1
|
Li YH, Lin CH, Chen HL, Yang EC, Shieh M. Stabilization of Sb 4 Tetrahedra in Paramagnetic Transition Metal Carbonyl Complexes. J Am Chem Soc 2025; 147:9043-9048. [PMID: 40066593 DOI: 10.1021/jacs.4c13882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
We present a straightforward synthetic route to the novel chromium carbonyl-stabilized paramagnetic Sb4-based cluster [Et4N]4[Sb4Cr6(CO)28] ([Et4N]4[1]), which represented a rare example of the intact Sb4 tetrahedron structurally characterized in the solid state. Complex 1 exhibited versatile reactivities toward groups 7-9 metal carbonyls, dioxygen, or [Cu(MeCN)4][BF4] to form selective orbital-controlled Sb4-based products, including transmetalated paramagnetic complexes [Et4N]4[Sb4Cr5Mn(CO)28]Br ([Et4N]4[1-Mn]Br), [Et4N]4[Sb4Cr2Fe6(CO)30] ([Et4N]4[1-Fe]), and [Et4N]2[Sb4Cr4Co4(CO)31] ([Et4N]2[1-Co]), the dioxygen-activated paramagnetic cluster [Et4N]4[O2Sb4Cr6(CO)28] ([Et4N]4[1-O2]), or the spin-quenched complex [Et4N]2[Sb4Cr6(CO)28] ([Et4N]2[2]), respectively. The structural nature, bonding properties, paramagnetism, and semiconductivity of these unprecedented transition metal carbonyl-protected Sb4-based clusters were further realized with DFT calculations.
Collapse
Affiliation(s)
- Yu-Huei Li
- Department of Chemistry, National Taiwan Normal University, Taipei 116325, Taiwan, Republic of China
| | - Chia-Hsien Lin
- Department of Chemistry, National Taiwan Normal University, Taipei 116325, Taiwan, Republic of China
| | - Hui-Lung Chen
- Department of Chemistry and Institute of Applied Chemistry, Chinese Culture University, Taipei 111396, Taiwan, Republic of China
| | - En-Che Yang
- Department of Chemistry, Fu Jen Catholic University, New Taipei 24205, Taiwan, Republic of China
| | - Minghuey Shieh
- Department of Chemistry, National Taiwan Normal University, Taipei 116325, Taiwan, Republic of China
| |
Collapse
|
2
|
Tian Y, Zhu B, Murahashi T, Sakaki S. Highly Symmetrical Palladium Cluster Complexes with Either Anticuboctahedral or Cuboctahedral Pd 13 Core: Theoretical Insight into Factors Determining Symmetrical Structure. J Phys Chem A 2025; 129:2510-2520. [PMID: 40009548 DOI: 10.1021/acs.jpca.4c07401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
One of the important open questions is what factor(s) determines the symmetry of the structure of the metal nanocluster complex. [Pd13(μ-Cl)3(μ4-C16H16)6]+ (Anti-μ4; C16H16 = [2.2]paracyclophane) has an anticuboctahedral Pd13 core unlike [Pd13(μ4-C7H7)6]2+ with cuboctahedral Pd13 core. DFT calculations show that Anti-μ4 is more stable than isomers, [Pd13(μ-Cl)3(μ3-C16H16)3(μ4-C16H16)3]+ and [Pd13(μ-Cl)3(μ2-C16H16)3(μ4-C16H16)3]+ with cuboctahedral Pd13 core (Cubo-μ3,μ4 and Cubo-μ2,μ4, respectively) and [Pd13(μ-Cl)3(μ3-C16H16)6]+ with distorted icosahedral Pd13 core (dis-Ih-μ3). Not the stabilities of [Pd13(μ-Cl)3]+ core and (C16H16)6 ligand-shell but rather the interaction energy (Eint) between [Pd13(μ-Cl)3]+ and (C16H16)6 ligand-shell determines stabilities of these complexes. μ4-C16H16 coordination bond is stronger than μ2- and μ3-coordination bonds, leading to a larger Eint value in Anti-μ4 than in isomers bearing μ2- or μ3-coordination bond. An icosahedral Pd13 core is not favorable for these Pd13 complexes because of the absence of a Pd4 plane. [Pd13(μ-Cl)3(μ4-C16H16)6]+ with cuboctahedral Pd13 (Cubo-μ4) is not stable despite the presence of six Pd4 planes, because its three Pd4 planes with μ-Cl ligand cannot form μ4-C16H16 coordination bond due to steric repulsion of C16H16 with the μ-Cl ligand. In contrast, Anti-μ4 is stable because it has six Pd4 planes with no Cl ligand to form strong μ4-C16H16 coordination bonds without steric repulsion. Also, discussion is presented on the difference in symmetry between [Pd13(μ-Cl)3(μ4-C16H16)6]+ and [Pd13(μ4-C7H7)6]2+.
Collapse
Affiliation(s)
- Yu Tian
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, 130023, P. R. China
| | - Bo Zhu
- Institute of Functional Materials Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Tetsuro Murahashi
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Institute of Science Tokyo, O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Shigeyoshi Sakaki
- Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto-daigaku-Katsura, Nishikyo-ku, Kyoto 615-8146, Japan
| |
Collapse
|
3
|
Han Z, Duan C, Dong XY, Si Y, Hu JH, Wang Y, Zhai SM, Lu T, Xu H, Zang SQ. Tightly bonded excitons in chiral metal clusters for luminescent brilliance. Nat Commun 2025; 16:1867. [PMID: 39984514 PMCID: PMC11845751 DOI: 10.1038/s41467-025-57209-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 02/12/2025] [Indexed: 02/23/2025] Open
Abstract
Chiral metal clusters have promise for circularly polarized luminescent materials; however, the absence of a unified understanding of the emission mechanism causes challenges in designing high-efficiency lighting materials based on these clusters. These challenges primarily arise from their vast structural variability and intricate emissive states. In this study, we show the crucial roles of the exciton binding energy and electron‒phonon interactions in achieving high-efficiency phosphorescence. Through Cu doping in the Au4 clusters and changing ligand substituents, we increase the exciton binding energies and reduce the electron‒phonon interactions; this results in a maximum 1.3-fold increase in the radiative recombination rate, a maximum 241.1-fold decrease in the nonradiative recombination rate, and ultimately a phosphorescence quantum yield of over 96% and circularly polarized luminescence in metal cluster crystals. A solution-processed circularly polarized light-emitting diode prototype exhibits an external quantum efficiency of 15.51% in green and a maximum dissymmetry factor |gEL| of 7.6 × 10-3. Our findings highlight the significance of designing metal clusters with optimized exciton binding energies and electron‒phonon interactions for enhanced optoelectronic performance, including in circularly polarized optoelectronics.
Collapse
Affiliation(s)
- Zhen Han
- College of Chemistry, Zhengzhou University, Zhengzhou, China
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, China
| | - Chunbo Duan
- School of Chemistry and Material Science, Heilongjiang University, Harbin, China
| | - Xi-Yan Dong
- College of Chemistry, Zhengzhou University, Zhengzhou, China.
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, China.
| | - Yubing Si
- College of Chemistry, Zhengzhou University, Zhengzhou, China.
| | - Jia-Hua Hu
- College of Chemistry, Zhengzhou University, Zhengzhou, China
| | - Yan Wang
- College of Chemistry, Zhengzhou University, Zhengzhou, China
| | - Si-Meng Zhai
- College of Chemistry, Zhengzhou University, Zhengzhou, China
| | - Tian Lu
- Beijing Kein Research Center for Natural Sciences, Beijing, China
| | - Hui Xu
- School of Chemistry and Material Science, Heilongjiang University, Harbin, China
| | | |
Collapse
|
4
|
Wang WL, Zhang ZC, Huang SY, Zhong HY, Ni BL, Sun WM. Transformation of Distinct Superatoms to Superalkalis by Successive Ligation of Thymine Nucleobases. J Phys Chem A 2025; 129:1673-1681. [PMID: 39880839 DOI: 10.1021/acs.jpca.4c08440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
The ligation strategy has been widely used in the chemical synthesis of atomically precise clusters. A series of thymine (T)-ligated Al12M-Tn (M = Be, Al, C; n = 1-5) complexes have been studied to reveal the effect of DNA nucleobase ligands on the electronic structures of different superatoms in the present work. In addition to its protective role, the successive attachment of thymine ligands significantly lowers the adiabatic ionization energies (AIEs) of the studied Al12M superatoms with filled and unfilled electronic shells. The continuous decrease in the AIEs of Al12M-Tn is derived from the gradually raised highest occupied molecular orbital (HOMO) levels upon the addition of ligands. Interestingly, the lowering degree of AIEs for such nucleobase-protected superatoms is independent of the distinct shell fillings of Al12M superatoms but is significantly related to the types of nucleobases. Moreover, the obtained Al12M-T5 superalkalis not only exhibit excellent performance in activating the stable CO2 and O2 molecules but also have considerable nonlinear optical (NLO) responses. We, therefore, hope that this study could provide a viable strategy for synthesizing novel nucleobase-ligated superatom clusters with excellent reducing capability to enrich the family of multifunctional nanoclusters.
Collapse
Affiliation(s)
- Wen-Lu Wang
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350108, People's Republic of China
| | - Zhi-Chao Zhang
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350108, People's Republic of China
| | - Shu-Ying Huang
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350108, People's Republic of China
| | - Hai-Yan Zhong
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350108, People's Republic of China
| | - Bi-Lian Ni
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350108, People's Republic of China
| | - Wei-Ming Sun
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350108, People's Republic of China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| |
Collapse
|
5
|
Sun Z, Shi L, Cheng L. Tetrahedral Al 20O 30 Cage: A Superchalcogen Atom. J Phys Chem A 2025; 129:997-1005. [PMID: 39814580 DOI: 10.1021/acs.jpca.4c06789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Superatoms are stable clusters that mimic the chemical behavior of individual atoms in the periodic table. Many endeavors have been devoted to the design and characterization of various superatoms, while engineering superatoms to mimic the chemistry of chalcogens remains a challenge. In this paper, we present a new superchalcogen by evaluating a hollow tetrahedral Al20O30 cluster with theoretical calculations. By comparing the Al20O30 with its daughter dianion (Al20O30)2- in terms of stability, aromaticity, electronic properties, and chemical behavior in compounds, we find that this cluster tends to get two additional electrons to reach a more stable electronic state, which is the origin of the identity of superchalcogens. The adaptive natural density partitioning (AdNDP) analysis illustrates that this Al20O30 cluster accommodates two electrons by a 4-center-2-electron bond formed between the four face-centered Al atoms. Moreover, the Al20O30 cluster has exothermic first and second adiabatic electron affinity (EA), indicating that the dianion (Al20O30)2- is stable against spontaneous electron emission and fragmentation in the gas phase. This reflects the size advantage of superchalcogens when compared with chalcogens. Interestingly, we further study a cluster with one more electron than the superchalcogen Al20O30, namely, H@(Al20O30) and find that it is a superhalogen due to its large vertical and adiabatic EA.
Collapse
Affiliation(s)
- Zhonghua Sun
- School of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, PR China
| | - Lili Shi
- School of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, PR China
| | - Longjiu Cheng
- School of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, PR China
- Key Laboratory of Functional Inorganic Materials of Anhui Province, Anhui University, Hefei, Anhui 230601, PR China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Hefei 230601, PR China
| |
Collapse
|
6
|
Cheng R, Gao Y, Cui C, Luo Z. Unusual Inertness of a Ta 8+ Cluster in Dinitrogen Reactions. J Phys Chem Lett 2025; 16:454-459. [PMID: 39743494 DOI: 10.1021/acs.jpclett.4c03121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Clusters serve as the optimal model to elucidate the structure-property relationship of materials, bridging condensed matter and individual atoms. The pursuit of exceptionally stable clusters has garnered significant interest. The distinctive electronic configuration and symmetrical geometry generally provide a consistent rationale for their stability. However, this principle does not quite correspond to the behavior of all transition metal clusters. Utilizing our customized apparatus, we successfully produced pure tantalum clusters Tan+ (n = 1-16) and examined their reactions with dinitrogen under sufficient gas-collision conditions. Significantly, with the introduction of N2 gas reactants, the Ta8+ cluster became the predominant species. Comprehensive theoretical analyses indicate that the inertness of Ta8+ is due to not only its unique electronic configuration and superatomic feature but also its unfavorable N2 adsorption dynamics and N≡N activation kinetics on the cluster. We demonstrate the contributions of frontier orbitals, the natural population of charges, and their interactions with lone-pair electrons of N2, together with the rate coefficients derived from Rice-Ramsperger-Kassel-Marcus (RRKM) theory. This study provides comprehensive insights into the cluster stability and activity, which can be used as a reference for the development of gas separation materials that are resistant to N2.
Collapse
Affiliation(s)
- Ran Cheng
- Beijing National Laboratory for Molecular Science (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yifan Gao
- Beijing National Laboratory for Molecular Science (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chaonan Cui
- Beijing National Laboratory for Molecular Science (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhixun Luo
- Beijing National Laboratory for Molecular Science (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Wakizaka M, Tanaka H, Takaishi S, Yamashita M. Superatomic Stabilization of Dinuclear Platinum(III) through Iodide-Bridged Five-Center Ten-Electron Bonding. Inorg Chem 2025; 64:97-104. [PMID: 39700064 DOI: 10.1021/acs.inorgchem.4c04178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
One of the goals in synthetic chemistry is to obtain compounds featuring unusual valence states that are stable under ambient conditions. At present, stabilizing unusual Pt(III) states is considered difficult, except through direct Pt-Pt bonding such as that in platinum-blues or organometallization using bulky ligands. Pt(III) stabilization is also very difficult in halogen-bridged metal complex chains (MX-Chains). Herein, the iodide-bridged Pt(III) dimer compound [Pt2(en)4I3]I3 (en = ethylenediamine), which is prepared by the iodine oxidation of [PtII(en)2]I2, has been successfully synthesized and characterized. This compound is stable and is obtained as diamond-shaped single crystals with a lustrous emerald-green color under reflected light and a red color under transmitted light. The Pt(III) state is stabilized by the five-center ten-electron (5c-10e) bonding in the I-Pt-I-Pt-I core, in addition to the very strong antiferromagnetic state. The stabilization mechanism of Pt(III) through a 5c-10e bonding is considered a superatom complex; thus, this work provides new insight for stabilizing the unusual Pt(III) state.
Collapse
Affiliation(s)
- Masanori Wakizaka
- Department of Applied Chemistry and Bioscience, Faculty of Science and Technology, Chitose Institute of Science and Technology, 758-65 Bibi, Chitose 066-8655, Japan
| | - Hisaaki Tanaka
- Department of Applied Chemistry and Bioscience, Faculty of Science and Technology, Chitose Institute of Science and Technology, 758-65 Bibi, Chitose 066-8655, Japan
| | - Shinya Takaishi
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-Ku, Sendai 980-8578, Japan
| | - Masahiro Yamashita
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-Ku, Sendai 980-8578, Japan
- School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, P. R. China
| |
Collapse
|
8
|
Yuan Q, Gao J, Zheng Y, Xu C, Cheng L. Assembling Gold Icosahedrons to Superatomic Molecules Mimicking the Bonding Rules in Molecules. Inorg Chem 2025; 64:452-459. [PMID: 39748497 DOI: 10.1021/acs.inorgchem.4c04896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Icosahedral gold clusters with high-symmetry geometry and magic electronic shells are potential candidates for cluster-assembling, while their assembling rules are still awaiting further investigation. In this work, we use the all-metal icosahedral M@Au12 as a building block to assemble a series of bi-, tri-, tetra-, and penta-superatomic molecules with diverse superatomic bonding patterns via face-fusion, aiming to systemically explore the bonding rule of superatoms. Chemical bonding analyses indicate that these bi-, tri-, tetra-, and penta-superatomic molecules [M@Au12]n+/0 (M = Re, W, Ta, Ti, Hf, Ir, and Pt) can be considered electronic analogues to Cl2, O2, N2, CO, O3, CO2, NCl3, and CF4 molecules with single, double, triple, and multicenter bonds, respectively. In multi-superatomic molecules, the central superatom undergoes super S-P orbital hybridizations to form super σ bonds with each peripheral superatom, mimicking the bonding rules of molecules. Due to the large size of superatoms, superatomic molecules also present some distinct bonding characters in structure and relative energy compared to their analogues. This paper systemically investigated the superatomic bonding rules, giving references to further design and synthesis of superatom-assembled materials.
Collapse
Affiliation(s)
- Qinqin Yuan
- Department of Chemistry, Anhui University, Hefei, Anhui 230601, P. R. China
| | - Jiahao Gao
- Department of Chemistry, Anhui University, Hefei, Anhui 230601, P. R. China
| | - Yuanyuan Zheng
- Department of Chemistry, Anhui University, Hefei, Anhui 230601, P. R. China
| | - Chang Xu
- Department of Chemistry, Anhui University, Hefei, Anhui 230601, P. R. China
| | - Longjiu Cheng
- Department of Chemistry, Anhui University, Hefei, Anhui 230601, P. R. China
- Key Laboratory of Functional Inorganic Materials of Anhui Province, Anhui University, Hefei, Anhui 230601, P. R. China
| |
Collapse
|
9
|
Zhang ZC, Wang WL, Zhong HY, Liu B, Shi XY, Yu D, Sun WM. The catalytic performance of (ZrO) n ( n = 1-4, 12) clusters for Suzuki-Miyaura cross-coupling: a DFT study. Dalton Trans 2024; 53:18258-18267. [PMID: 39446037 DOI: 10.1039/d4dt01955e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Superatoms are special clusters with similar physicochemical properties to individual atoms in the periodic table, which open up new avenues for exploring inexpensive catalysts. Given that the ZrO superatom possesses the same number of valence electrons as a Pd atom, the mechanisms of the Suzuki-Miyaura reaction catalyzed by (ZrO)n (n = 1-4) clusters have been investigated and compared with the corresponding Pdn (n = 1-4) species to explore superatom-based catalysts for the formation of C-C bonds via a density functional theory (DFT) study. It was interesting to find that the catalytic activities of (ZrO)n (n = 1-4) towards the Suzuki-Miyaura reaction gradually improved as the cluster size increased. Therefore, to obtain more efficient catalysts, the catalytic activity of a well-designed (ZrO)12 nanocage towards this cross-coupling reaction has been further evaluated. Gratifyingly, this nanocage shows excellent catalytic performance for the considered coupling reaction, which is even comparable to that of the commonly used Pd catalyst and outperforms the corresponding Pd12 cluster. We hope this study can not only provide valuable guidance for the development of noble metal-like catalysts for C-C bond formation, but also expand the application of superatoms in the catalysis of organic reactions.
Collapse
Affiliation(s)
- Zhi-Chao Zhang
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, 350122, People's Republic of China.
| | - Wen-Lu Wang
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, 350122, People's Republic of China.
| | - Hai-Yan Zhong
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, 350122, People's Republic of China.
| | - Bin Liu
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, 350122, People's Republic of China.
| | - Xin-Yu Shi
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, 350122, People's Republic of China.
| | - Dan Yu
- School of Environmental Science and Engineering, Guangzhou University, Guangdong, Guangzhou, 510006, China
| | - Wei-Ming Sun
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, 350122, People's Republic of China.
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China
| |
Collapse
|
10
|
Du Q, Luo Z, Xing X, Zhao J. Gas Phase Reactions of Pristine and Single-Atom-Doped Copper and Silver Clusters: Probing Size-Dependent Stability and Novel Superatoms. J Phys Chem Lett 2024; 15:11383-11394. [PMID: 39503705 DOI: 10.1021/acs.jpclett.4c02582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Gas phase reactions have been a subject of research interest, enabling reliable strategies to explore the stability and reactivity of metal clusters as well as to probe novel superatoms that form the building blocks to assemble new materials with tailored properties. Coinage metal clusters have attracted great research attention due to their simple electronic shell structures and rich photochemical and catalytic properties at relatively low cost. This perspective focuses on the recent progress made in studying the gas phase reactions of undamaged and single-atom-doped Cun±,0 and Agn±,0 clusters with O2, CO, and NO molecules. It covers various aspects, such as reaction mechanisms, relationships between structure and activity, control of reactivity by changing cluster size and composition, and the identification of novel superatoms (Cu18-, Ag13-, Ag17-, and Ag15O+). Lastly, we provide a detailed account of the obstacles and prospective avenues for future research in order to establish a connection between these findings and nanocluster systems that have practical applications.
Collapse
Affiliation(s)
- Qiuying Du
- College of Physics and Electronic Information, Inner Mongolia Normal University, 81 Zhaowuda Road, Hohhot 010022, Inner Mongolia China
| | - Zhixun Luo
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Xiaopeng Xing
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, P. R. China
| | - Jijun Zhao
- Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
11
|
Gao Y, Lei X, Cheng R, Lin S, Luo Z. Enhanced stability of the Nb 3O 6- and Nb 4O 6+ clusters: the nxcπ rule versus superatomic nature. Phys Chem Chem Phys 2024; 26:28019-28024. [PMID: 39484736 DOI: 10.1039/d4cp03279a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
This study examines the chemical reactivity of niobium clusters with carbon dioxide (CO2), with an emphasis on the analysis of the ensuing products Nb4O6+ and Nb3O6-, which show up in the cationic and anionic mass spectra, respectively. Using density functional theory (DFT) calculations, we demonstrate the reactivity of the Nbn± clusters with CO2 and reveal distinct stabilization mechanisms for the two prominent products. The stability of Nb3O6- is determined by the existence of ten π bonds pertaining to π-electron delocalization, which conforms to the nxcπ electron configuration model. Despite having only a one-atom distinction, Nb4O6+ exhibits superatomic electron shells embodying superatom stability. The divergent stabilizing mechanisms found in Nb4O6+ and Nb3O6- illustrate the intricate nature of cluster chemistry and the significance of electronic structure in governing cluster stability and reactivity.
Collapse
Affiliation(s)
- Yifan Gao
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Lei
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Ran Cheng
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shiquan Lin
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhixun Luo
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
12
|
Muñoz-Castro A. [Ba 4@Sn 56] 36- as a Main-Group Second-Order Superatom. Interpenetrated Dodecahedrons as a Three-Dimensional Cluster-of-Clusters Structure. Inorg Chem 2024; 63:20102-20107. [PMID: 38717863 DOI: 10.1021/acs.inorgchem.4c00104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Superatomic clusters are relevant species to further understanding of bonding and structural properties of atomically precise molecular nanoparticles. Here, we explore the characteristics of ligand-free [Ba4@Sn56]36- Zintl-ion, as a three-dimensional aggregate of clusters featuring four fused Ba@Sn19 building units as an extension of the understanding in linear and cyclic superatomic cluster arrays. We provide a rational picture of the electronic shell in [Ba4@Sn56]36- as a cluster-of-clusters motif through the recently introduced second-order superatom approach, as a three-dimensional aggregation of superatomic clusters where their shells are able to interact. The electronic structure features both tangential and radial shells from the four building Ba@Sn19 units, leading to a set of 1S'21P'61D'101F'14 and higher angular momentum shells and a second set of 2S'22P'62D'102F'142G'8 second-order shells. Thus, the current approach serves to encourage the rationalization of molecular materials conceived from cluster building blocks toward a rational guide for synthetic efforts.
Collapse
Affiliation(s)
- Alvaro Muñoz-Castro
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Bellavista 7, Santiago 8420524, Chile
| |
Collapse
|
13
|
Wei J, Rodríguez-Kessler PL, Saillard JY, Muñoz-Castro A. Cuboctahedral Pd 13 as a spherical aromatic noble metal core: insights from a ligand-protected [Pd 13(Tr) 6] 2+ cluster. Dalton Trans 2024; 53:16740-16746. [PMID: 39347686 DOI: 10.1039/d4dt01633e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Low-valent palladium nanoparticles are efficient species promoting catalytic activity and selectivity in a number of chemical reactions. Recently, an atom-centered cuboctahedral Pd13 motif has been characterized as a ligand-protected [Pd13(Tr)6]2+ cluster featuring a 1s2 superatomic shell structure. In this report, we describe the ligand-cluster of and endohedral-cage interaction in [Pd13(Tr)6]2+, which accounts for a favorable situation in the overall cluster. In addition, the spherical aromatic properties of the cluster were evaluated to understand the behavior of the ligand-protected Pd13 cluster core. Our results indicate a sizable interaction towards carbon-based ligands in an overall spherical aromatic cluster featuring a long-range shielding cone. Thus, [Pd13(Tr)6]2+ is rationalized as the first ligand-protected palladium cluster to date exhibiting spherical aromatic properties, serving as a stable building block for molecule-based materials or as a dopant in porous carbon materials.
Collapse
Affiliation(s)
- Jianyu Wei
- School of Materials and New Energy, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Peter L Rodríguez-Kessler
- Centro de Investigaciones en Óptica A.C., Loma del Bosque 115, Col. Lomas del Campestre, León, Guanajuato, 37150, Mexico
| | - Jean-Yves Saillard
- Institut des Sciences Chimiques de Rennes, Univ Rennes, CNRS, UMR 6226, Rennes F-35000, France.
| | - Alvaro Muñoz-Castro
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Bellavista 7, Santiago, 8420524, Chile.
| |
Collapse
|
14
|
Wang J, Fan W, Cheng SB, Chen J. Tailoring the Superatomic Characteristics and Optical Behavior of Metal-Free Boron Clusters via Ligand Engineering. J Phys Chem A 2024; 128:7869-7878. [PMID: 39231803 DOI: 10.1021/acs.jpca.4c04808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
It is of great importance to understand how the number and type of ligands influence the properties of clusters through ligand engineering, as this knowledge is crucial for the rational design and optimization of functional materials. Herein, the geometrical structures, binding energies, and electronic properties of nonmetallic Bn (n = 20 and 40) clusters with CO, PEt3, F, NO2, and CN ligands are systematically explored based on density functional theory (DFT) calculations. Our findings demonstrate that the CO ligand acts as an electron donor when attached to these two boron clusters, in contrast to their role as electron acceptors in interactions with metal oxide and metal chalcogenide clusters. This emphasizes the necessity of considering the intrinsic properties of the host cluster when modifying with ligands. Moreover, it was observed that substituting PEt3 with F, NO2, or CN converted the B20 cluster from an electron acceptor to an electron donor, thereby demonstrating the versatility in tuning the redox characteristics of boron clusters by selecting appropriate ligands. Intriguingly, the attachment of the PEt3, F, NO2, and CN ligands to B20 can significantly modulate the electronic properties of B20 to realize the formation of metal-free superalkali (B20(PEt3)n, n = 3-5) and superhalogen (B20F, B20NO2, and B20CN) clusters. Furthermore, the structure, stability, and optical absorption of the charge transfer complex B20(PEt3)3+B20F were analyzed. This complex has been identified as an efficient material for harvesting visible light. Our findings provide insights into the effects of ligand variations on boron cluster functionalities, offering a new perspective for the design of advanced materials with tailored cluster properties through ligand engineering.
Collapse
Affiliation(s)
- Jing Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Weiliu Fan
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Shi-Bo Cheng
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Jing Chen
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| |
Collapse
|
15
|
Muñoz-Castro A. Beyond The Sphere. Au 20(PR 3) 8 as a Spherical Aromatic Cuboctahedron Cluster. Chem Asian J 2024:e202400670. [PMID: 39227900 DOI: 10.1002/asia.202400670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/26/2024] [Accepted: 09/03/2024] [Indexed: 09/05/2024]
Abstract
The icosahedral Au13 5+ core is a recurrent building block in ligand-protected gold clusters involving an 8-cluster electron 1S21P6 electronic shell. Such a prototypical structure enables a spherical aromatic behavior as given by long-range magnetic shielding. Recently, the Au20(tBu3P)8 cluster featuring a contrasting cuboctahedral core with formally neutral gold atoms appears as a novel core architecture with the potential to be considered as another potential building block towards functional nanostructures. Here, we explore the ligand-core interaction and spherical aromatic characteristics of Au20(tBu3P)8, in order to provide a direct connection to classical icosahedral spherical aromatic compounds, now involving a cuboctahedral core structure. Such characteristics suggest rationalization of their robustness in terms of certain electron counts, enabling a shielding cone property in ligand-protected metallic clusters, which favors bridging organic and inorganic planar/spherical aromatic species towards the unification of the aromaticity concept and designing guidelines for further achievements.
Collapse
Affiliation(s)
- Alvaro Muñoz-Castro
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad, San Sebastián, Bellavista 7, Santiago, 8420524, Chile
| |
Collapse
|
16
|
Pei W, Hou L, Yang J, Zhou S, Zhao J. Doping-mediated excited state dynamics of diphosphine-protected M@Au 12 (M = Au, Ir) superatom nanoclusters. NANOSCALE 2024; 16:14081-14088. [PMID: 39004999 DOI: 10.1039/d4nr02051k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Doping heterometal atoms into ligand-protected gold superatom nanoclusters (Aun NCs) is proposed to further diversify their geometrical and electronic structures and enhance their photoluminescence properties, which is attributed to the mixing and effects between atoms. However, the fundamental principles that govern the optoelectronic properties of the doped Aun NCs remain elusive. Herein, we systematically explored two prototypical 8-electron Aun (n = 11 and 13) NCs with and without Ir dopant atoms using comprehensive ab initio calculations and real-time nonadiabatic molecular dynamics simulations. These doped Aun NCs maintain their parent geometrical structures and 8-electron superatomic configuration (1S21P6). Strong core-shell (Ir-Aun) electronic coupling significantly expands the energy gap, resulting in a weak nonadiabatic coupling matrix element, which in turn increases the carrier lifetime. This increase is mainly governed by the low-frequency vibration mode. We uncovered the relationship between electronic structures, electron-vibration, and carrier dynamics for these doped Aun NCs. These calculated results provide crucial insights for the atomically precise design of metal NCs with superior optoelectronic properties.
Collapse
Affiliation(s)
- Wei Pei
- College of Physical Science and Technology, Yangzhou University, Yangzhou 225009, China.
| | - Lei Hou
- College of Physical Science and Technology, Yangzhou University, Yangzhou 225009, China.
| | - Jing Yang
- College of Physical Science and Technology, Yangzhou University, Yangzhou 225009, China.
| | - Si Zhou
- Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics, South China Normal University, Guangzhou 510006, China.
- Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Frontier Research Institute for Physics, South China Normal University, Guangzhou 510006, China
| | - Jijun Zhao
- Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics, South China Normal University, Guangzhou 510006, China.
- Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Frontier Research Institute for Physics, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
17
|
Sheong FK, Zhang JX, Lin Z. Fragment Aligned Molecular Orbital Analysis: An Innovative Tool for Analyzing Atypical Chemical Bonding. J Chem Theory Comput 2024. [PMID: 39046803 DOI: 10.1021/acs.jctc.4c00456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
In chemical research, it is a common practice to carry out quantum chemical calculations and analyze the canonical molecular orbitals (CMOs) obtained to study electronic structures of chemical systems. However, extensive orbital mixing of CMOs especially in molecular clusters significantly complicates our understanding of the electronic structures. In this paper, we have developed an innovative tool called fragment aligned molecular orbital (FAMO) analysis, which reconstructs our modular chemical picture by making use of the Procrustes analysis in statistical theory to align the occupied molecular orbitals of a molecular species against the occupied (molecular) orbitals of the constituting fragments of the cluster, and results in a set of chemically intuitive semilocalized orbitals. This alignment technique minimizes the extensive orbital mixing, thus allowing precise observation of bonding interactions in complex chemical systems. A few representative clusters have been selected as showcase examples to demonstrate the advantage of FAMO analysis in deciphering the distinct bonding interactions in cluster compounds.
Collapse
Affiliation(s)
- Fu Kit Sheong
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
| | - Jing-Xuan Zhang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
| | - Zhenyang Lin
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
| |
Collapse
|
18
|
Li XT, Li J, Liu SQ, Du SH, Wang SJ, Chen J, Cheng SB. Dual External Field Strategy in Regulating the Superhalogen Characteristics of the Non-Noble Metal Constituted Tantalum Oxide Clusters. J Phys Chem A 2024; 128:5298-5306. [PMID: 38917472 DOI: 10.1021/acs.jpca.4c02089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
The identification of the non-noble metal constituted TaO cluster as a potential analogue to the noble metal Au is significant for the development of tailored materials. It leverages the superatom concept to engineer properties with precision. However, the impact of incrementally integrating TaO units on the electronic configurations and properties within larger TaO-based clusters remains to be elucidated. By employing the density functional theory calculations, the global minima and low-lying isomers of the TanOn (n = 2-5) clusters were determined, and their structural evolution was disclosed. In the cluster series, Ta5O5 was found to possess the highest electron affinity (EA) with a value of 2.14 eV, based on which a dual external field (DEF) strategy was applied to regulate the electronic property of the cluster. Initially, the electron-withdrawing CO ligand was affixed to Ta5O5, followed by the application of an oriented external electric field (OEEF). The CO ligation was found to be able to enhance the Ta5O5 cluster's electron capture capability by adjusting its electron energy levels, with the EA of Ta5O5(CO)4 peaking at 2.58 eV. Subsequently, the introduction of OEEF further elevated the EA of the CO-ligated cluster. Notably, OEEF, when applied along the +x axis, was observed to sharply increase the EA to 3.26 eV, meeting the criteria for superhalogens. The enhancement of EA in response to OEEF intensity can be quantified as a functional relationship. This finding highlights the advantage of OEEF over conventional methods, demonstrating its capacity for precise and continuous modulation of cluster EAs. Consequently, this research has adeptly transformed tantalum oxide clusters into superhalogen structures, underscoring the effectiveness of the DEF strategy in augmenting cluster EAs and its promise as a viable tool for the creation of superhalogens.
Collapse
Affiliation(s)
- Xiao-Tong Li
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Jun Li
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Si-Qi Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Shi-Hu Du
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Shi-Jun Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Jing Chen
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Shi-Bo Cheng
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| |
Collapse
|
19
|
Liu LY, Li J, Liu SQ, Du SH, Siddique MBA, Zhang L, Bu Y, Cheng SB. Beyond Shell-Filling: Strong Enhancement of Electron Affinity of Metal Clusters through a Noninvasive Oriented External Electric Field. J Phys Chem Lett 2024; 15:7028-7035. [PMID: 38949686 DOI: 10.1021/acs.jpclett.4c01065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Traditional electron counting rules, like the Jellium model, have long been successfully utilized in designing superhalogens by modifying clusters to have one electron less than a filled electronic shell. However, this shell-filling approach, which involves altering the intrinsic properties of the clusters, can be complex and challenging to control, especially in experiments. In this letter, we theoretically establish that the oriented external electric field (OEEF) can substantially enhance the electron affinity (EA) of diverse aluminum-based metal clusters with varying valence electron configurations, leading to the creation of superhalogen species without altering their shell arrangements. This OEEF approach offers a noninvasive alternative to traditional superatom design strategies, as it does not disrupt the clusters' geometrical structures and superatomic states. These findings contribute a vital piece to the puzzle of constructing superalkalis and superhalogens, extending beyond conventional shell-filling strategies and potentially expanding the range of applications for functional clusters.
Collapse
Affiliation(s)
- Li-Ye Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Jun Li
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Si-Qi Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Shi-Hu Du
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | | | - Lei Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yuxiang Bu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Shi-Bo Cheng
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| |
Collapse
|
20
|
Wang WL, Zhang ZC, Yu D, Ni BL, Sun WM. Suzuki-Miyaura Cross-Coupling Reaction Catalyzed by Al 12M (M = Be, Al, C, and P) Superatoms with Different Numbers of Valence Electrons. Inorg Chem 2024; 63:11768-11778. [PMID: 38864539 DOI: 10.1021/acs.inorgchem.4c01407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
The exploration of low-cost, efficient, environmentally safe, and selective catalysts for the activation of carbon-halogen bonds has become an important and challenging topic in modern chemistry. With the help of density functional theory (DFT), it is found that phenyl bromide (PhBr) can be efficiently chemisorbed by the Al12M (M = Be, Al, C, and P) superatoms via forming highly polarized Al-Br covalent bonds, where the C-Br bonds of PhBr can be effectively activated through the electron transfer from Al12M. The different electronic structures of these four Al12M superatoms pose a substantial effect on their performances on the activation of PhBr and the catalytic mechanisms of the Suzuki-Miyaura (SM) reaction. Among them, the alkali-metal-like superatom Al12P exhibits the best performance for the activation of PhBr. In particular, Al13 and Al12P with open-shell electronic structures exhibit catalytic performances comparable to those of previously reported catalysts for this coupling reaction. Hence, it is highly expected that Al13 and Al12P could be used as novel superatom catalysts for C-C coupling reactions and, therefore, open up new possibilities to use nonprecious superatoms in catalyzing the activation and transformation of carbon-halogen bonds.
Collapse
Affiliation(s)
- Wen-Lu Wang
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350108, People's Republic of China
| | - Zhi-Chao Zhang
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350108, People's Republic of China
| | - Dan Yu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Bi-Lian Ni
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350108, People's Republic of China
| | - Wei-Ming Sun
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350108, People's Republic of China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| |
Collapse
|
21
|
Luo Z, Shehzad A. Advances in Naked Metal Clusters for Catalysis. Chemphyschem 2024; 25:e202300715. [PMID: 38450926 DOI: 10.1002/cphc.202300715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/08/2024]
Abstract
The properties of sub-nano metal clusters are governed by quantum confinement and their large surface-to-bulk ratios, atomically precise compositions and geometric/electronic structures. Advances in metal clusters lead to new opportunities in diverse aspects of sciences including chemo-sensing, bio-imaging, photochemistry, and catalysis. Naked metal clusters having synergic multiple active sites and coordinative unsaturation and tunable stability/activity enable researchers to design atomically precise metal catalysts with tailored catalysis for different reactions. Here we summarize the progress of ligand-free naked metal clusters for catalytic applications. It is anticipated that this review helps to better understand the chemistry of small metal clusters and facilitates the design and development of new catalysts for potential applications.
Collapse
Affiliation(s)
- Zhixun Luo
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Aamir Shehzad
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
22
|
Sieroka N, Lossau T, Neudecker T. Emergent Properties in Chemistry - Relating Molecular Properties to Bulk Behavior. Chemistry 2024; 30:e202303868. [PMID: 38558443 DOI: 10.1002/chem.202303868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Indexed: 04/04/2024]
Abstract
Certain properties of an object only emerge when a sufficient number of those objects are present in a definite arrangement. For example, one or two water molecules cannot said to be in a liquid state, but a drop of water can be. This concept of emergence has been studied extensively, but only occasionally discussed explicitly in the context of chemistry. In this paper, we aim to show the fruitfulness of the concept of emergence for chemical inquiry by considering four case studies of emergent chemical properties, i. e., the liquidity and freezing of water, structural properties of crystals, thermodynamical phase transitions and quantum mechanical phenomena. We show that some of these properties emerge gradually, some at discrete points, and some should be taken to emerge only when the number of constituents tends to infinity. We argue that studying the way in which chemical properties emerge presents a useful avenue for research that promises greater insight into the nature of those properties.
Collapse
Affiliation(s)
- Norman Sieroka
- University of Bremen, Institute for Philosophy, Enrique-Schmidt-Straße 7, D-28359, Bremen, Germany
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg, CH-8093, Zurich, Switzerland
| | - Tammo Lossau
- University of Bremen, Institute for Philosophy, Enrique-Schmidt-Straße 7, D-28359, Bremen, Germany
| | - Tim Neudecker
- University of Bremen, Institute for Physical and Theoretical Chemistry, Leobener Straße 6, D-28359, Bremen, Germany
- Bremen Center for Computational Materials Science, Am Fallturm 1, D-28359, Bremen, Germany
- MAPEX Center for Materials and Processes, Bibliothekstraße 1, D-28359, Bremen, Germany
| |
Collapse
|
23
|
Peter BD, Pei W, Andrew GN, Zhou S, Luo Z. A luminescent Ag 8(DPPY) 6(PhCC) 6 cluster with a triangular superatomic Ag 8 core. NANOSCALE 2024; 16:8090-8095. [PMID: 38563406 DOI: 10.1039/d4nr00527a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
We have synthesized single crystals of a highly stable Ag8 nanocluster protected by six ligands of diphenyl-2-phosphinic pyridine (DPPY) plus six ligands of phenylacetylene (PhCC). This Ag8(DPPY)6(PhCC)6 cluster bears a triangular superatomic Ag8 core, with the vertex and edge Ag atoms (quasi-triangle Ag6) being protected by both P and N bidentate coordination of the six DPPY ligands; meanwhile, the six PhCC ligands via μ3-C coordination form coordination on the two central Ag atoms capped on both sides of the triangle facet. Apart from the well-organized coordination of the two ligands pertaining to the balanced interactions with the Ag8 core, this Ag8 nanocluster exhibits superatomic stability with two delocalized valence electrons (1S2||1P0), assuming that the six PhCC ligands fix 6 localized electrons from the Ag atoms. Interestingly, the Ag8(DPPY)6(PhCC)6 NCs display temperature-dependent dual emissions at 330 and 535 nm under deep ultraviolet excitation. TD-DFT calculations reproduced the experimental spectrum, shedding light on the nature of excitation states and metal-ligand interactions in such a superatomic metal cluster.
Collapse
Affiliation(s)
- Blessing D Peter
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wei Pei
- College of Physics Science and Technology, Yangzhou University, Jiangsu 225009, China
| | - Gaya N Andrew
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Si Zhou
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics, South China Normal University, Guangzhou 510006, China.
| | - Zhixun Luo
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
24
|
Cui C, Zhang H, Gu Y, Geng L, Jia Y, Lin S, Ma J, Luo Z. Tailoring Titanium Carbide Clusters for New Materials: from Met-Cars to Carbon-Doped Superatoms. J Am Chem Soc 2024; 146:9302-9310. [PMID: 38506150 PMCID: PMC10996009 DOI: 10.1021/jacs.4c01068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 03/21/2024]
Abstract
Tailoring materials with prescribed properties and regular structures is a critical and challenging research topic. Early transition metals were found to form supermagic M8C12 metallocarbohedrenes (Met-Cars); however, stable metal carbides are not limited to this common stoichiometry. Utilizing self-developed deep-ultraviolet laser ionization mass spectrometry, here, we report a strategy to generate new titanium carbides by reacting pure Tin clusters with acetylene. Interestingly, two products corresponding to Ti17C2 and Ti19C10 exhibit superior abundances in addition to the Ti8C12 Met-Cars. Using global-minimum search, the structures of Ti17C2 and Ti19C10 are determined to be an ellipsoidal D4d and a rod-shaped D5h geometry, respectively, both with carbon-capped Ti4C moieties and superatomic features. We illustrate the electronic structures and bonding nature in these carbon-doped superatoms concerning their enhanced stability and local aromaticity, shedding light on a new class of metal-carbide nanomaterials with atomic precision.
Collapse
Affiliation(s)
- Chaonan Cui
- Beijing
National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory
for Structural Chemistry of Unstable and Stable Species, Institute
of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Hanyu Zhang
- Beijing
National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory
for Structural Chemistry of Unstable and Stable Species, Institute
of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yuming Gu
- School
of Chemistry and Chemical Engineering, Nanjing
University, Nanjing 210023, China
| | - Lijun Geng
- Beijing
National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory
for Structural Chemistry of Unstable and Stable Species, Institute
of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yuhan Jia
- Beijing
National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory
for Structural Chemistry of Unstable and Stable Species, Institute
of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School
of Chemical Science, University of Chinese
Academy of Sciences, Beijing 100049, China
| | - Shiquan Lin
- Beijing
National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory
for Structural Chemistry of Unstable and Stable Species, Institute
of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School
of Chemical Science, University of Chinese
Academy of Sciences, Beijing 100049, China
| | - Jing Ma
- School
of Chemistry and Chemical Engineering, Nanjing
University, Nanjing 210023, China
| | - Zhixun Luo
- Beijing
National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory
for Structural Chemistry of Unstable and Stable Species, Institute
of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School
of Chemical Science, University of Chinese
Academy of Sciences, Beijing 100049, China
| |
Collapse
|
25
|
Antsiburov I, Schütz M, Bühler R, Muhr M, Stephan J, Gemel C, Klein W, Kahlal S, Saillard JY, Fischer RA. All-Hydrocarbon-Ligated Superatomic Gold/Aluminum Clusters. Inorg Chem 2024; 63:3749-3756. [PMID: 38335041 PMCID: PMC10900290 DOI: 10.1021/acs.inorgchem.3c03790] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Key strategies in cluster synthesis include the use of modulating agents (e.g., coordinating additives). We studied the influence of various phosphines exhibiting different steric and electronic properties on the reduction of the Au(I) precursor to Au(0) clusters. We report a synthesis of the bimetallic clusters [Au6(AlCp*)6] = [Au6Al6](Cp*)6 (1) and [HAu7(AlCp*)6] = [HAu7Al6](Cp*)6 (2) (Cp* = pentamethylcyclopentadiene) using Au(I) precursors and AlCp*. The cluster [Au2(AlCp*)5] = [Au2Al5](Cp*)5 (3) was isolated and identified as an intermediate species in the reactions to 1 and 2. The processes of cluster growth and degradation were investigated by in situ 1H NMR and LIFDI-MS techniques. The structures of 1 and 2 were established by DFT geometry optimization. These octahedral clusters can both be described as closed-shell 18-electron superatoms.
Collapse
Affiliation(s)
- Ivan Antsiburov
- Department of Chemistry and Catalysis Research Center, Chair of Inorganic and Metal-Organic Chemistry, Technical University of Munich, Lichtenbergstr. 4, Munich, Garching 85748, Germany
| | - Max Schütz
- Department of Chemistry and Catalysis Research Center, Chair of Inorganic and Metal-Organic Chemistry, Technical University of Munich, Lichtenbergstr. 4, Munich, Garching 85748, Germany
| | - Raphael Bühler
- Department of Chemistry and Catalysis Research Center, Chair of Inorganic and Metal-Organic Chemistry, Technical University of Munich, Lichtenbergstr. 4, Munich, Garching 85748, Germany
| | - Maximilian Muhr
- Department of Chemistry and Catalysis Research Center, Chair of Inorganic and Metal-Organic Chemistry, Technical University of Munich, Lichtenbergstr. 4, Munich, Garching 85748, Germany
| | - Johannes Stephan
- Department of Chemistry and Catalysis Research Center, Chair of Inorganic and Metal-Organic Chemistry, Technical University of Munich, Lichtenbergstr. 4, Munich, Garching 85748, Germany
| | - Christian Gemel
- Department of Chemistry and Catalysis Research Center, Chair of Inorganic and Metal-Organic Chemistry, Technical University of Munich, Lichtenbergstr. 4, Munich, Garching 85748, Germany
| | - Wilhelm Klein
- Department of Chemistry and Catalysis Research Center, Chair of Inorganic and Metal-Organic Chemistry, Technical University of Munich, Lichtenbergstr. 4, Munich, Garching 85748, Germany
| | - Samia Kahlal
- Univ Rennes, CNRS, ISCR-UMR 6226, Beaulieu, Rennes F-35000, France
| | | | - Roland A Fischer
- Department of Chemistry and Catalysis Research Center, Chair of Inorganic and Metal-Organic Chemistry, Technical University of Munich, Lichtenbergstr. 4, Munich, Garching 85748, Germany
| |
Collapse
|
26
|
Geng L, Luo Z. Magnetic Metal Clusters and Superatoms. J Phys Chem Lett 2024; 15:1856-1865. [PMID: 38335129 DOI: 10.1021/acs.jpclett.3c03637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Metal clusters with tunable magnetism and chemical activity are ideal models to study magnetic order changes from microstructures to macroscopic substances, to understand the spin effect in diverse catalytic reactions, and to create information carriers of qubits in quantum computation. Precise preparation, reaction, and characterization of magnetic clusters provide a platform to understand spin-exchange interactions and geometrical/electronic structure-property relationships; thus, they are beneficial for the rational design and development of new cluster-genetic materials and spintronics microdevices. Advances in this field have discovered some high-spin magnetic clusters and superatoms, expanding the understanding of magnetism, aromaticity, cluster stability, and electron delocalization. Herein we present a perspective of the experimental and theoretical progress regarding magnetic clusters and superatoms, with the expectation of stimulating more research interest in this field.
Collapse
Affiliation(s)
- Lijun Geng
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhixun Luo
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
27
|
Xue D, Yang J, Chen Z, Gao Z, Zhi L, Li Y. Dual-Valence Characteristics of Be 11: Tin/Lead-like Superatom. Inorg Chem 2024; 63:3477-3485. [PMID: 38315665 DOI: 10.1021/acs.inorgchem.3c04200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
To enhance the superatom family, the new superatom analogue Be11 of group IVA elements has been developed. Be11 can exhibit multiple valence states (+2 and +4), similar to carbon-group elements, and is capable of forming stable ionic compounds with other atoms such as carbon, chalcogen, (super)halogen, and hydroxyl. This resembles how tin and lead atoms combine with these elements to form stable molecules. Their special stability can be rationalized from the perspective of a cluster shell model. Sn or Pb could be the nearest atomic analogue to Be11 in group IVA, as the +2 oxidation state is more stable than the +4 oxidation state. This comparative investigation highlights the resemblance between Be11 and carbon-group elements, which encourages additional exploration within the superatom family.
Collapse
Affiliation(s)
- Duomei Xue
- College of Chemical Engineering and Technology, Taiyuan University of Science and Technology, Taiyuan 030024, PR China
| | - Jiaqian Yang
- College of Chemical Engineering and Technology, Taiyuan University of Science and Technology, Taiyuan 030024, PR China
| | - Zeren Chen
- College of Mechanical and Vehicle Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Zhuqing Gao
- College of Chemical Engineering and Technology, Taiyuan University of Science and Technology, Taiyuan 030024, PR China
| | - Lifei Zhi
- College of Chemical Engineering and Technology, Taiyuan University of Science and Technology, Taiyuan 030024, PR China
| | - Ying Li
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, PR China
| |
Collapse
|
28
|
Ye YL, Zhang ZC, Ni BL, Yu D, Chen JH, Sun WM. Theoretical prediction of superatom WSi 12-based catalysts for CO oxidation by N 2O. Phys Chem Chem Phys 2023; 25:32525-32533. [PMID: 37997746 DOI: 10.1039/d3cp05363f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Catalytic conversion of N2O and CO into nonharmful gases is of great significance to reduce their adverse impact on the environment. The potential of the WSi12 superatom to serve as a new cluster catalyst for CO oxidation by N2O is examined for the first time. It is found that WSi12 prefers to adsorb the N2O molecule rather than the CO molecule, and the charge transfer from WSi12 to N2O results in the full activation of N2O into a physically absorbed N2 molecule and an activated oxygen atom that is attached to an edge of the hexagonal prism structure of WSi12. After the release of N2, the remaining oxygen atom can oxidize one CO molecule via overcoming a rate-limiting barrier of 28.19 kcal mol-1. By replacing the central W atom with Cr and Mo, the resulting MSi12 (M = Cr and Mo) superatoms exhibit catalytic performance for CO oxidation comparable to the parent WSi12. In particular, the catalytic ability of WSi12 for CO oxidation is well maintained when it is extended into tube-like WnSi6(n+1) (n = 2, 4, and 6) clusters with energy barriers of 25.63-29.50 kcal mol-1. Moreover, all these studied MSi12 (M = Cr, Mo, and W) and WnSi6(n+1) (n = 2, 4, and 6) species have high structural stability and can absorb sunlight to drive the catalytic process. This study not only opens a new door for the atomically precise design of new silicon-based nanoscale catalysts for various chemical reactions but also provides useful atomic-scale insights into the size effect of such catalysts in heterogeneous catalysis.
Collapse
Affiliation(s)
- Ya-Ling Ye
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, 350108, People's Republic of China.
- Department of Pharmacy, Nanping First Hospital Affiliated to Fujian Medical University, Nanping, Fujian, 353006, People's Republic of China
| | - Zhi-Chao Zhang
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, 350108, People's Republic of China.
| | - Bi-Lian Ni
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, 350108, People's Republic of China.
| | - Dan Yu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Jing-Hua Chen
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, 350108, People's Republic of China.
| | - Wei-Ming Sun
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, 350108, People's Republic of China.
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China
| |
Collapse
|
29
|
Geng L, Sengupta T, Li X, Cui C, Lin S, Xu XL, Reber AC, Khanna SN, Zheng WJ, Luo Z. Unusually High-Spin Fe 12C 12- Metallo-Carbohedrene Clusters. J Am Chem Soc 2023. [PMID: 38041728 DOI: 10.1021/jacs.3c09690] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2023]
Abstract
Ferromagnets constructed from nanometals of atomic precision are important for innovative advances in information storage, energy conversion, and spintronic microdevices. Considerable success has been achieved in designing molecular magnets, which, however, are challenging in preparation and may suffer from drawbacks on the incompatibility of high stability and strong ferromagnetism. Utilizing a state-of-the-art self-developed mass spectrometer and a homemade laser vaporization source, we have achieved a highly efficient preparation of pure iron clusters, and here, we report the finding of a strongly ferromagnetic metal-carbon cluster, Fe12C12-, simply by reacting the Fen- clusters with acetylene in proper conditions. The unique stability of this ferromagnetic Fe12C12- cluster is rooted in a plumb-bob structure pertaining to Jahn-Teller distortion. We classify Fe12C12- as a new member of metallo-carbohedrenes and elucidate its structural stability mechanism as well as its soft-landing deposition and magnetization measurements, providing promise for the exploration of potential applications.
Collapse
Affiliation(s)
- Lijun Geng
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Turbasu Sengupta
- Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284-2000, United States
| | - Xilong Li
- State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Chaonan Cui
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Shiquan Lin
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xi-Ling Xu
- State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Arthur C Reber
- Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284-2000, United States
| | - Shiv N Khanna
- Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284-2000, United States
| | - Wei-Jun Zheng
- State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhixun Luo
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
30
|
Sun J, Liu B, Zhao Q, Kirk CH, Wang J. MAX, MXene, or MX: What Are They and Which One Is Better? ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2306072. [PMID: 37875430 DOI: 10.1002/adma.202306072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/09/2023] [Indexed: 10/26/2023]
Abstract
The fast ever-growing interest in transition metal carbonitrides (MXenes) for energy and catalysis is undermined by the undesirable multi-surficial terminations, which severely limit their applications. In contrast, considering the intriguing and tunable electronic structure, rich surface active sites, and high thermal durability, termination-free MXene (MX) hosts a huge possibility for catalysis. As such, recent advances in the evolution from MAX to MXene, and then to MX are overviewed and compared briefly, before concentrating on the unique future of MX in multi-heterogeneous catalysis. This work also looks beyond the fundamental properties of MX and discusses the potential of such materials for applications in multi-electron redox reactions. It is convinced that the potential success of MX in future catalysis is promising. Further extension toward high entropy and single-atom modifications will consolidate the leading position of MX in catalysis.
Collapse
Affiliation(s)
- Jianguo Sun
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117574, Singapore
| | - Binbin Liu
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117574, Singapore
| | - Qi Zhao
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117574, Singapore
| | - Chin Ho Kirk
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117574, Singapore
| | - John Wang
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117574, Singapore
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore, 138634, Singapore
- National University of Singapore (Chongqing) Research Institute, Chongqing, 401123, P. R. China
| |
Collapse
|
31
|
Yoshida K, Arima D, Mitsui M. Dissecting the Triplet-State Properties and Intersystem Crossing Mechanism of the Ligand-Protected Au 13 Superatom. J Phys Chem Lett 2023:10967-10973. [PMID: 38038710 DOI: 10.1021/acs.jpclett.3c02977] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Icosahedral Au13 nanoclusters are among the most typical superatoms and are of great interest as promising building blocks for nanocluster-assembled materials. Herein, the key parameters involved in the intersystem crossing (ISC) process of [Au13(dppe)5Cl2]3+ (Au13; dppe = 1,2-bis(diphenylphosphino)ethane) were characterized. Quenching experiments using aromatic compounds revealed that the T1 energy of Au13 is 1.63 eV. An integrative interpretation of our experimental results and the relevant literature uncovered important facts concerning the Au13 superatom: the ISC quantum yield is unity due to the ultrafast ISC (∼1012 s-1), the lowest absorption band includes contributions of direct singlet-triplet transitions, and there exists a large S1-T1 gap of 0.73 eV. To explain the efficient ISC, the El-Sayed rule was applied to the superatomic orbitals corresponding to the excited-state hole/electron distributions obtained from theoretical calculations. The strong spin-orbit coupling between the S1 and T2-T4 states offers a reasonable explanation for the ultrafast ISC.
Collapse
Affiliation(s)
- Kouta Yoshida
- Department of Chemistry, College of Science, Rikkyo University, 3-34-1, Nishiikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Daichi Arima
- Department of Chemistry, College of Science, Rikkyo University, 3-34-1, Nishiikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Masaaki Mitsui
- Department of Chemistry, College of Science, Rikkyo University, 3-34-1, Nishiikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| |
Collapse
|
32
|
Mandal A, Goswami T, Chowdhury S. A Computational Exploration of Exohedrally Transition Metal Doped Si 94- Superatom Based Magnetic MSi 9M' Clusters (M, M' = Sc(II) to Cu(II)). J Phys Chem A 2023; 127:9885-9894. [PMID: 37975225 DOI: 10.1021/acs.jpca.3c03883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Nanosized clusters are drawing immense attention of the scientific community due to their size and composition dependent tunability of physical and chemical properties. Silicon nanoclusters are especially important because of their abundance and ample utility in the domains of electronics and semiconductor industry. Zintl phases of Si offer an excellent opportunity in the domain of nanocluster research owing to their superior stability and multifarious possibilities of tunability of electronic properties through doping with other elements. Doping silicon clusters with transition elements is a prevalent strategy to induce magnetic properties in such clusters. Although doping silicon clusters with single transition metal atoms can induce significant magnetism in nanoclusters, the dominant covalent interaction between silicon and the transition metal causes the magnetic moment to quench. The rational strategy of inducing a sustainable magnetic moment can be to introduce ferromagnetic interaction between two sites carrying nonvanishing magnetic moments. In the present work, such a possibility is explored in terms of the stability of the clusters and corresponding magnetic exchange coupling in them. The Si94-superatomic cluster is doped with two transition metal atoms exohedrally and the neutral clusters designed thereby are investigated computationally if they reduce or reinforce the high stability of the superatom and substantiate the possibility of obtaining nanosized magnetic units as building blocks of tunable materials for various applications.
Collapse
Affiliation(s)
- Abhijit Mandal
- Department of Chemistry, University of Gour Banga, Mokdumpur, Malda, West Bengal 732103, India
| | - Tamal Goswami
- Department of Chemistry, Raiganj University, Raiganj, Uttar Dinajpur, West Bengal 733134, India
| | - Shubhamoy Chowdhury
- Department of Chemistry, University of Gour Banga, Mokdumpur, Malda, West Bengal 732103, India
| |
Collapse
|
33
|
Jackson BA, Khan SN, Miliordos E. A fresh perspective on metal ammonia molecular complexes and expanded metals: opportunities in catalysis and quantum information. Chem Commun (Camb) 2023; 59:10572-10587. [PMID: 37555315 DOI: 10.1039/d3cc02956e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Recent advances in our comprehension of the electronic structure of metal ammonia complexes have opened avenues for novel materials with diffuse electrons. These complexes in their ground state can host peripheral "Rydberg" electrons which populate a hydrogenic-type shell model imitating atoms. Aggregates of such complexes form the so-called expanded or liquid metals. Expanded metals composed of d- and f-block metal ammonia complexes offer properties, such as magnetic moments and larger numbers of diffuse electrons, not present for alkali and alkaline earth (s-block) metals. In addition, tethering metal ammonia complexes via hydrocarbon chains (replacement of ammonia ligands with diamines) yields materials that can be used for redox catalysis and quantum computing, sensing, and optics. This perspective summarizes the recent findings for gas-phase isolated metal ammonia complexes and projects the obtained knowledge to the condensed phase regime. Possible applications for the newly introduced expanded metals and linked solvated electrons precursors are discussed and future directions are proposed.
Collapse
Affiliation(s)
- Benjamin A Jackson
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849-5312, USA.
| | - Shahriar N Khan
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849-5312, USA.
| | - Evangelos Miliordos
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849-5312, USA.
| |
Collapse
|
34
|
Jia Y, Xu CQ, Cui C, Geng L, Zhang H, Zhang YY, Lin S, Yao J, Luo Z, Li J. Rh 19-: A high-spin super-octahedron cluster. SCIENCE ADVANCES 2023; 9:eadi0214. [PMID: 37585530 PMCID: PMC10431703 DOI: 10.1126/sciadv.adi0214] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/17/2023] [Indexed: 08/18/2023]
Abstract
Probing atomic clusters with magic numbers is of supreme importance but challenging in cluster science. Pronounced stability of a metal cluster often arises from coincident geometric and electronic shell closures. However, transition metal clusters do not simply abide by this constraint. Here, we report the finding of a magic-number cluster Rh19- with prominent inertness in the sufficient gas-collision reactions. Photoelectron spectroscopy experiments and global-minimum structure search have determined the geometry of Rh19- to be a regular Oh‑[Rh@Rh12@Rh6]- with unusual high-spin electronic configuration. The distinct stability of such a strongly magnetic cluster Rh19- consisting of a nonmagnetic element is fully unveiled on the basis of its unique bonding nature and superatomic states. The 1-nanometer-sized Oh-Rh19- cluster corresponds to a fragment of the face-centered cubic lattice of bulk rhodium but with altered magnetism and electronic property. This cluster features exceptional electron-spin state isomers confirmed in photoelectron spectra and suggests potential applications in atomically precise manufacturing involving spintronics and quantum computing.
Collapse
Affiliation(s)
- Yuhan Jia
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cong-Qiao Xu
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chaonan Cui
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Lijun Geng
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Hanyu Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yang-Yang Zhang
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Shiquan Lin
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jiannian Yao
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhixun Luo
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Li
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
| |
Collapse
|
35
|
Gaebler HM, Castiglione JR, Hamilton IP. Engineering magic number Au 19 and Au 20 cage structures using electron withdrawing atoms. Phys Chem Chem Phys 2023; 25:12107-12112. [PMID: 37083006 DOI: 10.1039/d3cp00651d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Gold cages are a subset of gold nanoparticles and these structures are of major interest due to their favourable physiochemical properties. In order for these structures to be useful in applications, they must be chemically stable. The objective of this research is to transform non-magic number cage structures into magic number cage structures by the addition of electron-withdrawing groups on the cages. The electronic properties for Au19X and Au20X2 (X = F, Cl, Br, I) are calculated and observed. It is expected that the electron-withdrawing groups will remove the electron density from the gold cages and leave them positively charged. We first optimize the geometries of the initial gold cages and verify the structures are a local minima. From there, we attach our halogens to the gold cages and optimize the structures to determine the NICS values and HOMO-LUMO gaps. NICS values were found to be more negative when a more electronegative halogen was used. Calculations have found that Au19F and Au20F2 have the most negative NICS values, indicating greater spherical aromaticity. Iodine, being the least electronegative atom, had the most positive NICS value and smallest HOMO-LUMO gap. All calculations are compared to the magic cluster Au18 which satisfies Hirsh's 2(N + 1)2 rule for n = 2.
Collapse
Affiliation(s)
- Heather M Gaebler
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, 75 University Ave W, Waterloo, ON, Canada N2L 3C5.
| | - Julianna R Castiglione
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, 75 University Ave W, Waterloo, ON, Canada N2L 3C5.
| | - Ian P Hamilton
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, 75 University Ave W, Waterloo, ON, Canada N2L 3C5.
| |
Collapse
|
36
|
Han PF, Wang YJ, Feng LY, Gao SJ, Sun Q, Zhai HJ. Chemical Bonding and Dynamic Structural Fluxionality of a Boron-Based Na 5B 7 Sandwich Cluster. Molecules 2023; 28:3276. [PMID: 37050038 PMCID: PMC10096537 DOI: 10.3390/molecules28073276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 04/08/2023] Open
Abstract
Doping alkali metals into boron clusters can effectively compensate for the intrinsic electron deficiency of boron and lead to interesting boron-based binary clusters, owing to the small electronegativity of the former elements. We report on the computational design of a three-layered sandwich cluster, Na5B7, on the basis of global-minimum (GM) searches and electronic structure calculations. It is shown that the Na5B7 cluster can be described as a charge-transfer complex: [Na4]2+[B7]3-[Na]+. In this sandwich cluster, the [B7]3- core assumes a molecular wheel in shape and features in-plane hexagonal coordination. The magic 6π/6σ double aromaticity underlies the stability of the [B7]3- molecular wheel, following the (4n + 2) Hückel rule. The tetrahedral Na4 ligand in the sandwich has a [Na4]2+ charge-state, which is the simplest example of three-dimensional aromaticity, spherical aromaticity, or superatom. Its 2σ electron counting renders σ aromaticity for the ligand. Overall, the sandwich cluster has three-fold 6π/6σ/2σ aromaticity. Molecular dynamics simulation shows that the sandwich cluster is dynamically fluxional even at room temperature, with a negligible energy barrier for intramolecular twisting between the B7 wheel and the Na4 ligand. The Na5B7 cluster offers a new example for dynamic structural fluxionality in molecular systems.
Collapse
Affiliation(s)
- Peng-Fei Han
- Nanocluster Laboratory, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Ying-Jin Wang
- Department of Chemistry, Xinzhou Teachers University, Xinzhou 034000, China
| | - Lin-Yan Feng
- Nanocluster Laboratory, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
- Department of Chemistry, Xinzhou Teachers University, Xinzhou 034000, China
| | - Shu-Juan Gao
- Nanocluster Laboratory, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Qiang Sun
- Center for Applied Physics and Technology, School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Hua-Jin Zhai
- Nanocluster Laboratory, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
37
|
Meng Y, Liu Q. New Insights into Adsorption Properties of the Tubular Au 26 from AIMD Simulations and Electronic Interactions. Molecules 2023; 28:molecules28072916. [PMID: 37049681 PMCID: PMC10096096 DOI: 10.3390/molecules28072916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
Recently, we revealed the electronic nature of the tubular Au26 based on spherical aromaticity. The peculiar structure of the Au26 could be an ideal catalyst model for studying the adsorptions of the Au nanotubes. However, through Google Scholar, we found that no one has reported connections between the structure and reactivity properties of Au26. Here, three kinds of molecules are selected to study the fundamental adsorption behaviors that occur on the surface of Au26. When one CO molecule is adsorbed on the Au26, the σ-hole adsorption structure is quickly identified as belonging to a ground state energy, and it still maintains integrity at a temperature of 500 K, where σ donations and π-back donations take place; however, two CO molecules make the structure of Au26 appear with distortions or collapse. When one H2 is adsorbed on the Au26, the H-H bond length is slightly elongated due to charge transfers to the anti-bonding σ* orbital of H2. The Au26-H2 can maintain integrity within 100 fs at 300 K and the H2 molecule starts moving away from the Au26 after 200 fs. Moreover, the Au26 can act as a Lewis base to stabilize the electron-deficient BH3 molecule, and frontier molecular orbitals overlap between the Au26 and BH3.
Collapse
Affiliation(s)
- Ying Meng
- School of Chemistry and Materials Engineering, Huainan Normal University, Huainan 232000, China
| | - Qiman Liu
- School of Chemistry and Materials Engineering, Huainan Normal University, Huainan 232000, China
- Anhui Province Key Laboratory of Low Temperature Co-Fired Materials, Huainan 232000, China
| |
Collapse
|
38
|
Wu H, Andrew GN, Anumula R, Luo Z. How ligand coordination and superatomic-states accommodate the structure and property of a metal cluster: Cu4(dppy)4Cl2 vs. Cu21(dppy)10 with altered photoluminescence. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
39
|
Abstract
The occurrence of aromaticity in organic molecules is widely accepted, but its occurrence in purely metallic systems is less widespread. Molecules comprising only metal atoms (M) are known to be able to exhibit aromatic behaviour, sustaining ring currents inside an external magnetic field along M-M connection axes (σ-aromaticity) or above and below the plane (π-aromaticity) for cyclic or cage-type compounds. However, all-metal compounds provide an extension of the electrons' mobility also in other directions. Here, we show that regular {Bi6} prisms exhibit a non-localizable molecular orbital of f-type symmetry and generate a strong ring current that leads to a behaviour referred to as φ-aromaticity. The experimentally observed heterometallic cluster [{CpRu}3Bi6]-, based on a regular prismatic {Bi6} unit, displays aromatic behaviour; according to quantum chemical calculations, the corresponding hypothetical Bi62- prism shows a similar behaviour. By contrast, [{(cod)Ir}3Bi6] features a distorted Bi6 moiety that inhibits φ-aromaticity.
Collapse
|
40
|
Wu H, Anumula R, Andrew GN, Luo Z. A stable superatomic Cu 6(SMPP) 6 nanocluster with dual emission. NANOSCALE 2023; 15:4137-4142. [PMID: 36745061 DOI: 10.1039/d2nr07223h] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
We have synthesized single crystals of a highly stable Cu6 nanocluster protected by six ligands of 2-mercapto-5-n-propylpyrimidine (SMPP). This Cu6(SMPP)6 cluster has a quasi-octahedral superatomic Cu6 core, with the Cu atoms being protected by both -S- and N-bidentate coordination of the SMPP ligands. Interestingly, each Cu atom is linked with an N atom, while the two neighboring Cu atoms on the same triangular facet are linked by the -S- bridge of the ligand. Single-crystal parsing results show that the altered orientation of the SMPP ligands give rise to three packing modes (named as 1, 2, and 3) of the Cu6(SMPP)6 NCs. Apart from the well-organized coordination, this Cu6(SMPP)6 nanocluster exhibits superatomic stability with a metallic core of 4 valence electrons (1S22S2||3S2), enabling to largely balance the interactions between the polynuclear core and delocalized electrons. Interestingly, the Cu6(SMPP)6 NCs display dual emissions in both ultraviolet-visible (UV-Vis) and near-infrared (NIR) regions. First-principles calculations well reproduce the experimental spectrum, shedding light on the nature of excitation states and metal-ligand interactions in the Cu6(SMPP)6 cluster.
Collapse
Affiliation(s)
- Haiming Wu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Rajini Anumula
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Gaya N Andrew
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Zhixun Luo
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
41
|
Yan ST, Long ZC, Xu XL, Xu HG, Zheng WJ. Anion photoelectron spectroscopy and quantum chemical calculations of bimetallic niobium-aluminum clusters NbAl n-/0 ( n = 3-12): identification of a half-encapsulated symmetric structure for NbAl 12. Phys Chem Chem Phys 2023; 25:6498-6509. [PMID: 36786014 DOI: 10.1039/d2cp04978c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Bimetallic niobium-doped aluminum clusters, NbAln-/0 (n = 3-12), are investigated through a synergetic combination of size-selected anion photoelectron spectroscopy and theoretical calculations. It is found that the dominant structures of NbAln- anions with n = 3-8 can be described by gradually adding Al atoms to the NbAl3- core. Starting from n = 9, the lowest-energy geometric structures of NbAl9-12- transform into bilayer structures. In particular, NbAl12- has a C3v symmetric structure, which can be viewed as a NbAl6 regular hexagon over a bowl-shaped Al6 structure. More detailed analyses indicate that NbAl9 and NbAl12- possess unusual stability, which may be attributed to their closed-shell electron configurations with superatomic features.
Collapse
Affiliation(s)
- Shuai-Ting Yan
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen-Chao Long
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xi-Ling Xu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong-Guang Xu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei-Jun Zheng
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
42
|
Chen H, Wang R, Xu J, Yuan X, Zhang D, Zhu Z, Marshall M, Bowen K, Zhang X. Spontaneous Reduction by One Electron on Water Microdroplets Facilitates Direct Carboxylation with CO 2. J Am Chem Soc 2023; 145:2647-2652. [PMID: 36668682 DOI: 10.1021/jacs.2c12731] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Recent advances in microdroplet chemistry have shown that chemical reactions in water microdroplets can be accelerated by several orders of magnitude compared to the same reactions in bulk water. Among the large plethora of unique properties of microdroplets, an especially intriguing one is the strong reducing power that can be sometimes as high as alkali metals as a result of the spontaneously generated electrons. In this study, we design a catalyst-free strategy that takes advantage of the reducing ability of water microdroplets to reduce a certain molecule, and the reduced form of that molecule can convert CO2 into value-added products. By spraying the water solution of C6F5I into microdroplets, an exotic and fragile radical anion, C6F5I•-, is observed, where the excess electron counter-intuitively locates on the σ* antibonding orbital of the C-I bond as evidenced by anion photoelectron spectroscopy. This electron weakens the C-I bond and causes the formation of C6F5-, and the latter attacks the carbon atom on CO2, forming the pentafluorobenzoate product, C6F5CO2-. This study provides a good example of strategically making use of the spontaneous properties of water microdroplets, and we anticipate that microdroplet chemistry will be a green avenue rich in new opportunities in CO2 utilization.
Collapse
Affiliation(s)
- Huan Chen
- College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Centre, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Centre for New Organic Matter, Nankai University, Tianjin 300071, China.,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Ruijing Wang
- College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Centre, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Centre for New Organic Matter, Nankai University, Tianjin 300071, China.,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Jinheng Xu
- College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Centre, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Centre for New Organic Matter, Nankai University, Tianjin 300071, China.,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China.,Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Xu Yuan
- College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Centre, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Centre for New Organic Matter, Nankai University, Tianjin 300071, China.,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Dongmei Zhang
- College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Centre, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Centre for New Organic Matter, Nankai University, Tianjin 300071, China.,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Zhaoguo Zhu
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Mary Marshall
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Kit Bowen
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Xinxing Zhang
- College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Centre, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Centre for New Organic Matter, Nankai University, Tianjin 300071, China.,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
43
|
Wang H, Li J, Chen J, Bu Y, Cheng SB. Solvent field regulated superhalogen in pure and doped gold cluster anions. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
44
|
Du Q, Huang L, Fu J, Cao Y, Xing X, Zhao J. Single atom alloy clusters Ag n-1X - (X = Cu, Au; n = 7-20) reacting with O 2: Symmetry-adapted orbital model. J Chem Phys 2023; 158:014306. [PMID: 36610979 DOI: 10.1063/5.0124095] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Single atom alloy AgCu catalysts have attracted great attention, since doping the single Cu atom introduces narrow free-atom-like Cu 3d states in the electronic structure. These peculiar electronic states can reduce the activation energies in some reactions and offer valuable guidelines for improving catalytic performance. However, the geometric tuning effect of single Cu atoms in Ag catalysts and the structure-activity relationship of AgCu catalysts remain unclear. Here, we prepared well-resolved pristine Agn - as well as single atom alloy Agn-1Cu- and Agn-1Au- (n = 7-20) clusters and investigated their reactivity with O2. We found that replacing an Ag atom in Agn - (n = 15-18) with a Cu atom significantly increases the reactivity with O2, while replacement of an Ag with an Au atom has negligible effects. The adsorption of O2 on Agn - or Agn-1Cu- clusters follows the single electron transfer mechanism, in which the cluster activity is dependent on two descriptors, the energy level of α-HOMO (strong correlation) and the α-HOMO-LUMO gap (weak correlation). Our calculation demonstrated that the cluster arrangements caused by single Cu atom alloying would affect the above activity descriptors and, therefore, regulates clusters' chemical activity. In addition, the observed reactivity of clusters in the representative sizes with n = 17-19 can also be interpreted using the symmetry-adapted orbital model. Our work provides meaningful information to understand the chemical activities of related single-atom-alloy catalysts.
Collapse
Affiliation(s)
- Qiuying Du
- College of Physics and Electronic Information, Inner Mongolia Normal University, 81 Zhaowuda Road, Hohhot, Inner Mongolia 010022, People's Republic of China
| | - Lulu Huang
- Shanghai Key Lab of Chemical Assessment and Sustainability, Department of Chemistry, Tongji University, 1239 Siping Road, Shanghai 200092, People's Republic of China
| | - Jiaqi Fu
- College of Physics and Electronic Information, Inner Mongolia Normal University, 81 Zhaowuda Road, Hohhot, Inner Mongolia 010022, People's Republic of China
| | - Yongjun Cao
- College of Physics and Electronic Information, Inner Mongolia Normal University, 81 Zhaowuda Road, Hohhot, Inner Mongolia 010022, People's Republic of China
| | - Xiaopeng Xing
- Shanghai Key Lab of Chemical Assessment and Sustainability, Department of Chemistry, Tongji University, 1239 Siping Road, Shanghai 200092, People's Republic of China
| | - Jijun Zhao
- Key Laboratory of Material Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, People's Republic of China
| |
Collapse
|
45
|
Ye YL, Pan KY, Wang WL, Ni BL, Sun WM. On the Catalytic Performance of (ZrO) n (n=1-4) Clusters for CO Oxidation: A DFT Study. Chemphyschem 2023; 24:e202200776. [PMID: 36593177 DOI: 10.1002/cphc.202200776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/26/2022] [Accepted: 01/02/2023] [Indexed: 01/04/2023]
Abstract
The unique characteristic of superatoms to show chemical properties like those of individual atoms opens a new avenue towards replacing noble metals as catalysts. Given the similar electronic structures of the ZrO superatom and the Pd atom, the CO oxidation mechanisms catalysed by (ZrO)n (n=1-4) clusters were investigated in detail to evaluate their catalytic performance. Our results reveal that a single ZrO superatom exhibits superior catalytic ability in CO oxidation than both larger (ZrO)n (n=2-4) clusters and a Pd atom, indicating the promising potential of ZrO as a "single-superatom catalyst". Moreover, the mechanism of CO oxidation catalysed by ZrO+/- suggests that depositing a ZrO superatom onto the electron-rich substrates is a better choice for practical catalysis application. Accordingly, a graphene nanosheet (coronene) was chosen as a representative substrate for ZrO and Pd to assess their catalytic performances in CO oxidation. Acting as an "electron sponge", this carbon substrate can both donate and accept charges in different reaction steps, enabling the supported ZrO to achieve enhanced catalytic performance in this process with a low energy barrier of 19.63 kcal/mol. This paper presents a new realization on the catalytic performance of Pd-like superatom in CO oxidation, which could increase the interests in exploring noble metal-like superatoms as efficient catalysts for various reactions.
Collapse
Affiliation(s)
- Ya-Ling Ye
- Department of Basic Chemistry, The School of Pharmacy, Fujian Medical University, Fuzhou, 350108, People's Republic of China
| | - Kai-Yun Pan
- Department of Basic Chemistry, The School of Pharmacy, Fujian Medical University, Fuzhou, 350108, People's Republic of China
| | - Wen-Lu Wang
- Department of Basic Chemistry, The School of Pharmacy, Fujian Medical University, Fuzhou, 350108, People's Republic of China
| | - Bi-Lian Ni
- Department of Basic Chemistry, The School of Pharmacy, Fujian Medical University, Fuzhou, 350108, People's Republic of China
| | - Wei-Ming Sun
- Department of Basic Chemistry, The School of Pharmacy, Fujian Medical University, Fuzhou, 350108, People's Republic of China.,School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China
| |
Collapse
|
46
|
Atom hybridization of metallic elements: Emergence of subnano metallurgy for the post-nanotechnology. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
47
|
McCandler CA, Dahl JC, Persson KA. Phosphine-Stabilized Hidden Ground States in Gold Clusters Investigated via a Au n(PH 3) m Database. ACS NANO 2022; 17:1012-1021. [PMID: 36584276 PMCID: PMC9879275 DOI: 10.1021/acsnano.2c07223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Nanoclusters are promising materials for catalysis and sensing due to their large surface areas and unique electronic structures which can be tailored through composition, geometry, and chemistry. However, relationships correlating synthesis parameters directly to outcomes are limited. While previous computational studies have mapped the potential energy surface of specific systems of bare nanoclusters by generating and calculating the energies of reasonable structures, it is known that environmental ions and ligands crucially impact the final shape and size. In this work, phosphine-stabilized gold is considered as a test system and DFT calculations are performed for clusters with and without ligands, producing a database containing >10000 structures for Aun(PH3)m (n ≤ 12). We find that the ligation of phosphines affects the thermodynamic stability, bonding, and electronic structure of Au nanoclusters, specifically such that "hidden" ground state cluster geometries are stabilized that are dynamically unstable in the pure gold system. Further, the addition of phosphine introduces steric effects that induce a transition from planar to nonplanar structures at 4-5 Au atoms rather than up to 13-14 Au atoms, as previously predicted for bare clusters. This work highlights the importance of considering the ligand environment in the prediction of nanocluster morphology and functionality, which adds complexity as well as a rich opportunity for tunability.
Collapse
Affiliation(s)
- Caitlin A. McCandler
- Department of Materials Science,
University of California, Berkeley, California94720,
United States
- Materials Science Division, Lawrence
Berkeley National Laboratory, Berkeley, California94720, United
States
| | - Jakob C. Dahl
- Materials Science Division, Lawrence
Berkeley National Laboratory, Berkeley, California94720, United
States
- Department of Chemistry, University of
California, Berkeley, California94720, United
States
- Molecular Foundry, Lawrence Berkeley
National Laboratory, Berkeley, California94720, United
States
| | - Kristin A. Persson
- Department of Materials Science,
University of California, Berkeley, California94720,
United States
- Molecular Foundry, Lawrence Berkeley
National Laboratory, Berkeley, California94720, United
States
| |
Collapse
|
48
|
Ye YL, Wang WL, Sun WM, Yang J. Polymeric tungsten carbide nanoclusters as potential non-noble metal catalysts for CO oxidation. NANOSCALE 2022; 14:18231-18240. [PMID: 36468662 DOI: 10.1039/d2nr06097c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The discovery of tungsten carbide (WC) as an analog of the noble metal Pt atom is of great significance toward designing novel highly-active catalysts from the viewpoint of the superatom concept. The potential of such a superatom to serve as building blocks of replacement catalysts for Pt has been evaluated in this work. The electronic properties, adsorption behaviors, and catalytic mechanisms towards the CO oxidation of (WC)n and Ptn (n = 1, 2, 4, and 6) were compared. Counterintuitively, these studied (WC)n clusters exhibit quite different electronic properties and adsorption behaviours from the corresponding Ptn species. For instance, (WC)n preferentially adsorbs O2, whereas Ptn tends to first combine with CO. Even so, it is interesting to find that the catalytic performances of (WC)n are always superior to the corresponding Ptn, and especially, the largest (WC)6 cluster exhibits the best catalytic ability towards CO oxidation. Therefore, assembling superatomic WC clusters into larger polymeric clusters can be regarded as a novel strategy to develop efficient superatom-assembled catalysts for CO oxidation. It is highly expected to see the realization of non-noble metal catalysts for various reactions in the near future experiments by using superatoms as building blocks.
Collapse
Affiliation(s)
- Ya-Ling Ye
- Department of Basic Chemistry, The School of Pharmacy, Fujian Medical University, Fuzhou 350108, People's Republic of China.
| | - Wen-Lu Wang
- Department of Basic Chemistry, The School of Pharmacy, Fujian Medical University, Fuzhou 350108, People's Republic of China.
| | - Wei-Ming Sun
- Department of Basic Chemistry, The School of Pharmacy, Fujian Medical University, Fuzhou 350108, People's Republic of China.
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China.
| | - Jinlong Yang
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China.
| |
Collapse
|
49
|
Xu C, Zhou Y, Shi L, Cheng L. Superatomic Three-Center Bond in a Tri-Icosahedral Au 36Ag 2(SR) 18 Cluster: Analogue of 3c-2e Bond in Molecules. J Phys Chem Lett 2022; 13:10147-10152. [PMID: 36270806 DOI: 10.1021/acs.jpclett.2c02552] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Probing the nature of electronic stability for ligand-protected gold clusters is important in gold chemistry. A thermally stable Au36Ag2(SR)18 nanocluster was synthesized recently. It has a D3h tri-icosahedral [Au30Ag2]12+ core with 20 valence electrons, which does not follow the magic number of gold superatoms. Herein, we propose a superatomic three-center bond to unveil its electronic stability. The [Au30Ag2]12+ core is viewed as a union of three face-fused superatoms, and chemical bonding analysis suggests a three-superatom-center two-electron (3sc-2e) bond for the octet rule of each superatom, which mimics the bonding framework of the D3h O32- molecule. Moreover, a liganded tri-icosahedral [Au27Pt3Ag2]11+ core with 18 valence electrons is predicted, and three 2sc-2e bonds are formed between each of two superatoms to satisfy the octet rule (analogue of D3h O3), indicating the flexibility of superatomic bonding. Such a superatomic three-center bond extends the community of superatomic bonding and gives a new perspective for superatom assembling.
Collapse
Affiliation(s)
- Chang Xu
- Department of Chemistry, Anhui University, 111 Jiulong Road, Hefei 230601, P. R. China
| | - Yichun Zhou
- Department of Chemistry, Anhui University, 111 Jiulong Road, Hefei 230601, P. R. China
| | - Lili Shi
- Department of Chemistry, Anhui University, 111 Jiulong Road, Hefei 230601, P. R. China
| | - Longjiu Cheng
- Department of Chemistry, Anhui University, 111 Jiulong Road, Hefei 230601, P. R. China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), 111 Jiulong Road, Hefei 230601, P. R. China
| |
Collapse
|
50
|
Gao Y, Jiao J, Meng Y, Liu Q, Cheng L. Structural growth, stability and electronic characteristics of Al-Sc clusters. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|