, we tested and quantified the strength of promoters. The copy number of different replicons was also measured by real-time quantitative PCR. We further transformed two compatible plasmids with different antibiotic resistance genes into the recombinant S. oneidensis MR-1, enabling control over the expression of two different fluorescent proteins. This plasmid toolkit was further used for overexpression of the MtrCAB porin-c-type cytochrome complex in the S. oneidensis ΔmtrA strain. Tungsten trioxide (WO3) reduction and microbial fuel cell (MFC) assays revealed that the EET efficiency was improved most significantly when MtrCAB was expressed at a moderate level, thus demonstrating the utility of the plasmid toolkit in the EET regulation in S. oneidensis. The plasmid toolkit developed in this study is useful for rapid and convenient fine-tuning of gene expression and enhances the ability to genetically manipulate S. oneidensis MR-1.
Collapse
Affiliation(s)
- Yingxiu Cao
- Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Mengyuan Song
- Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Feng Li
- Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Congfa Li
- College of Food Science and Technology, Hainan University, Haikou, China
| | - Xue Lin
- College of Food Science and Technology, Hainan University, Haikou, China
| | - Yaru Chen
- Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Yuanyuan Chen
- Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Jing Xu
- Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Qian Ding
- Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Hao Song
- Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
31
|
Zou L, Huang YH, Long ZE, Qiao Y. On-going applications of Shewanella species in microbial electrochemical system for bioenergy, bioremediation and biosensing. World J Microbiol Biotechnol 2018; 35:9. [PMID: 30569420 DOI: 10.1007/s11274-018-2576-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 12/07/2018] [Indexed: 11/24/2022]
Abstract
Microbial electrochemical system (MES) has attracted ever-growing interest as a promising platform for renewable energy conversion and bioelectrochemical remediation. Shewanella species, the dissimilatory metal reduction model bacteria with versatile extracellular electron transfer (EET) strategies, are the well-received microorganisms in diverse MES devices for various practical applications as well as microbial EET mechanism investigation. Meanwhile, the available genomic information and the unceasing established gene-editing toolbox offer an unprecedented opportunity to boost the applications of Shewanella species in MES. This review thoroughly summarizes the status quo of the applications of Shewanella species in microbial fuel cells for bioelectricity generation, microbial electrosynthesis for biotransformation of valuable chemicals and bioremediation of environment-hazardous pollutants with synoptical discussion on their EET mechanism. Recent advances in rational design and genetic engineering of Shewanella strains for either promoting the MES performance or broadening their applications are surveyed. Moreover, some emerging applications beyond electricity generation, such as biosensing and biocomputing, are also documented. The challenges and perspectives for Shewanella-based MES are also discussed elaborately for the sake of not only discovering new scientific lights on microbial extracellular respiratory but also propelling practical applications.
Collapse
Affiliation(s)
- Long Zou
- College of Life Sciences, Jiangxi Normal University, Nanchang, 330022, China
| | - Yun-Hong Huang
- College of Life Sciences, Jiangxi Normal University, Nanchang, 330022, China
| | - Zhong-Er Long
- College of Life Sciences, Jiangxi Normal University, Nanchang, 330022, China.
| | - Yan Qiao
- Institute for Clean Energy and Advanced Materials, Faculty of Materials and Energy, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
32
|
Atkinson JT, Campbell IJ, Thomas EE, Bonitatibus SC, Elliott SJ, Bennett GN, Silberg JJ. Metalloprotein switches that display chemical-dependent electron transfer in cells. Nat Chem Biol 2018; 15:189-195. [PMID: 30559426 DOI: 10.1038/s41589-018-0192-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 11/07/2018] [Indexed: 11/09/2022]
Abstract
Biological electron transfer is challenging to directly regulate using environmental conditions. To enable dynamic, protein-level control over energy flow in metabolic systems for synthetic biology and bioelectronics, we created ferredoxin logic gates that utilize transcriptional and post-translational inputs to control energy flow through a synthetic electron transfer pathway that is required for bacterial growth. These logic gates were created by subjecting a thermostable, plant-type ferredoxin to backbone fission and fusing the resulting fragments to a pair of proteins that self-associate, a pair of proteins whose association is stabilized by a small molecule, and to the termini of a ligand-binding domain. We show that the latter domain insertion design strategy yields an allosteric ferredoxin switch that acquires an oxygen-tolerant [2Fe-2S] cluster and can use different chemicals, including a therapeutic drug and an environmental pollutant, to control the production of a reduced metabolite in Escherichia coli and cell lysates.
Collapse
Affiliation(s)
- Joshua T Atkinson
- Systems, Synthetic, and Physical Biology Graduate Program, Rice University, Houston, TX, USA
| | - Ian J Campbell
- Biochemistry and Cell Biology Graduate Program, Rice University, Houston, TX, USA
| | - Emily E Thomas
- Biochemistry and Cell Biology Graduate Program, Rice University, Houston, TX, USA
| | | | - Sean J Elliott
- Department of Chemistry, Boston University, Boston, MA, USA
| | - George N Bennett
- Department of BioSciences, Rice University, Houston, TX, USA.,Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA
| | - Jonathan J Silberg
- Department of BioSciences, Rice University, Houston, TX, USA. .,Department of Bioengineering, Rice University, Houston, TX, USA.
| |
Collapse
|