1
|
Wang F, Sun H, Deng D, Wu Y, Zhao J, Li Q, Li A. Multidimensional Engineering of Escherichia coli for Efficient Adipic Acid Synthesis From Cyclohexane. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411938. [PMID: 39960345 PMCID: PMC11984861 DOI: 10.1002/advs.202411938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 02/07/2025] [Indexed: 04/12/2025]
Abstract
Adipic acid (AA), a key aliphatic dicarboxylic acid, is conventionally manufactured through energy-intensive, multi-step chemical processes with significant environmental impacts. In contrast, biological production methods offer more sustainable alternatives but are often limited by low productivity. To overcome these challenges, this study reports the engineering of a single Escherichia coli for efficient biosynthesis of AA starting from cyclohexanol (CHOL), KA oil (mixture of CHOL and cyclohexanone (CHONE)), or cyclohexane (CH). To start with, a comprehensive screening of rate-limiting enzymes is conducted, particularly focusing on cytochrome P450 monooxygenase, followed by the optimization of protein expression using strategies such as protein fusion, promoter replacement, and genome editing. Consequently, an engineered E. coli capable of efficiently converting either KA oil or CH into AA is obtained, achieving remarkable product titers of 110 and 22.6 g L-1, respectively. This represents the highest productivity record for the biological production of AA to date. Finally, this developed biocatalytic system is successfully employed to convert different cycloalkanes and cycloalkanols with varied carbon chain lengths into their corresponding dicarboxylic acids, highlighting its great potential as well as broad applicability for industrial applications.
Collapse
Affiliation(s)
- Fei Wang
- State Key Laboratory of Biocatalysis and Enzyme EngineeringHubei Key Laboratory of Industrial BiotechnologySchool of Life SciencesHubei UniversityWuhan430062P. R. China
- School of Synthetic BiologyShanxi UniversityTaiyuan030031P. R. China
| | - Huiqi Sun
- State Key Laboratory of Biocatalysis and Enzyme EngineeringHubei Key Laboratory of Industrial BiotechnologySchool of Life SciencesHubei UniversityWuhan430062P. R. China
| | - Di Deng
- State Key Laboratory of Biocatalysis and Enzyme EngineeringHubei Key Laboratory of Industrial BiotechnologySchool of Life SciencesHubei UniversityWuhan430062P. R. China
| | - Yuanqing Wu
- State Key Laboratory of Biocatalysis and Enzyme EngineeringHubei Key Laboratory of Industrial BiotechnologySchool of Life SciencesHubei UniversityWuhan430062P. R. China
| | - Jing Zhao
- State Key Laboratory of Biocatalysis and Enzyme EngineeringHubei Key Laboratory of Industrial BiotechnologySchool of Life SciencesHubei UniversityWuhan430062P. R. China
| | - Qian Li
- State Key Laboratory of Biocatalysis and Enzyme EngineeringHubei Key Laboratory of Industrial BiotechnologySchool of Life SciencesHubei UniversityWuhan430062P. R. China
| | - Aitao Li
- State Key Laboratory of Biocatalysis and Enzyme EngineeringHubei Key Laboratory of Industrial BiotechnologySchool of Life SciencesHubei UniversityWuhan430062P. R. China
| |
Collapse
|
2
|
Ding N, Yuan Z, Sun L, Yin L. Dynamic and Static Regulation of Nicotinamide Adenine Dinucleotide Phosphate: Strategies, Challenges, and Future Directions in Metabolic Engineering. Molecules 2024; 29:3687. [PMID: 39125091 PMCID: PMC11314019 DOI: 10.3390/molecules29153687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
Reduced nicotinamide adenine dinucleotide phosphate (NADPH) is a crucial cofactor in metabolic networks. The efficient regeneration of NADPH is one of the limiting factors for productivity in biotransformation processes. To date, many metabolic engineering tools and static regulation strategies have been developed to regulate NADPH regeneration. However, traditional static regulation methods often lead to the NADPH/NADP+ imbalance, causing disruptions in cell growth and production. These methods also fail to provide real-time monitoring of intracellular NADP(H) or NADPH/NADP+ levels. In recent years, various biosensors have been developed for the detection, monitoring, and dynamic regulate of the intracellular NADP(H) levels or the NADPH/NADP+ balance. These NADPH-related biosensors are mainly used in the cofactor engineering of bacteria, yeast, and mammalian cells. This review analyzes and summarizes the NADPH metabolic regulation strategies from both static and dynamic perspectives, highlighting current challenges and potential solutions, and discusses future directions for the advanced regulation of the NADPH/NADP+ balance.
Collapse
Affiliation(s)
- Nana Ding
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (Z.Y.); (L.S.)
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Zenan Yuan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (Z.Y.); (L.S.)
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Lei Sun
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (Z.Y.); (L.S.)
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Lianghong Yin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (Z.Y.); (L.S.)
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
3
|
Wu L, Li J, Zhang Y, Tian Z, Jin Z, Liu L, Zhang D. Multiple Cofactor Engineering Strategies to Enhance Pyridoxine Production in Escherichia coli. Microorganisms 2024; 12:933. [PMID: 38792763 PMCID: PMC11123869 DOI: 10.3390/microorganisms12050933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
Pyridoxine, also known as vitamin B6, is an essential cofactor in numerous cellular processes. Its importance in various applications has led to a growing interest in optimizing its production through microbial biosynthesis. However, an imbalance in the net production of NADH disrupts intracellular cofactor levels, thereby limiting the efficient synthesis of pyridoxine. In our study, we focused on multiple cofactor engineering strategies, including the enzyme design involved in NAD+-dependent enzymes and NAD+ regeneration through the introduction of heterologous NADH oxidase (Nox) coupled with the reduction in NADH production during glycolysis. Finally, the engineered E. coli achieved a pyridoxine titer of 676 mg/L in a shake flask within 48 h by enhancing the driving force. Overall, the multiple cofactor engineering strategies utilized in this study serve as a reference for enhancing the efficient biosynthesis of other target products.
Collapse
Affiliation(s)
- Lijuan Wu
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China; (L.W.); (Y.Z.)
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; (J.L.); (Z.T.); (D.Z.)
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Jinlong Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; (J.L.); (Z.T.); (D.Z.)
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yahui Zhang
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China; (L.W.); (Y.Z.)
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; (J.L.); (Z.T.); (D.Z.)
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Zhizhong Tian
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; (J.L.); (Z.T.); (D.Z.)
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Zhaoxia Jin
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China; (L.W.); (Y.Z.)
| | - Linxia Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; (J.L.); (Z.T.); (D.Z.)
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Dawei Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; (J.L.); (Z.T.); (D.Z.)
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Orsi E, Schada von Borzyskowski L, Noack S, Nikel PI, Lindner SN. Automated in vivo enzyme engineering accelerates biocatalyst optimization. Nat Commun 2024; 15:3447. [PMID: 38658554 PMCID: PMC11043082 DOI: 10.1038/s41467-024-46574-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/04/2024] [Indexed: 04/26/2024] Open
Abstract
Achieving cost-competitive bio-based processes requires development of stable and selective biocatalysts. Their realization through in vitro enzyme characterization and engineering is mostly low throughput and labor-intensive. Therefore, strategies for increasing throughput while diminishing manual labor are gaining momentum, such as in vivo screening and evolution campaigns. Computational tools like machine learning further support enzyme engineering efforts by widening the explorable design space. Here, we propose an integrated solution to enzyme engineering challenges whereby ML-guided, automated workflows (including library generation, implementation of hypermutation systems, adapted laboratory evolution, and in vivo growth-coupled selection) could be realized to accelerate pipelines towards superior biocatalysts.
Collapse
Affiliation(s)
- Enrico Orsi
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | | | - Stephan Noack
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Steffen N Lindner
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany.
- Department of Biochemistry, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität, 10117, Berlin, Germany.
| |
Collapse
|
5
|
Hu L, Liu L, Zhan C, Liu X, Liu C, Li Y, Bai Z, Yang Y. Creating NADP + -Specific Formate Dehydrogenases from Komagataella phaffii by Enzymatic Engineering. Chembiochem 2023; 24:e202300587. [PMID: 37783667 DOI: 10.1002/cbic.202300587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/27/2023] [Accepted: 10/02/2023] [Indexed: 10/04/2023]
Abstract
Most natural formate dehydrogenases (FDHs) exhibit NAD+ specificity, making it imperative to explore the engineering of FDH cofactor specificity for NADPH regeneration systems. The endogenous FDH of Komagataella phaffii (K. phaffii), termed KphFDH, is a typical NAD+ -specific FDH. However, investigations into engineering the cofactor specificity of KphFDH have yet to be conducted. To develop an NADP+ -specific variant of KphFDH, we selected D195, Y196, and Q197 as mutation sites and generated twenty site-directed variants. Through kinetic characterization, KphFDH/V19 (D195Q/Y196R/Q197H) was identified as the variant with the highest specificity towards NADP+ , with a ratio of catalytic efficiency (kcat /KM )NADP+ /(kcat /KM )NAD+ of 129.226. Studies of enzymatic properties revealed that the optimal temperature and pH for the reduction reaction of NADP+ catalyzed by KphFDH/V19 were 45 °C and 7.5, respectively. The molecular dynamics (MD) simulation was performed to elucidate the mechanism of high catalytic activity of KphFDH/V19 towards NADP+ . Finally, KphFDH/V19 was applied to an in vitro NADPH regeneration system with Meso-diaminopimelate dehydrogenase from Symbiobacterium thermophilum (StDAPDH/H227V). This study successfully created a KphFDH variant with high NADP+ specificity and demonstrated its practical applicability in an in vitro NADPH regeneration system.
Collapse
Affiliation(s)
- Liyuan Hu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Luyao Liu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Chunjun Zhan
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Xiuxia Liu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Chunli Liu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Ye Li
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Zhonghu Bai
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Yankun Yang
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| |
Collapse
|
6
|
Hanke P, Parrello B, Vasieva O, Akins C, Chlenski P, Babnigg G, Henry C, Foflonker F, Brettin T, Antonopoulos D, Stevens R, Fonstein M. Engineering of increased L-Threonine production in bacteria by combinatorial cloning and machine learning. Metab Eng Commun 2023; 17:e00225. [PMID: 37435441 PMCID: PMC10331477 DOI: 10.1016/j.mec.2023.e00225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/02/2023] [Accepted: 06/03/2023] [Indexed: 07/13/2023] Open
Abstract
The goal of this study is to develop a general strategy for bacterial engineering using an integrated synthetic biology and machine learning (ML) approach. This strategy was developed in the context of increasing L-threonine production in Escherichia coli ATCC 21277. A set of 16 genes was initially selected based on metabolic pathway relevance to threonine biosynthesis and used for combinatorial cloning to construct a set of 385 strains to generate training data (i.e., a range of L-threonine titers linked to each of the specific gene combinations). Hybrid (regression/classification) deep learning (DL) models were developed and used to predict additional gene combinations in subsequent rounds of combinatorial cloning for increased L-threonine production based on the training data. As a result, E. coli strains built after just three rounds of iterative combinatorial cloning and model prediction generated higher L-threonine titers (from 2.7 g/L to 8.4 g/L) than those of patented L-threonine strains being used as controls (4-5 g/L). Interesting combinations of genes in L-threonine production included deletions of the tdh, metL, dapA, and dhaM genes as well as overexpression of the pntAB, ppc, and aspC genes. Mechanistic analysis of the metabolic system constraints for the best performing constructs offers ways to improve the models by adjusting weights for specific gene combinations. Graph theory analysis of pairwise gene modifications and corresponding levels of L-threonine production also suggests additional rules that can be incorporated into future ML models.
Collapse
Affiliation(s)
- Paul Hanke
- Argonne National Laboratory, 9700 S. Cass Ave, Argonne, IL, 60439, USA
| | - Bruce Parrello
- University of Chicago, 5801 S. Ellis Ave, Chicago, IL, 60637, USA
| | - Olga Vasieva
- BSMI, 1818 Skokie Blvd., #201, Northbrook, IL, 60062, USA
| | - Chase Akins
- Argonne National Laboratory, 9700 S. Cass Ave, Argonne, IL, 60439, USA
| | - Philippe Chlenski
- Department of Computer Science, Columbia University, New York, NY, 10027, USA
| | - Gyorgy Babnigg
- Argonne National Laboratory, 9700 S. Cass Ave, Argonne, IL, 60439, USA
| | - Chris Henry
- Argonne National Laboratory, 9700 S. Cass Ave, Argonne, IL, 60439, USA
| | - Fatima Foflonker
- Argonne National Laboratory, 9700 S. Cass Ave, Argonne, IL, 60439, USA
| | - Thomas Brettin
- Argonne National Laboratory, 9700 S. Cass Ave, Argonne, IL, 60439, USA
| | | | - Rick Stevens
- Argonne National Laboratory, 9700 S. Cass Ave, Argonne, IL, 60439, USA
- University of Chicago, 5801 S. Ellis Ave, Chicago, IL, 60637, USA
| | - Michael Fonstein
- Argonne National Laboratory, 9700 S. Cass Ave, Argonne, IL, 60439, USA
| |
Collapse
|
7
|
Li Z, Deng Y, Yang GY. Growth-coupled high throughput selection for directed enzyme evolution. Biotechnol Adv 2023; 68:108238. [PMID: 37619825 DOI: 10.1016/j.biotechadv.2023.108238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/03/2023] [Accepted: 08/20/2023] [Indexed: 08/26/2023]
Abstract
Directed enzyme evolution has revolutionized the rapid development of enzymes with desired properties. However, the lack of a high-throughput method to identify the most suitable variants from a large pool of genetic diversity poses a major bottleneck. To overcome this challenge, growth-coupled in vivo high-throughput selection approaches (GCHTS) have emerged as a novel selection system for enzyme evolution. GCHTS links the survival of the host cell with the properties of the target protein, resulting in a screening system that is easily measurable and has a high throughput-scale limited only by transformation efficiency. This allows for the rapid identification of desired variants from a pool of >109 variants in each experiment. In recent years, GCHTS approaches have been extensively utilized in the directed evolution of multiple enzymes, demonstrating success in catalyzing non-native substrates, enhancing catalytic activity, and acquiring novel functions. This review introduces three main strategies employed to achieve GCHTS: the elimination of toxic compounds via desired variants, enabling host cells to thrive in hazardous conditions; the complementation of an auxotroph with desired variants, where essential genes for cell growth have been eliminated; and the control of the transcription or expression of a reporter gene related to host cell growth, regulated by the desired variants. Additionally, we highlighted the recent developments in the in vivo continuous evolution of enzyme technology, including phage-assisted continuous evolution (PACE) and orthogonal DNA Replication (OrthoRep). Furthermore, this review discusses the challenges and future prospects in the field of growth-coupled selection for protein engineering.
Collapse
Affiliation(s)
- Zhengqun Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuting Deng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Guang-Yu Yang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
8
|
Li N, Li L, Yu S, Zhou J. Dual-channel glycolysis balances cofactor supply for l-homoserine biosynthesis in Corynebacterium glutamicum. BIORESOURCE TECHNOLOGY 2023; 369:128473. [PMID: 36509305 DOI: 10.1016/j.biortech.2022.128473] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
l-Homoserine is an important platform compound that is widely used to produce many valuable bio-based products, but production of l-homoserine in Corynebacterium glutamicum remains low. In this study, an efficient l-homoserine-producing strain was constructed. Native pentose phosphate pathway (PPP) was enhanced and heterologous Entner-Doudoroff (ED) pathway was carefully introduced into l-homoserine-producing strain, which increased the l-homoserine titer. Coexpression of NADH-dependent aspartate-4-semialdehyde dehydrogenase and aspartate dehydrogenase could increase the titer from 11.3 to 13.3 g/L. Next, NADP+-dependent glyceraldehyde-3-phosphate dehydrogenase (NADP-GPD) was coexpressed with that of NAD+-dependent (NAD-GPD) to construct dual-channel glycolysis for balance of intracellular cofactors, which increased the l-homoserine titer by 48.6 % to 16.8 g/L. Finally, engineered strain Cg18-1 accumulated 63.5 g/L l-homoserine after 96 h in a 5 L bioreactor, the highest titer reported to date for C. glutamicum. This dual-channel glycolysis strategy provides a reference for automatic cofactor regulation to promote efficient biosynthesis of other target products.
Collapse
Affiliation(s)
- Ning Li
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Lihong Li
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Shiqin Yu
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
9
|
An NADPH-auxotrophic Corynebacterium glutamicum recombinant strain and used it to construct L-leucine high-yielding strain. INTERNATIONAL MICROBIOLOGY : THE OFFICIAL JOURNAL OF THE SPANISH SOCIETY FOR MICROBIOLOGY 2023; 26:11-24. [PMID: 35925494 DOI: 10.1007/s10123-022-00270-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/07/2022] [Accepted: 07/21/2022] [Indexed: 01/06/2023]
Abstract
The NADPH-regeneration enzymes in Corynebacterium glutamicum were inactivated to construct an NADPH-auxotrophic C. glutamicum strain by gene knockout and gene replacement. The resultant NADPH-auxotrophic C. glutamicum XL-1 ΔZMICg::ISm (i.e., strain Leu-1) grew well in the basic medium only with gluconate as carbon source. Replacement of the native glyceraldehyde 3-phosphate dehydrogenase (NAD-GapDHCg) by NADP-GapDHCa from Clostridium acetobutylicum is an effective strategy for producing L-leucine in NADPH-prototrophic strain XL-1 and NADPH-auxotrophic strain Leu-1, whereas the L-leucine yield did not differ significantly between these strains (14.1 ± 1.8 g/L vs 16.2 ± 1.1 g/L). Enhancing the carbon flux in biosynthetic pathway by recombinant expression plasmid pEC-ABNCE promoted L-leucine production, but the shortage NADPH supply limited the L-leucine yield. The mutated promoters of zwf and icdCg were introduced into C. glutamicum with NADP-GapDHCa and pEC-ABNCE increased L-leucine yield (54.3 ± 2.9 g/L) and improved cell growth (OD562 = 83.4 ± 7.5) in fed-batch fermentation because the resultant strain C. glutamicum XL-1 ΔMICg::ISm GCg::GCa Pzwf-D1 Picd-D2/pEC-ABNCE (i.e., strain Leu-9) exhibited the proper intracellular NADPH and NADH level. This is the first report of constructing an L-leucine high-yielding strain that reasonably supplies NADPH by optimizing the biosynthetic pathway of NADPH from an NADPH-auxotrophic strain.
Collapse
|
10
|
King E, Maxel S, Zhang Y, Kenney KC, Cui Y, Luu E, Siegel JB, Weiss GA, Luo R, Li H. Orthogonal glycolytic pathway enables directed evolution of noncanonical cofactor oxidase. Nat Commun 2022; 13:7282. [PMID: 36435948 PMCID: PMC9701214 DOI: 10.1038/s41467-022-35021-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 11/15/2022] [Indexed: 11/28/2022] Open
Abstract
Noncanonical cofactor biomimetics (NCBs) such as nicotinamide mononucleotide (NMN+) provide enhanced scalability for biomanufacturing. However, engineering enzymes to accept NCBs is difficult. Here, we establish a growth selection platform to evolve enzymes to utilize NMN+-based reducing power. This is based on an orthogonal, NMN+-dependent glycolytic pathway in Escherichia coli which can be coupled to any reciprocal enzyme to recycle the ensuing reduced NMN+. With a throughput of >106 variants per iteration, the growth selection discovers a Lactobacillus pentosus NADH oxidase variant with ~10-fold increase in NMNH catalytic efficiency and enhanced activity for other NCBs. Molecular modeling and experimental validation suggest that instead of directly contacting NCBs, the mutations optimize the enzyme's global conformational dynamics to resemble the WT with the native cofactor bound. Restoring the enzyme's access to catalytically competent conformation states via deep navigation of protein sequence space with high-throughput evolution provides a universal route to engineer NCB-dependent enzymes.
Collapse
Affiliation(s)
- Edward King
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, 92697, USA
| | - Sarah Maxel
- Department Chemical and Biomolecular Engineering University of California Irvine, Irvine, CA, 92697, USA
| | - Yulai Zhang
- Department Chemical and Biomolecular Engineering University of California Irvine, Irvine, CA, 92697, USA
| | - Karissa C Kenney
- Department of Chemistry, University of California Irvine, Irvine, CA, 92697, USA
| | - Youtian Cui
- Genome Center, University of California Davis, Davis, CA, 95616, USA
| | - Emma Luu
- Genome Center, University of California Davis, Davis, CA, 95616, USA
| | - Justin B Siegel
- Genome Center, University of California Davis, Davis, CA, 95616, USA
- Department of Chemistry, Molecular Medicine University of California, Davis, Davis, CA, USA
- Department of Biochemistry and Molecular Medicine University of California, Davis, Davis, CA, USA
| | - Gregory A Weiss
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, 92697, USA
- Department of Chemistry, University of California Irvine, Irvine, CA, 92697, USA
- Department of Pharmaceutical Sciences, University of California Irvine, Irvine, CA, 92697, USA
| | - Ray Luo
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, 92697, USA
- Department Chemical and Biomolecular Engineering University of California Irvine, Irvine, CA, 92697, USA
- Department Materials Science and Engineering, University of California Irvine, Irvine, CA, 92697, USA
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, 92697, USA
| | - Han Li
- Department Chemical and Biomolecular Engineering University of California Irvine, Irvine, CA, 92697, USA.
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
11
|
Orsi E, Claassens NJ, Nikel PI, Lindner SN. Optimizing microbial networks through metabolic bypasses. Biotechnol Adv 2022; 60:108035. [PMID: 36096403 DOI: 10.1016/j.biotechadv.2022.108035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 01/29/2023]
Abstract
Metabolism has long been considered as a relatively stiff set of biochemical reactions. This somewhat outdated and dogmatic view has been challenged over the last years, as multiple studies exposed unprecedented plasticity of metabolism by exploring rational and evolutionary modifications within the metabolic network of cell factories. Of particular importance is the emergence of metabolic bypasses, which consist of enzymatic reaction(s) that support unnatural connections between metabolic nodes. Such novel topologies can be generated through the introduction of heterologous enzymes or by upregulating native enzymes (sometimes relying on promiscuous activities thereof). Altogether, the adoption of bypasses resulted in an expansion in the capacity of the host's metabolic network, which can be harnessed for bioproduction. In this review, we discuss modifications to the canonical architecture of central carbon metabolism derived from such bypasses towards six optimization purposes: stoichiometric gain, overcoming kinetic limitations, solving thermodynamic barriers, circumventing toxic intermediates, uncoupling product synthesis from biomass formation, and altering redox cofactor specificity. The metabolic costs associated with bypass-implementation are likewise discussed, including tailoring their design towards improving bioproduction.
Collapse
Affiliation(s)
- Enrico Orsi
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| | - Nico J Claassens
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Steffen N Lindner
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; Department of Biochemistry, Charité Universitätsmedizin, Virchowweg 6, 10117 Berlin, Germany.
| |
Collapse
|
12
|
A pyrF-Based Efficient Genetic Manipulation Platform in Acinetobacter baumannii To Explore the Vital DNA Components of Adaptive Immunity for I-F CRISPR-Cas. Microbiol Spectr 2022; 10:e0195722. [PMID: 36047802 PMCID: PMC9602844 DOI: 10.1128/spectrum.01957-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Acinetobacter baumannii is an important pathogenic bacterium with multidrug resistance which causes infections with high mortality rates. In-depth genetic analysis of A. baumannii virulence and drug-resistant genes is highly desirable. In this study, we utilized the conserved pyrF-flanking fragment to rapidly generate uracil auxotrophy hosts with pyrF deleted in model and clinical A. baumannii strains and then introduced the pyrF gene as the selectable and counterselectable marker to establish a series of gene manipulation vectors. For gene deletion with the suicide pyrF-based plasmid, the second-crossover colonies screened with the pyrF/5-fluoroorotic acid (5-FOA) system were obtained more quickly and efficiently than those screened with the sacB/sucrose system. By using the replicative plasmid, the recognized protospacer-adjacent motif (PAM) bias for type I-F CRISPR was experimentally revealed in A. baumannii AYE. Interestingly, interference recognized only the PAM-CC sequence, whereas adaptation priming tolerates 4 PAM sequences. Furthermore, we also performed a rapid and extensive modification of the I-F CRISPR-Cas elements and revealed that the role of double-nucleotide sequence mutants at the end of the repeat could be critical during both CRISPR interference and priming; we also found strong biases for A and demonstrated that adaptation could tolerate certain sequence and size variations of the leader in A. baumannii. In conclusion, this pyrF-based genetic manipulation system was readily applicable and efficient for exploring the genetic characteristics of A. baumannii. IMPORTANCE In this study, we developed the widely applicable and efficient pyrF-based selection and counterselection system in A. baumannii for gene manipulation. In most cases, this pyrF/5-FOA genetic manipulation system was very effective and enabled us to obtain marker-free mutants in a very short period of time. Utilizing this system and the separate mechanism of interference and/or primed adaptation, our experiments revealed some recognition mechanism differences for the key DNA elements of PAM, leader, and repeat in the priming adaptation process of the I-F CRISPR-Cas systems of A. baumannii, which provided some new and original insights for the study of the molecular mechanisms of these processes and laid a foundation for further studies.
Collapse
|
13
|
Pantoja Angles A, Valle-Pérez AU, Hauser C, Mahfouz MM. Microbial Biocontainment Systems for Clinical, Agricultural, and Industrial Applications. Front Bioeng Biotechnol 2022; 10:830200. [PMID: 35186907 PMCID: PMC8847691 DOI: 10.3389/fbioe.2022.830200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/06/2022] [Indexed: 12/19/2022] Open
Abstract
Many applications of synthetic biology require biological systems in engineered microbes to be delivered into diverse environments, such as for in situ bioremediation, biosensing, and applications in medicine and agriculture. To avoid harming the target system (whether that is a farm field or the human gut), such applications require microbial biocontainment systems (MBSs) that inhibit the proliferation of engineered microbes. In the past decade, diverse molecular strategies have been implemented to develop MBSs that tightly control the proliferation of engineered microbes; this has enabled medical, industrial, and agricultural applications in which biological processes can be executed in situ. The customization of MBSs also facilitate the integration of sensing modules for which different compounds can be produced and delivered upon changes in environmental conditions. These achievements have accelerated the generation of novel microbial systems capable of responding to external stimuli with limited interference from the environment. In this review, we provide an overview of the current approaches used for MBSs, with a specific focus on applications that have an immediate impact on multiple fields.
Collapse
Affiliation(s)
- Aaron Pantoja Angles
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Alexander U. Valle-Pérez
- Laboratory for Nanomedicine, Division of Biological Sciences, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Charlotte Hauser
- Laboratory for Nanomedicine, Division of Biological Sciences, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- *Correspondence: Magdy M. Mahfouz, ; Charlotte Hauser,
| | - Magdy M. Mahfouz
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- *Correspondence: Magdy M. Mahfouz, ; Charlotte Hauser,
| |
Collapse
|
14
|
Engineering the Reductive Glycine Pathway: A Promising Synthetic Metabolism Approach for C1-Assimilation. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2022; 180:299-350. [DOI: 10.1007/10_2021_181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Maxel S, Saleh S, King E, Aspacio D, Zhang L, Luo R, Li H. Growth-Based, High-Throughput Selection for NADH Preference in an Oxygen-Dependent Biocatalyst. ACS Synth Biol 2021; 10:2359-2370. [PMID: 34469126 PMCID: PMC10362907 DOI: 10.1021/acssynbio.1c00258] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cyclohexanone monooxygenases (CHMO) consume molecular oxygen and NADPH to catalyze the valuable oxidation of cyclic ketones. However, CHMO usage is restricted by poor stability and stringent specificity for NADPH. Efforts to engineer CHMO have been limited by the sensitivity of the enzyme to perturbations in conformational dynamics and long-range interactions that cannot be predicted. We demonstrate an aerobic, high-throughput growth selection platform in Escherichia coli for oxygenase evolution based on NADH redox balance. We applied this NADH-dependent selection to alter the cofactor specificity of CHMO to accept NADH, a less expensive cofactor than NADPH. We first identified the variant CHMO DTNP (S208D-K326T-K349N-L143P) with a ∼1200-fold relative cofactor specificity switch from NADPH to NADH compared to the wild type through semirational design. Molecular modeling suggests CHMO DTNP activity is driven by cooperative fine-tuning of cofactor contacts. Additional evolution of CHMO DTNP through random mutagenesis yielded the variant CHMO DTNPY with a ∼2900-fold relative specificity switch compared to the wild type afforded by an additional distal mutation, H163Y. These results highlight the difficulty in engineering functionally innovative variants from static models and rational designs, and the need for high throughput selection methods. Our introduced tools for oxygenase engineering accelerate the advancements of characteristics essential for industrial feasibility.
Collapse
Affiliation(s)
- Sarah Maxel
- Departments of Chemical and Biomolecular Engineering, University of California, Irvine, California 92697, United States
| | - Samer Saleh
- Departments of Chemical and Biomolecular Engineering, University of California, Irvine, California 92697, United States
| | - Edward King
- Molecular Biology and Biochemistry, University of California, Irvine, California 92697, United States
| | - Derek Aspacio
- Departments of Chemical and Biomolecular Engineering, University of California, Irvine, California 92697, United States
| | - Linyue Zhang
- Departments of Chemical and Biomolecular Engineering, University of California, Irvine, California 92697, United States
| | - Ray Luo
- Departments of Chemical and Biomolecular Engineering, University of California, Irvine, California 92697, United States
- Molecular Biology and Biochemistry, University of California, Irvine, California 92697, United States
- Biomedical Engineering, University of California, Irvine, California 92697, United States
| | - Han Li
- Departments of Chemical and Biomolecular Engineering, University of California, Irvine, California 92697, United States
- Biomedical Engineering, University of California, Irvine, California 92697, United States
| |
Collapse
|
16
|
Orsi E, Claassens NJ, Nikel PI, Lindner SN. Growth-coupled selection of synthetic modules to accelerate cell factory development. Nat Commun 2021; 12:5295. [PMID: 34489458 PMCID: PMC8421431 DOI: 10.1038/s41467-021-25665-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 08/23/2021] [Indexed: 11/18/2022] Open
Abstract
Synthetic biology has brought about a conceptual shift in our ability to redesign microbial metabolic networks. Combining metabolic pathway-modularization with growth-coupled selection schemes is a powerful tool that enables deep rewiring of the cell factories’ biochemistry for rational bioproduction.
Collapse
Affiliation(s)
- Enrico Orsi
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Nico J Claassens
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Steffen N Lindner
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany.
| |
Collapse
|
17
|
Change in Cofactor Specificity of Oxidoreductases by Adaptive Evolution of an Escherichia coli NADPH-Auxotrophic Strain. mBio 2021; 12:e0032921. [PMID: 34399608 PMCID: PMC8406311 DOI: 10.1128/mbio.00329-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The nicotinamide cofactor specificity of enzymes plays a key role in regulating metabolic processes and attaining cellular homeostasis. Multiple studies have used enzyme engineering tools or a directed evolution approach to switch the cofactor preference of specific oxidoreductases. However, whole-cell adaptation toward the emergence of novel cofactor regeneration routes has not been previously explored. To address this challenge, we used an Escherichia coli NADPH-auxotrophic strain. We continuously cultivated this strain under selective conditions. After 500 to 1,100 generations of adaptive evolution using different carbon sources, we isolated several strains capable of growing without an external NADPH source. Most isolated strains were found to harbor a mutated NAD+-dependent malic enzyme (MaeA). A single mutation in MaeA was found to switch cofactor specificity while lowering enzyme activity. Most mutated MaeA variants also harbored a second mutation that restored the catalytic efficiency of the enzyme. Remarkably, the best MaeA variants identified this way displayed overall superior kinetics relative to the wild-type variant with NAD+. In other evolved strains, the dihydrolipoamide dehydrogenase (Lpd) was mutated to accept NADP+, thus enabling the pyruvate dehydrogenase and 2-ketoglutarate dehydrogenase complexes to regenerate NADPH. Interestingly, no other central metabolism oxidoreductase seems to evolve toward reducing NADP+, which we attribute to several biochemical constraints, including unfavorable thermodynamics. This study demonstrates the potential and biochemical limits of evolving oxidoreductases within the cellular context toward changing cofactor specificity, further showing that long-term adaptive evolution can optimize enzyme activity beyond what is achievable via rational design or directed evolution using small libraries.
Collapse
|
18
|
Sanchez SE, Omsland A. Conditional impairment of Coxiella burnetii by glucose-6P dehydrogenase activity. Pathog Dis 2021; 79:6321164. [PMID: 34259815 PMCID: PMC8292140 DOI: 10.1093/femspd/ftab034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 07/06/2021] [Indexed: 11/12/2022] Open
Abstract
Coxiella burnetii is a bacterial obligate intracellular parasite and the etiological agent of query (Q) fever. While the C. burnetii genome has been reduced to ∼2 Mb as a likely consequence of genome streamlining in response to parasitism, enzymes for a nearly complete central metabolic machinery are encoded by the genome. However, lack of a canonical hexokinase for phosphorylation of glucose and an apparent absence of the oxidative branch of the pentose phosphate pathway, a major mechanism for regeneration of the reducing equivalent nicotinamide adenine dinucleotide phosphate (NADPH), have been noted as potential metabolic limitations of C. burnetii. By complementing C. burnetii with the gene zwf encoding the glucose-6-phosphate-consuming and NADPH-producing enzyme glucose-6-phosphate dehydrogenase (G6PD), we demonstrate a severe metabolic fitness defect for C. burnetii under conditions of glucose limitation. Supplementation of the medium with the gluconeogenic carbon source glutamate did not rescue the growth defect of bacteria complemented with zwf. Absence of G6PD in C. burnetii therefore likely relates to the negative effect of its activity under conditions of glucose limitation. Coxiella burnetii central metabolism with emphasis on glucose, NAD+, NADP+ and NADPH is discussed in a broader perspective, including comparisons with other bacterial obligate intracellular parasites.
Collapse
Affiliation(s)
- Savannah E Sanchez
- Paul G. Allen School for Global Health, Washington State University, Pullman, WA 99164, USA.,School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA
| | - Anders Omsland
- Paul G. Allen School for Global Health, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
19
|
Production of Aldehydes by Biocatalysis. Int J Mol Sci 2021; 22:ijms22094949. [PMID: 34066641 PMCID: PMC8124467 DOI: 10.3390/ijms22094949] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 02/07/2023] Open
Abstract
The production of aldehydes, highly reactive and toxic chemicals, brings specific challenges to biocatalytic processes. Absence of natural accumulation of aldehydes in microorganisms has led to a combination of in vitro and in vivo strategies for both, bulk and fine production. Advances in genetic and metabolic engineering and implementation of computational techniques led to the production of various enzymes with special requirements. Cofactor synthesis, post-translational modifications and structure engineering are applied to prepare active enzymes for one-step or cascade reactions. This review presents the highlights in biocatalytical production of aldehydes with the potential to shape future industrial applications.
Collapse
|
20
|
Li S, Ye Z, Moreb EA, Hennigan JN, Castellanos DB, Yang T, Lynch MD. Dynamic control over feedback regulatory mechanisms improves NADPH flux and xylitol biosynthesis in engineered E. coli. Metab Eng 2021; 64:26-40. [PMID: 33460820 DOI: 10.1016/j.ymben.2021.01.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/23/2020] [Accepted: 01/10/2021] [Indexed: 12/24/2022]
Abstract
We report improved NADPH flux and xylitol biosynthesis in engineered E. coli. Xylitol is produced from xylose via an NADPH dependent reductase. We utilize 2-stage dynamic metabolic control to compare two approaches to optimize xylitol biosynthesis, a stoichiometric approach, wherein competitive fluxes are decreased, and a regulatory approach wherein the levels of key regulatory metabolites are reduced. The stoichiometric and regulatory approaches lead to a 20-fold and 90-fold improvement in xylitol production, respectively. Strains with reduced levels of enoyl-ACP reductase and glucose-6-phosphate dehydrogenase, led to altered metabolite pools resulting in the activation of the membrane bound transhydrogenase and an NADPH generation pathway, consisting of pyruvate ferredoxin oxidoreductase coupled with NADPH dependent ferredoxin reductase, leading to increased NADPH fluxes, despite a reduction in NADPH pools. These strains produced titers of 200 g/L of xylitol from xylose at 86% of theoretical yield in instrumented bioreactors. We expect dynamic control over the regulation of the membrane bound transhydrogenase as well as NADPH production through pyruvate ferredoxin oxidoreductase to broadly enable improved NADPH dependent bioconversions or production via NADPH dependent metabolic pathways.
Collapse
Affiliation(s)
- Shuai Li
- Department of Chemistry, Duke University, USA
| | - Zhixia Ye
- Department of Biomedical Engineering, Duke University, USA
| | - Eirik A Moreb
- Department of Biomedical Engineering, Duke University, USA
| | | | | | - Tian Yang
- Department of Biomedical Engineering, Duke University, USA
| | | |
Collapse
|
21
|
King E, Maxel S, Li H. Engineering natural and noncanonical nicotinamide cofactor-dependent enzymes: design principles and technology development. Curr Opin Biotechnol 2020; 66:217-226. [PMID: 32956903 PMCID: PMC7744333 DOI: 10.1016/j.copbio.2020.08.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/14/2020] [Accepted: 08/16/2020] [Indexed: 12/20/2022]
Abstract
Nicotinamide cofactors enable oxidoreductases to catalyze a myriad of important reactions in biomanufacturing. Decades of research has focused on optimizing enzymes which utilize natural nicotinamide cofactors, namely nicotinamide adenine dinucleotide (phosphate) (NAD(P)+). Recent findings reignite the interest in engineering enzymes to utilize noncanonical cofactors, the mimetics of NAD+ (mNADs), which exhibit superior industrial properties in vitro and enable specific electron delivery in vivo. We compare recent advances in engineering natural versus noncanonical cofactor-utilizing enzymes, discuss design principles discovered, and survey emerging high-throughput platforms beyond the traditional 96-well plate-based methods. Obtaining mNAD-dependent enzymes remains challenging with a limited toolkit. To this end, we highlight design principles and technologies which can potentially be translated from engineering natural to noncanonical cofactor-dependent enzymes.
Collapse
Affiliation(s)
- Edward King
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
| | - Sarah Maxel
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA 92697, USA
| | - Han Li
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
22
|
Satanowski A, Dronsella B, Noor E, Vögeli B, He H, Wichmann P, Erb TJ, Lindner SN, Bar-Even A. Awakening a latent carbon fixation cycle in Escherichia coli. Nat Commun 2020; 11:5812. [PMID: 33199707 PMCID: PMC7669889 DOI: 10.1038/s41467-020-19564-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 10/15/2020] [Indexed: 02/06/2023] Open
Abstract
Carbon fixation is one of the most important biochemical processes. Most natural carbon fixation pathways are thought to have emerged from enzymes that originally performed other metabolic tasks. Can we recreate the emergence of a carbon fixation pathway in a heterotrophic host by recruiting only endogenous enzymes? In this study, we address this question by systematically analyzing possible carbon fixation pathways composed only of Escherichia coli native enzymes. We identify the GED (Gnd-Entner-Doudoroff) cycle as the simplest pathway that can operate with high thermodynamic driving force. This autocatalytic route is based on reductive carboxylation of ribulose 5-phosphate (Ru5P) by 6-phosphogluconate dehydrogenase (Gnd), followed by reactions of the Entner-Doudoroff pathway, gluconeogenesis, and the pentose phosphate pathway. We demonstrate the in vivo feasibility of this new-to-nature pathway by constructing E. coli gene deletion strains whose growth on pentose sugars depends on the GED shunt, a linear variant of the GED cycle which does not require the regeneration of Ru5P. Several metabolic adaptations, most importantly the increased production of NADPH, assist in establishing sufficiently high flux to sustain this growth. Our study exemplifies a trajectory for the emergence of carbon fixation in a heterotrophic organism and demonstrates a synthetic pathway of biotechnological interest.
Collapse
Affiliation(s)
- Ari Satanowski
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Beau Dronsella
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Elad Noor
- Institute of Molecular Systems Biology, ETH Zürich, Otto-Stern-Weg 3, 8093, Zürich, Switzerland
| | - Bastian Vögeli
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Straße 10, 35043, Marburg, Germany
| | - Hai He
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Philipp Wichmann
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Tobias J Erb
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Straße 10, 35043, Marburg, Germany.,Center for Synthetic Microbiology (SYNMIKRO), 35043, Marburg, Germany
| | - Steffen N Lindner
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany.
| | - Arren Bar-Even
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
| |
Collapse
|
23
|
Tan SI, Yu PJ, Ng IS. CRISPRi-mediated programming essential gene can as a Direct Enzymatic Performance Evaluation & Determination (DEPEND) system. Biotechnol Bioeng 2020; 117:2842-2851. [PMID: 32458463 DOI: 10.1002/bit.27443] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/18/2020] [Accepted: 05/24/2020] [Indexed: 12/16/2022]
Abstract
Harnessing enzyme expression for production of target chemicals is a critical and multifarious process, where screening of different genes by inspection of enzymatic activity plays an imperative role. Here, we conceived an idea to improve the time-consuming and labor-intensive process of enzyme screening. Controlling cell growth was achieved by the Cluster Regularly Interspaced Short Palindromic Repeat (CRISPRi) system with different single guide RNA targeting the essential gene can (CRISPRi::CA) that encodes a carbonic anhydrase for CO2 uptake. CRISPRi::CA comprises a whole-cell biosensor to monitor CO2 concentration, ranging from 1% to 5%. On the basis of CRISPRi::CA, an effective and simple Direct Enzymatic Performance Evaluation & Determination (DEPEND) system was developed by a single step of plasmid transformation for targeted enzymes. As a result, the activity of different carbonic anhydrases corresponded to the colony-forming units. Furthermore, the enzymatic performance of 5-aminolevulinic acid synthetase (ALAS), which converts glycine and succinate-CoA to release a molecule of CO2 , has also been distinguished, and the effect of the chaperone GroELS on ALAS enzyme folding was successfully identified in the DEPEND system. We provide a highly feasible, time-saving, and flexible technology for the screening and inspection of high-performance enzymes, which may accelerate protein engineering in the future.
Collapse
Affiliation(s)
- Shih-I Tan
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Peng-Jui Yu
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - I-Son Ng
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
24
|
Calzadiaz-Ramirez L, Calvó-Tusell C, Stoffel GMM, Lindner SN, Osuna S, Erb TJ, Garcia-Borràs M, Bar-Even A, Acevedo-Rocha CG. In Vivo Selection for Formate Dehydrogenases with High Efficiency and Specificity toward NADP . ACS Catal 2020; 10:7512-7525. [PMID: 32733773 PMCID: PMC7384739 DOI: 10.1021/acscatal.0c01487] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/06/2020] [Indexed: 02/06/2023]
Abstract
The efficient regeneration of cofactors is vital for the establishment of biocatalytic processes. Formate is an ideal electron donor for cofactor regeneration due to its general availability, low reduction potential, and benign byproduct (CO2). However, formate dehydrogenases (FDHs) are usually specific to NAD+, such that NADPH regeneration with formate is challenging. Previous studies reported naturally occurring FDHs or engineered FDHs that accept NADP+, but these enzymes show low kinetic efficiencies and specificities. Here, we harness the power of natural selection to engineer FDH variants to simultaneously optimize three properties: kinetic efficiency with NADP+, specificity toward NADP+, and affinity toward formate. By simultaneously mutating multiple residues of FDH from Pseudomonas sp. 101, which exhibits practically no activity toward NADP+, we generate a library of >106 variants. We introduce this library into an E. coli strain that cannot produce NADPH. By selecting for growth with formate as the sole NADPH source, we isolate several enzyme variants that support efficient NADPH regeneration. We find that the kinetically superior enzyme variant, harboring five mutations, has 5-fold higher efficiency and 14-fold higher specificity in comparison to the best enzyme previously engineered, while retaining high affinity toward formate. By using molecular dynamics simulations, we reveal the contribution of each mutation to the superior kinetics of this variant. We further determine how nonadditive epistatic effects improve multiple parameters simultaneously. Our work demonstrates the capacity of in vivo selection to identify highly proficient enzyme variants carrying multiple mutations which would be almost impossible to find using conventional screening methods.
Collapse
Affiliation(s)
| | - Carla Calvó-Tusell
- Institut de Quı́mica Computacional i Catàlisi and Departament de Quı́mica, Universitat de Girona, Carrer Maria Aurèlia Capmany 69, Girona 17003, Catalonia, Spain
| | - Gabriele M. M. Stoffel
- Max Planck Institute of Terrestrial Microbiology, Karl-von-Frisch-Straße 10, D-35043 Marburg, Germany
| | - Steffen N. Lindner
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Sílvia Osuna
- Institut de Quı́mica Computacional i Catàlisi and Departament de Quı́mica, Universitat de Girona, Carrer Maria Aurèlia Capmany 69, Girona 17003, Catalonia, Spain
- ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Tobias J. Erb
- Max Planck Institute of Terrestrial Microbiology, Karl-von-Frisch-Straße 10, D-35043 Marburg, Germany
- LOEWE Research Center for Synthetic Microbiology (SYNMIKRO), Karl-von-Frisch-Straße 16, D-35043 Marburg, Germany
| | - Marc Garcia-Borràs
- Institut de Quı́mica Computacional i Catàlisi and Departament de Quı́mica, Universitat de Girona, Carrer Maria Aurèlia Capmany 69, Girona 17003, Catalonia, Spain
| | - Arren Bar-Even
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | | |
Collapse
|
25
|
Kramer L, Le X, Rodriguez M, Wilson MA, Guo J, Niu W. Engineering Carboxylic Acid Reductase (CAR) through a Whole-Cell Growth-Coupled NADPH Recycling Strategy. ACS Synth Biol 2020; 9:1632-1637. [PMID: 32589835 DOI: 10.1021/acssynbio.0c00290] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Rapid evolution of enzyme activities is often hindered by the lack of efficient and affordable methods to identify beneficial mutants. We report the development of a new growth-coupled selection method for evolving NADPH-consuming enzymes based on the recycling of this redox cofactor. The method relies on a genetically modified Escherichia coli strain, which overaccumulates NADPH. This method was applied to the engineering of a carboxylic acid reductase (CAR) for improved catalytic activities on 2-methoxybenzoate and adipate. Mutant enzymes with up to 17-fold improvement in catalytic efficiency were identified from single-site saturated mutagenesis libraries. Obtained mutants were successfully applied to whole-cell conversions of adipate into 1,6-hexanediol, a C6 monomer commonly used in polymer industry.
Collapse
Affiliation(s)
- Levi Kramer
- Department of Chemical & Biomolecular Engineering, University of Nebraska—Lincoln, Lincoln, Nebraska 68588, United States
| | - Xuan Le
- Department of Chemical & Biomolecular Engineering, University of Nebraska—Lincoln, Lincoln, Nebraska 68588, United States
| | - Marisa Rodriguez
- Department of Chemical & Biomolecular Engineering, University of Nebraska—Lincoln, Lincoln, Nebraska 68588, United States
| | - Mark A. Wilson
- Department of Biochemistry, University of Nebraska—Lincoln, Lincoln, Nebraska 68588, United States
| | - Jiantao Guo
- Department of Chemistry, University of Nebraska—Lincoln, Lincoln, Nebraska 68588, United States
| | - Wei Niu
- Department of Chemical & Biomolecular Engineering, University of Nebraska—Lincoln, Lincoln, Nebraska 68588, United States
| |
Collapse
|
26
|
Saleski TE, Kerner AR, Chung MT, Jackman CM, Khasbaatar A, Kurabayashi K, Lin XN. Syntrophic co-culture amplification of production phenotype for high-throughput screening of microbial strain libraries. Metab Eng 2019; 54:232-243. [PMID: 31034921 DOI: 10.1016/j.ymben.2019.04.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 04/17/2019] [Accepted: 04/17/2019] [Indexed: 12/12/2022]
Abstract
Microbes can be engineered to synthesize a wide array of bioproducts, yet production phenotype evaluation remains a frequent bottleneck in the design-build-test cycle where strain development requires iterative rounds of library construction and testing. Here, we present Syntrophic Co-culture Amplification of Production phenotype (SnoCAP). Through a metabolic cross-feeding circuit, the production level of a target molecule is translated into highly distinguishable co-culture growth characteristics, which amplifies differences in production into highly distinguishable growth phenotypes. We demonstrate SnoCAP with the screening of Escherichia coli strains for production of two target molecules: 2-ketoisovalerate, a precursor of the drop-in biofuel isobutanol, and L-tryptophan. The dynamic range of the screening can be tuned by employing an inhibitory analog of the target molecule. Screening based on this framework requires compartmentalization of individual producers with the sensor strain. We explore three formats of implementation with increasing throughput capability: confinement in microtiter plates (102-104 assays/experiment), spatial separation on agar plates (104-105 assays/experiment), and encapsulation in microdroplets (105-107 assays/experiment). Using SnoCAP, we identified an efficient isobutanol production strain from a random mutagenesis library, reaching a final titer that is 5-fold higher than that of the parent strain. The framework can also be extended to screening for secondary metabolite production using a push-pull strategy. We expect that SnoCAP can be readily adapted to the screening of various microbial species, to improve production of a wide range of target molecules.
Collapse
Affiliation(s)
- Tatyana E Saleski
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Alissa R Kerner
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Meng Ting Chung
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Corine M Jackman
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Azzaya Khasbaatar
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Katsuo Kurabayashi
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA; Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, USA
| | - Xiaoxia Nina Lin
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
27
|
Wendisch VF. Metabolic engineering advances and prospects for amino acid production. Metab Eng 2019; 58:17-34. [PMID: 30940506 DOI: 10.1016/j.ymben.2019.03.008] [Citation(s) in RCA: 162] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 03/26/2019] [Accepted: 03/26/2019] [Indexed: 11/18/2022]
Abstract
Amino acid fermentation is one of the major pillars of industrial biotechnology. The multi-billion USD amino acid market is rising steadily and is diversifying. Metabolic engineering is no longer focused solely on strain development for the bulk amino acids L-glutamate and L-lysine that are produced at the million-ton scale, but targets specialty amino acids. These demands are met by the development and application of new metabolic engineering tools including CRISPR and biosensor technologies as well as production processes by enabling a flexible feedstock concept, co-production and co-cultivation schemes. Metabolic engineering advances are exemplified for specialty proteinogenic amino acids, cyclic amino acids, omega-amino acids, and amino acids functionalized by hydroxylation, halogenation and N-methylation.
Collapse
Affiliation(s)
- Volker F Wendisch
- Genetics of Prokaryotes, Faculty of Biology and Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany.
| |
Collapse
|