1
|
Sato G, Miyazawa S, Doi N, Fujiwara K. Cell-Free Protein Expression by a Reconstituted Transcription-Translation System Energized by Sugar Catabolism. Molecules 2024; 29:2956. [PMID: 38998908 PMCID: PMC11243612 DOI: 10.3390/molecules29132956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/04/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Cooperation between catabolism and anabolism is crucial for maintaining homeostasis in living cells. The most fundamental systems for catabolism and anabolism are the glycolysis of sugars and the transcription-translation (TX-TL) of DNA, respectively. Despite their importance in living cells, the in vitro reconstitution of their cooperation through purified factors has not been achieved, which hinders the elucidation of the design principle in living cells. Here, we reconstituted glycolysis using sugars and integrated it with the PURE system, a commercial in vitro TX-TL kit composed of purified factors. By optimizing key parameters, such as glucokinase and initial phosphate concentrations, we determined suitable conditions for their cooperation. The optimized system showed protein synthesis at up to 33% of that of the original PURE system. We observed that ATP consumption in upstream glycolysis inhibits TX-TL and that this inhibition can be alleviated by the co-addition of glycolytic intermediates, such as glyceraldehyde 3-phosphate, with glucose. Moreover, the system developed here simultaneously synthesizes a subset of its own enzymes, that is, glycolytic enzymes, in a single test tube, which is a necessary step toward self-replication. As glycolysis and TX-TL provide building blocks for constructing cells, the integrated system can be a fundamental material for reconstituting living cells from purified factors.
Collapse
Affiliation(s)
- Gaku Sato
- Department of Biosciences & Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Shintaro Miyazawa
- Department of Biosciences & Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Nobuhide Doi
- Department of Biosciences & Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Kei Fujiwara
- Department of Biosciences & Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| |
Collapse
|
2
|
Sato G, Kinoshita S, Yamada TG, Arai S, Kitaguchi T, Funahashi A, Doi N, Fujiwara K. Metabolic Tug-of-War between Glycolysis and Translation Revealed by Biochemical Reconstitution. ACS Synth Biol 2024; 13:1572-1581. [PMID: 38717981 DOI: 10.1021/acssynbio.4c00209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Inside cells, various biological systems work cooperatively for homeostasis and self-replication. These systems do not work independently as they compete for shared elements like ATP and NADH. However, it has been believed that such competition is not a problem in codependent biological systems such as the energy-supplying glycolysis and the energy-consuming translation system. In this study, we biochemically reconstituted the coupling system of glycolysis and translation using purified elements and found that the competition for ATP between glycolysis and protein synthesis interferes with their coupling. Both experiments and simulations revealed that this interference is derived from a metabolic tug-of-war between glycolysis and translation based on their reaction rates, which changes the threshold of the initial substrate concentration for the success coupling. By the metabolic tug-of-war, translation energized by strong glycolysis is facilitated by an exogenous ATPase, which normally inhibits translation. These findings provide chemical insights into the mechanism of competition among biological systems in living cells and provide a framework for the construction of synthetic metabolism in vitro.
Collapse
Affiliation(s)
- Gaku Sato
- Department of Biosciences & Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Saki Kinoshita
- Department of Biosciences & Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Takahiro G Yamada
- Department of Biosciences & Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
- Department of Molecular Biology, University of California San Diego, La Jolla, California 92093, United States
| | - Satoshi Arai
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Tetsuya Kitaguchi
- Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho, Yokohama, Kanagawa 226-8503, Japan
| | - Akira Funahashi
- Department of Biosciences & Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Nobuhide Doi
- Department of Biosciences & Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Kei Fujiwara
- Department of Biosciences & Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| |
Collapse
|
3
|
Wang K, Liu X, Hu KKY, Haritos VS. Artificial Methylotrophic Cells via Bottom-Up Integration of a Methanol-Utilizing Pathway. ACS Synth Biol 2024; 13:888-900. [PMID: 38359048 DOI: 10.1021/acssynbio.3c00683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Methanol has gained substantial attention as a substrate for biomanufacturing due to plentiful stocks and nonreliance on agriculture, and it can be sourced renewably. However, due to inevitable complexities in cell metabolism, microbial methanol conversion requires further improvement before industrial applicability. Here, we present a novel, parallel strategy using artificial cells to provide a simplified and well-defined environment for methanol utilization as artificial methylotrophic cells. We compartmentalized a methanol-utilizing enzyme cascade, including NAD-dependent methanol dehydrogenase (Mdh) and pyruvate-dependent aldolase (KHB aldolase), in cell-sized lipid vesicles using the inverted emulsion method. The reduction of cofactor NAD+ to NADH was used to quantify the conversion of methanol within individual artificial methylotrophic cells via flow cytometry. Compartmentalization of the reaction cascade in liposomes led to a 4-fold higher NADH production compared with bulk enzyme experiments, and the incorporation of KHB aldolase facilitated another 2-fold increase above the Mdh-only reaction. This methanol-utilizing platform can serve as an alternative route to speed up methanol biological conversion, eventually shifting sugar-based bioproduction toward a sustainable methanol bioeconomy.
Collapse
Affiliation(s)
- Ke Wang
- Department of Chemical and Biological Engineering, Monash University, Clayton 3800, Australia
| | - Xueqing Liu
- Department of Chemical and Biological Engineering, Monash University, Clayton 3800, Australia
| | - Kevin K Y Hu
- Department of Chemical and Biological Engineering, Monash University, Clayton 3800, Australia
| | - Victoria S Haritos
- Department of Chemical and Biological Engineering, Monash University, Clayton 3800, Australia
| |
Collapse
|
4
|
Nishikawa S, Sato G, Takada S, Kohyama S, Honda G, Yanagisawa M, Hori Y, Doi N, Yoshinaga N, Fujiwara K. Multimolecular Competition Effect as a Modulator of Protein Localization and Biochemical Networks in Cell-Size Space. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308030. [PMID: 38054641 PMCID: PMC10853730 DOI: 10.1002/advs.202308030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/22/2023] [Indexed: 12/07/2023]
Abstract
Cells are small, closed spaces filled with various types of macromolecules. Although it is shown that the characteristics of biochemical reactions in vitro are quite different from those in living cells, the role of the co-existence of various macromolecules in cell-size space remains still elusive. Here, using a constructive approach, it is demonstrated that the co-existence of various macromolecules themselves has the ability to tune protein localization for spatiotemporal regulation and a biochemical reaction system in a cell-size space. Both experimental and theoretical analyses reveal that enhancement of interfacial effects by a large surface-area-to-volume ratio facilitates membrane localization of molecules in the cell-size space, and the interfacial effects are alleviated by competitive binding to lipid membranes among multiple proteins even if their membrane affinities are weak. These results indicate that competition for membrane binding among various macromolecules in the cell-size space plays a role in regulating the spatiotemporal molecular organization and biochemical reaction networks. These findings shed light on the importance of surrounding molecules for biochemical reactions using purified elements in small spaces.
Collapse
Affiliation(s)
- Saki Nishikawa
- Department of Biosciences and InformaticsFaculty of Science and TechnologyKeio University3‐14‐1 Hiyoshi, Kohoku‐kuYokohamaKanagawa223‐8522Japan
| | - Gaku Sato
- Department of Biosciences and InformaticsFaculty of Science and TechnologyKeio University3‐14‐1 Hiyoshi, Kohoku‐kuYokohamaKanagawa223‐8522Japan
| | - Sakura Takada
- Department of Biosciences and InformaticsFaculty of Science and TechnologyKeio University3‐14‐1 Hiyoshi, Kohoku‐kuYokohamaKanagawa223‐8522Japan
| | - Shunshi Kohyama
- Department of Biosciences and InformaticsFaculty of Science and TechnologyKeio University3‐14‐1 Hiyoshi, Kohoku‐kuYokohamaKanagawa223‐8522Japan
- Present address:
Department for Cellular and Molecular BiophysicsMax Planck Institute for BiochemistryAm Klopferspitz 18D‐82152MartinsriedGermany
| | - Gen Honda
- Komaba Institute for ScienceGraduate School of Arts and SciencesThe University of TokyoKomaba 3‐8‐1MeguroTokyo153‐8902Japan
| | - Miho Yanagisawa
- Komaba Institute for ScienceGraduate School of Arts and SciencesThe University of TokyoKomaba 3‐8‐1MeguroTokyo153‐8902Japan
- Graduate School of ScienceThe University of TokyoHongo 7‐3‐1BunkyoTokyo113‐0033Japan
- Center for Complex Systems BiologyUniversal Biology InstituteThe University of TokyoKomaba 3‐8‐1MeguroTokyo153‐8902Japan
| | - Yutaka Hori
- Department of Applied Physics and Physico‐informaticsFaculty of Science and TechnologyKeio University3‐14‐1 Hiyoshi, Kohoku‐kuYokohamaKanagawa223‐8522Japan
| | - Nobuhide Doi
- Department of Biosciences and InformaticsFaculty of Science and TechnologyKeio University3‐14‐1 Hiyoshi, Kohoku‐kuYokohamaKanagawa223‐8522Japan
| | - Natsuhiko Yoshinaga
- WPI Advanced Institute for Materials Research (WPI‐AIMR)Tohoku UniversityKatahira 2‐1‐1, Aoba‐KuSendai980‐8577Japan
- MathAM‐OILAISTSendai980‐8577Japan
| | - Kei Fujiwara
- Department of Biosciences and InformaticsFaculty of Science and TechnologyKeio University3‐14‐1 Hiyoshi, Kohoku‐kuYokohamaKanagawa223‐8522Japan
| |
Collapse
|
5
|
Xu Q, Zhang Z, Lui PPY, Lu L, Li X, Zhang X. Preparation and biomedical applications of artificial cells. Mater Today Bio 2023; 23:100877. [PMID: 38075249 PMCID: PMC10701372 DOI: 10.1016/j.mtbio.2023.100877] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/16/2023] [Accepted: 11/19/2023] [Indexed: 10/16/2024] Open
Abstract
Artificial cells have received much attention in recent years as cell mimics with typical biological functions that can be adapted for therapeutic and diagnostic applications, as well as having an unlimited supply. Although remarkable progress has been made to construct complex multifunctional artificial cells, there are still significant differences between artificial cells and natural cells. It is therefore important to understand the techniques and challenges for the fabrication of artificial cells and their applications for further technological advancement. The key concepts of top-down and bottom-up methods for preparing artificial cells are summarized, and the advantages and disadvantages of the bottom-up methods are compared and critically discussed in this review. Potential applications of artificial cells as drug carriers (microcapsules), as signaling regulators for coordinating cellular communication and as bioreactors for biomolecule fabrication, are further discussed. The challenges and future trends for the development of artificial cells simulating the real activities of natural cells are finally described.
Collapse
Affiliation(s)
- Qian Xu
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, Shenyang, Liaoning, 110819, China
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China
| | - Zeping Zhang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Pauline Po Yee Lui
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, 999077, Hong Kong
| | - Liang Lu
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xiaowu Li
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, Shenyang, Liaoning, 110819, China
| | - Xing Zhang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
6
|
Grandi E, Feyza Özgen F, Schmidt S, Poelarends GJ. Enzymatic Oxy- and Amino-Functionalization in Biocatalytic Cascade Synthesis: Recent Advances and Future Perspectives. Angew Chem Int Ed Engl 2023; 62:e202309012. [PMID: 37639631 DOI: 10.1002/anie.202309012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 08/31/2023]
Abstract
Biocatalytic cascades are a powerful tool for building complex molecules containing oxygen and nitrogen functionalities. Moreover, the combination of multiple enzymes in one pot offers the possibility to minimize downstream processing and waste production. In this review, we illustrate various recent efforts in the development of multi-step syntheses involving C-O and C-N bond-forming enzymes to produce high value-added compounds, such as pharmaceuticals and polymer precursors. Both in vitro and in vivo examples are discussed, revealing the respective advantages and drawbacks. The use of engineered enzymes to boost the cascades outcome is also addressed and current co-substrate and cofactor recycling strategies are presented, highlighting the importance of atom economy. Finally, tools to overcome current challenges for multi-enzymatic oxy- and amino-functionalization reactions are discussed, including flow systems with immobilized biocatalysts and cascades in confined nanomaterials.
Collapse
Affiliation(s)
- Eleonora Grandi
- Department of Chemical and Pharmaceutical Biology, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Fatma Feyza Özgen
- Department of Chemical and Pharmaceutical Biology, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Sandy Schmidt
- Department of Chemical and Pharmaceutical Biology, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Gerrit J Poelarends
- Department of Chemical and Pharmaceutical Biology, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| |
Collapse
|
7
|
Kim M, Jo H, Jung GY, Oh SS. Molecular Complementarity of Proteomimetic Materials for Target-Specific Recognition and Recognition-Mediated Complex Functions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208309. [PMID: 36525617 DOI: 10.1002/adma.202208309] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/29/2022] [Indexed: 06/02/2023]
Abstract
As biomolecules essential for sustaining life, proteins are generated from long chains of 20 different α-amino acids that are folded into unique 3D structures. In particular, many proteins have molecular recognition functions owing to their binding pockets, which have complementary shapes, charges, and polarities for specific targets, making these biopolymers unique and highly valuable for biomedical and biocatalytic applications. Based on the understanding of protein structures and microenvironments, molecular complementarity can be exhibited by synthesizable and modifiable materials. This has prompted researchers to explore the proteomimetic potentials of a diverse range of materials, including biologically available peptides and oligonucleotides, synthetic supramolecules, inorganic molecules, and related coordination networks. To fully resemble a protein, proteomimetic materials perform the molecular recognition to mediate complex molecular functions, such as allosteric regulation, signal transduction, enzymatic reactions, and stimuli-responsive motions; this can also expand the landscape of their potential bio-applications. This review focuses on the recognitive aspects of proteomimetic designs derived for individual materials and their conformations. Recent progress provides insights to help guide the development of advanced protein mimicry with material heterogeneity, design modularity, and tailored functionality. The perspectives and challenges of current proteomimetic designs and tools are also discussed in relation to future applications.
Collapse
Affiliation(s)
- Minsun Kim
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Hyesung Jo
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Gyoo Yeol Jung
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Seung Soo Oh
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| |
Collapse
|
8
|
Seo H, Lee H. Spatiotemporal control of signal-driven enzymatic reaction in artificial cell-like polymersomes. Nat Commun 2022; 13:5179. [PMID: 36056018 PMCID: PMC9440086 DOI: 10.1038/s41467-022-32889-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 08/23/2022] [Indexed: 11/09/2022] Open
Abstract
Living cells can spatiotemporally control biochemical reactions to dynamically assemble membraneless organelles and remodel cytoskeleton. Herein, we present a microfluidic approach to prepare semi-permeable polymersomes comprising of amphiphilic triblock copolymer to achieve external signal-driven complex coacervation as well as biophysical reconstitution of cytoskeleton within the polymersomes. We also show that the microfluidic synthesis of polymersomes enables precise control over size, efficient encapsulation of enzymes as well as regulation of substrates without the use of biopores. Moreover, we demonstrate that the resulting triblock copolymer-based membrane in polymersomes is size-selective, allowing phosphoenol pyruvate to readily diffuse through the membrane and induce enzymatic reaction and successive coacervation or actin polymerization in the presence of pyruvate kinase and adenosine diphosphate inside the polymersomes. We envision that the Pluronic-based polymersomes presented in this work will shed light in the design of in vitro enzymatic reactions in artificial cell-like vesicles.
Collapse
Affiliation(s)
- Hanjin Seo
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Hyomin Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
| |
Collapse
|
9
|
Wei H, Geng W, Yang XY, Kuipers J, van der Mei HC, Busscher HJ. Activation of a passive, mesoporous silica nanoparticle layer through attachment of bacterially-derived carbon-quantum-dots for protection and functional enhancement of probiotics. Mater Today Bio 2022; 15:100293. [PMID: 35634173 PMCID: PMC9130534 DOI: 10.1016/j.mtbio.2022.100293] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/03/2022] [Accepted: 05/12/2022] [Indexed: 02/07/2023] Open
Abstract
Probiotic bacteria employed for food supplementation or probiotic-assisted antibiotic treatment suffer from passage through the acidic gastro-intestinal tract and unintended killing by antibiotics. Carbon-quantum-dots (CQDs) derived from bacteria can inherit different chemical groups and associated functionalities from their source bacteria. In order to yield simultaneous, passive protection and enhanced, active functionality, we attached CQDs pyrolytically carbonized at 220 °C from Lactobacillus acidophilus or Escherichia coli to a probiotic strain (Bifidobacterium infantis) using boron hydroxyl-modified, mesoporous silica nanoparticles as an intermediate encapsulating layer. Fourier-transform-infrared-spectroscopy, X-ray-photoelectron-spectroscopy and scanning-electron-microscopy were employed to demonstrate successful encapsulation of B. infantis by silica nanoparticles and subsequent attachment of bacterially-derived CQDs. Thus encapsulated B. infantis possessed a negative surface charge and survived exposure to simulated gastric fluid and antibiotics better than unencapsulated B. infantis. During B. infantis assisted antibiotic treatment of intestinal epithelial layers colonized by E. coli, encapsulated B. infantis adhered and survived in higher numbers on epithelial layers than B. infantis without encapsulation or encapsulated with only silica nanoparticles. Moreover, higher E. coli killing due to increased reactive-oxygen-species generation was observed. In conclusion, the active, protective encapsulation described enhanced the probiotic functionality of B. infantis, which might be considered as a first step towards a fully engineered, probiotic nanoparticle.
Collapse
Affiliation(s)
- Hao Wei
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Wei Geng
- School of Chemical Engineering and Technology, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Xiao-Yu Yang
- Wuhan University of Technology, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & Shenzhen Research Institute of Wuhan University of Technology, Luoshi Road 122, 430070, Wuhan, China
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Jeroen Kuipers
- University of Groningen and University Medical Center Groningen, Department of Biomedical Sciences of Cells & Systems, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Henny C. van der Mei
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Henk J. Busscher
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| |
Collapse
|
10
|
Chauhan K, Zárate‐Romero A, Sengar P, Medrano C, Vazquez‐Duhalt R. Catalytic Kinetics Considerations and Molecular Tools for the Design of Multienzymatic Cascade Nanoreactors. ChemCatChem 2021. [DOI: 10.1002/cctc.202100604] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Kanchan Chauhan
- Department of Bionanotechnology Center for Nanosciences and Nanotechnology Universidad Nacional Autónoma de México Km 107 carretera Tijuana-Ensenada Ensenada Baja California 22860 Mexico
| | - Andrés Zárate‐Romero
- Department of Bionanotechnology Center for Nanosciences and Nanotechnology Universidad Nacional Autónoma de México Km 107 carretera Tijuana-Ensenada Ensenada Baja California 22860 Mexico
- Cátedra Consejo Nacional de Ciencia y Tecnología CNyN-UNAM Ensenada Baja California 22860 Mexico
| | - Prakhar Sengar
- Department of Bionanotechnology Center for Nanosciences and Nanotechnology Universidad Nacional Autónoma de México Km 107 carretera Tijuana-Ensenada Ensenada Baja California 22860 Mexico
| | - Carlos Medrano
- Department of Bionanotechnology Center for Nanosciences and Nanotechnology Universidad Nacional Autónoma de México Km 107 carretera Tijuana-Ensenada Ensenada Baja California 22860 Mexico
| | - Rafael Vazquez‐Duhalt
- Department of Bionanotechnology Center for Nanosciences and Nanotechnology Universidad Nacional Autónoma de México Km 107 carretera Tijuana-Ensenada Ensenada Baja California 22860 Mexico
| |
Collapse
|
11
|
System concentration shift as a regulator of transcription-translation system within liposomes. iScience 2021; 24:102859. [PMID: 34386726 PMCID: PMC8346668 DOI: 10.1016/j.isci.2021.102859] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 11/21/2022] Open
Abstract
Biochemical systems in living cells have their optimum concentration ratio among each constituent element to maintain their functionality. However, in the case of the biochemical system with complex interactions and feedbacks among elements, their activity as a system greatly changes by the concentration shift of the entire system irrespective of the concentration ratio among elements. In this study, by using a transcription-translation (TX-TL) system as the subject, we illustrate the principle of the nonlinear relationship between the system concentration and the activity of the system. Our experiment and simulation showed that shifts of the system concentration of TX-TL by dilution and concentration works as a switch of activity and demonstrated its ability to induce a biochemical system to confer the permeability of small molecules to liposomes. These results contribute to the creation of artificial cells with the switch and provide an insight into the emergence of protocells.
Collapse
|
12
|
Uwaguchi Y, Fujiwara K, Doi N. Switching ON of Transcription-Translation System Using GUV Fusion by Co-supplementation of Calcium with Long-Chain Polyethylene Glycol. Chembiochem 2021; 22:2319-2324. [PMID: 33971077 DOI: 10.1002/cbic.202100100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/28/2021] [Indexed: 11/09/2022]
Abstract
Giant unilamellar vesicles (GUVs) have been used as a material for bottom-up synthetic biology. However, due to the semi-permeability of the membrane, the need for methods to fuse GUVs has increased. To this aim, methods that are simple and show low leakage during fusion are important. In this study, we report a method of GUV fusion by a divalent cation (Ca2+ ) enhanced with a long chain polyethylene glycol (PEG20k). The methods showed significant GUV fusion without leakage of internal components of GUVs and maintained cell-free transcription-translation ability inside the GUVs without external supplementation of macromolecules. We demonstrate that the Ca-PEG method can be applied for switching ON of transcription-translation in GUVs in a fusion-dependent manner. The method developed here can be applied to extend bottom-up synthetic biology and molecular robotics that use GUVs as a chassis.
Collapse
Affiliation(s)
- Yusuke Uwaguchi
- Department of Biosciences & Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Kei Fujiwara
- Department of Biosciences & Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Nobuhide Doi
- Department of Biosciences & Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| |
Collapse
|
13
|
Moriyama J, Yoshimoto M. Efficient Entrapment of Carbonic Anhydrase in Alginate Hydrogels Using Liposomes for Continuous-Flow Catalytic Reactions. ACS OMEGA 2021; 6:6368-6378. [PMID: 33718727 PMCID: PMC7948239 DOI: 10.1021/acsomega.0c06299] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 02/10/2021] [Indexed: 05/03/2023]
Abstract
A versatile approach to entrap relatively small enzymes in hydrogels allows their diverse biotechnological applications. In the present work, bovine carbonic anhydrase (BCA) was efficiently entrapped in calcium alginate beads with the help of liposomes. A mixture of sodium alginate (3 wt %) and carbonic anhydrase-liposome conjugates (BCALs) was dripped into a Tris-HCl buffer solution (pH = 7.5) containing 0.4 M CaCl2 to induce the gelation and curing of the dispersed alginate-rich droplets. The entrapment efficiency of BCALs, which was defined as the amount of catalysts entrapped in alginate beads relative to that initially charged, was 98.7 ± 0.2% as determined through quantifying BCALs in the filtrate being separated from the beads. When free BCA was employed, on the other hand, a significantly lower entrapment efficiency of 27.2 ± 4.1% was obtained because free BCA could pass through alginate matrices. Because the volume of a cured alginate bead (10 μL) entrapped with BCALs was about 2.5 times smaller than that of an original droplet, BCALs were densely present in the beads to give the concentrations of lipids and BCA of 4.6-8.3 mM and 1.1-1.8 mg/mL, respectively. Alginate beads entrapped with BCALs were used to catalyze the hydrolysis of 1.0 mM p-nitrophenyl acetate (p-NA) at pH = 7.5 using the wells of a microplate or 10 mL glass beakers as batch reactors. Furthermore, the beads were confined in a column for continuous-flow hydrolysis of 1.0 mM p-NA for 1 h at a mean residence time of 8.5 or 4.3 min. The results obtained demonstrate that the conjugation of BCA to liposomes gave an opportunity to achieve efficient and stable entrapment of BCA in alginate hydrogels for applying to catalytic reactions in bioreactors.
Collapse
Affiliation(s)
- Junshi Moriyama
- Department of Applied Chemistry, Yamaguchi University, Tokiwadai 2-16-1, Ube 755-8611, Japan
| | - Makoto Yoshimoto
- Department of Applied Chemistry, Yamaguchi University, Tokiwadai 2-16-1, Ube 755-8611, Japan
| |
Collapse
|
14
|
Qian X, Nymann Westensee I, Brodszkij E, Städler B. Cell mimicry as a bottom-up strategy for hierarchical engineering of nature-inspired entities. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 13:e1683. [PMID: 33205632 DOI: 10.1002/wnan.1683] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 10/08/2020] [Accepted: 10/13/2020] [Indexed: 12/13/2022]
Abstract
Artificial biology is an emerging concept that aims to design and engineer the structure and function of natural cells, organelles, or biomolecules with a combination of biological and abiotic building blocks. Cell mimicry focuses on concepts that have the potential to be integrated with mammalian cells and tissue. In this feature article, we will emphasize the advancements in the past 3-4 years (2017-present) that are dedicated to artificial enzymes, artificial organelles, and artificial mammalian cells. Each aspect will be briefly introduced, followed by highlighting efforts that considered key properties of the different mimics. Finally, the current challenges and opportunities will be outlined. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Xiaomin Qian
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
| | | | - Edit Brodszkij
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
| | - Brigitte Städler
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
| |
Collapse
|
15
|
Sugiyama H, Osaki T, Takeuchi S, Toyota T. Perfusion Chamber for Observing a Liposome-Based Cell Model Prepared by a Water-in-Oil Emulsion Transfer Method. ACS OMEGA 2020; 5:19429-19436. [PMID: 32803036 PMCID: PMC7424586 DOI: 10.1021/acsomega.0c01371] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 07/16/2020] [Indexed: 05/12/2023]
Abstract
For the construction of a chemical model of contemporary living cells, the so-called water-in-oil emulsion transfer (WOET) method has drawn much attention as one of the promising preparation protocols for cell-sized liposomes encapsulating macromolecules and even micrometer-sized colloidal particles in high yields. Combining the throughput and accuracy of the observation is the key to developing a synthetic approach based on the liposomes prepared by the WOET method. Recent advances in microfluidic technology can provide a solution. By means of surface modification of a poly(dimethylsiloxane)-type microfluidic device integrating size-sorting and trapping modules, here, we enabled a simultaneous direct observation of the liposomes with a narrow size distribution, which were prepared by the WOET method. As a demonstration, we evaluated the variance of encapsulation of polystyrene colloidal particles and water permeability of the cell-sized liposomes prepared by the WOET method in the device. Since the liposomes prepared by the WOET method are useful for constructing cell models with an easy protocol, the current system will lead to a critical development of not only supramolecular chemistry and soft matter physics but also synthetic biology.
Collapse
Affiliation(s)
- Hironori Sugiyama
- Department
of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| | - Toshihisa Osaki
- Institute
of Industrial Science, The University of
Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505, Japan
- Kanagawa
Institute of Industrial Science and Technology, 3-2-1 Sakado, Takatsu, Kawasaki, Kanagawa 213-0012, Japan
| | - Shoji Takeuchi
- Institute
of Industrial Science, The University of
Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505, Japan
- Department
of Mechano-Informatics, Graduate School of Information Science and
Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Taro Toyota
- Department
of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
- Universal
Biology Institute, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| |
Collapse
|
16
|
Watanabe C, Kobori Y, Yamamoto J, Kinjo M, Yanagisawa M. Quantitative Analysis of Membrane Surface and Small Confinement Effects on Molecular Diffusion. J Phys Chem B 2020; 124:1090-1098. [PMID: 31939302 DOI: 10.1021/acs.jpcb.9b10558] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Molecular behaviors in small liquid droplets (picoliter scale), such as phase transitions and chemical reactions, are essential for the industrial application of small droplets and their use as artificial cells. However, the droplets often differ from those in bulk solutions (milliliter scale). Since the droplet size is much larger than the molecular size, the so-called size effect that draws these differences has attracted attention as a target to be solved. Although the small volume and the membrane surface surrounding the droplet are thought to be the origin of the size effect, there were little attempts to separate and quantify them. To solve the problem, we develop a series of systems for the evaluation. Using these systems, we have evaluated the size effect of concentrated polymer solutions on molecular diffusion by dividing it into small volume and membrane surface contributions. Our results demonstrate that the size effect on the molecular diffusion originates from the long-range interaction with the surface enhanced with decreasing volume. The quantitative size effect revealed by the systems provides novel insights in the biophysical understanding of molecular behaviors in cells and to the regulation and design of micrometer-sized materials.
Collapse
Affiliation(s)
- Chiho Watanabe
- Komaba Institute for Science , The University of Tokyo , Komaba 3-8-1 , Meguro , Tokyo 153-8902 , Japan
| | - Yuta Kobori
- Komaba Institute for Science , The University of Tokyo , Komaba 3-8-1 , Meguro , Tokyo 153-8902 , Japan.,Department of Applied Physics , Tokyo University of Agriculture and Technology , Naka-cho 2-24-16 , Koganei , Tokyo 184-8588 , Japan
| | - Johtaro Yamamoto
- Biomedical Research Institute , National Institute of Advanced Industrial Science and Technology (AIST) , Central 6, Higashi 1-1-1 , Tsukuba , Ibaraki 305-8568 , Japan
| | - Masataka Kinjo
- Faculty of Advanced Life Science , Hokkaido University , Kita-21 Nishi-11 Kita-ku , Sapporo , Hokkaido 001-0021 , Japan
| | - Miho Yanagisawa
- Komaba Institute for Science , The University of Tokyo , Komaba 3-8-1 , Meguro , Tokyo 153-8902 , Japan.,Department of Basic Science , The University of Tokyo , Komaba 3-8-1 , Meguro , Tokyo 153-8902 , Japan
| |
Collapse
|
17
|
Noba K, Ishikawa M, Uyeda A, Watanabe T, Hohsaka T, Yoshimoto S, Matsuura T, Hori K. Bottom-up Creation of an Artificial Cell Covered with the Adhesive Bacterionanofiber Protein AtaA. J Am Chem Soc 2019; 141:19058-19066. [PMID: 31697479 DOI: 10.1021/jacs.9b09340] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The bacterial cell surface structure has important roles for various cellular functions. However, research on reconstituting bacterial cell surface structures is limited. This study aimed to bottom-up create a cell-sized liposome covered with AtaA, the adhesive bacterionanofiber protein localized on the cell surface of Acinetobacter sp. Tol 5, without the use of the protein secretion and assembly machineries. Liposomes containing a benzylguanine derivative-modified phospholipid were decorated with a truncated AtaA protein fused to a SNAP-tag expressed in a soluble fraction in Escherichia coli. The obtained liposome showed a similar surface structure and function to that of native Tol 5 cells and adhered to both hydrophobic and hydrophilic solid surfaces. Furthermore, this artificial cell was able to drive an enzymatic reaction in the adhesive state. The developed artificial cellular system will allow for analysis of not only AtaA, but also other cell surface proteins under a cell-mimicking environment. In addition, AtaA-decorated artificial cells may inspire the development of biotechnological applications that require immobilization of cells onto a variety of solid surfaces, in particular, in environments where the use of genetically modified organisms is prohibited.
Collapse
Affiliation(s)
- Kosaku Noba
- Department of Biomolecular Engineering, Graduate School of Engineering , Nagoya University , Furo-cho, Chikusa-ku , Nagoya 464-8603 , Japan
| | - Masahito Ishikawa
- Department of Biomolecular Engineering, Graduate School of Engineering , Nagoya University , Furo-cho, Chikusa-ku , Nagoya 464-8603 , Japan
| | - Atsuko Uyeda
- Department of Biotechnology, Graduate School of Engineering , Osaka University , 2-1 Yamadaoka , Suita , Osaka 565-0871 , Japan
| | - Takayoshi Watanabe
- School of Materials Science , Japan Advanced Institute of Science and Technology , 1-1 Asahidai , Nomi , Ishikawa 923-1292 , Japan
| | - Takahiro Hohsaka
- School of Materials Science , Japan Advanced Institute of Science and Technology , 1-1 Asahidai , Nomi , Ishikawa 923-1292 , Japan
| | - Shogo Yoshimoto
- Department of Biomolecular Engineering, Graduate School of Engineering , Nagoya University , Furo-cho, Chikusa-ku , Nagoya 464-8603 , Japan
| | - Tomoaki Matsuura
- Department of Biotechnology, Graduate School of Engineering , Osaka University , 2-1 Yamadaoka , Suita , Osaka 565-0871 , Japan
| | - Katsutoshi Hori
- Department of Biomolecular Engineering, Graduate School of Engineering , Nagoya University , Furo-cho, Chikusa-ku , Nagoya 464-8603 , Japan
| |
Collapse
|
18
|
Knudsen C, Gallage NJ, Hansen CC, Møller BL, Laursen T. Dynamic metabolic solutions to the sessile life style of plants. Nat Prod Rep 2019; 35:1140-1155. [PMID: 30324199 PMCID: PMC6254060 DOI: 10.1039/c8np00037a] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Plants are sessile organisms. To compensate for not being able to escape when challenged by unfavorable growth conditions, pests or herbivores, plants have perfected their metabolic plasticity by having developed the capacity for on demand dynamic biosynthesis and storage of a plethora of phytochemicals.
Covering: up to 2018 Plants are sessile organisms. To compensate for not being able to escape when challenged by unfavorable growth conditions, pests or herbivores, plants have perfected their metabolic plasticity by having developed the capacity for on demand synthesis of a plethora of phytochemicals to specifically respond to the challenges arising during plant ontogeny. Key steps in the biosynthesis of phytochemicals are catalyzed by membrane-bound cytochrome P450 enzymes which in plants constitute a superfamily. In planta, the P450s may be organized in dynamic enzyme clusters (metabolons) and the genes encoding the P450s and other enzymes in a specific pathway may be clustered. Metabolon formation facilitates transfer of substrates between sequential enzymes and therefore enables the plant to channel the flux of general metabolites towards biosynthesis of specific phytochemicals. In the plant cell, compartmentalization of the operation of specific biosynthetic pathways in specialized plastids serves to avoid undesired metabolic cross-talk and offers distinct storage sites for molar concentrations of specific phytochemicals. Liquid–liquid phase separation may lead to formation of dense biomolecular condensates within the cytoplasm or vacuole allowing swift activation of the stored phytochemicals as required upon pest or herbivore attack. The molecular grid behind plant plasticity offers an endless reservoir of functional modules, which may be utilized as a synthetic biology tool-box for engineering of novel biological systems based on rational design principles. In this review, we highlight some of the concepts used by plants to coordinate biosynthesis and storage of phytochemicals.
Collapse
Affiliation(s)
- Camilla Knudsen
- Plant Biochemistry Laboratory, Department of Plant and Environmental Science, University of Copenhagen, DK-1871 Frederiksberg C, Denmark.
| | | | | | | | | |
Collapse
|
19
|
Dwidar M, Seike Y, Kobori S, Whitaker C, Matsuura T, Yokobayashi Y. Programmable Artificial Cells Using Histamine-Responsive Synthetic Riboswitch. J Am Chem Soc 2019; 141:11103-11114. [PMID: 31241330 DOI: 10.1021/jacs.9b03300] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Artificial cells that encapsulate DNA-programmable protein expression machinery are emerging as an attractive platform for studying fundamental cellular properties and applications in synthetic biology. However, interfacing these artificial cells with the complex and dynamic chemical environment remains a major and urgent challenge. We demonstrate that the repertoire of molecules that artificial cells respond to can be expanded by synthetic RNA-based gene switches, or riboswitches. We isolated an RNA aptamer that binds histamine with high affinity and specificity and used it to design robust riboswitches that activate protein expression in the presence of histamine. Finally, the riboswitches were incorporated in artificial cells to achieve controlled release of an encapsulated small molecule and to implement a self-destructive kill-switch. Synthetic riboswitches should serve as modular and versatile interfaces to link artificial cell phenotypes with the complex chemical environment.
Collapse
Affiliation(s)
- Mohammed Dwidar
- Nucleic Acid Chemistry and Engineering Unit, Okinawa Institute of Science and Technology Graduate University , Onna , Okinawa 904-0495 , Japan
| | - Yusuke Seike
- Department of Biotechnology, Graduate School of Engineering , Osaka University , 2-1 Yamadaoka , Suita , Osaka 565-0871 , Japan
| | - Shungo Kobori
- Nucleic Acid Chemistry and Engineering Unit, Okinawa Institute of Science and Technology Graduate University , Onna , Okinawa 904-0495 , Japan
| | - Charles Whitaker
- Nucleic Acid Chemistry and Engineering Unit, Okinawa Institute of Science and Technology Graduate University , Onna , Okinawa 904-0495 , Japan
| | - Tomoaki Matsuura
- Department of Biotechnology, Graduate School of Engineering , Osaka University , 2-1 Yamadaoka , Suita , Osaka 565-0871 , Japan
| | - Yohei Yokobayashi
- Nucleic Acid Chemistry and Engineering Unit, Okinawa Institute of Science and Technology Graduate University , Onna , Okinawa 904-0495 , Japan
| |
Collapse
|
20
|
Sato Y, Takinoue M. Creation of Artificial Cell-Like Structures Promoted by Microfluidics Technologies. MICROMACHINES 2019; 10:E216. [PMID: 30934758 PMCID: PMC6523379 DOI: 10.3390/mi10040216] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/21/2019] [Accepted: 03/22/2019] [Indexed: 02/06/2023]
Abstract
The creation of artificial cells is an immensely challenging task in science. Artificial cells contribute to revealing the mechanisms of biological systems and deepening our understanding of them. The progress of versatile biological research fields has clarified many biological phenomena, and various artificial cell models have been proposed in these fields. Microfluidics provides useful technologies for the study of artificial cells because it allows the fabrication of cell-like compartments, including water-in-oil emulsions and giant unilamellar vesicles. Furthermore, microfluidics also allows the mimicry of cellular functions with chip devices based on sophisticated chamber design. In this review, we describe contributions of microfluidics to the study of artificial cells. Although typical microfluidic methods are useful for the creation of artificial-cell compartments, recent methods provide further benefits, including low-cost fabrication and a reduction of the sample volume. Microfluidics also allows us to create multi-compartments, compartments with artificial organelles, and on-chip artificial cells. We discuss these topics and the future perspective of microfluidics for the study of artificial cells and molecular robotics.
Collapse
Affiliation(s)
- Yusuke Sato
- Department of Computer Science, Tokyo Institute of Technology, Kanagawa 226-8502, Japan
| | - Masahiro Takinoue
- Department of Computer Science, Tokyo Institute of Technology, Kanagawa 226-8502, Japan
| |
Collapse
|