1
|
Jacobson KA. E. B. Hershberg Award: Taming Inflammation by Tuning Purinergic Signaling. Acc Chem Res 2025; 58:958-970. [PMID: 40043099 PMCID: PMC11959536 DOI: 10.1021/acs.accounts.5c00011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
The author presents his personal story from early contributions in purinergic receptor research to present-day structure-guided medicinal chemistry. Modulating purinergic signaling (encompassing pyrimidine nucleotides as well) and other nucleoside targets with small molecules is fruitful for identifying new directions for therapeutic intervention. Purinergic signaling encompasses four adenosine receptors, eight P2Y receptors that respond to various extracellular nucleotides, and trimeric P2X receptors that respond mainly to ATP. Each organ and tissue in the body expresses some combination of this family of cell-surface receptors, along with the enzymes and transporters that form, degrade, and process the native nucleoside and nucleotide agonists. The purinergic signaling system responds to physiological stress to an organ, for example by increasing the energy supply or decreasing the energy demand. The receptors are widespread on immune cells, such that P2Y and P2X receptor activation boosts the immune response when and where it is needed, for example to repel infection. In contrast, the adenosine receptors, which are activated later in the process─as stress-elevated ATP is hydrolyzed locally to adenosine by ectonucleotidases─tend to put the brakes on inflammation and can be used to correct an imbalance in pro- versus anti-inflammatory signals, such as in chronic pain. Hypoxia activates the immunosuppressive extracellular adenosine-A2A adenosine receptor axis, as originally formulated by Sitkovsky, which suppresses the immune response in the tumor microenvironment to make a cancer more aggressive. Conversely, the anti-inflammatory effects of adenosine receptor agonists have numerous therapeutic applications. Modulators of P2Y receptors, which respond to extracellular nucleotides, also show promise for treating chronic pain, metabolic disorders, and inflammation. Thus, control of this signaling system can be harnessed for treating a wide range of conditions, from cancer and neurodegeneration to autoimmune inflammatory diseases to ischemia of the brain or heart. The author's receiving the American Chemical Society's top award for medicinal chemistry in 2023 provides an opportunity to summarize these developments from their origins in empirical probing of receptor-ligand structure-activity relationship (SAR) to the current structure-based approaches, including conformational control of selectivity toward purinergic signaling. The work on each target receptor began either before or soon after it was cloned, and the initial focus was an academic exercise to use organic chemistry to develop a SAR for each target. The Jacobson lab has introduced chemical probes for 17 of the purinergic receptors as well as for associated regulators. Furthermore, surprisingly, some of the conformationally constrained nucleoside analogues can be designed to inhibit non-purinergic targets selectively, such as opioid and serotonin receptors and monoamine transporters. Only later did therapeutic applications of these pharmacological probes become apparent. Thus, the medicinal chemistry has largely enabled biological research on purinergic signaling by making definitive tool compounds available. Five compounds from the Jacobson laboratory (four adenosine derivatives) are currently in clinical trials for various chronic (autoimmune inflammatory and liver conditions) and acute (stroke, traumatic brain injury) conditions.
Collapse
Affiliation(s)
- Kenneth A. Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
2
|
Oliva P, Pramanik A, Jung YH, Lewicki SA, Mwendwa JM, Park JH, Jacobson KA. Functionalized Congeners of 2 H-Chromene P2Y 6 Receptor Antagonists. Cells 2024; 13:1366. [PMID: 39195256 PMCID: PMC11352859 DOI: 10.3390/cells13161366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/06/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024] Open
Abstract
The P2Y6 receptor (P2Y6R), a Gq-coupled receptor, is a potential drug discovery target for various inflammatory and degenerative conditions. Antagonists have been shown to attenuate colitis, acute lung injury, etc. In the search for competitive antagonists, we have investigated the SAR of 3-nitro-2-(trifluoromethyl)-2H-chromene derivatives, although high affinity is lacking. We now reveal that long-chain amino-functionalized congeners display greatly enhanced affinity in the antagonism of UDP-induced Ca2+ mobilization in human (h) P2Y6R-transfected 1321N1 astrocytoma cells. A 6-(Boc-amino-n-heptylethynyl) analogue 30 (MRS4940) had an IC50 of 162 nM, which was a 123-fold greater affinity than the corresponding unprotected primary alkylamine, 107-fold greater than the corresponding pivaloyl derivative 30, and 132-fold selective compared to the P2Y14R. However, similar Boc-amino chains attached at the 8-position produced weak µM affinity. Thus, the P2Y6R affinity depended on the chain length, attachment point, and terminal functionality. Off-target activities, at 45 sites, were tested for acylamino derivatives 20, 24, 26, 30, 31, and 37, which showed multiple interactions, particularly at the biogenic amine receptors. The more potent analogues may be suitable for evaluation in inflammation and cancer models, which will be performed in future studies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Kenneth A. Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (P.O.); (A.P.); (Y.-H.J.); (S.A.L.); (J.M.M.); (J.H.P.)
| |
Collapse
|
3
|
Jacobson KA, Suresh RR, Oliva P. A 2A adenosine receptor agonists, antagonists, inverse agonists and partial agonists. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 170:1-27. [PMID: 37741687 PMCID: PMC10775762 DOI: 10.1016/bs.irn.2023.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2023]
Abstract
The Gs-coupled A2A adenosine receptor (A2AAR) has been explored extensively as a pharmaceutical target, which has led to numerous clinical trials. However, only one selective A2AAR agonist (regadenoson, Lexiscan) and one selective A2AAR antagonist (istradefylline, Nouriast) have been approved by the FDA, as a pharmacological agent for myocardial perfusion imaging (MPI) and as a cotherapy for Parkinson's disease (PD), respectively. Adenosine is widely used in MPI, as Adenoscan. Despite numerous unsuccessful clinical trials, medicinal chemical activity around A2AAR ligands has accelerated recently, particularly through structure-based drug design. New drug-like A2AAR antagonists for PD and cancer immunotherapy have been identified, and many clinical trials have ensued. For example, imaradenant (AZD4635), a compound that was designed computationally, based on A2AAR X-ray structures and biophysical mapping. Mixed A2AAR/A2BAR antagonists are also hopeful for cancer treatment. A2AAR antagonists may also have potential as neuroprotective agents for treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, United States.
| | - R Rama Suresh
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, United States
| | - Paola Oliva
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, United States
| |
Collapse
|
4
|
Jacobson KA, Pradhan B, Wen Z, Pramanik A. New paradigms in purinergic receptor ligand discovery. Neuropharmacology 2023; 230:109503. [PMID: 36921890 PMCID: PMC10233512 DOI: 10.1016/j.neuropharm.2023.109503] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/28/2023] [Accepted: 03/11/2023] [Indexed: 03/14/2023]
Abstract
The discovery and clinical implementation of modulators of adenosine, P2Y and P2X receptors (comprising nineteen subtypes) have progressed dramatically in ∼50 years since Burnstock's definition of purinergic signaling. Although most clinical trials of selective ligands (agonists and antagonists) of certain purinergic receptors failed, there is a renewed impetus to redirect efforts to new disease conditions and the discovery of more selective or targeted compounds with potentially reduced side effects, such as biased GPCR agonists. The elucidation of new receptor and enzyme structures is steering rational design of potent and selective agonists, antagonists, allosteric modulators and inhibitors. A2A adenosine receptor (AR) antagonists are being applied to neurodegenerative conditions and cancer immunotherapy. A3AR agonists have potential for treating chronic inflammation (e.g. psoriasis), stroke and pain, as well as cancer. P2YR modulators are being considered for treating inflammation, metabolic disorders, acute kidney injury, cancer, pain and other conditions, often with an immune mechanism. ADP-activated P2Y12R antagonists are widely used as antithrombotic drugs, while their repurposing toward neuroinflammation is considered. P2X3 antagonists have been in clinical trials for chronic cough. P2X7 antagonists have been in clinical trials for inflammatory diseases and depression (compounds that penetrate the blood-brain barrier). Thus, purinergic signaling is now recognized as an immense regulatory system in the body for rebalancing tissues and organs under stress, which can be adjusted by drug intervention for therapeutic purposes. The lack of success of many previous clinical trials can be overcome given more advanced pharmacokinetic and pharmacodynamic approaches, including structure-based drug design, prodrugs and biased signaling. This article is part of the Special Issue on "Purinergic Signaling: 50 years".
Collapse
Affiliation(s)
- Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA.
| | - Balaram Pradhan
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA.
| | - Zhiwei Wen
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA.
| | - Asmita Pramanik
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA.
| |
Collapse
|
5
|
Scortichini M, Idris RM, Moschütz S, Keim A, Salmaso V, Dobelmann C, Oliva P, Losenkova K, Irjala H, Vaittinen S, Sandholm J, Yegutkin GG, Sträter N, Junker A, Müller CE, Jacobson KA. Structure-Activity Relationship of 3-Methylcytidine-5'-α,β-methylenediphosphates as CD73 Inhibitors. J Med Chem 2022; 65:2409-2433. [PMID: 35080883 PMCID: PMC8865918 DOI: 10.1021/acs.jmedchem.1c01852] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We recently reported N4-substituted 3-methylcytidine-5'-α,β-methylenediphosphates as CD73 inhibitors, potentially useful in cancer immunotherapy. We now expand the structure-activity relationship of pyrimidine nucleotides as human CD73 inhibitors. 4-Chloro (MRS4598 16; Ki = 0.673 nM) and 4-iodo (MRS4620 18; Ki = 0.436 nM) substitution of the N4-benzyloxy group decreased Ki by ∼20-fold. Primary alkylamine derivatives coupled through a p-amido group with a varying methylene chain length (24 and 25) were functionalized congeners, for subsequent conjugation to carrier or reporter moieties. X-ray structures of hCD73 with two inhibitors indicated a ribose ring conformational adaptation, and the benzyloxyimino group (E configuration) binds to the same region (between the C-terminal and N-terminal domains) as N4-benzyl groups in adenine inhibitors. Molecular dynamics identified stabilizing interactions and predicted conformational diversity. Thus, by N4-benzyloxy substitution, we have greatly enhanced the inhibitory potency and added functionality enabling molecular probes. Their potential as anticancer drugs was confirmed by blocking CD73 activity in tumor tissues in situ.
Collapse
Affiliation(s)
- Mirko Scortichini
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Riham Mohammed Idris
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Susanne Moschütz
- Center for Biotechnology and Biomedicine, Leipzig University, Deutscher Platz 5, 04103 Leipzig, Germany
| | - Antje Keim
- Center for Biotechnology and Biomedicine, Leipzig University, Deutscher Platz 5, 04103 Leipzig, Germany
| | - Veronica Salmaso
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Clemens Dobelmann
- European Institute for Molecular Imaging (EIMI), University of Münster, Waldeyerstrasse 15, D-48149 Münster, Germany
| | - Paola Oliva
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | | | - Heikki Irjala
- Department of Otorhinolaryngology-Head and Neck Surgery, Turku University Hospital and Turku University, 20520 Turku, Finland
| | - Samuli Vaittinen
- Department of Pathology, Turku University Hospital and Turku University, 20520 Turku, Finland
| | - Jouko Sandholm
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | | | - Norbert Sträter
- Center for Biotechnology and Biomedicine, Leipzig University, Deutscher Platz 5, 04103 Leipzig, Germany
| | - Anna Junker
- European Institute for Molecular Imaging (EIMI), University of Münster, Waldeyerstrasse 15, D-48149 Münster, Germany
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
6
|
Salmaso V, Jain S, Jacobson KA. Purinergic GPCR transmembrane residues involved in ligand recognition and dimerization. Methods Cell Biol 2021; 166:133-159. [PMID: 34752329 PMCID: PMC8620127 DOI: 10.1016/bs.mcb.2021.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2023]
Abstract
We compare the GPCR-ligand interactions and highlight important residues for recognition in purinergic receptors-from both X-ray crystallographic and cryo-EM structures. These include A1 and A2A adenosine receptors, and P2Y1 and P2Y12 receptors that respond to ADP and other nucleotides. These receptors are important drug discovery targets for immune, metabolic and nervous system disorders. In most cases, orthosteric ligands are represented, except for one allosteric P2Y1 antagonist. This review catalogs the residues and regions that engage in contacts with ligands or with other GPCR protomers in dimeric forms. Residues that are in proximity to bound ligands within purinergic GPCR families are correlated. There is extensive conservation of recognition motifs between adenosine receptors, but the P2Y1 and P2Y12 receptors are each structurally distinct in their ligand recognition. Identifying common interaction features for ligand recognition within a receptor class that has multiple structures available can aid in the drug discovery process.
Collapse
Affiliation(s)
- Veronica Salmaso
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Shanu Jain
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States.
| |
Collapse
|
7
|
Federico S, Margiotta E, Moro S, Kachler S, Klotz KN, Spalluto G. Potent and selective A 3 adenosine receptor antagonists bearing aminoesters as heterobifunctional moieties. RSC Med Chem 2020; 12:254-262. [PMID: 34046614 DOI: 10.1039/d0md00380h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 11/23/2020] [Indexed: 11/21/2022] Open
Abstract
A3 adenosine receptors were found to have a role in different pathological states, such as glaucoma, renal fibrosis, neuropathic pain and cancer. Consequently, it is important to utilize any molecular tool which could help to study these conditions. In the present study we continue our search for potent A3 adenosine receptor ligands which could be successively conjugated to other molecules with the aim of obtaining more potent (e.g. allosteric ligand conjugation) or detectable ligands (e.g. fluorescent molecule or biotin conjugation). Specifically, different aminoester moieties were introduced at the 5 position of the pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine core. The ester functionalization represents the candidate for the subsequent conjugation. All the reported compounds are potent hA3 adenosine receptor antagonists and some of them exhibited high selectivity against the other adenosine receptors. The main structural terms of ligand recognition and selectivity were disclosed by molecular modelling studies. Molecular docking results led to the characterization of an alternative binding mode for antagonists at the orthosteric binding site of the hA3 adenosine receptor, evaluated and assessed by classical molecular dynamics simulations.
Collapse
Affiliation(s)
- Stephanie Federico
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste Via Licio Giorgieri 1 34127 Trieste Italy
| | - Enrico Margiotta
- Molecular Modeling Section (MMS), Dipartimento di Scienze del Farmaco, Università di Padova via Marzolo 5 35131 Padova Italy.,Department of Physics, University of Cagliari Cittadella Universitaria S.P. Monserrato-Sestu Km 0.700 09042 Monserrato (CA), Cagliari Italy
| | - Stefano Moro
- Molecular Modeling Section (MMS), Dipartimento di Scienze del Farmaco, Università di Padova via Marzolo 5 35131 Padova Italy
| | - Sonja Kachler
- Institut für Pharmakologie und Toxikologie, Universität Würzburg Versbacher Strasse 9 97078 Würzburg Germany
| | - Karl-Norbert Klotz
- Institut für Pharmakologie und Toxikologie, Universität Würzburg Versbacher Strasse 9 97078 Würzburg Germany
| | - Giampiero Spalluto
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste Via Licio Giorgieri 1 34127 Trieste Italy
| |
Collapse
|
8
|
Salmaso V, Jacobson KA. Purinergic Signaling: Impact of GPCR Structures on Rational Drug Design. ChemMedChem 2020; 15:1958-1973. [PMID: 32803849 PMCID: PMC8276773 DOI: 10.1002/cmdc.202000465] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Indexed: 12/16/2022]
Abstract
The purinergic signaling system includes membrane-bound receptors for extracellular purines and pyrimidines, and enzymes/transporters that regulate receptor activation by endogenous agonists. Receptors include: adenosine (A1 , A2A , A2B, and A3 ) and P2Y (P2Y1 , P2Y2 , P2Y4 , P2Y6 , P2Y11 , P2Y12 , P2Y13 , and P2Y14 ) receptors (all GPCRs), as well as P2X receptors (ion channels). Receptor activation, especially accompanying physiological stress or damage, creates a temporal sequence of signaling to counteract this stress and either mobilize (P2Rs) or suppress (ARs) immune responses. Thus, modulation of this large signaling family has broad potential for treating chronic diseases. Experimentally determined structures represent each of the three receptor families. We focus on selective purinergic agonists (A1 , A3 ), antagonists (A3 , P2Y14 ), and allosteric modulators (P2Y1 , A3 ). Examples of applying structure-based design, including the rational modification of known ligands, are presented for antithrombotic P2Y1 R antagonists and anti-inflammatory P2Y14 R antagonists and A3 AR agonists. A3 AR agonists are a potential, nonaddictive treatment for chronic neuropathic pain.
Collapse
Affiliation(s)
- Veronica Salmaso
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kenneth A Jacobson
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
9
|
Gao ZG, Toti KS, Campbell R, Suresh RR, Yang H, Jacobson KA. Allosteric Antagonism of the A 2A Adenosine Receptor by a Series of Bitopic Ligands. Cells 2020; 9:cells9051200. [PMID: 32408534 PMCID: PMC7290864 DOI: 10.3390/cells9051200] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/03/2020] [Accepted: 05/10/2020] [Indexed: 12/11/2022] Open
Abstract
Allosteric antagonism by bitopic ligands, as reported for many receptors, is a distinct modulatory mechanism. Although several bitopic A2A adenosine receptor (A2AAR) ligand classes were reported as pharmacological tools, their receptor binding and functional antagonism patterns, i.e., allosteric or competitive, were not well characterized. Therefore, here we systematically characterized A2AAR binding and functional antagonism of two distinct antagonist chemical classes. i.e., fluorescent conjugates of xanthine amine congener (XAC) and SCH442416. Bitopic ligands were potent, weak, competitive or allosteric, based on the combination of pharmacophore, linker and fluorophore. Among antagonists tested, XAC, XAC245, XAC488, SCH442416, MRS7352 showed Ki binding values consistent with KB values from functional antagonism. Interestingly, MRS7396, XAC-X-BY630 (XAC630) and 5-(N,N-hexamethylene)amiloride (HMA) were 9–100 times weaker in displacing fluorescent MRS7416 binding than radioligand binding. XAC245, XAC630, MRS7396, MRS7416 and MRS7322 behaved as allosteric A2AAR antagonists, whereas XAC488 and MRS7395 antagonized competitively. Schild analysis showed antagonism slopes of 0.42 and 0.47 for MRS7396 and XAC630, respectively. Allosteric antagonists HMA and MRS7396 were more potent in displacing [3H]ZM241385 binding than MRS7416 binding. Sodium site D52N mutation increased and decreased affinity of HMA and MRS7396, respectively, suggesting possible preference for different A2AAR conformations. The allosteric binding properties of some bitopic ligands were rationalized and analyzed using the Hall two-state allosteric model. Thus, fluorophore tethering to an orthosteric ligand is not neutral pharmacologically and may confer unexpected properties to the conjugate.
Collapse
|
10
|
Federico S, Margiotta E, Moro S, Kozma E, Gao ZG, Jacobson KA, Spalluto G. Conjugable A 3 adenosine receptor antagonists for the development of functionalized ligands and their use in fluorescent probes. Eur J Med Chem 2019; 186:111886. [PMID: 31787357 DOI: 10.1016/j.ejmech.2019.111886] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/12/2019] [Accepted: 11/12/2019] [Indexed: 12/31/2022]
Abstract
Compounds able to simultaneously bind a biological target and be conjugated to a second specific moiety are attractive tools for the development of multi-purpose ligands useful as multi-target ligands, receptor probes or drug delivery systems, with both therapeutic and diagnostic applications. The human A3 adenosine receptor is a G protein-coupled receptor involved in many physio-pathological conditions, e.g. cancer and inflammation, thus representing a promising research target. In this work, two series of conjugable hA3AR antagonists, based on the pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine nucleus, were developed. The introduction of an aromatic ring at the 5 position of the scaffold, before (phenylacetamido moiety) or after (1,2,3-triazole obtained by click chemistry) the conjugation is aimed to increase affinity and selectivity towards the hA3AR receptor. As expected, conjugable compounds showed good affinity towards the hA3AR. In order to prove their potential in the development of hA3AR ligands for different purposes, compounds were also functionalized with fluorescent probes. Unfortunately, conjugation decreased affinity and selectivity for the target as compared to the hA2AAR. Computational studies identified specific non-conserved residues of the extracellular loops which constitute a structural barrier able to discriminate between ligands, giving insights into the rational development of new highly selective ligands.
Collapse
Affiliation(s)
- Stephanie Federico
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università Degli Studi di Trieste, Via Licio Giorgeri 1, 34127, Trieste, Italy.
| | - Enrico Margiotta
- Molecular Modeling Section (MMS), Dipartimento di Scienze Del Farmaco, Università di Padova, Via Marzolo 5, 35131, Padova, Italy
| | - Stefano Moro
- Molecular Modeling Section (MMS), Dipartimento di Scienze Del Farmaco, Università di Padova, Via Marzolo 5, 35131, Padova, Italy
| | - Eszter Kozma
- Laboratory of Bioorganic Chemistry, NIDDK, National Institute of Health, Bethesda, MD, USA
| | - Zhan-Guo Gao
- Laboratory of Bioorganic Chemistry, NIDDK, National Institute of Health, Bethesda, MD, USA
| | - Kenneth A Jacobson
- Laboratory of Bioorganic Chemistry, NIDDK, National Institute of Health, Bethesda, MD, USA
| | - Giampiero Spalluto
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università Degli Studi di Trieste, Via Licio Giorgeri 1, 34127, Trieste, Italy
| |
Collapse
|
11
|
|
12
|
Marx D, Wingen LM, Schnakenburg G, Müller CE, Scholz MS. Fast, Efficient, and Versatile Synthesis of 6-amino-5-carboxamidouracils as Precursors for 8-Substituted Xanthines. Front Chem 2019; 7:56. [PMID: 30834241 PMCID: PMC6387921 DOI: 10.3389/fchem.2019.00056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 01/21/2019] [Indexed: 12/22/2022] Open
Abstract
Substituted xanthine derivatives are important bioactive molecules. Herein we report on a new, practical synthesis of 6-amino-5-carboxamidouracils, the main building blocks for the preparation of 8-substituted xanthines, by condensation of 5,6-diaminouracil derivatives and various carboxylic acids using the recently developed non-hazardous coupling reagent COMU (1-[(1-(cyano-2-ethoxy-2-oxoethylideneaminooxy)dimethylaminomorpholinomethylene)]methanaminium hexafluorophosphate). Optimized reaction conditions led to the precipitation of pure products after only 5 to 10 min of reaction time. The method tolerates a variety of substituted 5,6-diaminouracil and carboxylic acid derivatives as starting compounds resulting in most cases in more than 80% isolated yield. Regioselectivity of the reaction yielding only the 5-carboxamido-, but not the 6-carboxamidouracil derivatives, was unambiguously confirmed by single X-ray crystallography and multidimensional NMR experiments. The described method represents a convenient, fast access to direct precursors of 8-substituted xanthines under mild conditions without the necessity of hazardous coupling or chlorinating reagents.
Collapse
Affiliation(s)
- Daniel Marx
- Pharmaceutical Chemistry 1, Pharmaceutical Institute, University of Bonn, Bonn, Germany
| | - Lukas M Wingen
- Pharmaceutical Chemistry 1, Pharmaceutical Institute, University of Bonn, Bonn, Germany
| | - Gregor Schnakenburg
- Department of Chemistry, Institute of Inorganic Chemistry, University of Bonn, Bonn, Germany
| | - Christa E Müller
- Pharmaceutical Chemistry 1, Pharmaceutical Institute, University of Bonn, Bonn, Germany
| | - Matthias S Scholz
- Pharmaceutical Chemistry 1, Pharmaceutical Institute, University of Bonn, Bonn, Germany
| |
Collapse
|
13
|
Breakthrough in GPCR Crystallography and Its Impact on Computer-Aided Drug Design. Methods Mol Biol 2018; 1705:45-72. [PMID: 29188558 DOI: 10.1007/978-1-4939-7465-8_3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recent crystallographic structures of G protein-coupled receptors (GPCRs) have greatly advanced our understanding of the recognition of their diverse agonist and antagonist ligands. We illustrate here how this applies to A2A adenosine receptors (ARs) and to P2Y1 and P2Y12 receptors (P2YRs) for ADP. These X-ray structures have impacted the medicinal chemistry aimed at discovering new ligands for these two receptor families, including receptors that have not yet been crystallized but are closely related to the known structures. In this Chapter, we discuss recent structure-based drug design projects that led to the discovery of: (a) novel A3AR agonists based on a highly rigidified (N)-methanocarba scaffold for the treatment of chronic neuropathic pain and other conditions, (b) fluorescent probes of the ARs and P2Y14R, as chemical tools for structural probing of these GPCRs and for improving assay capabilities, and (c) new more drug-like antagonists of the inflammation-related P2Y14R. We also describe the computationally enabled molecular recognition of positive (for A3AR) and negative (P2Y1R) allosteric modulators that in some cases are shown to be consistent with structure-activity relationship (SAR) data. Thus, computational modeling has become an essential tool for the design of purine receptor ligands.
Collapse
|
14
|
Liu J, Tian C, Jiang T, Gao Y, Zhou Y, Li M, Du L. Discovery of the First Environment-Sensitive Fluorescent Probe for GPR120 (FFA4) Imaging. ACS Med Chem Lett 2017; 8:428-432. [PMID: 28435531 DOI: 10.1021/acsmedchemlett.7b00023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 03/27/2017] [Indexed: 02/07/2023] Open
Abstract
GPR120, which is activated by long-chain free fatty acids (FFAs), has been recognized as a new attractive target for the treatment of type 2 diabetes and metabolic disease. The visualization and location of GPR120 in native cells can provide powerful information for guiding the physiological and pathological studies of GPR120. We report herein the first potent fluorescent probes that sensitively detect GPR120. We designed and synthesized a series of novel environment-sensitive probes with suitable fluorescence property, high biological activity on the GPR120, and acceptable cytotoxicity. These fluorescent probes targeting GPR120 are expected to expand the toolkit for further studies on GPR120.
Collapse
Affiliation(s)
- Jiaxiang Liu
- Department
of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE),
School of Pharmacy, Shandong University, Jinan, Shandong 250012, China
| | - Chengsen Tian
- Department
of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE),
School of Pharmacy, Shandong University, Jinan, Shandong 250012, China
- School
of Chemical Engineering, Qilu Normal University, Jinan, Shandong 250200, China
| | - Tianyu Jiang
- Department
of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE),
School of Pharmacy, Shandong University, Jinan, Shandong 250012, China
| | - Yuqi Gao
- Department
of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE),
School of Pharmacy, Shandong University, Jinan, Shandong 250012, China
| | - Yubin Zhou
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas 77030, United States
| | - Minyong Li
- Department
of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE),
School of Pharmacy, Shandong University, Jinan, Shandong 250012, China
| | - Lupei Du
- Department
of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE),
School of Pharmacy, Shandong University, Jinan, Shandong 250012, China
| |
Collapse
|
15
|
Jörg M, Scammells PJ. Guidelines for the Synthesis of Small-Molecule Irreversible Probes Targeting G Protein-Coupled Receptors. ChemMedChem 2016; 11:1488-98. [PMID: 27347648 DOI: 10.1002/cmdc.201600066] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 06/07/2016] [Indexed: 02/03/2023]
Abstract
Irreversible probes have been proven to be useful pharmacological tools in the study of structural and functional features in drug receptor pharmacology. They have been demonstrated to be particularly valuable for the isolation and purification of receptors. Furthermore, irreversible probes are helpful tools for the identification and characterization of binding sites, thereby supporting the advancement of rational drug design. In this Minireview, we provide insight into universal strategies and guidelines to successfully synthesize irreversible probes that target G protein-coupled receptors (GPCRs). We provide an overview of commonly used chemoreactive and photoreactive groups, and make a comparison of their properties and potential applications. Furthermore, there is a particular focus on synthetic approaches to introduce these reactive groups based on commercially available reagents.
Collapse
Affiliation(s)
- Manuela Jörg
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, 3052, Victoria, Australia.
| | - Peter J Scammells
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, 3052, Victoria, Australia.
| |
Collapse
|
16
|
Zhang W, Ma Z, Li W, Li G, Chen L, Liu Z, Du L, Li M. Discovery of Quinazoline-Based Fluorescent Probes to α1-Adrenergic Receptors. ACS Med Chem Lett 2015; 6:502-6. [PMID: 26005522 DOI: 10.1021/ml5004298] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 03/30/2015] [Indexed: 11/28/2022] Open
Abstract
α1-Adrenergic receptors (α1-ARs), as the essential members of G protein-coupled receptors (GPCRs), can mediate numerous physiological responses in the sympathetic nervous system. In the current research, a series of quinazoline-based small-molecule fluorescent probes to α1-ARs (1a-1e), including two parts, a pharmacophore for α1-AR recognition and a fluorophore for visualization, were well designed and synthesized. The biological evaluation results displayed that these probes held reasonable fluorescent properties, high affinity, accepted cell toxicity, and excellent subcellular localization imaging potential for α1-ARs.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Medicinal Chemistry,
Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan, Shandong 250012, China
| | - Zhao Ma
- Department of Medicinal Chemistry,
Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan, Shandong 250012, China
| | - Wenhua Li
- Department of Medicinal Chemistry,
Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan, Shandong 250012, China
| | - Geng Li
- Department of Medicinal Chemistry,
Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan, Shandong 250012, China
| | - Laizhong Chen
- Department of Medicinal Chemistry,
Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan, Shandong 250012, China
| | - Zhenzhen Liu
- Department of Medicinal Chemistry,
Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan, Shandong 250012, China
| | - Lupei Du
- Department of Medicinal Chemistry,
Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan, Shandong 250012, China
| | - Minyong Li
- Department of Medicinal Chemistry,
Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan, Shandong 250012, China
| |
Collapse
|
17
|
Kannan RM, Nance E, Kannan S, Tomalia DA. Emerging concepts in dendrimer-based nanomedicine: from design principles to clinical applications. J Intern Med 2014; 276:579-617. [PMID: 24995512 DOI: 10.1111/joim.12280] [Citation(s) in RCA: 368] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dendrimers are discrete nanostructures/nanoparticles with 'onion skin-like' branched layers. Beginning with a core, these nanostructures grow in concentric layers to produce stepwise increases in size that are similar to the dimensions of many in vivo globular proteins. These branched tree-like concentric layers are referred to as 'generations'. The outer generation of each dendrimer presents a precise number of functional groups that may act as a monodispersed platform for engineering favourable nanoparticle-drug and nanoparticle-tissue interactions. These features have attracted significant attention in medicine as nanocarriers for traditional small drugs, proteins, DNA/RNA and in some instances as intrinsically active nanoscale drugs. Dendrimer-based drugs, as well as diagnostic and imaging agents, are emerging as promising candidates for many nanomedicine applications. First, we will provide a brief survey of recent nanomedicines that are either approved or in the clinical approval process. This will be followed by an introduction to a new 'nanoperiodic' concept which proposes nanoparticle structure control and the engineering of 'critical nanoscale design parameters' (CNDPs) as a strategy for optimizing pharmocokinetics, pharmocodynamics and site-specific targeting of disease. This paradigm has led to the emergence of CNDP-directed nanoperiodic property patterns relating nanoparticle behaviour to critical in vivo clinical translation issues such as cellular uptake, transport, elimination, biodistribution, accumulation and nanotoxicology. With a focus on dendrimers, these CNDP-directed nanoperiodic patterns are used as a strategy for designing and optimizing nanoparticles for a variety of drug delivery and imaging applications, including a recent dendrimer-based theranostic nanodevice for imaging and treating cancer. Several emerging preclinical dendrimer-based nanotherapy concepts related to inflammation, neuro-inflammatory disorders, oncology and infectious and ocular diseases are reviewed. Finally we will consider challenges and opportunities anticipated for future clinical translation, nanotoxicology and the commercialization of nanomedicine.
Collapse
Affiliation(s)
- R M Kannan
- Department of Ophthalmology, Center for Nanomedicine, Baltimore, MD, USA
| | | | | | | |
Collapse
|
18
|
Vernall AJ, Hill SJ, Kellam B. The evolving small-molecule fluorescent-conjugate toolbox for Class A GPCRs. Br J Pharmacol 2014; 171:1073-84. [PMID: 23734587 DOI: 10.1111/bph.12265] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 05/09/2013] [Accepted: 05/17/2013] [Indexed: 01/15/2023] Open
Abstract
The past decade has witnessed fluorescently tagged drug molecules gaining significant attraction in their use as pharmacological tools with which to visualize and interrogate receptor targets at the single-cell level. Additionally, one can generate detailed pharmacological information, such as affinity measurements, down to almost single-molecule detection limits. The now accepted utilization of fluorescence-based readouts in high-throughput/high-content screening provides further evidence that fluorescent molecules offer a safer and more adaptable substitute to radioligands in molecular pharmacology and drug discovery. One such drug-target family that has received considerable attention are the GPCRs; this review therefore summarizes the most recent developments in the area of fluorescent ligand design for this important drug target. We assess recently reported fluorescent conjugates by adopting a receptor-family-based approach, highlighting some of the strengths and weaknesses of the individual molecules and their subsequent use. This review adds further strength to the arguments that fluorescent ligand design and synthesis requires careful planning and execution; providing examples illustrating that selection of the correct fluorescent dye, linker length/composition and geographic attachment point to the drug scaffold can all influence the ultimate selectivity and potency of the final conjugate when compared with its unlabelled precursor. When optimized appropriately, the resultant fluorescent conjugates have been successfully employed in an array of assay formats, including flow cytometry, fluorescence microscopy, FRET and scanning confocal microscopy. It is clear that fluorescently labelled GPCR ligands remain a developing and dynamic research arena.
Collapse
Affiliation(s)
- Andrea J Vernall
- School of Pharmacy, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, UK
| | | | | |
Collapse
|
19
|
Ma Z, Du L, Li M. Toward fluorescent probes for G-protein-coupled receptors (GPCRs). J Med Chem 2014; 57:8187-203. [PMID: 24983484 DOI: 10.1021/jm401823z] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
G-protein-coupled receptors (GPCRs), a superfamily of cell-surface receptors that are the targets of about 40% of prescription drugs on the market, can sense numerous critical extracellular signals. Recent breakthroughs in structural biology, especially in holo-form X-ray crystal structures, have contributed to our understanding of GPCR signaling. However, actions of GPCRs at the cellular and molecular level, interactions between GPCRs, and the role of protein dynamics in receptor activities still remain controversial. To overcome these dilemmas, fluorescent probes of GPCRs have been employed, which have advantages of in vivo safety and real-time monitoring. Various probes that depend on specific mechanisms and/or technologies have been used to study GPCRs. The present review focuses on surveying the design and applications of fluorescent probes for GPCRs that are derived from small molecules or using protein-labeling techniques, as well as discussing some design strategies for new probes.
Collapse
Affiliation(s)
- Zhao Ma
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University , Jinan, Shandong 250012, China
| | | | | |
Collapse
|
20
|
Manivel P, Prabakaran K, Krishnakumar V, Nawaz Khan FR, Maiyalagan T. Thiourea-Mediated Regioselective Synthesis of Symmetrical and Unsymmetrical Diversified Thioethers. Ind Eng Chem Res 2014. [DOI: 10.1021/ie500119p] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Pitchai Manivel
- Organic
and Medicinal Chemistry Research Laboratory, Organic Chemistry Division,
School of Advanced Sciences, VIT-University, Vellore 632 014, Tamil Nadu India
| | - Kamalakannan Prabakaran
- Organic
and Medicinal Chemistry Research Laboratory, Organic Chemistry Division,
School of Advanced Sciences, VIT-University, Vellore 632 014, Tamil Nadu India
| | - Varadhan Krishnakumar
- Organic
and Medicinal Chemistry Research Laboratory, Organic Chemistry Division,
School of Advanced Sciences, VIT-University, Vellore 632 014, Tamil Nadu India
| | - Fazlur-Rahman Nawaz Khan
- Organic
and Medicinal Chemistry Research Laboratory, Organic Chemistry Division,
School of Advanced Sciences, VIT-University, Vellore 632 014, Tamil Nadu India
| | - Thandavarayan Maiyalagan
- Materials
Science and Engineering Program The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
21
|
Jayasekara PS, Barrett MO, Ball CB, Brown KA, Hammes E, Balasubramanian R, Harden TK, Jacobson KA. 4-Alkyloxyimino derivatives of uridine-5'-triphosphate: distal modification of potent agonists as a strategy for molecular probes of P2Y2, P2Y4, and P2Y6 receptors. J Med Chem 2014; 57:3874-83. [PMID: 24712832 PMCID: PMC4018175 DOI: 10.1021/jm500367e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Extended N(4)-(3-arylpropyl)oxy derivatives of uridine-5'-triphosphate were synthesized and potently stimulated phospholipase C stimulation in astrocytoma cells expressing G protein-coupled human (h) P2Y receptors (P2YRs) activated by UTP (P2Y2/4R) or UDP (P2Y6R). The potent P2Y4R-selective N(4)-(3-phenylpropyl)oxy agonist was phenyl ring-substituted or replaced with terminal heterocyclic or naphthyl rings with retention of P2YR potency. This broad tolerance for steric bulk in a distal region was not observed for dinucleoside tetraphosphate agonists with both nucleobases substituted. The potent N(4)-(3-(4-methoxyphenyl)-propyl)oxy analogue 19 (EC50: P2Y2R, 47 nM; P2Y4R, 23 nM) was functionalized for chain extension using click tethering of fluorophores as prosthetic groups. The BODIPY 630/650 conjugate 28 (MRS4162) exhibited EC50 values of 70, 66, and 23 nM at the hP2Y2/4/6Rs, respectively, and specifically labeled cells expressing the P2Y6R. Thus, an extended N(4)-(3-arylpropyl)oxy group accessed a structurally permissive region on three Gq-coupled P2YRs, and potency and selectivity were modulated by distal structural changes. This freedom of substitution was utilized to design of a pan-agonist fluorescent probe of a subset of uracil nucleotide-activated hP2YRs.
Collapse
Affiliation(s)
- P Suresh Jayasekara
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland 20892 United States
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Jörg M, Kaczor AA, Mak FS, Lee KCK, Poso A, Miller ND, Scammells PJ, Capuano B. Investigation of novel ropinirole analogues: synthesis, pharmacological evaluation and computational analysis of dopamine D2 receptor functionalized congeners and homobivalent ligands. MEDCHEMCOMM 2014. [DOI: 10.1039/c4md00066h] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
This study includes the synthesis, pharmacological evaluation and molecular modeling study of novel ropinirole-based monovalent and homobivalent ligands.
Collapse
Affiliation(s)
- Manuela Jörg
- Medicinal Chemistry
- Monash Institute of Pharmaceutical Sciences
- Australia
| | - Agnieszka A. Kaczor
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Lab
- Faculty of Pharmacy with Division of Medical Analytics
- Medical University of Lublin
- Lublin
- Poland
| | - Frankie S. Mak
- GSK R&D
- Neural Pathways DPU
- Neurosciences TAU
- Singapore 138667
- Singapore
| | - Kiew Ching K. Lee
- GSK R&D
- Neural Pathways DPU
- Neurosciences TAU
- Singapore 138667
- Singapore
| | - Antti Poso
- School of Pharmacy
- University of Eastern Finland
- Kuopio
- Finland
| | - Neil D. Miller
- GSK R&D
- Neural Pathways DPU
- Neurosciences TAU
- Singapore 138667
- Singapore
| | | | - Ben Capuano
- Medicinal Chemistry
- Monash Institute of Pharmaceutical Sciences
- Australia
| |
Collapse
|
23
|
Barlow N, Baker SP, Scammells PJ. Effect of Linker Length and Composition on Heterobivalent Ligand-Mediated Receptor Cross-Talk between the A1Adenosine and β2Adrenergic Receptors. ChemMedChem 2013; 8:2036-46. [DOI: 10.1002/cmdc.201300286] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Indexed: 01/09/2023]
|
24
|
Jacobson KA. Structure-based approaches to ligands for G-protein-coupled adenosine and P2Y receptors, from small molecules to nanoconjugates. J Med Chem 2013; 56:3749-67. [PMID: 23597047 PMCID: PMC3701956 DOI: 10.1021/jm400422s] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Adenosine receptor (ARs) and P2Y receptors (P2YRs) that respond to extracellular nucleosides/nucleotides are associated with new directions for therapeutics. The X-ray structures of the A2AAR complexes with agonists and antagonists are examined in relationship to the G-protein-coupled receptor (GPCR) superfamily and applied to drug discovery. Much of the data on AR ligand structure from early SAR studies now are explainable from the A2AAR X-ray crystallography. The ligand-receptor interactions in related GPCR complexes can be identified by means of modeling approaches, e.g., molecular docking. Thus, molecular recognition in binding and activation processes has been studied effectively using homology modeling and applied to ligand design. Virtual screening has yielded new nonnucleoside AR antagonists, and existing ligands have been improved with knowledge of the receptor interactions. New agonists are being explored for central nervous system and peripheral therapeutics based on in vivo activity, such as chronic neuropathic pain. Ligands for receptors more distantly related to the X-ray template, i.e., P2YRs, have been introduced and are mainly used as pharmacological tools for elucidating the physiological role of extracellular nucleotides. Other ligand tools for drug discovery include fluorescent probes, radioactive probes, multivalent probes, and functionalized nanoparticles.
Collapse
Affiliation(s)
- Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland 20892, USA.
| |
Collapse
|
25
|
Kozma E, Gizewski ET, Tosh DK, Squarcialupi L, Auchampach JA, Jacobson KA. Characterization by flow cytometry of fluorescent, selective agonist probes of the A(3) adenosine receptor. Biochem Pharmacol 2013; 85:1171-81. [PMID: 23376019 DOI: 10.1016/j.bcp.2013.01.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Revised: 01/16/2013] [Accepted: 01/24/2013] [Indexed: 01/02/2023]
Abstract
Various fluorescent nucleoside agonists of the A3 adenosine receptor (AR) were compared as high affinity probes using radioligands and flow cytometry (FCM). They contained a fluorophore linked through the C2 or N(6) position and rigid A3AR-enhancing (N)-methanocarba modification. A hydrophobic C2-(1-pyrenyl) derivative MRS5704 bound nonselectively. C2-Tethered cyanine5-dye labeled MRS5218 bound selectively to hA3AR expressed in whole CHO cells and membranes. By FCM, binding was A3AR-mediated (blocked by A3AR antagonist, at least half through internalization), with t1/2 for association 38min in mA3AR-HEK293 cells; 26.4min in sucrose-treated hA3AR-CHO cells (Kd 31nM). Membrane binding indicated moderate mA3AR affinity, but not selectivity. Specific accumulation of fluorescence (50nM MRS5218) occurred in cells expressing mA3AR, but not other mouse ARs. Evidence was provided suggesting that MRS5218 detects endogenous expression of the A3AR in the human promyelocytic leukemic HL-60 cell line. Therefore, MRS5218 promises to be a useful tool for characterizing the A3AR.
Collapse
Affiliation(s)
- Eszter Kozma
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0810, USA
| | | | | | | | | | | |
Collapse
|
26
|
Abstract
The adenosine receptors (ARs) provide an example of how to accurately predict ligand recognition, even prior to the availability of a crystallographic structure. Homology modeling has been used to gain structural insight, in conjunction with site-directed mutagenesis, and structure-activity relationships of small molecular ligands. Recent X-ray structures greatly improved the accuracy of knowledge of AR ligand recognition and furthermore characterized conformational changes induced by receptor activation. Now, homology modeling extends these structural insights to related GPCRs and suggests new ligand structures. This strategy is also being applied to the eight subtypes of P2Y receptors for extracellular nucleotides, which lack X-ray structures and are best modeled by homology to the CXCR4 (peptide) receptor. Neoceptors, as studied for three of the four AR subtypes, create a molecular complementarity between a mutant receptor and a chemically tailored agonist ligand to selectively enhance affinity, implying direct physical contact and thus validating docking hypotheses.
Collapse
Affiliation(s)
- Kenneth A Jacobson
- Laboratory of Biological Modeling, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA.
| | | | | |
Collapse
|
27
|
Jayasekara PS, Barrett MO, Ball CB, Brown KA, Kozma E, Costanzi S, Squarcialupi L, Balasubramanian R, Maruoka H, Jacobson KA. 4-Alkyloxyimino-cytosine nucleotides: tethering approaches to molecular probes for the P2Y 6 receptor. MEDCHEMCOMM 2013; 4:1156-1165. [PMID: 26161252 DOI: 10.1039/c3md00132f] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
4-Alkyloxyimino derivatives of pyrimidine nucleotides display high potency as agonists of certain G protein-coupled P2Y receptors (P2YRs). In an effort to functionalize a P2Y6R agonist for fluorescent labeling, we probed two positions (N4 and γ-phosphate of cytidine derivatives) with various functional groups, including alkynes for click chemistry. Functionalization of extended imino substituents at the 4 position of the pyrimidine nucleobase of CDP preserved P2Y6R potency generally better than γ-phosphoester formation in CTP derivatives. Fluorescent Alexa Fluor 488 conjugate 16 activated the human P2Y6R expressed in 1321N1 human astrocytoma cells with an EC50 of 9 nM, and exhibited high selectivity for this receptor over other uridine nucleotide-activated P2Y receptors. Flow cytometry detected specific labeling with 16 to P2Y6R-expressing but not to wild-type 1321N1 cells. Additionally, confocal microscopy indicated both internalized 16 (t1/2 of 18 min) and surface-bound fluorescence. Known P2Y6R ligands inhibited labeling. Theoretical docking of 16 to a homology model of the P2Y6R predicted electrostatic interactions between the fluorophore and extracellular portion of TM3. Thus, we have identified the N4-benzyloxy group as a structurally permissive site for synthesis of functionalized congeners leading to high affinity molecular probes for studying the P2Y6R.
Collapse
Affiliation(s)
- P Suresh Jayasekara
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0810, USA. ; Tel: +1 301-496-9024
| | - Matthew O Barrett
- Department of Pharmacology, University of North Carolina, School of Medicine, Chapel Hill, North Carolina 27599-7365, USA
| | - Christopher B Ball
- Department of Pharmacology, University of North Carolina, School of Medicine, Chapel Hill, North Carolina 27599-7365, USA
| | - Kyle A Brown
- Department of Pharmacology, University of North Carolina, School of Medicine, Chapel Hill, North Carolina 27599-7365, USA
| | - Eszter Kozma
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0810, USA. ; Tel: +1 301-496-9024
| | - Stefano Costanzi
- Department of Chemistry, American University, Washington, DC 20016, USA
| | - Lucia Squarcialupi
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0810, USA. ; Tel: +1 301-496-9024
| | - Ramachandran Balasubramanian
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0810, USA. ; Tel: +1 301-496-9024
| | - Hiroshi Maruoka
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0810, USA. ; Tel: +1 301-496-9024
| | - Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0810, USA. ; Tel: +1 301-496-9024
| |
Collapse
|
28
|
Kozma E, Jayasekara PS, Squarcialupi L, Paoletta S, Moro S, Federico S, Spalluto G, Jacobson KA. Fluorescent ligands for adenosine receptors. Bioorg Med Chem Lett 2013; 23:26-36. [PMID: 23200243 PMCID: PMC3557833 DOI: 10.1016/j.bmcl.2012.10.112] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 10/05/2012] [Accepted: 10/28/2012] [Indexed: 10/27/2022]
Abstract
Interest is increasing in developing fluorescent ligands for characterization of adenosine receptors (ARs), which hold a promise of usefulness in the drug discovery process. The size of a strategically labeled AR ligand can be greatly increased after the attachment of a fluorophore. The choice of dye moiety (e.g. Alexa Fluor 488), attachment point and linker length can alter the selectivity and potency of the parent molecule. Fluorescent derivatives of adenosine agonists and antagonists (e.g. XAC and other heterocyclic antagonist scaffolds) have been synthesized and characterized pharmacologically. Some are useful AR probes for flow cytometry, fluorescence correlation spectroscopy, fluorescence microscopy, fluorescence polarization, fluorescence resonance energy transfer, and scanning confocal microscopy. Thus, the approach of fluorescent labeled GPCR ligands, including those for ARs, is a growing dynamic research field.
Collapse
Affiliation(s)
- Eszter Kozma
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0810 USA
| | - P Suresh Jayasekara
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0810 USA
| | - Lucia Squarcialupi
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0810 USA
| | - Silvia Paoletta
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0810 USA
| | - Stefano Moro
- Molecular Modeling Section (MMS), Dipartimento di Scienze del Farmaco, Università di Padova, via Marzolo 5, I-35131 Padova, Italy
| | - Stephanie Federico
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste, Piazzale Europa 1, I-34127 Trieste, Italy
| | - Giampiero Spalluto
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste, Piazzale Europa 1, I-34127 Trieste, Italy
| | - Kenneth A. Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0810 USA
| |
Collapse
|
29
|
Vernall AJ, Stoddart LA, Briddon SJ, Ng HW, Laughton CA, Doughty SW, Hill SJ, Kellam B. Conversion of a non-selective adenosine receptor antagonist into A3-selective high affinity fluorescent probes using peptide-based linkers. Org Biomol Chem 2013; 11:5673-82. [DOI: 10.1039/c3ob41221k] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
30
|
Loison S, Cottet M, Orcel H, Adihou H, Rahmeh R, Lamarque L, Trinquet E, Kellenberger E, Hibert M, Durroux T, Mouillac B, Bonnet D. Selective Fluorescent Nonpeptidic Antagonists For Vasopressin V2 GPCR: Application To Ligand Screening and Oligomerization Assays. J Med Chem 2012; 55:8588-602. [DOI: 10.1021/jm3006146] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Stéphanie Loison
- Laboratoire
d’Innovation
Thérapeutique, UMR7200 CNRS/Université de Strasbourg,
Faculté de Pharmacie, 74 route du Rhin, 67412 Illkirch, France
| | - Martin Cottet
- CNRS UMR 5203, INSERM U661,
and Université Montpellier I et II, Institut de Génomique
Fonctionnelle, Département de Pharmacologie Moléculaire,
141 rue de la Cardonille, 34094 Montpellier Cedex 5, France
| | - Hélène Orcel
- CNRS UMR 5203, INSERM U661,
and Université Montpellier I et II, Institut de Génomique
Fonctionnelle, Département de Pharmacologie Moléculaire,
141 rue de la Cardonille, 34094 Montpellier Cedex 5, France
| | - Hélène Adihou
- Laboratoire
d’Innovation
Thérapeutique, UMR7200 CNRS/Université de Strasbourg,
Faculté de Pharmacie, 74 route du Rhin, 67412 Illkirch, France
| | - Rita Rahmeh
- CNRS UMR 5203, INSERM U661,
and Université Montpellier I et II, Institut de Génomique
Fonctionnelle, Département de Pharmacologie Moléculaire,
141 rue de la Cardonille, 34094 Montpellier Cedex 5, France
| | - Laurent Lamarque
- Cisbio Bioassays, Parc Marcel
Boiteux, BP84175, 30200 Codolet, France
| | - Eric Trinquet
- Cisbio Bioassays, Parc Marcel
Boiteux, BP84175, 30200 Codolet, France
| | - Esther Kellenberger
- Laboratoire
d’Innovation
Thérapeutique, UMR7200 CNRS/Université de Strasbourg,
Faculté de Pharmacie, 74 route du Rhin, 67412 Illkirch, France
| | - Marcel Hibert
- Laboratoire
d’Innovation
Thérapeutique, UMR7200 CNRS/Université de Strasbourg,
Faculté de Pharmacie, 74 route du Rhin, 67412 Illkirch, France
| | - Thierry Durroux
- CNRS UMR 5203, INSERM U661,
and Université Montpellier I et II, Institut de Génomique
Fonctionnelle, Département de Pharmacologie Moléculaire,
141 rue de la Cardonille, 34094 Montpellier Cedex 5, France
| | - Bernard Mouillac
- CNRS UMR 5203, INSERM U661,
and Université Montpellier I et II, Institut de Génomique
Fonctionnelle, Département de Pharmacologie Moléculaire,
141 rue de la Cardonille, 34094 Montpellier Cedex 5, France
| | - Dominique Bonnet
- Laboratoire
d’Innovation
Thérapeutique, UMR7200 CNRS/Université de Strasbourg,
Faculté de Pharmacie, 74 route du Rhin, 67412 Illkirch, France
| |
Collapse
|
31
|
Vernall AJ, Stoddart LA, Briddon SJ, Hill SJ, Kellam B. Highly potent and selective fluorescent antagonists of the human adenosine A₃ receptor based on the 1,2,4-triazolo[4,3-a]quinoxalin-1-one scaffold. J Med Chem 2012; 55:1771-82. [PMID: 22277057 DOI: 10.1021/jm201722y] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The adenosine-A(3) receptor (A(3)AR) is a G protein-coupled receptor that shows promise as a therapeutic target for cancer, glaucoma, and various autoimmune inflammatory disorders, and as such, there is a need for molecular probes to study this receptor. Here, we report a series of fluorescent ligands containing different linkers and fluorophores based around a 1,2,4-triazolo[4,3-a]quinoxalin-1-one antagonist. One of these conjugates (19) displayed high affinity for the A(3)AR (pK(D) = 9.36 ± 0.12) and is >650-fold selective over other adenosine receptor subtypes. Confocal microscopy revealed clear, displaceable membrane labeling of CHO-A(3) cells with 19, with no detectable labeling of CHO-A(1) cells under identical conditions. This fluorescent ligand was also able to specifically label the A(3)AR in HEK293T cells containing a mixed adenosine receptor population. The subtype specificity, along with its excellent imaging properties, make 19 an ideal tool for studying A(3)AR distribution and organization, particularly in the presence of other adenosine receptor subtypes.
Collapse
Affiliation(s)
- Andrea J Vernall
- School of Pharmacy, Centre for Biomolecular Sciences, University of Nottingham, United Kingdom
| | | | | | | | | |
Collapse
|
32
|
Kecskés A, Tosh DK, Wei Q, Gao ZG, Jacobson KA. GPCR ligand dendrimer (GLiDe) conjugates: adenosine receptor interactions of a series of multivalent xanthine antagonists. Bioconjug Chem 2011; 22:1115-27. [PMID: 21539392 DOI: 10.1021/bc1005812] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Previously, G protein-coupled receptor (GPCR) agonists were tethered from polyamidoamine (PAMAM) dendrimers to provide high receptor affinity and selectivity. Here, we prepared GPCR ligand--dendrimer (GLiDe) conjugates from a potent adenosine receptor (AR) antagonist; such agents are of interest for treating Parkinson's disease, asthma, and other conditions. Xanthine amine congener (XAC) was appended with an alkyne group on an extended C8 substituent for coupling by Cu(I)-catalyzed click chemistry to azide-derivatized G4 (fourth-generation) PAMAM dendrimers to form triazoles. These conjugates also contained triazole-linked PEG groups (8 or 22 moieties per 64 terminal positions) for increasing water-solubility and optionally prosthetic groups for spectroscopic characterization and affinity labeling. Human AR binding affinity increased progressively with the degree of xanthine substitution to reach K(i) values in the nanomolar range. The order of affinity of each conjugate was hA(2A)AR > hA(3)AR > hA(1)AR, while the corresponding monomer was ranked hA(2A)AR > hA(1)AR ≥ hA(3)AR. The antagonist activity of the most potent conjugate 14 (34 xanthines per dendrimer) was examined at the G(i)-coupled A(1)AR. Conjugate 14 at 100 nM right-shifted the AR agonist concentration--response curve in a cyclic AMP functional assay in a parallel manner, but at 10 nM (lower than its K(i) value), it significantly suppressed the maximal agonist effect in calcium mobilization. This is the first systematic probing of a potent AR antagonist tethered on a dendrimer and its activity as a function of variable loading.
Collapse
Affiliation(s)
- Angela Kecskés
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | | | | | | | | |
Collapse
|
33
|
Abstract
The natural plant alkaloids caffeine and theophylline were the first adenosine receptor (AR) antagonists described in the literature. They exhibit micromolar affinities and are non-selective. A large number of derivatives and analogues were subsequently synthesized and evaluated as AR antagonists. Very potent antagonists have thus been developed with selectivity for each of the four AR subtypes.
Collapse
Affiliation(s)
- Christa Müller
- PharmaCenter Bonn, Pharmaceutical Sciences Bonn (PSB), University of Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, An der Immenburg 4, D-53121 Bonn, Germany, Phone +49-228-73-2301, Fax +49-228-73-2567
| | - Kenneth A. Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bldg. 8A, Rm. B1A-19, NIH, NIDDK, LBC, Bethesda, MD 20892, United States of America, Phone +1-301-496-9024, Fax +1-301-480-8422
| |
Collapse
|
34
|
de Castro S, Maruoka H, Hong K, Kilbey SM, Costanzi S, Hechler B, Brown GG, Gachet C, Harden TK, Jacobson KA. Functionalized congeners of P2Y1 receptor antagonists: 2-alkynyl (N)-methanocarba 2'-deoxyadenosine 3',5'-bisphosphate analogues and conjugation to a polyamidoamine (PAMAM) dendrimer carrier. Bioconjug Chem 2010; 21:1190-205. [PMID: 20565071 DOI: 10.1021/bc900569u] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The P2Y(1) receptor is a prothrombotic G protein-coupled receptor (GPCR) activated by ADP. Preference for the North (N) ring conformation of the ribose moiety of adenine nucleotide 3',5'-bisphosphate antagonists of the P2Y(1) receptor was established by using a ring-constrained methanocarba (a bicyclo[3.1.0]hexane) ring as a ribose substitute. A series of covalently linkable N(6)-methyl-(N)-methanocarba-2'-deoxyadenosine-3',5'-bisphosphates containing extended 2-alkynyl chains was designed, and binding affinity at the human (h) P2Y(1) receptor determined. The chain of these functionalized congeners contained hydrophilic moieties, a reactive substituent, or biotin, linked via an amide. Variation of the chain length and position of an intermediate amide group revealed high affinity of carboxylic congener 8 (K(i) 23 nM) and extended amine congener 15 (K(i) 132 nM), both having a 2-(1-pentynoyl) group. A biotin conjugate 18 containing an extended epsilon-aminocaproyl spacer chain exhibited higher affinity than a shorter biotinylated analogue. Alternatively, click coupling of terminal alkynes of homologous 2-dialkynyl nucleotide derivatives to alkyl azido groups produced triazole derivatives that bound to the P2Y(1) receptor following deprotection of the bisphosphate groups. The preservation of receptor affinity of the functionalized congeners was consistent with new P2Y(1) receptor modeling and ligand docking. Attempted P2Y(1) antagonist conjugation to PAMAM dendrimer carriers by amide formation or palladium-catalyzed reaction between an alkyne on the dendrimer and a 2-iodopurine-derivatized nucleotide was unsuccessful. A dialkynyl intermediate containing the chain length favored in receptor binding was conjugated to an azide-derivatized dendrimer, and the conjugate inhibited ADP-promoted human platelet aggregation. This is the first example of attaching a strategically functionalized P2Y receptor antagonist to a PAMAM dendrimer to produce a multivalent conjugate exhibiting a desired biological effect, i.e., antithrombotic action.
Collapse
Affiliation(s)
- Sonia de Castro
- Molecular Recognition Section and Laboratory of Biological Modeling, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, 20892-0810, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Jacobson KA. GPCR ligand-dendrimer (GLiDe) conjugates: future smart drugs? Trends Pharmacol Sci 2010; 31:575-9. [PMID: 20961625 DOI: 10.1016/j.tips.2010.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 09/15/2010] [Accepted: 09/16/2010] [Indexed: 10/18/2022]
Abstract
Unlike nanocarriers that are intended to release their drug cargo at the site of action, biocompatibile polyamidoamine (PAMAM) conjugates are designed to act at cell surface G protein-coupled receptors (GPCRs) without drug release. These multivalent GPCR ligand-dendrimer (GLiDe) conjugates display qualitatively different pharmacological properties in comparison with monomeric drugs. They might be useful as novel tools to study GPCR homodimers and heterodimers as well as higher aggregates. The structure of the conjugate determines the profile of biological activity, receptor selectivity, and physical properties such as water solubility. Prosthetic groups for characterization and imaging of receptors can be introduced without loss of affinity. The feasibility of targeting multiple adenosine and P2Y receptors for synergistic effects has been shown. Testing in vivo will be needed to explore the effects on pharmacokinetics and tissue targeting.
Collapse
Affiliation(s)
- Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes, Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
36
|
Kecskés M, Kumar TS, Yoo L, Gao ZG, Jacobson KA. Novel Alexa Fluor-488 labeled antagonist of the A(2A) adenosine receptor: Application to a fluorescence polarization-based receptor binding assay. Biochem Pharmacol 2010; 80:506-11. [PMID: 20438717 PMCID: PMC2900413 DOI: 10.1016/j.bcp.2010.04.027] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Revised: 04/23/2010] [Accepted: 04/26/2010] [Indexed: 11/23/2022]
Abstract
Fluorescence polarization (FP) assay has many advantages over the traditional radioreceptor binding studies. We developed an A(2A) adenosine receptor (AR) FP assay using a newly synthesized fluorescent antagonist of the A(2A)AR (MRS5346), a pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-5-amine derivative conjugated to the fluorescent dye Alexa Fluor-488. MRS5346 displayed a K(i) value of 111+/-16nM in radioligand binding using [(3)H]CGS21680 and membranes prepared from HEK293 cells stably expressing the human A(2A)AR. In a cyclic AMP functional assay, MRS5346 was shown to be an A(2A)AR antagonist. MRS5346 did not show any effect on A(1) and A(3) ARs in binding or the A(2B)AR in a cyclic AMP assay at 10microM. Its suitability as a fluorescent tracer was indicated in an initial observation of an FP signal following A(2A)AR binding. The FP signal was optimal with 20nM MRS5346 and 150microg protein/mL HEK293 membranes. The association and dissociation kinetic parameters were readily determined using this FP assay. The K(d) value of MRS5346 calculated from kinetic parameters was 16.5+/-4.7nM. In FP competition binding experiments using MRS5346 as a tracer, K(i) values of known AR agonists and antagonists consistently agreed with K(i) values from radioligand binding. Thus, this FP assay, which eliminates using radioisotopes, appears to be appropriate for both routine receptor binding and high-throughput screening with respect to speed of analysis, displaceable signal and precision. The approach used in the present study could be generally applicable to other GPCRs.
Collapse
Affiliation(s)
- Miklós Kecskés
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0810 USA
| | - T. Santhosh Kumar
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0810 USA
| | - Lena Yoo
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0810 USA
| | - Zhan-Guo Gao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0810 USA
| | - Kenneth A. Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0810 USA
| |
Collapse
|
37
|
Keene AM, Balasubramanian R, Lloyd J, Shainberg A, Jacobson KA. Multivalent dendrimeric and monomeric adenosine agonists attenuate cell death in HL-1 mouse cardiomyocytes expressing the A(3) receptor. Biochem Pharmacol 2010; 80:188-96. [PMID: 20346920 PMCID: PMC2880883 DOI: 10.1016/j.bcp.2010.03.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 03/15/2010] [Accepted: 03/16/2010] [Indexed: 11/15/2022]
Abstract
Multivalent dendrimeric conjugates of GPCR ligands may have increased potency or selectivity in comparison to monomeric ligands, a phenomenon that was tested in a model of cytoprotection in mouse HL-1 cardiomyocytes. Quantitative RT-PCR indicated high expression levels of endogenous A(1) and A(2A) adenosine receptors (ARs), but not of A(2B) and A(3)ARs. Activation of the heterologously expressed human A(3)AR in HL-1 cells by AR agonists significantly attenuated cell damage following 4h exposure to H(2)O(2) (750 microM) but not in untransfected cells. The A(3) agonist IB-MECA (EC(50) 3.8 microM) and the non-selective agonist NECA (EC(50) 3.9 microM) protected A(3) AR-transfected cells against H(2)O(2) in a concentration-dependent manner, as determined by lactate dehydrogenase release. A generation 5.5 PAMAM (polyamidoamine) dendrimeric conjugate of a N(6)-chain-functionalized adenosine agonist was synthesized and its mass indicated an average of 60 amide-linked nucleoside moieties out of 256 theoretical attachment sites. It non-selectively activated the A(3)AR to inhibit forskolin-stimulated cAMP formation (IC(50) 66nM) and, similarly, protected A(3)-transfected HL-1 cells from apoptosis-inducing H(2)O(2) with greater potency (IC(50) 35nM) than monomeric nucleosides. Thus, a PAMAM conjugate retained AR binding affinity and displayed greatly enhanced cardioprotective potency.
Collapse
Affiliation(s)
- Athena M. Keene
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0810 USA
| | - Ramachandran Balasubramanian
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0810 USA
| | - John Lloyd
- Mass Spectrometry Facility, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0810 USA
| | - Asher Shainberg
- Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Kenneth A. Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0810 USA
| |
Collapse
|
38
|
Das A, Sanjayan GJ, Kecskés M, Yoo L, Gao ZG, Jacobson KA. Nucleoside conjugates of quantum dots for characterization of G protein-coupled receptors: strategies for immobilizing A2A adenosine receptor agonists. J Nanobiotechnology 2010; 8:11. [PMID: 20478037 PMCID: PMC2883535 DOI: 10.1186/1477-3155-8-11] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Accepted: 05/17/2010] [Indexed: 01/19/2023] Open
Abstract
Background Quantum dots (QDs) are crystalline nanoparticles that are compatible with biological systems to provide a chemically and photochemically stable fluorescent label. New ligand probes with fluorescent reporter groups are needed for detection and characterization of G protein-coupled receptors (GPCRs). Results Synthetic strategies for coupling the A2A adenosine receptor (AR) agonist CGS21680 (2-[4-(2-carboxyethyl)phenylethylamino]-5'-N-ethylcarboxamidoadenosine) to functionalized QDs were explored. Conjugates tethered through amide-linked chains and poly(ethyleneglycol) (PEG) displayed low solubility and lacked receptor affinity. The anchor to the dendron was either through two thiol groups of (R)-thioctic acid or through amide formation to a commercial carboxy-derivatized QD. The most effective approach was to use polyamidoamine (PAMAM) D5 dendrons as multivalent spacer groups, grafted on the QD surface through a thioctic acid moiety. In radioligand binding assays, dendron nucleoside conjugate 11 displayed a moderate affinity at the human A2AAR (Kiapp 1.02 ± 0.15 μM). The QD conjugate of increased water solubility 13, resulting from the anchoring of this dendron derivative, interacted with the receptor with Kiapp of 118 ± 54 nM. The fluorescence emission of 13 occurred at 565 nm, and the presence of the pendant nucleoside did not appreciably quench the fluorescence. Conclusions This is a feasibility study to demonstrate a means of conjugating to a QD a small molecular pharmacophore of a GPCR that is relatively hydrophobic. Further enhancement of affinity by altering the pharmacophore or the linking structures will be needed to make useful affinity probes.
Collapse
Affiliation(s)
- Arijit Das
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | |
Collapse
|
39
|
Tosh DK, Yoo LS, Chinn M, Hong K, Kilbey SM, Barrett MO, Fricks IP, Harden TK, Gao ZG, Jacobson KA. Polyamidoamine (PAMAM) dendrimer conjugates of "clickable" agonists of the A3 adenosine receptor and coactivation of the P2Y14 receptor by a tethered nucleotide. Bioconjug Chem 2010; 21:372-84. [PMID: 20121074 PMCID: PMC2845915 DOI: 10.1021/bc900473v] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
We previously synthesized a series of potent and selective A(3) adenosine receptor (AR) agonists (North-methanocarba nucleoside 5'-uronamides) containing dialkyne groups on extended adenine C2 substituents. We coupled the distal alkyne of a 2-octadiynyl nucleoside by Cu(I)-catalyzed "click" chemistry to azide-derivatized G4 (fourth-generation) PAMAM dendrimers to form triazoles. A(3)AR activation was preserved in these multivalent conjugates, which bound with apparent K(i) of 0.1-0.3 nM. They were substituted with nucleoside moieties, solely or in combination with water-solubilizing carboxylic acid groups derived from hexynoic acid. A comparison with various amide-linked dendrimers showed that triazole-linked conjugates displayed selectivity and enhanced A(3)AR affinity. We prepared a PAMAM dendrimer containing equiproportioned peripheral azido and amino groups for conjugation of multiple ligands. A bifunctional conjugate activated both A(3) and P2Y(14) receptors (via amide-linked uridine-5'-diphosphoglucuronic acid), with selectivity in comparison to other ARs and P2Y receptors. This is the first example of targeting two different GPCRs with the same dendrimer conjugate, which is intended for activation of heteromeric GPCR aggregates. Synergistic effects of activating multiple GPCRs with a single dendrimer conjugate might be useful in disease treatment.
Collapse
Affiliation(s)
- Dilip K. Tosh
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Lena S. Yoo
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Moshe Chinn
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Kunlun Hong
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
| | - S. Michael Kilbey
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
| | - Matthew O. Barrett
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC 27599
| | - Ingrid P. Fricks
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC 27599
| | - T. Kendall Harden
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC 27599
| | - Zhan-Guo Gao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Kenneth A. Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
40
|
Tosh DK, Chinn M, Yoo LS, Kang DW, Luecke H, Gao ZG, Jacobson KA. 2-Dialkynyl derivatives of (N)-methanocarba nucleosides: 'Clickable' A(3) adenosine receptor-selective agonists. Bioorg Med Chem 2010; 18:508-17. [PMID: 20036562 PMCID: PMC2818678 DOI: 10.1016/j.bmc.2009.12.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 12/02/2009] [Accepted: 12/05/2009] [Indexed: 11/17/2022]
Abstract
We modified a series of (N)-methanocarba nucleoside 5'-uronamides to contain dialkyne groups on an extended adenine C2 substituent, as synthetic intermediates leading to potent and selective A(3) adenosine receptor (AR) agonists. The proximal alkyne was intended to promote receptor recognition, and the distal alkyne reacted with azides to form triazole derivatives (click cycloaddition). Click chemistry was utilized to couple an octadiynyl A(3)AR agonist to azido-containing fluorescent, chemically reactive, biotinylated, and other moieties with retention of selective binding to the A(3)AR. A bifunctional thiol-reactive crosslinking reagent was introduced. The most potent and selective novel compound was a 1-adamantyl derivative (K(i) 6.5nM), although some of the click products had K(i) values in the range of 200-400nM. Other potent, selective derivatives (K(i) at A(3)AR innM) were intended as possible receptor affinity labels: 3-nitro-4-fluorophenyl (10.6), alpha-bromophenacyl (9.6), thiol-reactive isothiazolone (102), and arylisothiocyanate (37.5) derivatives. The maximal functional effects in inhibition of forskolin-stimulated cAMP were measured, indicating that this class of click adducts varied from partial to full A(3)AR agonist compared to other widely used agonists. Thus, this strategy provides a general chemical approach to linking potent and selective A(3)AR agonists to reporter groups of diverse structure and to carrier moieties.
Collapse
Affiliation(s)
- Dilip K. Tosh
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Moshe Chinn
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Lena S. Yoo
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Dong Wook Kang
- Gene Regulation Group, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Hans Luecke
- Gene Regulation Group, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Zhan-Guo Gao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Kenneth A. Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
41
|
Tosh DK, Chinn M, Ivanov AA, Klutz AM, Gao ZG, Jacobson KA. Functionalized congeners of A3 adenosine receptor-selective nucleosides containing a bicyclo[3.1.0]hexane ring system. J Med Chem 2009; 52:7580-92. [PMID: 19499950 PMCID: PMC3109436 DOI: 10.1021/jm900426g] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
(N)-Methanocarba nucleosides containing bicyclo[3.1.0]hexane replacement of the ribose ring previously demonstrated selectivity as A(3) adenosine receptor (AR) agonists (5'-uronamides) or antagonists (5'-truncated). Here, these two series were modified in parallel at the adenine C2 position. N(6)-3-Chlorobenzyl-5'-N-methyluronamides derivatives with functionalized 2-alkynyl chains of varying length terminating in a reactive carboxylate, ester, or amine group were full, potent human A(3)AR agonists. Flexibility of chain substitution allowed the conjugation with a fluorescent cyanine dye (Cy5) and biotin, resulting in binding K(i) values of 17 and 36 nM, respectively. The distal end of the chain was predicted by homology modeling to bind at the A(3)AR extracellular regions. Corresponding l-nucleosides were nearly inactive in AR binding. In the 5'-truncated nucleoside series, 2-Cl analogues were more potent at A(3)AR than 2-H and 2-F, functional efficacy in adenylate cyclase inhibition varied, and introduction of a 2-alkynyl chain greatly reduced affinity. SAR parallels between the two series lost stringency at distal positions. The most potent and selective novel compounds were amine congener 15 (K(i) = 2.1 nM) and truncated partial agonist 22 (K(i) = 4.9 nM).
Collapse
Affiliation(s)
- Dilip K. Tosh
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Moshe Chinn
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Andrei A. Ivanov
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road, Rollins Research Center, Atlanta, Georgia 30322
| | - Athena M. Klutz
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Zhan-Guo Gao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Kenneth A. Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
42
|
Kim Y, Hechler B, Gao ZG, Gachet C, Jacobson KA. PEGylated dendritic unimolecular micelles as versatile carriers for ligands of G protein-coupled receptors. Bioconjug Chem 2009; 20:1888-98. [PMID: 19785401 DOI: 10.1021/bc9001689] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Despite its widespread application in nanomedicine, poly(ethylene glycol) (PEG) is seldom used for covalent modification of ligands for G protein-coupled receptors (GPCRs) due to potential steric complications. In order to study the influence of PEG chains on the biological activity of GPCR ligands bound to a common macromolecular carrier, we prepared a series of G3 polyamidoamine (PAMAM) dendrimers derivatized with Alexa Fluor 488, varying numbers of PEG(550)/PEG(750)/PEG(2000), and nucleoside moieties derived from the A(2A) adenosine receptor (AR) agonist CGS21680 (2-[4-(2-carboxylethyl)phenylethylamino]-5'-N-ethylcarboxamidoadenosine). These dendrimer conjugates were purified by size exclusion chromatography and characterized by (1)H NMR and MALDI MS. In radioligand binding assays, some PAMAM-PEG conjugates showed enhanced subtype-selectivity at the human A(2A) AR compared to monomeric ligands of comparable affinity. The functional potency was measured in the A(2A) AR-mediated activation of adenylate cyclase and inhibition of ADP-induced platelet aggregation. Interestingly, the dendrimer conjugate 10c bearing 11 PEG(750) chains (out of theoretical 32 amino end groups) and 14 nucleoside moieties was 5-fold more potent in A(2A) AR-mediated stimulation of cyclic AMP formation than 10d with 4 PEG(2000) chains and 21 nucleosides, although the binding affinities of these 2 compounds were similar. Thus, a relatively small (≤10 nm) multivalent ligand 10c modified for water solubility maintained high potency and displayed increased A(2A) AR binding selectivity over the monomeric nucleosides. The current study demonstrates the feasibility of using short PEG chains in the design of carriers that target ligand-receptor interactions.
Collapse
Affiliation(s)
- Yoonkyung Kim
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
43
|
Das A, Zhou Y, Ivanov AA, Carter RL, Harden TK, Jacobson KA. Enhanced potency of nucleotide-dendrimer conjugates as agonists of the P2Y14 receptor: multivalent effect in G protein-coupled receptor recognition. Bioconjug Chem 2009; 20:1650-9. [PMID: 19572637 DOI: 10.1021/bc900206g] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The P2Y(14) receptor is a G protein-coupled receptor activated by uridine-5'-diphosphoglucose and other nucleotide sugars that modulates immune function. Covalent conjugation of P2Y(14) receptor agonists to PAMAM (polyamidoamine) dendrimers enhanced pharmacological activity. Uridine-5'-diphosphoglucuronic acid (UDPGA) and its ethylenediamine adduct were suitable functionalized congeners for coupling to several generations (G2.5-6) of dendrimers (both terminal carboxy and amino). Prosthetic groups, including biotin for avidin complexation, a chelating group for metal complexation (and eventual magnetic resonance imaging), and a fluorescent moiety, also were attached with the eventual goals of molecular detection and characterization of the P2Y(14) receptor. The activities of conjugates were assayed in HEK293 cells stably expressing the human P2Y(14) receptor. A G3 PAMAM conjugate containing 20 bound nucleotide moieties (UDPGA) was 100-fold more potent (EC(50) 2.4 nM) than the native agonist uridine-5'-diphosphoglucose. A molecular model of this conjugate docked in the human P2Y(14) receptor showed that the nucleotide-substituted branches could extend far beyond the dimensions of the receptor and be available for multivalent docking to receptor aggregates. Larger dendrimer carriers and greater loading favored higher potency. A similar conjugate of G6 with 147 out of 256 amino groups substituted with UDPGA displayed an EC(50) value of 0.8 nM. Thus, biological activity was either retained or dramatically enhanced in the multivalent dendrimer conjugates in comparison with monomeric P2Y(14) receptor agonists, depending on size, degree of substitution, terminal functionality, and attached prosthetic groups.
Collapse
Affiliation(s)
- Arijit Das
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|