1
|
Song P, Xu JJ, Ye JY, Shao RJ, Xu X, Wang AJ, Mei LP, Xue Y, Feng JJ. Self-shedding MOF-nanocarriers modulated CdS/MoSe 2 heterojunction activity through in-situ ion exchange: An enhanced split-type photoelectrochemical sensor for deoxynivalenol. Talanta 2024; 278:126464. [PMID: 38936106 DOI: 10.1016/j.talanta.2024.126464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/18/2024] [Accepted: 06/21/2024] [Indexed: 06/29/2024]
Abstract
Deoxynivalenol (DON), a mycotoxin produced by Fusarium, poses a significant risk to human health and the environment. Therefore, the development of a highly sensitive and accurate detection method is essential to monitor the pollution situation. In response to this imperative, we have devised an advanced split-type photoelectrochemical (PEC) sensor for DON analysis, which leverages self-shedding MOF-nanocarriers to modulate the photoelectric response ability of PEC substrate. The PEC sensing interface was constructed using CdS/MoSe2 heterostructures, while the self-shedding copper peroxide nanodots@ZIF-8 (CPNs@ZIF-8) served as the Cu2+ source for the in-situ ion exchange reaction, which generated a target-related signal reduction. The constructed PEC sensor exhibited a broad linear range of 0.1 pg mL-1 to 500 ng mL-1 with a low detection limit of 0.038 pg mL-1, demonstrating high stability, selectivity, and proactivity. This work not only introduces innovative ideas for the design of photosensitive materials, but also presents novel sensing strategies for detecting various environmental pollutants.
Collapse
Affiliation(s)
- Pei Song
- Central Laboratory, Clinical Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, 321000, China; College of Geography and Environmental Sciences, College of Chemistry and Materials Sciences, Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China
| | - Jin-Jin Xu
- College of Geography and Environmental Sciences, College of Chemistry and Materials Sciences, Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China
| | - Jia-Yan Ye
- College of Geography and Environmental Sciences, College of Chemistry and Materials Sciences, Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China
| | - Rui-Jin Shao
- College of Geography and Environmental Sciences, College of Chemistry and Materials Sciences, Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China
| | - Xiaoping Xu
- Central Laboratory, Clinical Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, 321000, China
| | - Ai-Jun Wang
- College of Geography and Environmental Sciences, College of Chemistry and Materials Sciences, Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China
| | - Li-Ping Mei
- College of Geography and Environmental Sciences, College of Chemistry and Materials Sciences, Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China.
| | - Yadong Xue
- Central Laboratory, Clinical Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, 321000, China.
| | - Jiu-Ju Feng
- College of Geography and Environmental Sciences, College of Chemistry and Materials Sciences, Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|
2
|
Li J, Qin J, Du F, Meng W, Tang D, Huang Y, Tang J. Multiorbital DNA walker nanoprobe for portable photothermal detection based on H 2S etching of cubic Prussian blue. Mikrochim Acta 2023; 190:382. [PMID: 37697070 DOI: 10.1007/s00604-023-05957-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/13/2023] [Indexed: 09/13/2023]
Abstract
In the developed assay, multiorbital 3D DNA walker (MO DNA walker) was applied as signal amplified protocol for enhancing the detection signal of the photothermal biosensor, which was designed for sensitive detection of miRNA based on the H2S triggered conversation of photothermal reagent. When the target molecule is present, the DNA walking strand was released and then hybridize with track strands. The landing of walking particles (WPT) on the tracking particles (TPT) promotes the relative movement of the WPT around TPT, thus releasing large amount of horseradish peroxidase (HRP) with the aid of DNAzyme. After reacting with Na2S2O3 and H2O2, multiple H2S can be generated in situ based on the catalytic ability of HRP. Meanwhile, cubic Prussian blue (CPB) was synthesized and exhibited superior photothermal response, which can be served as efficient photothermal reagent and H2S responsive acceptor. Significantly, the photothermal signal of CPB could be obviously reduced after challenged with H2S ascribed to synchronous reaction between the ferric ion (Fe3+) and H2S. The improved walking area and freedom enable significant signal amplification, enhancing the biosensor's performance. Under ideal circumstances, the proposed photothermal assay demonstrated excellent performance for determination of miRNA-21.
Collapse
Affiliation(s)
- Jinjin Li
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, Department of Chemistry and Chemical Engineering, National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, 330022, People's Republic of China
| | - Jiao Qin
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, Department of Chemistry and Chemical Engineering, National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, 330022, People's Republic of China
| | - Fan Du
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, Department of Chemistry and Chemical Engineering, National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, 330022, People's Republic of China
| | - Wenqin Meng
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, Department of Chemistry and Chemical Engineering, National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, 330022, People's Republic of China
| | - Dianping Tang
- Key Laboratory of Analysis and Detection for Food Safety (Ministry of Education of China and Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, People's Republic of China
| | - Yunhong Huang
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, Department of Chemistry and Chemical Engineering, National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, 330022, People's Republic of China.
| | - Juan Tang
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, Department of Chemistry and Chemical Engineering, National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, 330022, People's Republic of China.
| |
Collapse
|
3
|
Qureshi A, Shaikh T, Niazi JH. Semiconductor quantum dots in photoelectrochemical sensors from fabrication to biosensing applications. Analyst 2023; 148:1633-1652. [PMID: 36880521 DOI: 10.1039/d2an01690g] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Semiconductor quantum dots (QDs) are a promising class of nanomaterials for developing new photoelectrodes and photoelectrochemistry systems for energy storage, transfer, and biosensing applications. These materials have unique electronic and photophysical properties and can be used as optical nanoprobes in displays, biosensors, imaging, optoelectronics, energy storage and energy harvesting. Researchers have recently been exploring the use of QDs in photoelectrochemical (PEC) sensors, which involve exciting a QD-interfaced photoactive material with a flashlight source and generating a photoelectrical current as an output signal. The simple surface properties of QDs also make them suitable for addressing issues related to sensitivity, miniaturization, and cost-effectiveness. This technology has the potential to replace current laboratory practices and equipment, such as spectrophotometers, used for testing sample absorption and emission. Semiconductor QD-based PEC sensors offer simple, fast, and easily miniaturized sensors for analyzing a variety of analytes. This review summarizes the various strategies for interfacing QD nanoarchitectures for PEC sensing, as well as their signal amplification. PEC sensing devices, particularly those used for the detection of disease biomarkers, biomolecules (glucose, dopamine), drugs, and various pathogens, have the potential to revolutionize the biomedical field. This review discusses the advantages of semiconductor QD-based PEC biosensors and their fabrication methods, with a focus on disease diagnostics and the detection of various biomolecules. Finally, the review provides prospects and considerations for QD-based photoelectrochemical sensor systems in terms of their sensitivity, speed, and portability for biomedical applications.
Collapse
Affiliation(s)
- Anjum Qureshi
- Sabanci University, SUNUM Nanotechnology Research and Application Center, Orta Mah, Tuzla 34956, Istanbul, Turkey.
| | - Tayyaba Shaikh
- Sabanci University, SUNUM Nanotechnology Research and Application Center, Orta Mah, Tuzla 34956, Istanbul, Turkey.
| | - Javed H Niazi
- Sabanci University, SUNUM Nanotechnology Research and Application Center, Orta Mah, Tuzla 34956, Istanbul, Turkey.
| |
Collapse
|
4
|
Xiang G, He X, Zhuge W, Liu Y, Zhang C, Peng J. Quinoxaline-based conjugated microporous polymer-grafted graphene sensors for the sensitive detection of rifampicin. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
5
|
Idris AO, Akanji SP, Orimolade BO, Olorundare FOG, Azizi S, Mamba B, Maaza M. Using Nanomaterials as Excellent Immobilisation Layer for Biosensor Design. BIOSENSORS 2023; 13:bios13020192. [PMID: 36831958 PMCID: PMC9953865 DOI: 10.3390/bios13020192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 05/28/2023]
Abstract
The endless development in nanotechnology has introduced new vitality in device fabrication including biosensor design for biomedical applications. With outstanding features like suitable biocompatibility, good electrical and thermal conductivity, wide surface area and catalytic activity, nanomaterials have been considered excellent and promising immobilisation candidates for the development of high-impact biosensors after they emerged. Owing to these reasons, the present review deals with the efficient use of nanomaterials as immobilisation candidates for biosensor fabrication. These include the implementation of carbon nanomaterials-graphene and its derivatives, carbon nanotubes, carbon nanoparticles, carbon nanodots-and MXenes, likewise their synergistic impact when merged with metal oxide nanomaterials. Furthermore, we also discuss the origin of the synthesis of some nanomaterials, the challenges associated with the use of those nanomaterials and the chemistry behind their incorporation with other materials for biosensor design. The last section covers the prospects for the development and application of the highlighted nanomaterials.
Collapse
Affiliation(s)
- Azeez Olayiwola Idris
- UNESCO-UNISA Africa Chair in Nanoscience and Nanotechnology College of Graduates Studies, University of South Africa, Pretoria 392, South Africa
- Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, Somerset West 7129, South Africa
| | - Seyi Philemon Akanji
- Petroleum Engineering, School of Engineering Department, Edith Cowan University, 270 Joondalup Drive, Perth, WA 6027, Australia
| | - Benjamin O. Orimolade
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Private Bag X6, Florida Science Campus, Johannesburg 1709, South Africa
| | | | - Shohreh Azizi
- UNESCO-UNISA Africa Chair in Nanoscience and Nanotechnology College of Graduates Studies, University of South Africa, Pretoria 392, South Africa
- Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, Somerset West 7129, South Africa
| | - Bhekie Mamba
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Private Bag X6, Florida Science Campus, Johannesburg 1709, South Africa
| | - Malik Maaza
- UNESCO-UNISA Africa Chair in Nanoscience and Nanotechnology College of Graduates Studies, University of South Africa, Pretoria 392, South Africa
- Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, Somerset West 7129, South Africa
| |
Collapse
|
6
|
Wang H, Xiong Y, Wu C, Zhu H, Chen Y, Xu F. Optical fiber tip integrated photoelectrochemical sensors. OPTICS EXPRESS 2022; 30:6818-6825. [PMID: 35299460 DOI: 10.1364/oe.452551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
In this work, we design and fabricate a compact photoelectrochemical (PEC) sensor by integrating a graphene-MoS2 heterostructure on an optical fiber tip. The graphene serves as a transparent carrier transport layer, and the MoS2 presents a photoelectrical transducer that generates photocarriers and interacts with ascorbic acid (AA) in solution. This device is used to demonstrate a self-powered detection of AA with a concentration range between 1 mM and 50 mM, and a time response of ∼ 6 ms. The device downsizes traditional PEC systems to the micrometer scale, benefiting the real-time monitoring of biochemical changes in small areas and opening the pathway for miniaturized PEC sensing applications.
Collapse
|
7
|
Li Z, Lu J, Wei W, Tao M, Wang Z, Dai Z. Recent advances in electron manipulation of nanomaterials for photoelectrochemical biosensors. Chem Commun (Camb) 2022; 58:12418-12430. [DOI: 10.1039/d2cc04298c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This feature article discusses the recent advances and strategies of building photoelectrochemical (PEC) biosensors from the perspective of regulating the electron transfer of nanomaterials.
Collapse
Affiliation(s)
- Zijun Li
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Jiarui Lu
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Wanting Wei
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Min Tao
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Zhaoyin Wang
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Zhihui Dai
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| |
Collapse
|
8
|
Chen Y, Zhou M, Yang J, Tan Y, Deng W, Xie Q. Tailoring the Photoelectrochemical Activity of Hexametaphosphate-Capped CdS Quantum Dots by Ca 2+-Triggered Surface Charge Regulation: A New Signaling Strategy for Sensitive Immunoassay. Anal Chem 2021; 93:13783-13790. [PMID: 34606246 DOI: 10.1021/acs.analchem.1c02284] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The development of efficient signaling strategies is highly important for photoelectrochemical (PEC) immunoassay. We report here a new and efficient strategy for sensitive PEC immunoassay by tailoring the electrostatic interaction between the photoactive material and the electron donor. The photoelectric conversion of hexametaphosphate (HMP)-capped CdS quantum dots (QDs) in Na2SO3 solution is significantly boosted after Ca2+ incubation. The negative surface charges on CdS@HMP QDs decrease because of the complexation reaction between HMP and Ca2+, and the electrostatic repulsion between CdS@HMP QDs and electron donor (SO32-) becomes weak accordingly, leading to an improved electron-hole separation efficiency. Inspired by the PEC response of CdS@HMP QDs to Ca2+, a novel "signal-on" PEC immunoassay platform is established by employing CaCO3 nanoparticles as labels. By regulating the surface charge of CdS@HMP QDs with in situ-generated Ca2+ from CaCO3 labels, sensitive detection of the carcinoembryonic antigen (CEA) is achieved. The linear detection range is 0.005-50 ng mL-1 and the detection limit is 1 pg mL-1 for CEA detection. Our work not only provides a facile route to tailor the photoelectric conversion but also lays the foundation for sensitive PEC immunoassay by simply regulating the surface charge of photoactive materials.
Collapse
Affiliation(s)
- Yanqun Chen
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Min Zhou
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Jinhua Yang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Yueming Tan
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Wenfang Deng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Qingji Xie
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
9
|
Gao R, Liu B, Luo D, Su Y, Su L. Enhanced Immunosensor Using a Handheld pH Meter for the Point‐of‐Care, Sensitive Detection of Prostate Specific Antigen. ELECTROANAL 2021. [DOI: 10.1002/elan.202100285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Rong Gao
- Engineering Laboratory for Synthetic Drugs (Ministry of Education of Guizhou Province) College of Pharmacy Guizhou University Guizhou 550025 PR China
| | - Bingqian Liu
- Engineering Laboratory for Synthetic Drugs (Ministry of Education of Guizhou Province) College of Pharmacy Guizhou University Guizhou 550025 PR China
| | - Dajuan Luo
- Engineering Laboratory for Synthetic Drugs (Ministry of Education of Guizhou Province) College of Pharmacy Guizhou University Guizhou 550025 PR China
| | - Yonghuan Su
- Engineering Laboratory for Synthetic Drugs (Ministry of Education of Guizhou Province) College of Pharmacy Guizhou University Guizhou 550025 PR China
| | - Lixia Su
- Engineering Laboratory for Synthetic Drugs (Ministry of Education of Guizhou Province) College of Pharmacy Guizhou University Guizhou 550025 PR China
| |
Collapse
|
10
|
Kavetskyy T, Alipour M, Smutok O, Mushynska O, Kiv A, Fink D, Farshchi F, Ahmadian E, Hasanzadeh M. Magneto-immunoassay of cancer biomarkers: Recent progress and challenges in biomedical analysis. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
11
|
Zhang XY, Han L, Dan Yu L, Wang XH, Ling Y, Li NB, Luo HQ. Crystal Violet-Sensitized Direct Z-Scheme Heterojunction Coupled with a G-Wire Superstructure for Photoelectrochemical Sensing of Uracil-DNA Glycosylase. ACS APPLIED MATERIALS & INTERFACES 2021; 13:15881-15889. [PMID: 33779139 DOI: 10.1021/acsami.1c01525] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Dye sensitization achieving photoelectrochemical (PEC) signal amplification for ultrasensitive bioanalysis has undergone a major breakthrough. In this proposal, an innovative PEC sensing platform is developed by combining Z-scheme WO3@SnS2 photoactive materials and a G-wire superstructure as well as a dye sensitization enhancement strategy. The newly synthesized WO3@SnS2 heterojunction with outstanding PEC performance is employed as a photoelectrode matrix. Due to the formation of the Z-scheme heterojunction between WO3 and SnS2, the migration dynamics of the photogenerated carrier is evidently augmented. To improve sensitivity, the target excision-driven dual-cycle signal amplification strategy is introduced to output exponential c-myc fragments. Crystal violet is then conjugated into the G-quadruplex to amplify the PEC signal, where crystal violet generates excited electrons by capturing visible light and rapidly injects electrons into the conduction band of SnS2, suppressing the recombination of the photo-induced carrier. Moreover, the G-wire superstructure acts as a universal amplification pathway, ensuring adequate crystal violet loads. Specifically, the biosensor for uracil-DNA glycosylase quantification displays a wide detection range (0.0005-1.0 U/mL) and a lower detection limit (0.00025 U/mL). Furthermore, the Z-scheme electron migration mechanism and the crystal violet sensitization effect are discussed in detail. The construction of the PEC sensor provides a new consideration for signal amplification and material design.
Collapse
Affiliation(s)
- Xing Yue Zhang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Lei Han
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ling Dan Yu
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Xiao Hu Wang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Yu Ling
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Nian Bing Li
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Hong Qun Luo
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
12
|
Qiu Z, Tang D. Nanostructure-based photoelectrochemical sensing platforms for biomedical applications. J Mater Chem B 2021; 8:2541-2561. [PMID: 32162629 DOI: 10.1039/c9tb02844g] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
As a newly developed and powerful analytical method, the use of photoelectrochemical (PEC) biosensors opens up new opportunities to provide wide applications in the early diagnosis of diseases, environmental monitoring and food safety detection. The properties of diverse photoactive materials are one of the essential factors, which can greatly impact the PEC performance. The continuous development of nanotechnology has injected new vitality into the field of PEC biosensors. In many studies, much effort on PEC sensing with semiconductor materials is highlighted. Thus, we propose a systematic introduction to the recent progress in nanostructure-based PEC biosensors to exploit more promising materials and advanced PEC technologies. This review briefly evaluates the several advanced photoactive nanomaterials in the PEC field with an emphasis on the charge separation and transfer mechanism over the past few years. In addition, we introduce the application and research progress of PEC sensors from the perspective of basic principles, and give a brief overview of the main advances in the versatile sensing pattern of nanostructure-based PEC platforms. This last section covers the aspects of future prospects and challenges in the nanostructure-based PEC analysis field.
Collapse
Affiliation(s)
- Zhenli Qiu
- Ocean College, Minjiang University, Fuzhou 350108, China and Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), State Key Laboratory of Photocatalysis on Energy and Environment, Department of Chemistry, Fuzhou University, Fuzhou 350108, China.
| | - Dianping Tang
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), State Key Laboratory of Photocatalysis on Energy and Environment, Department of Chemistry, Fuzhou University, Fuzhou 350108, China.
| |
Collapse
|
13
|
Qin Y, Wen J, Zheng L, Yan H, Jiao L, Wang X, Cai X, Wu Y, Chen G, Chen L, Hu L, Gu W, Zhu C. Single-Atom-Based Heterojunction Coupling with Ion-Exchange Reaction for Sensitive Photoelectrochemical Immunoassay. NANO LETTERS 2021; 21:1879-1887. [PMID: 33544604 DOI: 10.1021/acs.nanolett.1c00076] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Benefiting from the maximum atom-utilization efficiency and distinct structural features, single-atom catalysts open a new avenue for the design of more functional catalysts, whereas their bioapplications are still in their infancy. Due to the advantages, platinum single atoms supported by cadmium sulfide nanorods (Pt SAs-CdS) are synthesized to build an ultrasensitive photoelectrochemical (PEC) biosensing platform. With the decoration of Pt SAs, the PEC signal of CdS is significantly boosted. Furthermore, theory calculations indicate the positively charged Pt SAs could change the charge distribution and increase the excited carrier density of CdS. Meanwhile, it also suggests that Cu2+ can severely hinder the photoexcitation and electron-hole separation of CdS. As a proof of concept, prostate-specific antigen is chosen as the target analyte to demonstrate the superiority of the Pt SAs-CdS-based PEC sensing system. As a result, the PEC biosensor based on Pt SAs-CdS exhibits outstanding detection sensitivity and promising applicability.
Collapse
Affiliation(s)
- Ying Qin
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Jing Wen
- Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, P.R. China
| | - Lirong Zheng
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hongye Yan
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Lei Jiao
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Xiaosi Wang
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Xiaoli Cai
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Yu Wu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Guojuan Chen
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Lijuan Chen
- Department of Medical Imaging, Henan Provincial People's Hospital & the People's Hospital of Zhengzhou University, Zhengzhou 450003, P. R. China
| | - Liuyong Hu
- Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, P.R. China
| | - Wenling Gu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Chengzhou Zhu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| |
Collapse
|
14
|
Abstract
Since the discovery of the enzyme-like activities of nanomaterials, the study of nanozymes has become one of the most popular research frontiers of diverse areas including biosensors. DNA also plays a very important role in the construction of biosensors. Thus, the idea of combined applications of nanozymes with DNA (DNA-nanozyme) is very attractive for the development of nanozyme-based biosensors, which has attracted considerable interest of researchers. To date, many sensors based on DNA-functionalized or templated nanozymes have been reported for the detection of various targets and highly accelerated the development of nanozyme-based sensors. In this review, we summarize the main applications and advances of DNA-nanozyme-based sensors. Additionally, perspectives and challenges are also discussed at the end of the review.
Collapse
Affiliation(s)
- Renzhong Yu
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China.
| | - Rui Wang
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China.
| | - Zhaoyin Wang
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China.
| | - Qinshu Zhu
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China. and Nanjing Normal University Centre for Analysis and Testing, Nanjing, 210023, P.R. China
| | - Zhihui Dai
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China. and Nanjing Normal University Centre for Analysis and Testing, Nanjing, 210023, P.R. China
| |
Collapse
|
15
|
Molaei MJ. Two-dimensional (2D) materials beyond graphene in cancer drug delivery, photothermal and photodynamic therapy, recent advances and challenges ahead: A review. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.101830] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
16
|
Khaliq N, Rasheed MA, Khan M, Maqbool M, Ahmad M, Karim S, Nisar A, Schmuki P, Cho SO, Ali G. Voltage-Switchable Biosensor with Gold Nanoparticles on TiO 2 Nanotubes Decorated with CdS Quantum Dots for the Detection of Cholesterol and H 2O 2. ACS APPLIED MATERIALS & INTERFACES 2021; 13:3653-3668. [PMID: 33439005 DOI: 10.1021/acsami.0c19979] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A thin layer of gold nanoparticles (Au NPs) sputtered on cadmium sulfide quantum dots (CdS QDs) decorated anodic titanium dioxide nanotubes (TNTs) (Au/CdS QDs/TNTs) was fabricated and explored for the nonenzymatic detection of cholesterol and hydrogen peroxide (H2O2). Morphological studies of the sensor revealed the formation of uniform nanotubes decorated with a homogeneously dispersed CdS QDs and Au NPs layer. The electrochemical measurements showed an enhanced electrocatalytic performance with a fast electron transfer (∼2 s) between the redox centers of each analyte and electrode surface. The hybrid nanostructure (Au/CdS QDs/TNTs) electrode exhibited about a 6-fold increase in sensitivity for both cholesterol (10,790 μA mM-1 cm-2) and H2O2 (78,833 μA mM-1 cm-2) in analyses compared to the pristine samples. The hybrid electrode utilized different operational potentials for both analytes, which may lead to a voltage-switchable dual-analyte biosensor with a higher selectivity. The biosensor also demonstrated a good reproducibility, thermal stability, and increased shelf life. In addition, the clinical significance of the biosensor was tested for cholesterol and H2O2 in real blood samples, which showed maximum relative standard deviations of 1.8 and 2.3%, respectively. These results indicate that a Au/CdS QDs/TNTs-based hybrid nanostructure is a promising choice for an enzyme-free biosensor due to its suitable band gap alignment and higher electrocatalytic activities.
Collapse
Affiliation(s)
- Nilem Khaliq
- Department of Physics and Applied Mathematics, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad 45650, Pakistan
| | - Muhammad Asim Rasheed
- Department of Physics and Applied Mathematics, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad 45650, Pakistan
| | - Maaz Khan
- Nanomaterials Research Group (NRG), Physics Division, PINSTECH, Islamabad 44000, Pakistan
| | - Muhammad Maqbool
- Department of Clinical & Diagnostic Sciences, the University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Mashkoor Ahmad
- Nanomaterials Research Group (NRG), Physics Division, PINSTECH, Islamabad 44000, Pakistan
| | - Shafqat Karim
- Nanomaterials Research Group (NRG), Physics Division, PINSTECH, Islamabad 44000, Pakistan
| | - Amjad Nisar
- Nanomaterials Research Group (NRG), Physics Division, PINSTECH, Islamabad 44000, Pakistan
| | - Patrik Schmuki
- Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Martensstrasse 7, D-91058 Erlangen, Germany
- Department of Chemistry, King Abdulaziz University, Jeddah 21413, Saudi Arabia
| | - Sung Oh Cho
- Department of Nuclear and Quantum Engineering (NQe), KAIST, Daejeon 34141, South Korea
| | - Ghafar Ali
- Nanomaterials Research Group (NRG), Physics Division, PINSTECH, Islamabad 44000, Pakistan
| |
Collapse
|
17
|
|
18
|
Theranostic Nanoplatforms of Thiolated Reduced Graphene Oxide Nanosheets and Gold Nanoparticles. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10165529] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In this study, graphene oxide (GO) and reduced-thiolated GO (rGOSH) were used as 2D substrate to fabricate nanocomposites with nanoparticles of gold nanospheres (AuNS) or nanorods (AuNR), via in situ reduction of the metal salt precursor and seed-mediated growth processes. The plasmonic sensing capability of the gold-decorated nanosheets were scrutinized by UV-visible (UV-VIS) spectroscopy. Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), thermogravimetric analyses (TGA), and atomic force microscopy (AFM) were performed in order to prove the actual reduction that occurred concomitantly with the thiolation of GO, the increase in the hydrophobic character as well as the size, and preferential gathering of the gold nanoparticles onto the nanosheet substrates, respectively. Moreover, the theoretical electronic and infrared absorption (UV-VIS and IR) spectra were calculated within a time-dependent approach of density functional theory (DFT). Eventually, in vitro cellular experiments on human neuroblastoma cells (SH-SY5Y line) were carried out in order to evaluate the nanotoxicity of the nanocomposites by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide tetrazolium reduction (MTT) colorimetric assay. Results pointed out the promising potential of these hybrids as plasmonic theranostic platforms with different hydrophilic or hydrophobic features as well as cytotoxic effects against cancer cells.
Collapse
|
19
|
Enhancement of Biosensors by Implementing Photoelectrochemical Processes. SENSORS 2020; 20:s20113281. [PMID: 32526947 PMCID: PMC7308923 DOI: 10.3390/s20113281] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/05/2020] [Accepted: 06/06/2020] [Indexed: 12/15/2022]
Abstract
Research on biosensors is growing in relevance, taking benefit from groundbreaking knowledge that allows for new biosensing strategies. Electrochemical biosensors can benefit from research on semiconducting materials for energy applications. This research seeks the optimization of the semiconductor-electrode interfaces including light-harvesting materials, among other improvements. Once that knowledge is acquired, it can be implemented with biological recognition elements, which are able to transfer a chemical signal to the photoelectrochemical system, yielding photo-biosensors. This has been a matter of research as it allows both a superior suppression of background electrochemical signals and the switching ON and OFF upon illumination. Effective electrode-semiconductor interfaces and their coupling with biorecognition units are reviewed in this work.
Collapse
|
20
|
Li J, Xu L, Shen Y, Guo L, Yin H, Fang X, Yang Z, Xu Q, Li H. Superparamagnetic Nanostructures for Split-Type and Competitive-Mode Photoelectrochemical Aptasensing. Anal Chem 2020; 92:8607-8613. [PMID: 32393021 DOI: 10.1021/acs.analchem.0c01831] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Photoelectrochemical sensing has developed rapidly in the past decade because of its inherent advantages of economic devices and low background noise. However, traditional assembly of photoelectric beacons, probes, and targets on the ITO electrode solid-liquid interface inevitably leads to time-consuming, limited selectivity, poor stability, and nonreproducibility. To overcome these drawbacks, in this work, a unique split-type PEC aptasensor for carcinoembryonic antigen (CEA) was developed in virtue of the sandwich-like structure comprised of magnetic-optical Fe3O4@SiO2@CdS-DNA1, CEA aptamer, and signal element SiO2-Au-DNA2. The sandwich-like structure is easily formed in the liquid phase and can be triggered by competition from low-abundance CEA, resulting in dissociation. By further photocurrent measurement in pure phosphate buffer saline (PBS), coexisting species can be effectively removed from the modified electrode, improving selectivity, stability, and repeatability. These advantages benefit from the preparation of uniform and monodispersed Fe3O4@SiO2@CdS and SiO2-Au particles, DNAs assembly, and an elegant design. Additionally, the as-designed signal-on PEC aptasensor is highly sensitive, short time-consuming, and economical, enabling the detection of CEA in serum specimens. It not only provides an alternative to CEA immunosensors, but also paves the way for high-performance PEC aptasensors.
Collapse
Affiliation(s)
- Jing Li
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Lingqiu Xu
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Yujuan Shen
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Lei Guo
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Hui Yin
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Xiaohu Fang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Zhanjun Yang
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China
| | - Qin Xu
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China
| | - Hongbo Li
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| |
Collapse
|
21
|
Chen FZ, Han DM, Chen HY. Liposome-Assisted Enzymatic Modulation of Plasmonic Photoelectrochemistry for Immunoassay. Anal Chem 2020; 92:8450-8458. [DOI: 10.1021/acs.analchem.0c01162] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Feng-Zao Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - De-Man Han
- Engineering Research Center of Recycling & Comprehensive Utilization of Pharmaceutical and Chemical Waste of Zhejiang Province, Taizhou University, Jiaojiang 318000, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
22
|
Li H, Li Y, Li J, Yang F, Xu L, Wang W, Yao X, Yin Y. Magnetic-Optical Core-Shell Nanostructures for Highly Selective Photoelectrochemical Aptasensing. Anal Chem 2020; 92:4094-4100. [PMID: 32048503 DOI: 10.1021/acs.analchem.9b05762] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Selectivity is a crucial parameter for photoelectrochemical (PEC) sensing in a practical setting. Despite the use of specific probes such as aptamers, antibodies, and enzymes, coexisting interferences can still result in inaccuracies in PEC sensing, especially for complex biosample matrixes. Here we report the design of an Fe3O4@SiO2@TiO2 magnetic-optical bifunctional beacon applied in a novel PEC sensor that can selectively capture progesterone in complex biosamples, be magnetically separated and cleaned, and be detected in pure phosphate buffer solution (PBS). The magnetic separation strategy efficiently removes the complex coexisting species from the modified electrode surface and drastically enhances the selectivity of the as-designed PEC sensor. The as-designed PEC sensor is cost-effective, easy to fabricate, highly selective and sensitive, and highly reliable, making it a promising platform for efficient aptasensing.
Collapse
Affiliation(s)
- Hongbo Li
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, People's Republic of China.,Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Yanli Li
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, People's Republic of China
| | - Jing Li
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, People's Republic of China
| | - Fan Yang
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Lingqiu Xu
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, People's Republic of China
| | - Wei Wang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, People's Republic of China
| | - Xiaxi Yao
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Yadong Yin
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
23
|
Zhang L, Xue J, Gao C, Xu M, Zhao P, Ge S, Yu J. Ultrasensitive photoelectrochemical sensor enabled by a target-induced signal quencher release strategy. NEW J CHEM 2020. [DOI: 10.1039/d0nj01435d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In this work, a target-induced signal quencher release strategy was proposed to construct a sensitive photoelectrochemical (PEC) sensor.
Collapse
Affiliation(s)
- Lina Zhang
- Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials
- University of Jinan
- Jinan
- P. R. China
| | - Jie Xue
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan
- P. R. China
| | - Chaomin Gao
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan
- P. R. China
| | - Meiling Xu
- Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials
- University of Jinan
- Jinan
- P. R. China
| | - Peini Zhao
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan
- P. R. China
| | - Shenguang Ge
- Institute for Advanced Interdisciplinary Research
- University of Jinan
- Jinan 250022
- China
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan
- P. R. China
| |
Collapse
|
24
|
Kucherenko IS, Soldatkin OO, Kucherenko DY, Soldatkina OV, Dzyadevych SV. Advances in nanomaterial application in enzyme-based electrochemical biosensors: a review. NANOSCALE ADVANCES 2019; 1:4560-4577. [PMID: 36133111 PMCID: PMC9417062 DOI: 10.1039/c9na00491b] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 10/28/2019] [Indexed: 05/06/2023]
Abstract
Electrochemical enzyme-based biosensors are one of the largest and commercially successful groups of biosensors. Integration of nanomaterials in the biosensors results in significant improvement of biosensor sensitivity, limit of detection, stability, response rate and other analytical characteristics. Thus, new functional nanomaterials are key components of numerous biosensors. However, due to the great variety of available nanomaterials, they should be carefully selected according to the desired effects. The present review covers the recent applications of various types of nanomaterials in electrochemical enzyme-based biosensors for the detection of small biomolecules, environmental pollutants, food contaminants, and clinical biomarkers. Benefits and limitations of using nanomaterials for analytical purposes are discussed. Furthermore, we highlight specific properties of different nanomaterials, which are relevant to electrochemical biosensors. The review is structured according to the types of nanomaterials. We describe the application of inorganic nanomaterials, such as gold nanoparticles (AuNPs), platinum nanoparticles (PtNPs), silver nanoparticles (AgNPs), and palladium nanoparticles (PdNPs), zeolites, inorganic quantum dots, and organic nanomaterials, such as single-walled carbon nanotubes (SWCNTs), multi-walled carbon nanotubes (MWCNTs), carbon and graphene quantum dots, graphene, fullerenes, and calixarenes. Usage of composite nanomaterials is also presented.
Collapse
Affiliation(s)
- I S Kucherenko
- Department of Biomolecular Electronics, Institute of Molecular Biology and Genetics of the National Academy of Sciences of Ukraine Zabolotnogo Street 150 Kyiv 03143 Ukraine
- Department of Mechanical Engineering, Iowa State University Ames Iowa 50011 USA
| | - O O Soldatkin
- Department of Biomolecular Electronics, Institute of Molecular Biology and Genetics of the National Academy of Sciences of Ukraine Zabolotnogo Street 150 Kyiv 03143 Ukraine
- Institute of High Technologies, Taras Shevchenko National University of Kyiv Volodymyrska Street 64 Kyiv 01003 Ukraine
| | - D Yu Kucherenko
- Department of Biomolecular Electronics, Institute of Molecular Biology and Genetics of the National Academy of Sciences of Ukraine Zabolotnogo Street 150 Kyiv 03143 Ukraine
| | - O V Soldatkina
- Institute of High Technologies, Taras Shevchenko National University of Kyiv Volodymyrska Street 64 Kyiv 01003 Ukraine
- F. D. Ovcharenko Institute of Biocolloidal Chemistry Acad. Vernadskoho Blvd. 42 Kyiv 03142 Ukraine
| | - S V Dzyadevych
- Department of Biomolecular Electronics, Institute of Molecular Biology and Genetics of the National Academy of Sciences of Ukraine Zabolotnogo Street 150 Kyiv 03143 Ukraine
- Institute of High Technologies, Taras Shevchenko National University of Kyiv Volodymyrska Street 64 Kyiv 01003 Ukraine
| |
Collapse
|
25
|
Gu T, Gu M, Liu YL, Dong Y, Zhu LB, Li Z, Wang GL, Zhao WW. In situ chemical redox and functionalization of graphene oxide: toward new cathodic photoelectrochemical bioanalysis. Chem Commun (Camb) 2019; 55:10072-10075. [PMID: 31378796 DOI: 10.1039/c9cc03877a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This report outlines the first exploration of graphene oxide (GO) itself as a light harvesting material with an innovative in situ chemical redox and functionalization (CRF) strategy for versatile and high-throughput cathodic photoelectrochemical (PEC) bioanalysis.
Collapse
Affiliation(s)
- Tiantian Gu
- International Joint Research Center for Photoresponsive Molecules and Materials, Key Laboratory of Synthetic and Biological Colloids (Ministry of Education), School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Zhao CQ, Ding SN. Perspective on signal amplification strategies and sensing protocols in photoelectrochemical immunoassay. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.03.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
27
|
Zang Y, Ju Y, Jiang J, Xu Q, Chu M, Xue H. Cu2+-Modulated in situ growth of quantum dots for split-type photoelectrochemical immunoassay of prostate-specific antigen. Analyst 2019; 144:4661-4666. [DOI: 10.1039/c9an00636b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A split-type photoelectrochemical immunosensor of PSA was developed using Cu2+-dependent catalytic oxidation for inhibiting the in situ growth of CdS QDs.
Collapse
Affiliation(s)
- Yang Zang
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou
- Jiangsu
- China
| | - Yun Ju
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou
- Jiangsu
- China
| | - Jingjing Jiang
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou
- Jiangsu
- China
| | - Qin Xu
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou
- Jiangsu
- China
| | - Ming Chu
- The First Affiliated Hospital with Nanjing Medical University
- Nanjing
- P. R. China
| | - Huaiguo Xue
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou
- Jiangsu
- China
| |
Collapse
|
28
|
Gao F, Zhou F, Chen S, Yao Y, Wu J, Yin D, Geng D, Wang P. Proximity hybridization triggered rolling-circle amplification for sensitive electrochemical homogeneous immunoassay. Analyst 2018; 142:4308-4316. [PMID: 29053159 DOI: 10.1039/c7an01434a] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A new homogeneous electrochemical immunoassay strategy was developed for ultrasensitive detection of carcinoembryonic antigen (CEA) based on target-induced proximity hybridization coupled with rolling circle amplification (RCA). The immobilization-free detection of CEA was realized by the use of an uncharged peptide nucleic acid (PNA) probe labeled with ferrocene (Fc) as the electroactive indicator on a negatively charged indium tin oxide (ITO) electrode. In the presence of a target protein and two DNA-labeled antibodies, the proximate complex formed in homogeneous solution could unfold the molecular beacon, and a part of the unfolded molecular beacon as a primer hybridized with the RCA template to initiate the RCA process. Subsequently, the detection probe modified Fc (Fc-PNAs) hybridized with the long amplified DNA products. The consumption of freely diffusible Fc-PNAs (neutrally charged) resulted in a significant reduction of the Fc signal due to the fact that long amplified DNA/Fc-PNA products were electrostatically repelled from the ITO electrode surface. The reduction of the electrochemical signal (signal-off) could indirectly provide the CEA concentration. Under the optimal conditions, CEA detection was implemented in a wide range from 1 pg mL-1 to 10 ng mL-1, with a low detection limit of 0.49 pg mL-1. The proposed strategy exhibited advantages of good selectivity, high sensitivity, acceptable accuracy, and favorable versatility of analytes. Moreover, the practical application value of the system was confirmed by the assay of CEA in human serums with satisfactory results.
Collapse
Affiliation(s)
- Fenglei Gao
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
A Paper-Supported Photoelectrochemical Sensing Platform Based on Surface Plasmon Resonance Enhancement for Real-Time H2S Determination. JOURNAL OF ANALYSIS AND TESTING 2018. [DOI: 10.1007/s41664-018-0070-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
30
|
Hao N, Hua R, Zhang K, Lu J, Wang K. A Sunlight Powered Portable Photoelectrochemical Biosensor Based on a Potentiometric Resolve Ratiometric Principle. Anal Chem 2018; 90:13207-13211. [PMID: 30272953 DOI: 10.1021/acs.analchem.8b03218] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
As a new analysis tool, photoelectrochemical (PEC) biosensors have been widely studied in recent years. However, common PEC biosensors usually require a highly stable light source to excite the electrical signal and an electrochemical workstation to collect and process the signal data, which limited the development of portable PEC devices. Herein, we propose the design of a sunlight powered portable PEC biosensor that uses sunlight as the light source. The sunlight intensity changes over time and weather and results in varied background PEC currents. To eliminate the interference caused by unstable excitation light, the potentiometric resolve ratiometric principle was introduced. Coupled with a miniature electrochemical workstation and a laptop, a sensitive and portable PEC sensing platform was successfully developed. The detection may be achieved under the irradiation of sunlight and will no longer need an extra light source. In a proof of concept experiment, this platform was successfully applied in aflatoxin B1 analysis, which was promising in the development of portable biosensors.
Collapse
Affiliation(s)
- Nan Hao
- School of Chemistry and Chemical Engineering , Jiangsu University , Zhenjiang 212013 , PR China
| | - Rong Hua
- School of Chemistry and Chemical Engineering , Jiangsu University , Zhenjiang 212013 , PR China
| | - Kai Zhang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine , Jiangsu Institute of Nuclear Medicine , Wuxi , Jiangsu 214063 , China
| | - Jinwen Lu
- School of Chemistry and Chemical Engineering , Jiangsu University , Zhenjiang 212013 , PR China
| | - Kun Wang
- School of Chemistry and Chemical Engineering , Jiangsu University , Zhenjiang 212013 , PR China.,Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, College of Chemistry and Molecular Engineering , Qingdao University of Science and Technology , Qingdao 266042 , PR China
| |
Collapse
|
31
|
Tu W, Wang Z, Dai Z. Selective photoelectrochemical architectures for biosensing: Design, mechanism and responsibility. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.06.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
32
|
Cao JT, Wang B, Dong YX, Wang Q, Ren SW, Liu YM, Zhao WW. Photogenerated Hole-Induced Chemical Redox Cycling on Bi 2S 3/Bi 2Sn 2O 7 Heterojunction: Toward General Amplified Split-Type Photoelectrochemical Immunoassay. ACS Sens 2018; 3:1087-1092. [PMID: 29851336 DOI: 10.1021/acssensors.8b00332] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This work reports the elegant bridging of enzymatic generation of electron donor with photogenerated hole-induced chemical redox cycling amplification (RCA) for innovative photoelectrochemical (PEC) immunoassay, by the aid of a heterojunction photoelectrode with split-type strategy. Specifically, the system was exemplified by the alkaline phosphatase (ALP) catalytic generation of ascorbic acid (AA), the redox cycling of AA by tris (2-carboxyethyl) phosphine (TCEP) as reductant, and the use of a novel Bi2S3/Bi2Sn2O7 heterojunction and myoglobin (Myo) as the photoelectrode and the target, respectively. After the immunoreaction and ALP-induced production of AA, the subsequent oxidation of AA by the photogenerated holes of the Bi2S3/Bi2Sn2O7 heterojunction could be cycled via the regeneration of AA by TCEP from the oxidized product of dehydroascorbic acid, leading to easy signal amplification for the sensitive immunoassay of Myo in real samples. It is believed that this work provided a basis for further design and development of general RCA-based PEC immunoassays.
Collapse
Affiliation(s)
- Jun-Tao Cao
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang 464000, China
| | - Bing Wang
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang 464000, China
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yu-Xiang Dong
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang 464000, China
| | - Qian Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Shu-Wei Ren
- Xinyang Central Hospital, Xinyang 464000, China
| | - Yan-Ming Liu
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang 464000, China
| | - Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
33
|
Ultrasensitive photoelectrochemical biosensor for the detection of HTLV-I DNA: A cascade signal amplification strategy integrating λ-exonuclease aided target recycling with hybridization chain reaction and enzyme catalysis. Biosens Bioelectron 2018; 109:190-196. [DOI: 10.1016/j.bios.2018.03.023] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 03/09/2018] [Accepted: 03/12/2018] [Indexed: 12/21/2022]
|
34
|
Zhang L, Zhu YC, Liang YY, Zhao WW, Xu JJ, Chen HY. Semiconducting CuO Nanotubes: Synthesis, Characterization, and Bifunctional Photocathodic Enzymatic Bioanalysis. Anal Chem 2018; 90:5439-5444. [DOI: 10.1021/acs.analchem.8b00742] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ling Zhang
- School of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- School of Material and Chemical Engineering, Bengbu University, Bengbu 233000, China
| | - Yuan-Cheng Zhu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yan-Yu Liang
- School of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
35
|
Cai G, Yu Z, Ren R, Tang D. Exciton-Plasmon Interaction between AuNPs/Graphene Nanohybrids and CdS Quantum Dots/TiO 2 for Photoelectrochemical Aptasensing of Prostate-Specific Antigen. ACS Sens 2018; 3:632-639. [PMID: 29465232 DOI: 10.1021/acssensors.7b00899] [Citation(s) in RCA: 207] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A competitive-displacement reaction strategy based on target-induced dissociation of gold nanoparticle coated graphene nanosheet (AuNPs/GN) from CdS quantum dot functionalized mesoporous titanium dioxide (CdS QDs/TiO2) was designed for the sensitive photoelectrochemical (PEC) aptasensing of prostate-specific antigen (PSA) through the exciton-plasmon interaction (EPI) between CdS QDs and AuNPs. To construct such an aptasensing system, capture DNA was initially conjugated covalently onto CdS QDs/TiO2-modified electrode, and then AuNPs/GN-labeled PSA aptamer was bound onto biofunctionalized CdS QDs/TiO2 via hybridization chain reaction of partial bases with capture DNA. Introduction of AuNPs/GN efficiently quenched the photocurrent of CdS QDs/TiO2 thanks to energy transfer. Upon addition of target PSA, the sandwiched aptamer between CdS QDs/TiO2 and AuNPs/GN reacted with the analyte analyte, thus resulting in the dissociation of AuNPs/GN from the CdS QDs/TiO2 to increase the photocurrent. Under optimum conditions, the aptasensing platform exhibited a high sensitivity for PSA detection within a dynamic linear range of 1.0 pg/mL to 8.0 ng/mL at a low limitat of detection of 0.52 pg/mL. The interparticle distance of exciton-plasmon interaction and contents of AuNPs corresponding to EPI effect in this system were also studied. Good selectivity and high reproducibility were obtained for the analysis of target PSA. Importantly, the accuracy and matrix effect of PEC aptasensor was evaluated for the determination of human serum specimens and newborn calf serum-diluted PSA standards, giving a well-matched result with the referenced PSA ELISA kit.
Collapse
Affiliation(s)
- Guoneng Cai
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), State Key Laboratory of Photocatalysis on Energy and Environment, Department of Chemistry, Fuzhou University, Fuzhou 35011168, People’s Republic of China
| | - Zhengzhong Yu
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), State Key Laboratory of Photocatalysis on Energy and Environment, Department of Chemistry, Fuzhou University, Fuzhou 35011168, People’s Republic of China
| | - Rongrong Ren
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), State Key Laboratory of Photocatalysis on Energy and Environment, Department of Chemistry, Fuzhou University, Fuzhou 35011168, People’s Republic of China
| | - Dianping Tang
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), State Key Laboratory of Photocatalysis on Energy and Environment, Department of Chemistry, Fuzhou University, Fuzhou 35011168, People’s Republic of China
| |
Collapse
|
36
|
Zhang L, Ruan YF, Liang YY, Zhao WW, Yu XD, Xu JJ, Chen HY. Bismuth Oxyiodide Couples with Glucose Oxidase: A Special Synergized Dual-Catalysis Mechanism for Photoelectrochemical Enzymatic Bioanalysis. ACS APPLIED MATERIALS & INTERFACES 2018; 10:3372-3379. [PMID: 29318880 DOI: 10.1021/acsami.7b17647] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
On the basis of a special synergized dual-catalysis mechanism, this work reports the preparation of a BiOI-based heterojunction and its use for cathodic photoelectrochemical (PEC) oxidase biosensing, which, unexpectedly, revealed that hydrogen peroxide (H2O2) had a greater impact than dioxygen (O2). Specifically, the BiOI layer was in situ formed on the substrate through an impregnating hydroxylation method for the following coupling with the model enzyme of glucose oxidases (GOx). The constructed cathodic PEC enzyme sensor exhibited a good analytical performance of rapid response, high stability, and good selectivity. Especially, glucose-induced H2O2-controlled enhancement of the photocurrent was recorded rather than the commonly observed O2-dependent suppression of the signal. This interesting phenomenon was attributed to a special synergized dual-catalysis mechanism. Briefly, this study is expected to provide a new BiOI-based photocathode for general PEC bioanalysis development and to inspire more interest in the design and construction of a novel heterojunction for advanced photocathodic bioanalysis. More importantly, the mechanism revealed here would offer a totally different perspective for the use of a biomimetic catalyst in the design of future PEC enzymatic sensing and the understanding of relevant signaling routes as well as the implementation of innovative PEC devices.
Collapse
Affiliation(s)
- Ling Zhang
- School of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics , Nanjing 211106, China
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210023, China
| | - Yi-Fan Ruan
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210023, China
| | - Yan-Yu Liang
- School of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics , Nanjing 211106, China
| | - Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210023, China
- Department of Materials Science and Engineering, Stanford University , Stanford, California 94305, United States
| | - Xiao-Dong Yu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210023, China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210023, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210023, China
| |
Collapse
|
37
|
Zhang N, Ruan YF, Zhang LB, Zhao WW, Xu JJ, Chen HY. Nanochannels Photoelectrochemical Biosensor. Anal Chem 2018; 90:2341-2347. [DOI: 10.1021/acs.analchem.7b04862] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Nan Zhang
- State
Key Laboratory of Analytical Chemistry for Life Science and Collaborative
Innovation Center of Chemistry for Life Science, School of Chemistry
and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yi-Fan Ruan
- State
Key Laboratory of Analytical Chemistry for Life Science and Collaborative
Innovation Center of Chemistry for Life Science, School of Chemistry
and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Li-Bin Zhang
- State
Key Laboratory of Analytical Chemistry for Life Science and Collaborative
Innovation Center of Chemistry for Life Science, School of Chemistry
and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wei-Wei Zhao
- State
Key Laboratory of Analytical Chemistry for Life Science and Collaborative
Innovation Center of Chemistry for Life Science, School of Chemistry
and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Department
of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Jing-Juan Xu
- State
Key Laboratory of Analytical Chemistry for Life Science and Collaborative
Innovation Center of Chemistry for Life Science, School of Chemistry
and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hong-Yuan Chen
- State
Key Laboratory of Analytical Chemistry for Life Science and Collaborative
Innovation Center of Chemistry for Life Science, School of Chemistry
and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
38
|
Ibrahim I, Lim HN, Mohd Zawawi R, Ahmad Tajudin A, Ng YH, Guo H, Huang NM. A review on visible-light induced photoelectrochemical sensors based on CdS nanoparticles. J Mater Chem B 2018; 6:4551-4568. [DOI: 10.1039/c8tb00924d] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Discovering the distinctive photophysical properties of semiconductor nanoparticles (NPs) has made these a popular subject in recent advances in nanotechnology-related analytical methods.
Collapse
Affiliation(s)
- Izwaharyanie Ibrahim
- Department of Chemistry
- Faculty of Science
- Universiti Putra Malaysia
- 43400 UPM Serdang
- Malaysia
| | - Hong Ngee Lim
- Department of Chemistry
- Faculty of Science
- Universiti Putra Malaysia
- 43400 UPM Serdang
- Malaysia
| | - Ruzniza Mohd Zawawi
- Department of Chemistry
- Faculty of Science
- Universiti Putra Malaysia
- 43400 UPM Serdang
- Malaysia
| | - Asilah Ahmad Tajudin
- Department of Microbiology
- Faculty of Biotechnology and Biomolecular Sciences
- Universiti Putra Malaysia
- 43400 UPM Serdang
- Malaysia
| | - Yun Hau Ng
- Particles and Catalysis Research Group
- School of Chemical Engineering
- The University of New South Wales
- Australia
| | - Hang Guo
- Pen-Tung Sah Institute of Micro-Nano Science and Technology
- Xiamen University Xiamen
- Fujian 361005
- China
| | - Nay Ming Huang
- New Energy Science & Engineering Programme
- University of Xiamen Malaysia
- Jalan SunSuria
- Bandar SunSuria
- 43900 Sepang
| |
Collapse
|
39
|
Xue J, Gao C, Zhang L, Cui K, He W, Yu J. A single-interface photoelectrochemical sensor based on branched TiO2 nanorods@strontium titanate for the detection of two biomarkers. J Mater Chem B 2018; 6:4697-4703. [DOI: 10.1039/c8tb00992a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Based on the enhanced photogenerated charge-separation properties of B-TiO2 NRs@SrTiO3 heterostructures, a photoelectrochemical sensor for detecting alpha fetoprotein and cancer antigen 153 at a single interface was first established.
Collapse
Affiliation(s)
- Jie Xue
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- P. R. China
| | - Chaomin Gao
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- P. R. China
| | - Lina Zhang
- Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials
- University of Jinan
- Jinan 250022
- P. R. China
| | - Kang Cui
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- P. R. China
| | - Wenxing He
- School of Biological Sciences and Technology
- University of Jinan
- Jinan 250022
- P. R. China
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- P. R. China
| |
Collapse
|
40
|
Li F, Shu JX, Gu TT, Wu X, Dong Y, Wang GL. Graphene oxide based photocathode for split photoelectrochemical bioanalysis. Electrochem commun 2018. [DOI: 10.1016/j.elecom.2017.11.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
41
|
Hao Y, Cui Y, Qu P, Sun W, Liu S, Zhang Y, Li D, Zhang F, Xu M. A novel strategy for the construction of photoelectrochemical sensing platform based on multifunctional photosensitizer. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2017.10.178] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
42
|
Chen J, Zhao GC. A novel signal-on photoelectrochemical immunosensor for detection of alpha-fetoprotein by in situ releasing electron donor. Biosens Bioelectron 2017; 98:155-160. [DOI: 10.1016/j.bios.2017.06.047] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 06/16/2017] [Accepted: 06/23/2017] [Indexed: 12/13/2022]
|
43
|
Affiliation(s)
- Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P.R. China
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P.R. China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P.R. China
| |
Collapse
|
44
|
Wei J, Qileng A, Yan Y, Lei H, Zhang S, Liu W, Liu Y. A novel visible-light driven photoelectrochemical immunosensor based on multi-amplification strategy for ultrasensitive detection of microcystin-LR. Anal Chim Acta 2017; 994:82-91. [DOI: 10.1016/j.aca.2017.09.035] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/12/2017] [Accepted: 09/15/2017] [Indexed: 01/07/2023]
|
45
|
Shu J, Tang D. Current Advances in Quantum-Dots-Based Photoelectrochemical Immunoassays. Chem Asian J 2017; 12:2780-2789. [DOI: 10.1002/asia.201701229] [Citation(s) in RCA: 245] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Jian Shu
- Key Laboratory of Analysis and Detection for Food Safety (MOE & Fujian Province); Collaborative Innovation Center of Detection Technology for Haixi Food Safety and Products (Fujian Province); State Key Laboratory of Photocatalysis on Energy and Environment; Department of Chemistry; Fuzhou University; Fuzhou 350108 People's Republic of China
| | - Dianping Tang
- Key Laboratory of Analysis and Detection for Food Safety (MOE & Fujian Province); Collaborative Innovation Center of Detection Technology for Haixi Food Safety and Products (Fujian Province); State Key Laboratory of Photocatalysis on Energy and Environment; Department of Chemistry; Fuzhou University; Fuzhou 350108 People's Republic of China
| |
Collapse
|
46
|
Zang Y, Lei J, Ju H. Principles and applications of photoelectrochemical sensing strategies based on biofunctionalized nanostructures. Biosens Bioelectron 2017; 96:8-16. [DOI: 10.1016/j.bios.2017.04.030] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 04/05/2017] [Accepted: 04/21/2017] [Indexed: 12/20/2022]
|
47
|
Kim YK, Jang H, Kang K. Seed-mediated Growth of Au Nanoplates on the Functionalized Reduced Graphene Oxide Films for Surface-enhanced Raman Scattering. B KOREAN CHEM SOC 2017. [DOI: 10.1002/bkcs.11216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Young-Kwan Kim
- Carbon Composite Materials Research Center, Institute of Advanced Composite Materials; Korea Institute of Science and Technology; San 101, Eunha-ri, Bongdong-eup, Wanju-gun, Jeollabuk-do 565-905 Korea
| | - Hongje Jang
- Department of Chemistry; Kwangwoon University; Seoul 139-701 Korea
| | - Kyungtae Kang
- Department of Applied Chemistry; Kyung Hee University; Yongin 446-701 South Korea
| |
Collapse
|
48
|
Kagkoura A, Skaltsas T, Tagmatarchis N. Transition-Metal Chalcogenide/Graphene Ensembles for Light-Induced Energy Applications. Chemistry 2017; 23:12967-12979. [DOI: 10.1002/chem.201700242] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Indexed: 01/04/2023]
Affiliation(s)
- Antonia Kagkoura
- Theoretical and Physical Chemistry Institute; National Hellenic Research Foundation; 48 Vassileos Constantinou Avenue Athens 11635 Greece
| | - Theodosis Skaltsas
- Theoretical and Physical Chemistry Institute; National Hellenic Research Foundation; 48 Vassileos Constantinou Avenue Athens 11635 Greece
| | - Nikos Tagmatarchis
- Theoretical and Physical Chemistry Institute; National Hellenic Research Foundation; 48 Vassileos Constantinou Avenue Athens 11635 Greece
| |
Collapse
|
49
|
Zhao S, Li Z, Li Y, Yu J, Liu G, Liu R, Yue Z. BSA-AuNCs based enhanced photoelectrochemical biosensors and its potential use in multichannel detections. J Photochem Photobiol A Chem 2017. [DOI: 10.1016/j.jphotochem.2017.03.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
50
|
Zhang N, Zhang L, Ruan YF, Zhao WW, Xu JJ, Chen HY. Quantum-dots-based photoelectrochemical bioanalysis highlighted with recent examples. Biosens Bioelectron 2017; 94:207-218. [PMID: 28285198 DOI: 10.1016/j.bios.2017.03.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/25/2017] [Accepted: 03/06/2017] [Indexed: 02/07/2023]
Abstract
Photoelectrochemical (PEC) bioanalysis is a newly developed methodology that provides an exquisite route for innovative biomolecular detection. Quantum dots (QDs) are semiconductor nanocrystals with unique photophysical properties that have attracted tremendous attentions among the analytical community. QDs-based PEC bioanalysis comprises an important research hotspot in the field of PEC bioanalysis due to its combined advantages and potentials. Currently, it has ignited increasing interests as demonstrated by increased research papers. This review aims to cover the most recent advances in this field. With the discussion of recent examples of QDs-PEC bioanalysis from the literatures, special emphasis will be placed on work reporting on fundamental advances in the signaling strategies of QDs-based PEC bioanalysis from 2013 to now. Future prospects in this field are also discussed.
Collapse
Affiliation(s)
- Nan Zhang
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Ling Zhang
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Yi-Fan Ruan
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, Jiangsu, PR China.
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, Jiangsu, PR China
| |
Collapse
|