1
|
Poehlein A, Zeldes B, Flaiz M, Böer T, Lüschen A, Höfele F, Baur KS, Molitor B, Kröly C, Wang M, Zhang Q, Fan Y, Chao W, Daniel R, Li F, Basen M, Müller V, Angenent LT, Sousa DZ, Bengelsdorf FR. Advanced aspects of acetogens. BIORESOURCE TECHNOLOGY 2025; 427:131913. [PMID: 39626805 DOI: 10.1016/j.biortech.2024.131913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 11/28/2024] [Accepted: 11/28/2024] [Indexed: 03/21/2025]
Abstract
Acetogens are a diverse group of anaerobic bacteria that are capable of carbon dioxide reduction and have for long fascinated scientists due to their unique metabolic prowess. Historically, acetogens have been recognized for their remarkable ability to grow and to produce acetate from different one-carbon sources, including carbon dioxide, carbon monoxide, formate, methanol, and methylated organic compounds. The key metabolic pathway in acetogens responsible for converting these one-carbon sources is the Wood-Ljungdahl pathway. This review offers a comprehensive overview of the latest discoveries that are related to acetogens. It delves into a variety of topics, including newly isolated acetogens, their taxonomy and physiology and highlights novel metabolic properties. Additionally, it explores metabolic engineering strategies that are designed to expand the product range of acetogens or to understand specific traits of their metabolism. Lastly, the review presents innovative gas fermentation techniques within the context of industrial applications.
Collapse
Affiliation(s)
- Anja Poehlein
- Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Georg-August University, Göttingen, Germany
| | - Benjamin Zeldes
- Microbiology, Institute of Biological Sciences, University of Rostock, Rostock, Germany
| | - Maximilian Flaiz
- Laboratory of Microbiology, Wageningen University and Research, Wageningen 6708 WE, the Netherlands
| | - Tim Böer
- Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Georg-August University, Göttingen, Germany
| | - Alina Lüschen
- Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Georg-August University, Göttingen, Germany
| | - Franziska Höfele
- Institute of Molecular Biology and Biotechnology of Prokaryotes, University of Ulm, Ulm, Germany
| | - Kira S Baur
- Institute of Molecular Biology and Biotechnology of Prokaryotes, University of Ulm, Ulm, Germany
| | - Bastian Molitor
- Environmental Biotechnology Group, Department of Geosciences, University of Tübingen, Schnarrenbergstraße 94-96, Tübingen 72076, Germany; Cluster of Excellence - Controlling Microbes to Fight Infections, University of Tübingen, Auf der Morgenstelle 28, Tübingen 72074, Germany
| | - Christian Kröly
- Laboratory of Microbiology, Wageningen University and Research, Wageningen 6708 WE, the Netherlands; Institute of Molecular Biology and Biotechnology of Prokaryotes, University of Ulm, Ulm, Germany
| | - Meng Wang
- SINOPEC Dalian Research Institute of Petroleum and Petrochemical Co. Ltd, China
| | - Quan Zhang
- SINOPEC Dalian Research Institute of Petroleum and Petrochemical Co. Ltd, China.
| | - Yixuan Fan
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, China
| | - Wei Chao
- Beijing Shougang LanzaTech Technology Co. Ltd, Tianshunzhuang North Road, Shijingshan District, Beijing, China
| | - Rolf Daniel
- Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Georg-August University, Göttingen, Germany
| | - Fuli Li
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, China
| | - Mirko Basen
- Microbiology, Institute of Biological Sciences, University of Rostock, Rostock, Germany
| | - Volker Müller
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| | - Largus T Angenent
- Environmental Biotechnology Group, Department of Geosciences, University of Tübingen, Schnarrenbergstraße 94-96, Tübingen 72076, Germany
| | - Diana Z Sousa
- Laboratory of Microbiology, Wageningen University and Research, Wageningen 6708 WE, the Netherlands
| | - Frank R Bengelsdorf
- Institute of Molecular Biology and Biotechnology of Prokaryotes, University of Ulm, Ulm, Germany.
| |
Collapse
|
2
|
Zhai Y, Chen L, Ma L, Duan Y, Chen W, Long L, Wang G, Shi A, Chen G, Li D. Fluorescent protein-based anaerobic reporter for construction of promoter libraries in Clostridium autoethanogenum. Int J Biol Macromol 2025; 310:143155. [PMID: 40268006 DOI: 10.1016/j.ijbiomac.2025.143155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/10/2025] [Accepted: 04/12/2025] [Indexed: 04/25/2025]
Abstract
Clostridium autoethanogenum, a key organism for syngas fermentation, has great industrial potential as an anaerobic microbe. However, tools for monitoring and characterizing gene expression, such as fluorescent protein-based anaerobic reporters (FPARs), and promoter libraries for regulating expression intensity, are lacking. In this study, we developed a fluorescent protein-based anaerobic reporter (FPAR) tailored for C. autoethanogenum. The FPAR enabled intuitive and precise assessment of promoter activity, facilitating the creation of libraries of constitutive promoters with varying expression strengths, as well as lactose-inducible promoter libraries. The strongest constitutive promoter exhibited approximately 7.5-fold greater activity than the weakest, while the strongest inducible promoter demonstrated a 10-fold increase compared to the weakest. This work not only establishes an efficient FPAR system for C. autoethanogenum, but also provides key genetic elements for advancing metabolic engineering and optimizing industrial processes involving this microbe.
Collapse
Affiliation(s)
- Yida Zhai
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, PR China; School of Environment, Harbin Institute of Technology, Harbin 150090, PR China; Tianjin Key Laboratory for Industrial Biological System and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Limei Chen
- Tianjin Key Laboratory for Industrial Biological System and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Longxue Ma
- Tianjin Key Laboratory for Industrial Biological System and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Yu Duan
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, PR China; School of Environment, Harbin Institute of Technology, Harbin 150090, PR China; Tianjin Key Laboratory for Industrial Biological System and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Wuxi Chen
- Tianjin Key Laboratory for Industrial Biological System and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Liucheng Long
- Tianjin Key Laboratory for Industrial Biological System and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Guanglei Wang
- Tianjin Key Laboratory for Industrial Biological System and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Aijia Shi
- Tianjin Key Laboratory for Industrial Biological System and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Guofu Chen
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, PR China.
| | - Demao Li
- Tianjin Key Laboratory for Industrial Biological System and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| |
Collapse
|
3
|
Zeng J, Wang H, Xu Y, Han J, Li Y, Wen S, Wu C, Li D, Liu Z, Zhang X, Tian GB, Dong M. A Clostridioides difficile cell-free gene expression system for prototyping and gene expression analysis. Appl Environ Microbiol 2025; 91:e0156624. [PMID: 39745467 PMCID: PMC11784378 DOI: 10.1128/aem.01566-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 12/06/2024] [Indexed: 02/01/2025] Open
Abstract
Clostridioides difficile is an obligate anaerobic, Gram-positive bacterium that produces toxins. Despite technological progress, conducting gene expression analysis of C. difficile under different conditions continues to be labor-intensive. Therefore, there is a demand for simplified tools to investigate the transcriptional and translational regulation of C. difficile. The cell-free gene expression (CFE) system has demonstrated utility in various applications, including prototyping, protein production, and in vitro screening. In this study, we developed a C. difficile CFE system capable of in vitro transcription and translation (TX-TL) in the presence of oxygen. Through optimization of cell extract preparation and reaction systems, we increased the protein yield significantly. Furthermore, our observations indicated that this system exhibited higher protein yield using linear DNA templates than circular plasmids for in vitro expression. The prototyping capability of the C. difficile CFE system was assessed using a series of synthetic Clostridium promoters, demonstrating a good correlation between in vivo and in vitro expression. Additionally, we tested the expression of tcdB and tcdR from clinically relevant C. difficile strains using the CFE system, confirming higher toxin expression of the hypervirulent strain R20291. We believe that the CFE system can not only serve as a platform for in vitro protein synthesis and genetic part prototyping but also has the potential to be a simplified model for studying metabolic regulations in Clostridioides difficile.IMPORTANCEClostridioides difficile has been listed as an urgent threat due to its antibiotic resistance, and it is crucial to conduct gene expression analysis to understand gene functionality. However, this task can be challenging, given the need to maintain the bacterium in an anaerobic environment and the inefficiency of introducing genetic material into C. difficile cells. Conversely, the C. difficile cell-free gene expression (CFE) system enables in vitro transcription and translation in the presence of oxygen within just half an hour. Furthermore, the composition of the CFE system is adaptable, permitting the addition or removal of elements, regulatory proteins for example, during the reaction. As a result, this system could potentially offer an efficient and accessible approach to accelerate the study of gene expression and function in Clostridioides difficile.
Collapse
Affiliation(s)
- Ji Zeng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, China
| | - Hao Wang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, China
| | - Yuxi Xu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, China
| | - Jianying Han
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, China
| | - Yannan Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, China
| | - Shu'an Wen
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Key Laboratory of Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China
| | - Changbu Wu
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Key Laboratory of Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China
| | - Dani Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, China
| | - Zheng Liu
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Xiaokang Zhang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Guo-Bao Tian
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Key Laboratory of Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China
| | - Min Dong
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
- Department of Urology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Yue SJ, Zhou Z, Huang P, Wei YC, Zhan SX, Feng TT, Liu JR, Sun HC, Han WS, Xue ZL, Yan ZX, Wang W, Zhang XH, Hu HB. Development of the Static and Dynamic Gene Expression Regulation Toolkit in Pseudomonas chlororaphis. ACS Synth Biol 2024; 13:913-920. [PMID: 38377538 DOI: 10.1021/acssynbio.3c00714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
The advancement of metabolic engineering and synthetic biology has promoted in-depth research on the nonmodel microbial metabolism, and the potential of nonmodel organisms in industrial biotechnology is becoming increasingly evident. The nonmodel organism Pseudomonas chlororaphis is a safe plant growth promoting bacterium for the production of phenazine compounds; however, its application is seriously hindered due to the lack of an effective gene expression precise regulation toolkit. In this study, we constructed a library of 108 promoter-5'-UTR (PUTR) and characterized them through fluorescent protein detection. Then, 6 PUTRs with stable low, intermediate, and high intensities were further characterized by report genes lacZ encoding β-galactosidase from Escherichia coli K12 and phzO encoding PCA monooxygenase from P. chlororaphis GP72 and thus developed as a static gene expression regulation system. Furthermore, the stable and high-intensity expressed PMOK_RS0128085UTR was fused with the LacO operator to construct an IPTG-induced plasmid, and a self-induced plasmid was constructed employing the high-intensity PMOK_RS0116635UTR regulated by cell density, resulting in a dynamic gene expression regulation system. In summary, this study established two sets of static and dynamic regulatory systems for P. chlororaphis, providing an effective toolkit for fine-tuning gene expression and reprograming the metabolism flux.
Collapse
Affiliation(s)
- Sheng-Jie Yue
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zheng Zhou
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Peng Huang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yi-Chen Wei
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Sheng-Xuan Zhan
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tong-Tong Feng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ji-Rui Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hao-Cheng Sun
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wei-Shang Han
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhao-Long Xue
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zi-Xin Yan
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wei Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xue-Hong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- National Experimental Teaching Center for Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hong-Bo Hu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- National Experimental Teaching Center for Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
5
|
Re A. Translational efficiency in gas-fermenting bacteria: Adding a new layer of regulation to gene expression in acetogens. iScience 2023; 26:108383. [PMID: 38034355 PMCID: PMC10684804 DOI: 10.1016/j.isci.2023.108383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023] Open
Abstract
Major advances in mastering metabolism of single carbon (C1) gaseous feedstocks in acetogenic microorganisms are primed to fuel the transition toward environmentally sustainable and cost-efficient production schemes of biofuels and value-added biochemicals. Since acetogens grow under autotrophic energy-limited conditions, protein synthesis is expected to be controlled. This survey integrated publicly available RNA sequencing and ribosome profiling studies of several acetogens, providing data on genome-scale transcriptional and translational responses of A. woodii, E. limosum, C. drakei, and C. ljungdahlii to autotrophic and heterotrophic growth conditions. The extent of translational efficiency turned out to vary across key functional modules in acetogens' metabolism. Translational control was confirmed to support stoichiometric protein production in multimeric complexes. Comparing the autotrophic to the heterotrophic growth condition revealed growth-dependent regulation of translational efficiency, pointing at translational buffering as a widespread phenomenon shared by acetogens.
Collapse
Affiliation(s)
- Angela Re
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Torino, Italy
| |
Collapse
|
6
|
Tan Y, Liang J, Lai M, Wan S, Luo X, Li F. Advances in synthetic biology toolboxes paving the way for mechanistic understanding and strain engineering of gut commensal Bacteroides spp. and Clostridium spp. Biotechnol Adv 2023; 69:108272. [PMID: 37844770 DOI: 10.1016/j.biotechadv.2023.108272] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 10/18/2023]
Abstract
The gut microbiota plays a significant role in influencing human immunity, metabolism, development, and behavior by producing a wide range of metabolites. While there is accumulating data on several microbiota-derived small molecules that contribute to host health and disease, our knowledge regarding the molecular mechanisms underlying metabolite-mediated microbe-host interactions remains limited. This is primarily due to the lack of efficient genetic tools for most commensal bacteria, especially those belonging to the dominant phyla Bacteroides spp. and Clostridium spp., which hinders the application of synthetic biology to these gut commensal bacteria. In this review, we provide an overview of recent advances in synthetic biology tools developed for the two dominant genera, as well as their applications in deciphering the mechanisms of microbe-host interactions mediated by microbiota-derived small molecules. We also discuss the potential biomedical applications of engineering commensal bacteria using these toolboxes. Finally, we share our perspective on the future development of synthetic biology tools for a better understanding of small molecule-mediated microbe-host interactions and their engineering for biomedical purposes.
Collapse
Affiliation(s)
- Yang Tan
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Energy Institute, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, China.
| | - Jing Liang
- Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Mingchi Lai
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Sai Wan
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Energy Institute, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Xiaozhou Luo
- Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Fuli Li
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Energy Institute, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, China.
| |
Collapse
|
7
|
Guo X, Zhang H, Feng J, Yang L, Luo K, Fu H, Wang J. De novo biosynthesis of butyl butyrate in engineered Clostridium tyrobutyricum. Metab Eng 2023; 77:64-75. [PMID: 36948242 DOI: 10.1016/j.ymben.2023.03.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 03/07/2023] [Accepted: 03/20/2023] [Indexed: 03/24/2023]
Abstract
Butyl butyrate has broad applications in foods, cosmetics, solvents, and biofuels. Microbial synthesis of bio-based butyl butyrate has been regarded as a promising approach recently. Herein, we engineered Clostridium tyrobutyricum ATCC 25755 to achieve de novo biosynthesis of butyl butyrate from fermentable sugars. Through introducing the butanol synthetic pathway (enzyme AdhE2), screening alcohol acyltransferases (AATs), adjusting transcription of VAAT and adhE2 (i.e., optimizing promoter), and efficient supplying butyryl-CoA, an excellent engineered strain, named MUV3, was obtained with ability to produce 4.58 g/L butyl butyrate at 25 °C with glucose in serum bottles. More NADH is needed for butyl butyrate synthesis, thus mannitol (the more reduced substrate) was employed to produce butyl butyrate. Ultimately, 62.59 g/L butyl butyrate with a selectivity of 95.97%, and a yield of 0.21 mol/mol was obtained under mannitol with fed-batch fermentation in a 5 L bioreactor, which is the highest butyl butyrate titer reported so far. Altogether, this study presents an anaerobic fermentative platform for de novo biosynthesis of butyl butyrate in one step, which lays the foundation for butyl butyrate biosynthesis from renewable biomass feedstocks.
Collapse
Affiliation(s)
- Xiaolong Guo
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Huihui Zhang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Jun Feng
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Lu Yang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Kui Luo
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Hongxin Fu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, 510006, China.
| | - Jufang Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
8
|
Zhang Y, Bailey TS, Kubiak AM, Lambin P, Theys J. Heterologous Gene Regulation in Clostridia: Rationally Designed Gene Regulation for Industrial and Medical Applications. ACS Synth Biol 2022; 11:3817-3828. [PMID: 36265075 PMCID: PMC9680021 DOI: 10.1021/acssynbio.2c00401] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Several species from the Clostridium genus show promise as industrial solvent producers and cancer therapeutic delivery vehicles. Previous development of shuttle plasmids and genome editing tools has aided the study of these species and enabled their exploitation in industrial and medical applications. Nevertheless, the precise control of gene expression is still hindered by the limited range of characterized promoters. To address this, libraries of promoters (native and synthetic), 5' UTRs, and alternative start codons were constructed. These constructs were tested in Escherichia coli K-12, Clostridium sporogenes NCIMB 10696, and Clostridium butyricum DSM 10702, using β-glucuronidase (gusA) as a gene reporter. Promoter activity was corroborated using a second gene reporter, nitroreductase (nmeNTR) from Neisseria meningitides. A strong correlation was observed between the two reporters. In C. sporogenes and C. butyricum, respectively, changes in GusA activity between the weakest and strongest expressing levels were 129-fold and 78-fold. Similar results were obtained with the nmeNTR. Using the GusA reporter, translation initiation from six alternative (non-AUG) start codons was measured in E. coli, C. sporogenes, and C. butyricum. Clearly, species-specific differences between clostridia and E. coli in translation initiation were observed, and the performance of the start codons was influenced by the upstream 5' UTR sequence. These results highlight a new opportunity for gene control in recombinant clostridia. To demonstrate the value of these results, expression of the sacB gene from Bacillus subtilis was optimized for use as a novel negative selection marker in C. butyricum. In summary, these results indicate improvements in the understanding of heterologous gene regulation in Clostridium species and E. coli cloning strains. This new knowledge can be utilized for rationally designed gene regulation in Clostridium-mediated industrial and medical applications, as well as fundamental research into the biology of Clostridium species.
Collapse
Affiliation(s)
- Yanchao Zhang
- The
M-Lab, Department of Precision Medicine, GROW - School of Oncology
and Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands,
| | - Tom S. Bailey
- The
M-Lab, Department of Precision Medicine, GROW - School of Oncology
and Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Aleksandra M. Kubiak
- The
M-Lab, Department of Precision Medicine, GROW - School of Oncology
and Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands,Exomnis
Biotech BV, Oxfordlaan
55, 6229 EV Maastricht, The Netherlands
| | - Philippe Lambin
- The
M-Lab, Department of Precision Medicine, GROW - School of Oncology
and Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Jan Theys
- The
M-Lab, Department of Precision Medicine, GROW - School of Oncology
and Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
9
|
Lauer I, Philipps G, Jennewein S. Metabolic engineering of Clostridium ljungdahlii for the production of hexanol and butanol from CO 2 and H 2. Microb Cell Fact 2022; 21:85. [PMID: 35568911 PMCID: PMC9107641 DOI: 10.1186/s12934-022-01802-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/11/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The replacement of fossil fuels and petrochemicals with sustainable alternatives is necessary to mitigate the effects of climate change and also to counteract diminishing fossil resources. Acetogenic microorganisms such as Clostridium spp. are promising sources of fuels and basic chemical precursors because they efficiently utilize CO and CO2 as carbon source. However the conversion into high titers of butanol and hexanol is challenging. RESULTS Using a metabolic engineering approach we transferred a 17.9-kb gene cluster via conjugation, containing 13 genes from C. kluyveri and C. acetobutylicum for butanol and hexanol biosynthesis, into C. ljungdahlii. Plasmid-based expression resulted in 1075 mg L-1 butanol and 133 mg L-1 hexanol from fructose in complex medium, and 174 mg L-1 butanol and 15 mg L-1 hexanol from gaseous substrate (20% CO2 and 80% H2) in minimal medium. Product formation was increased by the genomic integration of the heterologous gene cluster. We confirmed the expression of all 13 enzymes by targeted proteomics and identified potential rate-limiting steps. Then, we removed the first-round selection marker using CRISPR/Cas9 and integrated an additional 7.8 kb gene cluster comprising 6 genes from C. carboxidivorans. This led to a significant increase in the hexanol titer (251 mg L-1) at the expense of butanol (158 mg L-1), when grown on CO2 and H2 in serum bottles. Fermentation of this strain at 2-L scale produced 109 mg L-1 butanol and 393 mg L-1 hexanol. CONCLUSIONS We thus confirmed the function of the butanol/hexanol biosynthesis genes and achieved hexanol biosynthesis in the syngas-fermenting species C. ljungdahlii for the first time, reaching the levels produced naturally by C. carboxidivorans. The genomic integration strain produced hexanol without selection and is therefore suitable for continuous fermentation processes.
Collapse
Affiliation(s)
- Ira Lauer
- Department for Industrial Biotechnology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstr. 6, 52074, Aachen, Germany
| | - Gabriele Philipps
- Department for Industrial Biotechnology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstr. 6, 52074, Aachen, Germany
| | - Stefan Jennewein
- Department for Industrial Biotechnology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstr. 6, 52074, Aachen, Germany.
| |
Collapse
|
10
|
Development of highly characterized genetic bioparts for efficient gene expression in CO2-fixing Eubacterium limosum. Metab Eng 2022; 72:215-226. [DOI: 10.1016/j.ymben.2022.03.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/20/2022] [Accepted: 03/26/2022] [Indexed: 12/22/2022]
|
11
|
Lee J. Lessons from Clostridial Genetics: Toward Engineering Acetogenic Bacteria. BIOTECHNOL BIOPROC E 2021. [DOI: 10.1007/s12257-021-0062-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Jia D, He M, Tian Y, Shen S, Zhu X, Wang Y, Zhuang Y, Jiang W, Gu Y. Metabolic Engineering of Gas-Fermenting Clostridium ljungdahlii for Efficient Co-production of Isopropanol, 3-Hydroxybutyrate, and Ethanol. ACS Synth Biol 2021; 10:2628-2638. [PMID: 34549587 DOI: 10.1021/acssynbio.1c00235] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Rational design and modification of autotrophic bacteria to efficiently produce high-value chemicals and biofuels are crucial for establishing a sustainable and economically viable process for one-carbon (C1) source utilization, which, however, remains a challenge in metabolic engineering. In this study, autotrophic Clostridium ljungdahlii was metabolically engineered to efficiently co-produce three important bulk chemicals, isopropanol, 3-hydroxybutyrate (3-HB), and ethanol (together, IHE), using syngas (CO2/CO). An artificial isopropanol-producing pathway was first constructed and optimized in C. ljungdahlii to achieve an efficient production of isopropanol and an unexpected product, 3-HB. Based on this finding, an endogenous active dehydrogenase capable of converting acetoacetate to 3-HB was identified in C. ljungdahlii, thereby revealing an efficient 3-HB-producing pathway. The engineered strain was further optimized to reassimilate acetic acid and synthesize 3-HB by introducing heterologous functional genes. Finally, the best-performing strain was able to produce 13.4, 3.0, and 28.4 g/L of isopropanol, 3-HB, and ethanol, respectively, in continuous gas fermentation. Therefore, this work represents remarkable progress in microbial production of bulk chemicals using C1 gases.
Collapse
Affiliation(s)
- Dechen Jia
- Key Laboratory of Synthetic Biology, The State Key Laboratory of Plant Carbon-Nitrogen Assimilation, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meiyu He
- Key Laboratory of Synthetic Biology, The State Key Laboratory of Plant Carbon-Nitrogen Assimilation, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Yi Tian
- Key Laboratory of Synthetic Biology, The State Key Laboratory of Plant Carbon-Nitrogen Assimilation, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Shaohuang Shen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xianfeng Zhu
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Yonghong Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yingping Zhuang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Weihong Jiang
- Key Laboratory of Synthetic Biology, The State Key Laboratory of Plant Carbon-Nitrogen Assimilation, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yang Gu
- Key Laboratory of Synthetic Biology, The State Key Laboratory of Plant Carbon-Nitrogen Assimilation, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
13
|
Zhang C, Nie X, Zhang H, Wu Y, He H, Yang C, Jiang W, Gu Y. Functional dissection and modulation of the BirA protein for improved autotrophic growth of gas-fermenting Clostridium ljungdahlii. Microb Biotechnol 2021; 14:2072-2089. [PMID: 34291572 PMCID: PMC8449670 DOI: 10.1111/1751-7915.13884] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 06/22/2021] [Indexed: 11/28/2022] Open
Abstract
Gas-fermenting Clostridium species can convert one-carbon gases (CO2 /CO) into a variety of chemicals and fuels, showing excellent application prospects in green biological manufacturing. The discovery of crucial genes and proteins with novel functions is important for understanding and further optimization of these autotrophic bacteria. Here, we report that the Clostridium ljungdahlii BirA protein (ClBirA) plays a pleiotropic regulator role, which, together with its biotin protein ligase (BPL) activity, enables an effective control of autotrophic growth of C. ljungdahlii. The structural modulation of ClBirA, combined with the in vivo and in vitro analyses, further reveals the action mechanism of ClBirA's dual roles as well as their interaction in C. ljungdahlii. Importantly, an atypical, flexible architecture of the binding site was found to be employed by ClBirA in the regulation of a lot of essential pathway genes, thereby expanding BirA's target genes to a broader range in clostridia. Based on these findings, molecular modification of ClBirA was performed, and an improved cellular performance of C. ljungdahlii was achieved in gas fermentation. This work reveals a previously unknown potent role of BirA in gas-fermenting clostridia, providing new perspective for understanding and engineering these autotrophic bacteria.
Collapse
Affiliation(s)
- Can Zhang
- Key Laboratory of Synthetic BiologyThe State Key Laboratory of Plant Carbon‐Nitrogen AssimilationCAS Center for Excellence in Molecular Plant SciencesShanghai Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghai200032China
- University of Chinese Academy of SciencesBeijingChina
| | - Xiaoqun Nie
- Key Laboratory of Synthetic BiologyThe State Key Laboratory of Plant Carbon‐Nitrogen AssimilationCAS Center for Excellence in Molecular Plant SciencesShanghai Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghai200032China
| | - Huan Zhang
- Key Laboratory of Synthetic BiologyThe State Key Laboratory of Plant Carbon‐Nitrogen AssimilationCAS Center for Excellence in Molecular Plant SciencesShanghai Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghai200032China
- University of Chinese Academy of SciencesBeijingChina
| | - Yuwei Wu
- Key Laboratory of Synthetic BiologyThe State Key Laboratory of Plant Carbon‐Nitrogen AssimilationCAS Center for Excellence in Molecular Plant SciencesShanghai Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghai200032China
- University of Chinese Academy of SciencesBeijingChina
| | - Huiqi He
- Key Laboratory of Synthetic BiologyThe State Key Laboratory of Plant Carbon‐Nitrogen AssimilationCAS Center for Excellence in Molecular Plant SciencesShanghai Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghai200032China
| | - Chen Yang
- Key Laboratory of Synthetic BiologyThe State Key Laboratory of Plant Carbon‐Nitrogen AssimilationCAS Center for Excellence in Molecular Plant SciencesShanghai Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghai200032China
| | - Weihong Jiang
- Key Laboratory of Synthetic BiologyThe State Key Laboratory of Plant Carbon‐Nitrogen AssimilationCAS Center for Excellence in Molecular Plant SciencesShanghai Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghai200032China
| | - Yang Gu
- Key Laboratory of Synthetic BiologyThe State Key Laboratory of Plant Carbon‐Nitrogen AssimilationCAS Center for Excellence in Molecular Plant SciencesShanghai Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghai200032China
| |
Collapse
|
14
|
Anaerobic fluorescent reporters for cell identification, microbial cell biology and high-throughput screening of microbiota and genomic libraries. Curr Opin Biotechnol 2021; 71:151-163. [PMID: 34375813 DOI: 10.1016/j.copbio.2021.07.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/08/2021] [Indexed: 11/23/2022]
Abstract
The lack of real-time reporters in obligate anaerobes has limited studies in gene expression, promoter characterization, library screening, population dynamics, and cell biology in these organisms. While the use of enzymatic, colorimetric, and luminescent reporters has been reported, the need for reliable anaerobic fluorescent proteins is widely acknowledged. Recently, the fluorescent proteins HaloTag, SNAP-tag and FAST have been established as reliable reporters in Clostridium spp., thus suggesting that these reporters can be adopted widely for many obligate anaerobes. With a multitude of labeling options, these anaerobic fluorescent proteins hold a great potential for screening promoters, terminators, and RBS sites, tracking population dynamics in complex multi-species co-cultures, such as microbiomes, screening libraries, and in cell biology studies of protein localization and interactions using high-resolution microscopy.
Collapse
|
15
|
Joseph RC, Kelley SQ, Kim NM, Sandoval NR. Metabolic Engineering and the Synthetic Biology Toolbox for
Clostridium. Metab Eng 2021. [DOI: 10.1002/9783527823468.ch16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
16
|
Fackler N, Heijstra BD, Rasor BJ, Brown H, Martin J, Ni Z, Shebek KM, Rosin RR, Simpson SD, Tyo KE, Giannone RJ, Hettich RL, Tschaplinski TJ, Leang C, Brown SD, Jewett MC, Köpke M. Stepping on the Gas to a Circular Economy: Accelerating Development of Carbon-Negative Chemical Production from Gas Fermentation. Annu Rev Chem Biomol Eng 2021; 12:439-470. [PMID: 33872517 DOI: 10.1146/annurev-chembioeng-120120-021122] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Owing to rising levels of greenhouse gases in our atmosphere and oceans, climate change poses significant environmental, economic, and social challenges globally. Technologies that enable carbon capture and conversion of greenhouse gases into useful products will help mitigate climate change by enabling a new circular carbon economy. Gas fermentation usingcarbon-fixing microorganisms offers an economically viable and scalable solution with unique feedstock and product flexibility that has been commercialized recently. We review the state of the art of gas fermentation and discuss opportunities to accelerate future development and rollout. We discuss the current commercial process for conversion of waste gases to ethanol, including the underlying biology, challenges in process scale-up, and progress on genetic tool development and metabolic engineering to expand the product spectrum. We emphasize key enabling technologies to accelerate strain development for acetogens and other nonmodel organisms.
Collapse
Affiliation(s)
- Nick Fackler
- LanzaTech Inc., Skokie, Illinois 60077, USA; , , , , , ,
| | | | - Blake J Rasor
- Department of Chemical and Biological Engineering, Chemistry of Life Processes Institute, and Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, USA; , , , , , ,
| | - Hunter Brown
- Department of Chemical and Biological Engineering, Chemistry of Life Processes Institute, and Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, USA; , , , , , ,
| | - Jacob Martin
- Department of Chemical and Biological Engineering, Chemistry of Life Processes Institute, and Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, USA; , , , , , ,
| | - Zhuofu Ni
- Department of Chemical and Biological Engineering, Chemistry of Life Processes Institute, and Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, USA; , , , , , ,
| | - Kevin M Shebek
- Department of Chemical and Biological Engineering, Chemistry of Life Processes Institute, and Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, USA; , , , , , ,
| | - Rick R Rosin
- LanzaTech Inc., Skokie, Illinois 60077, USA; , , , , , ,
| | - Séan D Simpson
- LanzaTech Inc., Skokie, Illinois 60077, USA; , , , , , ,
| | - Keith E Tyo
- Department of Chemical and Biological Engineering, Chemistry of Life Processes Institute, and Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, USA; , , , , , ,
| | - Richard J Giannone
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA; ,
| | - Robert L Hettich
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA; ,
| | | | - Ching Leang
- LanzaTech Inc., Skokie, Illinois 60077, USA; , , , , , ,
| | - Steven D Brown
- LanzaTech Inc., Skokie, Illinois 60077, USA; , , , , , ,
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Chemistry of Life Processes Institute, and Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, USA; , , , , , , .,Robert H. Lurie Comprehensive Cancer Center and Simpson Querrey Institute, Northwestern University, Chicago, Illinois 60611, USA
| | - Michael Köpke
- LanzaTech Inc., Skokie, Illinois 60077, USA; , , , , , ,
| |
Collapse
|
17
|
Bourgade B, Minton NP, Islam MA. Genetic and metabolic engineering challenges of C1-gas fermenting acetogenic chassis organisms. FEMS Microbiol Rev 2021; 45:fuab008. [PMID: 33595667 PMCID: PMC8351756 DOI: 10.1093/femsre/fuab008] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 01/15/2021] [Indexed: 12/11/2022] Open
Abstract
Unabated mining and utilisation of petroleum and petroleum resources and their conversion to essential fuels and chemicals have drastic environmental consequences, contributing to global warming and climate change. In addition, fossil fuels are finite resources, with a fast-approaching shortage. Accordingly, research efforts are increasingly focusing on developing sustainable alternatives for chemicals and fuels production. In this context, bioprocesses, relying on microorganisms, have gained particular interest. For example, acetogens use the Wood-Ljungdahl pathway to grow on single carbon C1-gases (CO2 and CO) as their sole carbon source and produce valuable products such as acetate or ethanol. These autotrophs can, therefore, be exploited for large-scale fermentation processes to produce industrially relevant chemicals from abundant greenhouse gases. In addition, genetic tools have recently been developed to improve these chassis organisms through synthetic biology approaches. This review will focus on the challenges of genetically and metabolically modifying acetogens. It will first discuss the physical and biochemical obstacles complicating successful DNA transfer in these organisms. Current genetic tools developed for several acetogens, crucial for strain engineering to consolidate and expand their catalogue of products, will then be described. Recent tool applications for metabolic engineering purposes to allow redirection of metabolic fluxes or production of non-native compounds will lastly be covered.
Collapse
Affiliation(s)
- Barbara Bourgade
- Department of Chemical Engineering, Loughborough University, Loughborough, Leicestershire, LE11 3TU, UK
| | - Nigel P Minton
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, University Park, University of Nottingham, Nottingham, Nottinghamshire, NG7 2RD, UK
| | - M Ahsanul Islam
- Department of Chemical Engineering, Loughborough University, Loughborough, Leicestershire, LE11 3TU, UK
| |
Collapse
|
18
|
Riley LA, Guss AM. Approaches to genetic tool development for rapid domestication of non-model microorganisms. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:30. [PMID: 33494801 PMCID: PMC7830746 DOI: 10.1186/s13068-020-01872-z] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 12/30/2020] [Indexed: 05/04/2023]
Abstract
Non-model microorganisms often possess complex phenotypes that could be important for the future of biofuel and chemical production. They have received significant interest the last several years, but advancement is still slow due to the lack of a robust genetic toolbox in most organisms. Typically, "domestication" of a new non-model microorganism has been done on an ad hoc basis, and historically, it can take years to develop transformation and basic genetic tools. Here, we review the barriers and solutions to rapid development of genetic transformation tools in new hosts, with a major focus on Restriction-Modification systems, which are a well-known and significant barrier to efficient transformation. We further explore the tools and approaches used for efficient gene deletion, DNA insertion, and heterologous gene expression. Finally, more advanced and high-throughput tools are now being developed in diverse non-model microbes, paving the way for rapid and multiplexed genome engineering for biotechnology.
Collapse
Affiliation(s)
- Lauren A Riley
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- Bredesen Center, University of Tennessee, Knoxville, TN, 37996, USA
| | - Adam M Guss
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
- Bredesen Center, University of Tennessee, Knoxville, TN, 37996, USA.
| |
Collapse
|
19
|
Luo JM, Zhu WC, Cao ST, Lu ZY, Zhang MH, Song B, Shen YB, Wang M. Improving Biotransformation Efficiency of Arthrobacter simplex by Enhancement of Cell Stress Tolerance and Enzyme Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:704-716. [PMID: 33406824 DOI: 10.1021/acs.jafc.0c06592] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Arthrobacter simplex exhibits excellent Δ1-dehydrogenation ability, but the acquisition of the desirable strain is limited due to lacking of comprehensive genetic manipulation. Herein, a promoter collection for fine-tuning gene expression was achieved. Next, the expression level was enhanced and directed evolution of the global transcriptional factor (IrrE) was applied to enhance cell viability in systems containing more substrate and ethanol, thus contributing to higher production. IrrE promotes a stronger antioxidant defense system, more energy generation, and changed signal transduction. Using a stronger promoter, the enzyme activities were boosted but their positive effects on biotransformation performance were inferior to cell stress tolerance when exposed to challenging systems. Finally, an optimal strain was created by collectively reinforcing cell stress tolerance and catalytic enzyme activity, achieving a yield 261.8% higher relative to the initial situation. Our study provided effective methods for steroid-transforming strains with high efficiency.
Collapse
Affiliation(s)
- Jian-Mei Luo
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Wen-Cheng Zhu
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Shu-Ting Cao
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Zhi-Yi Lu
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Meng-Han Zhang
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Bo Song
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Yan-Bing Shen
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Min Wang
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| |
Collapse
|
20
|
Synthetic Biology on Acetogenic Bacteria for Highly Efficient Conversion of C1 Gases to Biochemicals. Int J Mol Sci 2020; 21:ijms21207639. [PMID: 33076477 PMCID: PMC7589590 DOI: 10.3390/ijms21207639] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/13/2020] [Accepted: 10/13/2020] [Indexed: 12/13/2022] Open
Abstract
Synthesis gas, which is mainly produced from fossil fuels or biomass gasification, consists of C1 gases such as carbon monoxide, carbon dioxide, and methane as well as hydrogen. Acetogenic bacteria (acetogens) have emerged as an alternative solution to recycle C1 gases by converting them into value-added biochemicals using the Wood-Ljungdahl pathway. Despite the advantage of utilizing acetogens as biocatalysts, it is difficult to develop industrial-scale bioprocesses because of their slow growth rates and low productivities. To solve these problems, conventional approaches to metabolic engineering have been applied; however, there are several limitations owing to the lack of required genetic bioparts for regulating their metabolic pathways. Recently, synthetic biology based on genetic parts, modules, and circuit design has been actively exploited to overcome the limitations in acetogen engineering. This review covers synthetic biology applications to design and build industrial platform acetogens.
Collapse
|
21
|
Köpke M, Simpson SD. Pollution to products: recycling of ‘above ground’ carbon by gas fermentation. Curr Opin Biotechnol 2020; 65:180-189. [DOI: 10.1016/j.copbio.2020.02.017] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/21/2020] [Accepted: 02/26/2020] [Indexed: 02/01/2023]
|
22
|
Charubin K, Streett H, Papoutsakis ET. Development of Strong Anaerobic Fluorescent Reporters for Clostridium acetobutylicum and Clostridium ljungdahlii Using HaloTag and SNAP-tag Proteins. Appl Environ Microbiol 2020; 86:e01271-20. [PMID: 32769192 PMCID: PMC7531948 DOI: 10.1128/aem.01271-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/04/2020] [Indexed: 12/12/2022] Open
Abstract
One of the biggest limitations in the study and engineering of anaerobic Clostridium organisms is the lack of strong fluorescent reporters capable of strong and real-time fluorescence. Recently, we developed a strong fluorescent reporter system for Clostridium organisms based on the FAST protein. Here, we report the development of two new strong fluorescent reporter systems for Clostridium organisms based on the HaloTag and SNAP-tag proteins, which produce strong fluorescent signals when covalently bound to fluorogenic ligands. These new fluorescent reporters are orthogonal to the FAST ligands and to each other, allowing for simultaneous labeling and visualization. We used HaloTag and SNAP-tag to label the strictly anaerobic organisms Clostridium acetobutylicum and Clostridium ljungdahlii We have also identified a new strong promoter for protein expression in C. acetobutylicum, based on the phosphotransacetylase gene (pta) from C. ljungdahlii Furthermore, the HaloTag and the SNAP-tag, in combination with the previously described FAST system, were successfully used to measure cell populations in bacterial mixed cultures and showed the simultaneous orthogonal labeling of HaloTag and SNAP-tag together with the FAST protein reporter. Finally, we show the expression of recombinant fusion protein of FAST and the ZapA division protein (from C. acetobutylicum) in C. ljungdahlii. The availability of multiple strong fluorescent reporters is a major addition to the genetic toolkit of Clostridium and other anaerobes that will lead to better understanding of these unique organisms.IMPORTANCE Up to this point, assays and methods involving fluorescent reporter proteins were unavailable or limited in Clostridium organisms and other strict anaerobes. Green fluorescent protein (GFP), mCherry, and flavin-binding proteins (and their derivatives) have been used only in a few clostridia with limited success and yielded low fluorescence compared to aerobic microbial systems. Recently, we reported a new strong fluorescent reporter system based on the FAST protein as a first step in expanding the fluorescence-based reporters for Clostridium and other anaerobic microbial platforms. Additional strong orthogonal fluorescent proteins, with distinct emission spectra are needed to allow for (i) multispecies tracking within the growing field of microbial cocultures and microbiomes, (ii) protein localization and tracking in anaerobes, and (iii) identification and development of natural and synthetic promoters, ribosome-binding sites (RBS), and terminators for optimal protein expression in anaerobes. Here, we present two new strong fluorescent reporter systems based on the HaloTag and SNAP-tag proteins.
Collapse
Affiliation(s)
- Kamil Charubin
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
- Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA
| | - Hannah Streett
- Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| | - Eleftherios Terry Papoutsakis
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
- Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
23
|
The Small RNA sr8384 Is a Crucial Regulator of Cell Growth in Solventogenic Clostridia. Appl Environ Microbiol 2020; 86:AEM.00665-20. [PMID: 32358006 DOI: 10.1128/aem.00665-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 04/27/2020] [Indexed: 01/08/2023] Open
Abstract
Small RNAs (sRNAs) are crucial regulatory molecules in organisms and are well-known not only for their roles in the control of diverse crucial biological processes but also for their value in regulation rewiring. However, to date, in Gram-positive anaerobic solventogenic clostridia (a group of important industrial bacteria with exceptional substrate and product diversity), sRNAs remain minimally explored, and thus there is a lack of detailed understanding regarding these important molecules and their use as targets for genetic improvement. Here, we performed large-scale phenotypic screens of a transposon-mediated mutant library of Clostridium acetobutylicum, a typical solventogenic clostridial species, and discovered a novel sRNA (sr8384) that functions as a crucial regulator of cell growth. Comparative transcriptomic data combined with genetic and biochemical analyses revealed that sr8384 acts as a pleiotropic regulator and controls multiple targets that are associated with crucial biological processes through direct or indirect interactions. Notably, the in vivo expression level of sr8384 determined the cell growth rate, thereby affecting the solvent titer and productivity. These findings indicate the importance of the sr8384-mediated regulatory network in C. acetobutylicum Furthermore, a homolog of sr8384 was discovered and proven to be functional in another important Clostridium species, C. beijerinckii, suggesting the potential broad role of this sRNA in clostridia. Our work showcases a previously unknown potent and complex role of sRNAs in clostridia, providing new opportunities for understanding and engineering these anaerobes.IMPORTANCE The uses of sRNAs as new resources for functional studies and strain modifications are promising strategies in microorganisms. However, these crucial regulatory molecules have hardly been explored in industrially important solventogenic clostridia. Here, we identified sr8384 as a novel determinant sRNA controlling the cell growth of solventogenic Clostridium acetobutylicum Based on a detailed functional analysis, we further reveal the pleiotropic function of sr8384 and its multiple direct and indirect crucial targets, which represents a valuable source for understanding and optimizing this anaerobe. Of note, manipulation of this sRNA achieves improved cell growth and solvent synthesis. Our findings provide a new perspective for future studies on regulatory sRNAs in clostridia.
Collapse
|
24
|
A Strongly Fluorescing Anaerobic Reporter and Protein-Tagging System for Clostridium Organisms Based on the Fluorescence-Activating and Absorption-Shifting Tag Protein (FAST). Appl Environ Microbiol 2019; 85:AEM.00622-19. [PMID: 31076434 DOI: 10.1128/aem.00622-19] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/07/2019] [Indexed: 01/03/2023] Open
Abstract
Visualizing protein localization and characterizing gene expression activity in live Clostridium cells is limited for lack of a real-time, highly fluorescent, oxygen-independent reporter system. Enzymatic reporter systems have been used successfully for many years with Clostridium spp.; however, these assays do not allow for real-time analysis of gene expression activity with flow cytometry or for visualizing protein localization through fusion proteins. Commonly used fluorescent reporter proteins require oxygen for chromophore maturation and cannot be used for most strictly anaerobic Clostridium organisms. Here we show that the fluorescence-activating and absorption-shifting tag protein (FAST), when associated with the fluorogenic ligand 4-hydroxy-3-methylbenzylidene-rhodanine (HMBR; now commercially available) and other commercially available ligands, is highly fluorescent in Clostridium acetobutylicum under anaerobic conditions. Using flow cytometry and a fluorescence microplate reader, we demonstrated FAST as a reporter system by employing the promoters of the C. acetobutylicum thiolase (thl), acetoacetate decarboxylase (adc), and phosphotransbutyrylase (ptb) metabolic genes, as well as a mutant Pthl and modified ribosome binding site (RBS) versions of Padc and Pptb Flow cytometry-based sorting was efficient and fast in sorting FAST-expressing cells, and positively and negatively sorted cells could be effectively recultured. FAST was also used to tag and examine protein localization of the predicted cell division FtsZ partner protein, ZapA, to visualize the divisome localization in live C. acetobutylicum cells. Our findings suggest that FAST can be used to further investigate Clostridium divisomes and more broadly the localization and expression levels of other proteins in Clostridium organisms, thus enabling cell biology studies with these organisms.IMPORTANCE FAST in association with the fluorogenic ligand HMBR is characterized as a successful, highly fluorescent reporter system in C. acetobutylicum FAST can be used to distinguish between promoters in live cells using flow cytometry or a fluorescence microplate reader and can be used to tag and examine protein localization in live, anaerobically grown cells. Given that FAST is highly fluorescent under anaerobic conditions, it can be used in several applications of this and likely many Clostridium organisms and other strict anaerobes, including studies involving cell sorting, sporulation dynamics, and population characterization in pure as well as mixed cultures, such as those in various native or synthetic microbiomes and syntrophic cultures.
Collapse
|
25
|
Yang Y, Shen W, Huang J, Li R, Xiao Y, Wei H, Chou YC, Zhang M, Himmel ME, Chen S, Yi L, Ma L, Yang S. Prediction and characterization of promoters and ribosomal binding sites of Zymomonas mobilis in system biology era. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:52. [PMID: 30911332 PMCID: PMC6417218 DOI: 10.1186/s13068-019-1399-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 03/08/2019] [Indexed: 05/09/2023]
Abstract
BACKGROUND Zymomonas mobilis is a model bacterial ethanologen with many systems biology studies reported. Besides lignocellulosic ethanol production, Z. mobilis has been developed as a platform for biochemical production through metabolic engineering. However, identification and rigorous understanding of the genetic origins of cellular function, especially those based in non-coding region of DNA, such as promoters and ribosomal binding sites (RBSs), are still in its infancy. This knowledge is crucial for the effective application of Z. mobilis to new industrial applications of biotechnology for fuels and chemicals production. RESULTS In this study, we explored the possibility to systematically predict the strength of promoters based on systems biology datasets. The promoter strength was clustered based on the expression values of downstream genes (or proteins) from systems biology studies including microarray, RNA-Seq and proteomics. Candidate promoters with different strengths were selected for further characterization, which include 19 strong, nine medium, and ten weak ones. A dual reporter-gene system was developed which included appropriate reporter genes. These are the opmCherry reporter gene driven by the constitutive PlacUV5 promoter for calibration, and EGFP reporter gene driven by candidate promoters for quantification. This dual reporter-gene system was confirmed using the inducible promoter, Ptet, which was used to determine the strength of these predicted promoters with different strengths. In addition, the dual reporter-gene system was applied to determine four synthetic RBSs with different translation initiation rates based on the prediction from bioinformatics server RBS calculator. Our results showed that the correlations between the prediction and experimental results for the promoter and RBS strength are relatively high, with R 2 values more than 0.7 and 0.9, respectively. CONCLUSIONS This study not only identified and characterized 38 promoters and four RBSs with different strengths for future metabolic engineering in Z. mobilis, but also established a flow cytometry-based dual reporter-gene system to characterize genetic elements including, but not limited to the promoters and RBSs studied in this work. This study also suggested the feasibility of predicting and selecting candidate genetic elements based on omics datasets and bioinformatics tools. Moreover, the dual reporter-gene system developed in this study can be utilized to characterize other genetic elements of Z. mobilis, which can also be applied to other microorganisms.
Collapse
Affiliation(s)
- Yongfu Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Environmental Microbial Technology Center of Hubei Province, and School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Wei Shen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Environmental Microbial Technology Center of Hubei Province, and School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Ju Huang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Environmental Microbial Technology Center of Hubei Province, and School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Runxia Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Environmental Microbial Technology Center of Hubei Province, and School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Yubei Xiao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Environmental Microbial Technology Center of Hubei Province, and School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Hui Wei
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401 USA
| | - Yat-Chen Chou
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO 80401 USA
| | - Min Zhang
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401 USA
| | - Michael E. Himmel
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401 USA
| | - Shouwen Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Environmental Microbial Technology Center of Hubei Province, and School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Li Yi
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Environmental Microbial Technology Center of Hubei Province, and School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Lixin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Environmental Microbial Technology Center of Hubei Province, and School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Shihui Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Environmental Microbial Technology Center of Hubei Province, and School of Life Sciences, Hubei University, Wuhan, 430062 China
| |
Collapse
|
26
|
Philipps G, de Vries S, Jennewein S. Development of a metabolic pathway transfer and genomic integration system for the syngas-fermenting bacterium Clostridium ljungdahlii. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:112. [PMID: 31086564 PMCID: PMC6507227 DOI: 10.1186/s13068-019-1448-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 04/22/2019] [Indexed: 05/15/2023]
Abstract
BACKGROUND Clostridium spp. can synthesize valuable chemicals and fuels by utilizing diverse waste-stream substrates, including starchy biomass, lignocellulose, and industrial waste gases. However, metabolic engineering in Clostridium spp. is challenging due to the low efficiency of gene transfer and genomic integration of entire biosynthetic pathways. RESULTS We have developed a reliable gene transfer and genomic integration system for the syngas-fermenting bacterium Clostridium ljungdahlii based on the conjugal transfer of donor plasmids containing large transgene cassettes (> 5 kb) followed by the inducible activation of Himar1 transposase to promote integration. We established a conjugation protocol for the efficient generation of transconjugants using the Gram-positive origins of replication repL and repH. We also investigated the impact of DNA methylation on conjugation efficiency by testing donor constructs with all possible combinations of Dam and Dcm methylation patterns, and used bisulfite conversion and PacBio sequencing to determine the DNA methylation profile of the C. ljungdahlii genome, resulting in the detection of four sequence motifs with N6-methyladenosine. As proof of concept, we demonstrated the transfer and genomic integration of a heterologous acetone biosynthesis pathway using a Himar1 transposase system regulated by a xylose-inducible promoter. The functionality of the integrated pathway was confirmed by detecting enzyme proteotypic peptides and the formation of acetone and isopropanol by C. ljungdahlii cultures utilizing syngas as a carbon and energy source. CONCLUSIONS The developed multi-gene delivery system offers a versatile tool to integrate and stably express large biosynthetic pathways in the industrial promising syngas-fermenting microorganism C. ljungdahlii. The simple transfer and stable integration of large gene clusters (like entire biosynthetic pathways) is expanding the range of possible fermentation products of heterologously expressing recombinant strains. We also believe that the developed gene delivery system can be adapted to other clostridial strains as well.
Collapse
Affiliation(s)
- Gabriele Philipps
- Department for Industrial Biotechnology, Fraunhofer IME, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstr. 6, 52074 Aachen, Germany
| | - Sebastian de Vries
- Department for Industrial Biotechnology, Fraunhofer IME, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstr. 6, 52074 Aachen, Germany
- Present Address: Department of Intensive Care Medicine, University Hospital, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany
| | - Stefan Jennewein
- Department for Industrial Biotechnology, Fraunhofer IME, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstr. 6, 52074 Aachen, Germany
| |
Collapse
|
27
|
Liu D, Mao Z, Guo J, Wei L, Ma H, Tang Y, Chen T, Wang Z, Zhao X. Construction, Model-Based Analysis, and Characterization of a Promoter Library for Fine-Tuned Gene Expression in Bacillus subtilis. ACS Synth Biol 2018; 7:1785-1797. [PMID: 29944832 DOI: 10.1021/acssynbio.8b00115] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Promoters are among the most-important and most-basic tools for the control of metabolic pathways. However, previous research mainly focused on the screening and characterization of some native promoters in Bacillus subtilis. To develop a broadly applicable promoter system for this important platform organism, we created a de novo synthetic promoter library (SPL) based on consensus sequences by analyzing the microarray transcriptome data of B. subtilis 168. A total of 214 potential promoters spanning a gradient of strengths was isolated and characterized by a green fluorescence assay. Among these, a detailed intensity analysis was conducted on nine promoters with different strengths by reverse-transcription polymerase chain reaction (RT-PCR) and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Furthermore, reconstructed promoters and promoter cassettes (tandem promoter cluster) were designed via statistical model-based analysis and tandem dual promoters, which showed strength that was increased 1.2- and 2.77-fold compared to that of promoter P43, respectively. Finally, the SPL was employed in the production of inosine and acetoin by repressing and over-expressing the relevant metabolic pathways, yielding a 700% and 44% increase relative to the respective control strains. This is the first report of a de novo synthetic promoter library for B. subtilis, which is independent of any native promoter. The strategy of improving and fine-tuning promoter strengths will contribute to future metabolic engineering and synthetic biology projects in B. subtilis.
Collapse
Affiliation(s)
| | - Zhitao Mao
- Key Laboratory of System Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | | | | | - Hongwu Ma
- Key Laboratory of System Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yajie Tang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068, China
| | | | | | | |
Collapse
|
28
|
Gyulev IS, Willson BJ, Hennessy RC, Krabben P, Jenkinson ER, Thomas GH. Part by Part: Synthetic Biology Parts Used in Solventogenic Clostridia. ACS Synth Biol 2018; 7:311-327. [PMID: 29186949 DOI: 10.1021/acssynbio.7b00327] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The solventogenic Clostridia are of interest to the chemical industry because of their natural ability to produce chemicals such as butanol, acetone and ethanol from diverse feedstocks. Their use as whole cell factories presents multiple metabolic engineering targets that could lead to improved sustainability and profitability of Clostridium industrial processes. However, engineering efforts have been held back by the scarcity of genetic and synthetic biology tools. Over the past decade, genetic tools to enable transformation and chromosomal modifications have been developed, but the lack of a broad palette of synthetic biology parts remains one of the last obstacles to the rapid engineered improvement of these species for bioproduction. We have systematically reviewed existing parts that have been used in the modification of solventogenic Clostridia, revealing a narrow range of empirically chosen and nonengineered parts that are in current use. The analysis uncovers elements, such as promoters, transcriptional terminators and ribosome binding sites where increased fundamental knowledge is needed for their reliable use in different applications. Together, the review provides the most comprehensive list of parts used and also presents areas where an improved toolbox is needed for full exploitation of these industrially important bacteria.
Collapse
Affiliation(s)
- Ivan S. Gyulev
- Department
of Biology, University of York, Wentworth Way, York YO10 5DD, United Kingdom
| | - Benjamin J. Willson
- Department
of Biology, University of York, Wentworth Way, York YO10 5DD, United Kingdom
| | - Rosanna C. Hennessy
- Department
of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, 1871, Denmark
| | - Preben Krabben
- Green Biologics Limited, Milton Park, Abingdon, Oxfordshire OX14 4RU, United Kingdom
| | | | - Gavin H. Thomas
- Department
of Biology, University of York, Wentworth Way, York YO10 5DD, United Kingdom
| |
Collapse
|
29
|
Mordaka PM, Heap JT. Stringency of Synthetic Promoter Sequences in Clostridium Revealed and Circumvented by Tuning Promoter Library Mutation Rates. ACS Synth Biol 2018; 7:672-681. [PMID: 29320851 DOI: 10.1021/acssynbio.7b00398] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Collections of characterized promoters of different strengths are key resources for synthetic biology, but are not well established for many important organisms, including industrially relevant Clostridium spp. When generating promoters, reporter constructs are used to measure expression, but classical fluorescent reporter proteins are oxygen-dependent and hence inactive in anaerobic bacteria like Clostridium. We directly compared oxygen-independent reporters of different types in Clostridium acetobutylicum and found that glucuronidase (GusA) from E. coli performed best. Using GusA, a library of synthetic promoters was first generated by a typical approach entailing complete randomization of a constitutive thiolase gene promoter (Pthl) except for the consensus -35 and -10 elements. In each synthetic promoter, the chance of each degenerate position matching Pthl was 25%. Surprisingly, none of the tested synthetic promoters from this library were functional in C. acetobutylicum, even though they functioned as expected in E. coli. Next, instead of complete randomization, we specified lower promoter mutation rates using oligonucleotide primers synthesized using custom mixtures of nucleotides. Using these primers, two promoter libraries were constructed in which the chance of each degenerate position matching Pthl was 79% or 58%, instead of 25% as before. Synthetic promoters from these "stringent" libraries functioned well in C. acetobutylicum, covering a wide range of strengths. The promoters functioned similarly in the distantly related species Clostridium sporogenes, and allowed predictable metabolic engineering of C. acetobutylicum for acetoin production. Besides generating the desired promoters and demonstrating their useful properties, this work indicates an unexpected "stringency" of promoter sequences in Clostridium, not reported previously.
Collapse
Affiliation(s)
- Paweł M. Mordaka
- Imperial College Centre for
Synthetic Biology, Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - John T. Heap
- Imperial College Centre for
Synthetic Biology, Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
30
|
Joseph RC, Kim NM, Sandoval NR. Recent Developments of the Synthetic Biology Toolkit for Clostridium. Front Microbiol 2018; 9:154. [PMID: 29483900 PMCID: PMC5816073 DOI: 10.3389/fmicb.2018.00154] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 01/23/2018] [Indexed: 12/15/2022] Open
Abstract
The Clostridium genus is a large, diverse group consisting of Gram-positive, spore-forming, obligate anaerobic firmicutes. Among this group are historically notorious pathogens as well as several industrially relevant species with the ability to produce chemical commodities, particularly biofuels, from renewable biomass. Additionally, other species are studied for their potential use as therapeutics. Although metabolic engineering and synthetic biology have been instrumental in improving product tolerance, titer, yields, and feed stock consumption capabilities in several organisms, low transformation efficiencies and lack of synthetic biology tools and genetic parts make metabolic engineering within the Clostridium genus difficult. Progress has recently been made to overcome challenges associated with engineering various Clostridium spp. For example, developments in CRISPR tools in multiple species and strains allow greater capability to produce edits with greater precision, faster, and with higher efficiencies. In this mini-review, we will highlight these recent advances and compare them to established methods for genetic engineering in Clostridium. In addition, we discuss the current state and development of Clostridium-based promoters (constitutive and inducible) and reporters. Future progress in this area will enable more rapid development of strain engineering, which would allow for the industrial exploitation of Clostridium for several applications including bioproduction of several commodity products.
Collapse
Affiliation(s)
- Rochelle C. Joseph
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, LA, United States
| | - Nancy M. Kim
- Interdisciplinary Bioinnovation PhD Program, Tulane University, New Orleans, LA, United States
| | - Nicholas R. Sandoval
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, LA, United States
| |
Collapse
|
31
|
Joseph RC, Kim NM, Sandoval NR. Recent Developments of the Synthetic Biology Toolkit for Clostridium. Front Microbiol 2018. [PMID: 29483900 DOI: 10.3389/fmicb.2018.00154/full] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
The Clostridium genus is a large, diverse group consisting of Gram-positive, spore-forming, obligate anaerobic firmicutes. Among this group are historically notorious pathogens as well as several industrially relevant species with the ability to produce chemical commodities, particularly biofuels, from renewable biomass. Additionally, other species are studied for their potential use as therapeutics. Although metabolic engineering and synthetic biology have been instrumental in improving product tolerance, titer, yields, and feed stock consumption capabilities in several organisms, low transformation efficiencies and lack of synthetic biology tools and genetic parts make metabolic engineering within the Clostridium genus difficult. Progress has recently been made to overcome challenges associated with engineering various Clostridium spp. For example, developments in CRISPR tools in multiple species and strains allow greater capability to produce edits with greater precision, faster, and with higher efficiencies. In this mini-review, we will highlight these recent advances and compare them to established methods for genetic engineering in Clostridium. In addition, we discuss the current state and development of Clostridium-based promoters (constitutive and inducible) and reporters. Future progress in this area will enable more rapid development of strain engineering, which would allow for the industrial exploitation of Clostridium for several applications including bioproduction of several commodity products.
Collapse
Affiliation(s)
- Rochelle C Joseph
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, LA, United States
| | - Nancy M Kim
- Interdisciplinary Bioinnovation PhD Program, Tulane University, New Orleans, LA, United States
| | - Nicholas R Sandoval
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, LA, United States
| |
Collapse
|