1
|
Sharma A, Rahman G, Gorelik J, Bhargava A. Voltage-Gated T-Type Calcium Channel Modulation by Kinases and Phosphatases: The Old Ones, the New Ones, and the Missing Ones. Cells 2023; 12:461. [PMID: 36766802 PMCID: PMC9913649 DOI: 10.3390/cells12030461] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/14/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
Calcium (Ca2+) can regulate a wide variety of cellular fates, such as proliferation, apoptosis, and autophagy. More importantly, changes in the intracellular Ca2+ level can modulate signaling pathways that control a broad range of physiological as well as pathological cellular events, including those important to cellular excitability, cell cycle, gene-transcription, contraction, cancer progression, etc. Not only intracellular Ca2+ level but the distribution of Ca2+ in the intracellular compartments is also a highly regulated process. For this Ca2+ homeostasis, numerous Ca2+ chelating, storage, and transport mechanisms are required. There are also specialized proteins that are responsible for buffering and transport of Ca2+. T-type Ca2+ channels (TTCCs) are one of those specialized proteins which play a key role in the signal transduction of many excitable and non-excitable cell types. TTCCs are low-voltage activated channels that belong to the family of voltage-gated Ca2+ channels. Over decades, multiple kinases and phosphatases have been shown to modulate the activity of TTCCs, thus playing an indirect role in maintaining cellular physiology. In this review, we provide information on the kinase and phosphatase modulation of TTCC isoforms Cav3.1, Cav3.2, and Cav3.3, which are mostly described for roles unrelated to cellular excitability. We also describe possible potential modulations that are yet to be explored. For example, both mitogen-activated protein kinase and citron kinase show affinity for different TTCC isoforms; however, the effect of such interaction on TTCC current/kinetics has not been studied yet.
Collapse
Affiliation(s)
- Ankush Sharma
- Department of Biotechnology, Indian Institute of Technology Hyderabad (IITH), Kandi 502284, Telangana, India
| | - Ghazala Rahman
- Department of Biotechnology, Indian Institute of Technology Hyderabad (IITH), Kandi 502284, Telangana, India
| | - Julia Gorelik
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London W12 0NN, UK
| | - Anamika Bhargava
- Department of Biotechnology, Indian Institute of Technology Hyderabad (IITH), Kandi 502284, Telangana, India
| |
Collapse
|
2
|
PKA Cβ: a forgotten catalytic subunit of cAMP-dependent protein kinase opens new windows for PKA signaling and disease pathologies. Biochem J 2021; 478:2101-2119. [PMID: 34115095 DOI: 10.1042/bcj20200867] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 12/17/2022]
Abstract
3',5'-cyclic adenosine monophosphate (cAMP) dependent protein kinase or protein kinase A (PKA) has served as a prototype for the large family of protein kinases that are crucially important for signal transduction in eukaryotic cells. The PKA catalytic subunits are encoded by the two major genes PRKACA and PRKACB, respectively. The PRKACA gene encodes two known splice variants, the ubiquitously expressed Cα1 and the sperm-specifically expressed Cα2. In contrast, the PRKACB gene encodes several splice variants expressed in a highly cell and tissue-specific manner. The Cβ proteins are called Cβ1, Cβ2, Cβ3, Cβ4 and so-called abc variants of Cβ3 and Cβ4. Whereas Cβ1 is ubiquitously expressed, Cβ2 is enriched in immune cells and the Cβ3, Cβ4 and their abc variants are solely expressed in neuronal cells. All Cα and Cβ splice variants share a kinase-conserved catalytic core and a C-terminal tail encoded by exons 2 through 10 in the PRKACA and PRKACB genes, respectively. All Cα and Cβ splice variants with the exception of Cα1 and Cβ1 are hyper-variable at the N-terminus. Here, we will discuss how the PRKACA and PRKACB genes have developed as paralogs that encode distinct and functionally non-redundant proteins. The fact that Cα and Cβ splice variant mutations are associated with numerous diseases further opens new windows for PKA-induced disease pathologies.
Collapse
|
3
|
Wang KZQ, Steer E, Otero PA, Bateman NW, Cheng MH, Scott AL, Wu C, Bahar I, Shih YT, Hsueh YP, Chu CT. PINK1 Interacts with VCP/p97 and Activates PKA to Promote NSFL1C/p47 Phosphorylation and Dendritic Arborization in Neurons. eNeuro 2018; 5:ENEURO.0466-18.2018. [PMID: 30783609 PMCID: PMC6377406 DOI: 10.1523/eneuro.0466-18.2018] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 12/06/2018] [Accepted: 12/10/2018] [Indexed: 01/06/2023] Open
Abstract
While PTEN-induced kinase 1 (PINK1) is well characterized for its role in mitochondrial homeostasis, much less is known concerning its ability to prevent synaptodendritic degeneration. Using unbiased proteomic methods, we identified valosin-containing protein (VCP) as a major PINK1-interacting protein. RNAi studies demonstrate that both VCP and its cofactor NSFL1C/p47 are necessary for the ability of PINK1 to increase dendritic complexity. Moreover, PINK1 regulates phosphorylation of p47, but not the VCP co-factor UFD1. Although neither VCP nor p47 interact directly with PKA, we found that PINK1 binds and phosphorylates the catalytic subunit of PKA at T197 [PKAcat(pT197)], a site known to activate the PKA holoenzyme. PKA in turn phosphorylates p47 at a novel site (S176) to regulate dendritic complexity. Given that PINK1 physically interacts with both the PKA holoenzyme and the VCP-p47 complex to promote dendritic arborization, we propose that PINK1 scaffolds a novel PINK1-VCP-PKA-p47 signaling pathway to orchestrate dendritogenesis in neurons. These findings highlight an important mechanism by which proteins genetically implicated in Parkinson's disease (PD; PINK1) and frontotemporal dementia (FTD; VCP) interact to support the health and maintenance of neuronal arbors.
Collapse
Affiliation(s)
- Kent Z. Q. Wang
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Erin Steer
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - P. Anthony Otero
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Nicholas W. Bateman
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Mary Hongying Cheng
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Ana Ligia Scott
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Christine Wu
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Ivet Bahar
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Yu-Tzu Shih
- Academia Sinica, Institute of Molecular Biology, Taipei, Taiwan 11529
| | - Yi-Ping Hsueh
- Academia Sinica, Institute of Molecular Biology, Taipei, Taiwan 11529
| | - Charleen T. Chu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
- Pittsburgh Institute for Neurodegenerative Diseases, McGowan Institute for Regenerative Medicine, Center for Protein Conformational Diseases and Center for Neuroscience at the University of Pittsburgh, Pittsburgh, PA 15213
| |
Collapse
|
4
|
Tillo SE, Xiong WH, Takahashi M, Miao S, Andrade AL, Fortin DA, Yang G, Qin M, Smoody BF, Stork PJS, Zhong H. Liberated PKA Catalytic Subunits Associate with the Membrane via Myristoylation to Preferentially Phosphorylate Membrane Substrates. Cell Rep 2017; 19:617-629. [PMID: 28423323 DOI: 10.1016/j.celrep.2017.03.070] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 12/20/2016] [Accepted: 03/23/2017] [Indexed: 10/19/2022] Open
Abstract
Protein kinase A (PKA) has diverse functions in neurons. At rest, the subcellular localization of PKA is controlled by A-kinase anchoring proteins (AKAPs). However, the dynamics of PKA upon activation remain poorly understood. Here, we report that elevation of cyclic AMP (cAMP) in neuronal dendrites causes a significant percentage of the PKA catalytic subunit (PKA-C) molecules to be released from the regulatory subunit (PKA-R). Liberated PKA-C becomes associated with the membrane via N-terminal myristoylation. This membrane association does not require the interaction between PKA-R and AKAPs. It slows the mobility of PKA-C and enriches kinase activity on the membrane. Membrane-residing PKA substrates are preferentially phosphorylated compared to cytosolic substrates. Finally, the myristoylation of PKA-C is critical for normal synaptic function and plasticity. We propose that activation-dependent association of PKA-C renders the membrane a unique PKA-signaling compartment. Constrained mobility of PKA-C may synergize with AKAP anchoring to determine specific PKA function in neurons.
Collapse
Affiliation(s)
- Shane E Tillo
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Wei-Hong Xiong
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Maho Takahashi
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Sheng Miao
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Adriana L Andrade
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Dale A Fortin
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Guang Yang
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Maozhen Qin
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Barbara F Smoody
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Philip J S Stork
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Haining Zhong
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA.
| |
Collapse
|
5
|
Stone JD, Narine A, Tulis DA. Inhibition of vascular smooth muscle growth via signaling crosstalk between AMP-activated protein kinase and cAMP-dependent protein kinase. Front Physiol 2012; 3:409. [PMID: 23112775 PMCID: PMC3482697 DOI: 10.3389/fphys.2012.00409] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 10/03/2012] [Indexed: 11/25/2022] Open
Abstract
Abnormal vascular smooth muscle (VSM) growth is central in the pathophysiology of vascular disease yet fully effective therapies to curb this growth are lacking. Recent findings from our lab and others support growth control of VSM by adenosine monophosphate (AMP)-based approaches including the metabolic sensor AMP-activated protein kinase (AMPK) and cAMP-dependent protein kinase (PKA). Molecular crosstalk between AMPK and PKA has been previously suggested, yet the extent to which this occurs and its biological significance in VSM remain unclear. Considering their common AMP backbone and similar signaling characteristics, we hypothesized that crosstalk exists between AMPK and PKA in the regulation of VSM growth. Using rat primary VSM cells (VSMC), the AMPK agonist AICAR increased AMPK activity and phosphorylation of the catalytic Thr172 site on AMPK. Interestingly, AICAR also phosphorylated a suspected PKA-inhibitory Ser485 site on AMPK, and these cumulative events were reversed by the PKA inhibitor PKI suggesting possible PKA-mediated regulation of AMPK. AICAR also increased PKA activity in a reversible fashion. The cAMP stimulator forskolin increased PKA activity and completely ameliorated Ser/Thr protein phosphatase-2C activity, suggesting a potential mechanism of AMPK modulation by PKA since inhibition of PKA by PKI reduced AMPK activity. Functionally, AMPK inhibited serum-stimulated cell cycle progression and cellular proliferation; however, PKA failed to do so. Moreover, AMPK and PKA reduced PDGF-β-stimulated VSMC migration. Collectively, these results show that AMPK is capable of reducing VSM growth in both anti-proliferative and anti-migratory fashion. Furthermore, these data suggest that AMPK may be modulated by PKA and that positive feedback may exist between these two systems. These findings reveal a discrete nexus between AMPK and PKA in VSM and provide basis for metabolically-directed targets in reducing pathologic VSM growth.
Collapse
Affiliation(s)
- Joshua D Stone
- Department of Physiology, Brody School of Medicine, East Carolina University Greenville, NC, USA
| | | | | |
Collapse
|
6
|
Askari N, Beenstock J, Livnah O, Engelberg D. p38α Is Active in Vitro and in Vivo When Monophosphorylated at Threonine 180. Biochemistry 2009; 48:2497-504. [DOI: 10.1021/bi900024v] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Nadav Askari
- Department of Biological Chemistry and The Wolfson Centre for Applied Structural Biology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel 91904
| | - Jonah Beenstock
- Department of Biological Chemistry and The Wolfson Centre for Applied Structural Biology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel 91904
| | - Oded Livnah
- Department of Biological Chemistry and The Wolfson Centre for Applied Structural Biology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel 91904
| | - David Engelberg
- Department of Biological Chemistry and The Wolfson Centre for Applied Structural Biology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel 91904
| |
Collapse
|
7
|
Tang Y, McLeod M. In vivo activation of protein kinase A in Schizosaccharomyces pombe requires threonine phosphorylation at its activation loop and is dependent on PDK1. Genetics 2005; 168:1843-53. [PMID: 15611161 PMCID: PMC1448717 DOI: 10.1534/genetics.104.032466] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Phosphoinositide-dependent protein kinase 1 (PDK1) plays a central role in cellular signaling by phosphorylating members of the AGC family of kinases. This family includes protein kinase C (PKC), protein kinase B (PKB), p70/p90 ribosomal S6 kinases (RSK and S6K), and the catalytic subunit of cAMP-dependent protein kinase (PKA). Although PDK1 phosphorylates and activates PKC, PKB, and RSK in vivo, PDK1 regulation of PKA remains controversial. We isolated ksg1, the fission yeast ortholog of mammalian PDK1, as a suppressor of growth defects caused by loss of the stress-activated MAP kinase, Spc1. Here, we demonstrate that Ksg1 is required for activation of PKA. Cells containing the ksg1.12 thermolabile allele exhibit pleiotropic phenotypes, including the failure to arrest in G(1) and an inability to conjugate. The ksg1.12 allele strongly suppresses defects associated with unregulated PKA. Pka1, the catalytic subunit of cAMP-dependent protein kinase, is phosphorylated in vivo at Thr-356, which is located in the activation loop of the kinase and corresponds to Thr-197 in mammalian PKA. Phosphorylation of Thr-356 is required for in vivo activation of Pka1 and is dependent upon Ksg1. These data provide experimental evidence that PKA is a physiological substrate for PDK1.
Collapse
Affiliation(s)
- Yi Tang
- Department of Microbiology and Immunology, State University of New York Downstate Medical Center, Brooklyn, New York 11203-2098, USA
| | | |
Collapse
|
8
|
Hotz A, König N, Kretschmer J, Maier G, Ponstingl H, Kinzel V. A sequence variant in the N-terminal region of the catalytic subunit of the cAMP-dependent protein kinase. FEBS Lett 2002. [DOI: 10.1016/0014-5793(89)81729-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Takamune N, Tanaka T, Takeuchi H, Misumi S, Shoji S. Down-regulation of N-myristoyl transferase expression in human T-cell line CEM by human immunodeficiency virus type-1 infection. FEBS Lett 2001; 506:81-4. [PMID: 11591376 DOI: 10.1016/s0014-5793(01)02892-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The present study focuses on the expression level of N-myristoyl transferase (NMT) in the course of human immunodeficiency virus type-1 (HIV-1) infection. HIV-1 structural proteins were gradually expressed during the process of infection of the human T-cell line CEM, whereas the expression levels of NMT subsequently decreased under the same conditions. In addition, the chronically HIV-1-infected T-cell line CEM/LAV-1 exhibited low expression levels of NMT. We hypothesize that the decrease in the expression level of NMT due to HIV-1 infection may be related to the virus' strategy that leads to its persistent replication.
Collapse
Affiliation(s)
- N Takamune
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, 862-0973, Kumamoto, Japan
| | | | | | | | | |
Collapse
|
10
|
Zhang BH, Guan KL. Activation of B-Raf kinase requires phosphorylation of the conserved residues Thr598 and Ser601. EMBO J 2000; 19:5429-39. [PMID: 11032810 PMCID: PMC314015 DOI: 10.1093/emboj/19.20.5429] [Citation(s) in RCA: 214] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The Raf kinase family serves as a central intermediate to relay signals from Ras to ERK. The precise molecular mechanism for Raf activation is still not fully understood. Here we report that phosphorylation of Thr598 and Ser601, which lie between kinase subdomains VII and VIII, is essential for B-Raf activation by Ras. Substitution of these residues by alanine (B-RafAA) abolished Ras-induced B-Raf activation without altering the association of B-Raf with other signaling proteins. Phosphopeptide mapping and immunoblotting with phospho-specific antibodies confirmed that Thr598 and Ser601 are in vivo phosphorylation sites induced by Ras. Furthermore, replacement of these two sites by acidic residues (B-RafED) renders B-Raf constitutively active. Con sistent with these data, B-RafAA and B-RafED exhibited diminished and enhanced ability, respectively, to stimulate ERK activation and Elk-dependent transcription. Moreover, functional studies revealed that B-RafED was able to promote NIH 3T3 cell transformation and PC12 cell differentiation. Since Thr598 and Ser601 are conserved in all Raf family members from Caenorhabditis elegans to mammals, we propose that phosphorylation of these two residues may be a general mechanism for Raf activation.
Collapse
Affiliation(s)
- B H Zhang
- Department of Biological Chemistry and Institute of Gerontology, University of Michigan Medical School, Ann Arbor, MI 48109-0606, USA
| | | |
Collapse
|
11
|
Thullner S, Gesellchen F, Wiemann S, Pyerin W, Kinzel V, Bossemeyer D. The protein kinase A catalytic subunit Cbeta2: molecular characterization and distribution of the splice variant. Biochem J 2000; 351:123-32. [PMID: 10998354 PMCID: PMC1221342 DOI: 10.1042/0264-6021:3510123] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cbeta2, a 46 kDa splice variant of the Cbeta isoform, is the largest isoform so far described for catalytic subunits from cAMP-dependent protein kinase in mammals. It differs from Cbeta in the first 15 N-terminal residues which are replaced with a 62-residue domain with no similarity to other known proteins. The Cbeta2 protein was identified in cardiac tissue by MS, microsequencing and C-subunit-isoform-selective antibodies. The Cbeta2 protein has a very low abundance of about 2% of total affinity-purified C subunits from bovine cardiac tissue. This, and the similarity of its biochemical properties to Calpha and Cbeta, are probably some of the reasons why the Cbeta2 protein has escaped detection so far. The abundance of the Cbeta2 protein differs dramatically between tissues, with most protein detected in heart, liver and spleen, and the lowest level in testis. Cbeta2 protein shows kinase activity against synthetic substrates, and is inhibited by the protein kinase inhibitor peptide PKI(5-24). The degree of Cbeta2 removal from tissue extracts by binding to PKI(5-24) depends on the cAMP level, i.e. on the dissociation state of the holoenzyme. Two sites in the protein are phosphorylated: Thr-244 in the activation segment and Ser-385 close to the C-terminus. By affinity purification and immunodetection Cbeta2 was found in cattle, pig, rat, mouse and turkey tissue and in HeLa cells. In the cAMP-insensitive CHO 10260 cell line, which has normal Cbeta but is depleted of Calpha, stable transfection with Cbeta2 restored most of the cAMP-induced morphological changes. Cbeta2 is a ubiquitously expressed protein with characteristic properties of a cAMP-dependent protein kinase catalytic subunit.
Collapse
Affiliation(s)
- S Thullner
- Department of Pathochemistry, German Cancer Research Center, DKFZ, INF 280, D-69120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
12
|
Agustin JT, Wilkerson CG, Witman GB. The unique catalytic subunit of sperm cAMP-dependent protein kinase is the product of an alternative Calpha mRNA expressed specifically in spermatogenic cells. Mol Biol Cell 2000; 11:3031-44. [PMID: 10982398 PMCID: PMC14973 DOI: 10.1091/mbc.11.9.3031] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
cAMP-dependent protein kinase has a central role in the control of mammalian sperm capacitation and motility. Previous protein biochemical studies indicated that the only cAMP-dependent protein kinase catalytic subunit (C) in ovine sperm is an unusual isoform, termed C(s), whose amino terminus differs from those of published C isoforms of other species. Isolation and sequencing of cDNA clones encoding ovine C(s) and Calpha1 (the predominant somatic isoform) now reveal that C(s) is the product of an alternative transcript of the Calpha gene. C(s) cDNA clones from murine and human testes also were isolated and sequenced, indicating that C(s) is of ancient origin and widespread in mammals. In the mouse, C(s) transcripts were detected only in testis and not in any other tissue examined, including ciliated tissues and ovaries. Finally, immunohistochemistry of the testis shows that C(s) first appears in pachytene spermatocytes. This is the first demonstration of a cell type-specific expression for any C isoform. The conservation of C(s) throughout mammalian evolution suggests that the unique structure of C(s) is important in the subunit's localization or function within the sperm.
Collapse
Affiliation(s)
- J T Agustin
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | | | | |
Collapse
|
13
|
Francis SH, Corbin JD. Cyclic nucleotide-dependent protein kinases: intracellular receptors for cAMP and cGMP action. Crit Rev Clin Lab Sci 1999; 36:275-328. [PMID: 10486703 DOI: 10.1080/10408369991239213] [Citation(s) in RCA: 219] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Intracellular cAMP and cGMP levels are increased in response to a variety of hormonal and chemical stimuli; these nucleotides play key roles as second messenger signals in modulating myriad physiological processes. The cAMP-dependent protein kinase and cGMP-dependent protein kinase are major intracellular receptors for these nucleotides, and the actions of these enzymes account for much of the cellular responses to increased levels of cAMP or cGMP. This review summarizes many studies that have contributed significantly to an improved understanding of the catalytic, regulatory, and structural properties of these protein kinases. These accumulated findings provide insights into the mechanisms by which these enzymes produce their specific physiological effects and are helpful in considering the actions of other protein kinases as well.
Collapse
Affiliation(s)
- S H Francis
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232-0615, USA
| | | |
Collapse
|
14
|
Richards SA, Fu J, Romanelli A, Shimamura A, Blenis J. Ribosomal S6 kinase 1 (RSK1) activation requires signals dependent on and independent of the MAP kinase ERK. Curr Biol 1999; 9:810-20. [PMID: 10469565 DOI: 10.1016/s0960-9822(99)80364-9] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND The rsk1 gene encodes the 90 kDa ribosomal S6 kinase 1 (RSK1) protein, which contains two kinase domains. RSK1, which is involved in regulating cell survival and proliferation, lies at the end of the signaling cascade mediated by the extracellular signal-regulated kinase (ERK) subfamily of mitogen-activated protein (MAP) kinases. ERK activation and subsequent phosphorylation of the RSK1 carboxy-terminal catalytic loop stimulates phosphotransferase activity in the RSK1 amino-terminal kinase domain. When activated, RSK1 phosphorylates both nuclear and cytoplasmic substrates through this amino-terminal catalytic domain. It is thought that stimulation of the ERK/MAP kinase pathway is sufficient for RSK1 activation, but how ERK phosphorylation activates the RSK1 amino-terminal kinase domain is not known. RESULTS The individual isolated RSK1 kinase domains were found to be under regulatory control. In vitro kinase assays established that ERK phosphorylates RSK1 within the carboxy-terminal kinase domain, and the phosphoinositide-dependent kinase 1 (PDK1) phosphorylates RSK1 within the amino-terminal kinase domain. In transiently transfected HEK 293E cells, PDK1 alone stimulated phosphotransferase activity of an isolated RSK1 amino-terminal kinase domain. Nevertheless, activation of full-length RSK1 in the absence of serum required activation by both PDK1 and ERK. CONCLUSIONS RSK1 is phosphorylated by PDK1 in the amino-terminal kinase-activation loop, and by ERK in the carboxy-terminal kinase-activation loop. Activation of phosphotransferase activity of full-length RSK1 in vivo requires both PDK1 and ERK. RSK1 activation is therefore regulated by both the mitogen-stimulated ERK/MAP kinase pathway and a PDK1-dependent pathway.
Collapse
Affiliation(s)
- S A Richards
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
15
|
Smith CM, Radzio-Andzelm E, Akamine P, Taylor SS. The catalytic subunit of cAMP-dependent protein kinase: prototype for an extended network of communication. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 1999; 71:313-41. [PMID: 10354702 DOI: 10.1016/s0079-6107(98)00059-5] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The protein kinase catalytic core in essence comprises an extended network of interactions that link distal parts of the molecule to the active site where they facilitate phosphoryl transfer from ATP to protein substrate. This review defines key sequence and structural elements, describes what is currently known about the molecular interactions, and how they are involved in catalysis.
Collapse
Affiliation(s)
- C M Smith
- San Diego Supercomputer Center, University of California, La Jolla 92093-0505, USA.
| | | | | | | |
Collapse
|
16
|
Yang Z, Dickman MB. Colletotrichum trifolii mutants disrupted in the catalytic subunit of cAMP-dependent protein kinase are nonpathogenic. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 1999; 12:430-9. [PMID: 10226376 DOI: 10.1094/mpmi.1999.12.5.430] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Colletotrichum trifolii is the fungal pathogen of alfalfa that causes anthracnose disease. For successful plant infection, this fungus must undergo a series of morphological transitions following conidial attachment, including germination and subsequent differentiation, resulting in appressorium formation. Our previous studies with pharmacological effectors of signaling pathways have suggested the involvement of cyclic AMP (cAMP)-dependent protein kinase (PKA) during these processes. To more precisely evaluate the role of PKA in C. trifolii morphogenesis, the gene encoding the catalytic (C) subunit of PKA (Ct-PKAC) was isolated, sequenced, and inactivated by gene replacement. Southern blot analysis with C. trifolii genomic DNA suggested that Ct-PKAC is a single-copy gene. Northern (RNA) blot analysis with total RNA from different fungal growth stages indicated that the expression of this gene was developmentally regulated. When Ct-PKAC was insertionally inactivated by gene replacement, the transformants showed a small reduction in growth relative to the wild type and conidiation patterns were altered. Importantly, PKA-deficient strains were unable to infect intact alfalfa (host) plants, though only a slight delay was observed in the timing for conidial germination and appressorial formation in the Ct-PKAC disruption mutants. Moreover, these mutants were able to colonize host tissues following artificial wounding, resulting in typical anthracnose disease lesions. Coupled with microscopy, these data suggest that the defect in pathogenicity is likely due to a failure in penetration. Our results demonstrate that PKA has an important role in regulating the transition between vegetative growth and conidiation, and is essential for pathogenic development in C. trifolii.
Collapse
Affiliation(s)
- Z Yang
- Department of Plant Pathology, University of Nebraska Lincoln 68583-0722, USA
| | | |
Collapse
|
17
|
Cheng X, Ma Y, Moore M, Hemmings BA, Taylor SS. Phosphorylation and activation of cAMP-dependent protein kinase by phosphoinositide-dependent protein kinase. Proc Natl Acad Sci U S A 1998; 95:9849-54. [PMID: 9707564 PMCID: PMC21425 DOI: 10.1073/pnas.95.17.9849] [Citation(s) in RCA: 170] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although phosphorylation of Thr-197 in the activation loop of the catalytic subunit of cAMP-dependent protein kinase (PKA) is an essential step for its proper biological function, the kinase responsible for this reaction in vivo has remained elusive. Using nonphosphorylated recombinant catalytic subunit as a substrate, we have shown that the phosphoinositide-dependent protein kinase, PDK1, expressed in 293 cells, phosphorylates and activates the catalytic subunit of PKA. The phosphorylation of PKA by PDK1 is rapid and is insensitive to PKI, the highly specific heat-stable protein kinase inhibitor. A mutant form of the catalytic subunit where Thr-197 was replaced with Asp was not a substrate for PDK1. In addition, phosphorylation of the catalytic subunit can be monitored immunochemically by using antibodies that recognize Thr-197 phosphorylated enzyme but not unphosphorylated enzyme or the Thr197Asp mutant. PDK1, or one of its homologs, is thus a likely candidate for the in vivo PKA kinase that phosphorylates Thr-197. This finding opens a new dimension in our thinking about this ubiquitous protein kinase and how it is regulated in the cell.
Collapse
Affiliation(s)
- X Cheng
- Howard Hughes Medical Institute, Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, CA 92093-0654, USA
| | | | | | | | | |
Collapse
|
18
|
Kim SO, Katz S, Pelech SL. Expression of second messenger- and cyclin-dependent protein kinases during postnatal development of rat heart. J Cell Biochem 1998; 69:506-21. [PMID: 9620176 DOI: 10.1002/(sici)1097-4644(19980615)69:4<506::aid-jcb11>3.0.co;2-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
During early postnatal development, cardiomyocytes, which comprise about 80% of ventricular mass and volume, become phenotypically developed to facilitate their contractile functions and terminally differentiated to grow only in size but not in cell number. These changes are due to the expression of contractile proteins as well as the regulation of intracellular signal transduction proteins. In this study, the expression patterns of several protein kinases involved in various cardiac functions and cell-cycle control were analyzed by Western blotting of ventricular extracts from 1-, 10-, 20-, 50-, and 365-day-old rats. The expression level of cAMP-dependent protein kinase was slightly decreased (20%) over the first year, whereas no change was detected in cGMP-dependent protein kinase I. Calmodulin-dependent protein kinase II, which is involved in Ca2+ uptake into the sarcoplasmic reticulum, was increased as much as ten-fold. To the contrary, the expressions of protein kinase C-alpha and iota declined 77% with age. Cyclin-dependent protein kinases (CDKs) such as CDK1, CDK2, CDK4, and CDK5, which are required for cell-cycle progression, abruptly declined to almost undetectable levels after 10-20 days of age. In contrast, other CDK-related kinases, such as CDK8 or Kkialre, did not change significantly or increased up to 50% with age, respectively. Protein kinases implicated in CDK regulation such as CDK7 and Wee1 were either slightly increased in expression or did not change significantly. All of the proteins that were detected in ventricular extracts were also identified in isolated cardiac myocytes in equivalent amounts and analyzed for their relative expression in ten other adult rat tissues.
Collapse
Affiliation(s)
- S O Kim
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada
| | | | | |
Collapse
|
19
|
Benner SA, Cannarozzi G, Gerloff D, Turcotte M, Chelvanayagam G. Bona Fide Predictions of Protein Secondary Structure Using Transparent Analyses of Multiple Sequence Alignments. Chem Rev 1997; 97:2725-2844. [PMID: 11851479 DOI: 10.1021/cr940469a] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Steven A. Benner
- Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200
| | | | | | | | | |
Collapse
|
20
|
Furuishi K, Matsuoka H, Takama M, Takahashi I, Misumi S, Shoji S. Blockage of N-myristoylation of HIV-1 gag induces the production of impotent progeny virus. Biochem Biophys Res Commun 1997; 237:504-11. [PMID: 9299393 DOI: 10.1006/bbrc.1997.7178] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The role of the N-myristoylation of the human immunodeficiency virus type 1 (HIV-1) gag protein in ACH-2 cells was studied. The infectivity of HIV-1 from the cells stimulated with phorbol 12-myristate 13-acetate (PMA) was suppressed by pretreatment with N-myristoyl glycinal diethylacetal (N-Myr-GOA), a potent N-myristoylation inhibitor, and the blockage of myristoylation resulted in accumulation of immature gag precursors. The viral particles which budded from the non-N-Myr-GOA-treated ACH-2 cells stimulated with PMA exhibited a typical viral phenotype, whereas those which budded from the N-Myr-GOA-treated ACH-2 cells stimulated with PMA were twisted, as observed electron microscopically. In electron microscopic analyses with gold-labeled monoclonal antibodies to gag and env, gag and env were detected adjacent to each other in the PMA-stimulated ACH-2, but no env was detected in the cells treated with N-Myr-GOA. Taken together, the results suggest that the myristoylation of HIV-1 gag seems to be responsible for both maturation of gag and acquisition of HIV-1 infectivity.
Collapse
Affiliation(s)
- K Furuishi
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Kumamoto University, Japan
| | | | | | | | | | | |
Collapse
|
21
|
Morré DJ, Rodriguez-Aguilera JC, Navas P, Morre DM. Redox modulation of the response of NADH oxidase activity of rat liver plasma membranes to cyclic AMP plus ATP. Mol Cell Biochem 1997; 173:71-7. [PMID: 9278256 DOI: 10.1023/a:1006880419063] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
NADH oxidase activity of rat liver plasma membranes was inhibited by low concentrations (1-100 nM) of ATP. The inhibition was amplified by addition of nanomolar concentrations (0.1-10) of cyclic AMP. The inhibition was complex and related to a marked increase in the Km for NADH at high NADH concentrations together with a concomitant decrease in the Vmax. In the absence of added or residual ATP, cyclic AMP was without effect. The response of cyclic AMP + ATP was inhibited by low concentrations of the selective inhibitor of cyclic AMP-dependent protein kinase, H-89 but not by staurosporin. The Vmax but not the Km was modified by treating the plasma membranes with a mild oxidizing agent, N-chlorosuccinamide, or with the reducing agent, dithiothreitol. In the presence of dithiothreitol, the Vmax was reduced by cyclic AMP + ATP. In contrast, in the presence of N-chlorosuccinamide, the Vmax was increased by cyclic AMP + ATP relative to cyclic AMP + ATP alone. Thus, the effect of cyclic AMP + ATP on the Vmax could be either an increase or a decrease depending on whether the membranes were oxidized or reduced. The results demonstrate regulation of NADH oxidase activity of rat liver plasma membranes through cyclic AMP-mediated phosphorylation by membrane-located protein kinase activities where the final response is dependent on the oxidation-reduction status of the plasma membranes.
Collapse
Affiliation(s)
- D J Morré
- Department of Medicinal Chemistry, Purdue University West Lafayette, Indiana 47907, USA
| | | | | | | |
Collapse
|
22
|
Roe JL, Durfee T, Zupan JR, Repetti PP, McLean BG, Zambryski PC. TOUSLED is a nuclear serine/threonine protein kinase that requires a coiled-coil region for oligomerization and catalytic activity. J Biol Chem 1997; 272:5838-45. [PMID: 9038200 DOI: 10.1074/jbc.272.9.5838] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The TOUSLED (TSL) gene is essential for the proper morphogenesis of leaves and flowers in Arabidopsis thaliana. Protein sequence analysis predicts TSL is composed of a carboxyl-terminal protein kinase catalytic domain and a large amino-terminal regulatory domain. TSL fusion proteins, expressed in and purified from yeast, were used to demonstrate TSL protein kinase activity in vitro. TSL trans-autophosphorylates on serine and threonine residues, and phosphorylates exogenous substrates. Using the yeast two-hybrid system, TSL was found to oligomerize via its NH2-terminal domain. A deletion series indicates that a region containing two alpha-helical segments predicted to participate in a coiled-coil structure is essential for oligomerization. TSL localizes to the nucleus in plant cells through an essential NH2-terminal nuclear localization signal; however, this signal is not necessary for protein kinase activity. Finally, deletion mutants demonstrate a strict correlation between catalytic activity and the ability to oligomerize, arguing that activation of the protein kinase requires interaction between TSL molecules.
Collapse
Affiliation(s)
- J L Roe
- Department of Plant Biology, University of California, Berkeley, California 94720, USA.
| | | | | | | | | | | |
Collapse
|
23
|
Wissmann A, Ingles J, McGhee JD, Mains PE. Caenorhabditis elegans LET-502 is related to Rho-binding kinases and human myotonic dystrophy kinase and interacts genetically with a homolog of the regulatory subunit of smooth muscle myosin phosphatase to affect cell shape. Genes Dev 1997; 11:409-22. [PMID: 9042856 DOI: 10.1101/gad.11.4.409] [Citation(s) in RCA: 143] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We have identified two genes associated with the hypodermal cell shape changes that occur during elongation of the Caenorhabditis elegans embryo. The first gene, called let-502, encodes a protein with high similarity to Rho-binding Ser/Thr kinases and to human myotonic dystrophy kinase (DM-kinase). Strong mutations in let-502 block embryonic elongation, and let-502 reporter constructs are expressed in hypodermal cells at the elongation stage of development. The second gene, mel-11, was identified by mutations that act as extragenic suppressors of let-502. mel-11 encodes a protein similar to the 110- to 133-kD regulatory subunits of vertebrate smooth muscle myosin-associated phosphatase (PP-1M). We suggest that the LET-502 kinase and the MEL-11 phosphatase subunit act in a pathway linking a signal generated by the small GTP-binding protein Rho to a myosin-based hypodermal contractile system that drives embryonic elongation. LET-502 may directly regulate the activity of the MEL-11 containing phosphatase complex and the similarity between LET-502 and DM-kinase suggests a similar function for DM-kinase.
Collapse
Affiliation(s)
- A Wissmann
- University of Calgary, Department of Medical Biochemistry, Alberta, Canada.
| | | | | | | |
Collapse
|
24
|
Hoshino K, Nomura K, Suzuki N. Cyclic-AMP-dependent activation of an inter-phylum hybrid histone-kinase complex reconstituted from sea urchin sperm-regulatory subunits and bovine heart catalytic subunits. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 243:612-23. [PMID: 9057823 DOI: 10.1111/j.1432-1033.1997.00612.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A cAMP-dependent histone kinase was purified and characterized from spermatozoa of the sea urchin Hemicentrotus pulcherrimus. The molecular mass of the kinase was estimated to be 178 kDa by native PAGE and 400 kDa by gel chromatography on a Superose 6 HR 10/30 column. The enzyme, composed of two 39-kDa catalytic subunits and two 48-kDa regulatory subunits, phosphorylates the lysine-rich histone subspecies (H1 and H2B) isolated from H. pulcherrimus spermatozoa. We isolated cDNA clones encoding a 39-kDa catalytic subunit and a 48-kDa regulatory subunit of the enzyme. The cDNA clone for the 39-kDa subunit was 3881 bp, and the 352-residue deduced amino acid sequence showed 78% similarity with the catalytic subunit of/mammalian cAMP-dependent protein kinase (PKA). The cDNA for the 48-kDa subunit was 4589 bp and the 368-residue deduced amino acid sequence showed 57% similarity with the regulatory subunit of mammalian PKA, although the N-terminal 77 residues showed poor similarity. The mRNAs encoding both the catalytic subunit (7.5 kb) and the regulatory subunit (4.6 kb) were expressed in testis, ovary and egg. An inter-phylum hybrid enzyme, reconstituted from the regulatory subunit of cAMP-dependent histone kinase of sea urchin sperm and the catalytic subunit of bovine heart PKA, has a cAMP-dependent histone kinase activity. Thus, we suggest that the N-terminal 77-amino-acid residues of the regulatory subunit are not essential for inhibition by the regulatory subunit of the catalytic subunit, and that cAMP-dependent inhibitory activity of the regulatory subunit resides in the sequence between the inhibitory site and the C-terminus.
Collapse
Affiliation(s)
- K Hoshino
- Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo, Japan
| | | | | |
Collapse
|
25
|
Ruth P, Kamm S, Nau U, Pfeifer A, Hofmann F. A cGMP kinase mutant with increased sensitivity to the protein kinase inhibitor peptide PKI(5-24). Biol Chem 1996; 377:513-20. [PMID: 8922286 DOI: 10.1515/bchm3.1996.377.7-8.513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Synthetic peptides corresponding to the active domain of the heat-stable inhibitor protein PKI are very potent inhibitors of cAMP-dependent protein kinase, but are extremely weak inhibitors of cGMP-dependent protein kinase. In this study, we tried to confer PKI sensitivity to cGMP kinase by site-directed mutagenesis. The molecular requirements for high affinity inhibition by PKI were deduced from the crystal structure of the cAMP kinase/PKI complex. A prominent site of interaction are residues Tyr235 and Phe239 in the catalytic subunit, which from a sandwich-like structure with Phe10 of the PKI(5-24) peptide. To increase the sensitivity for PKI, the cGMP kinase codons at the corresponding sites, Ser555 and Ser559, were changed to Tyr and Phe. The mutant cGMP kinase was stimulated half maximally by cGMP at 3-fold higher concentrations (240 nM) than the wild type (77 nM). Wild type and mutant cGMP kinase did not differ significantly in their Km and Vmax for three different substrate peptides. The PKI(5-24) peptide inhibited phosphotransferase activity of the mutant cGMP kinase with higher potency than that of wild type, with Ki values of 42 +/- .3 microM and 160 +/- .7 microM, respectively. The increased affinity of the mutant cGMP kinase was specific for the PKI(5-24) peptide. Mutation of the essential Phe10 in the PKI(5-24) sequence to an Ala yielded a peptide that inhibited mutant and wild type cGMP kinase with similar potency, with Ki values of 160 +/- 11 and 169 +/- 27 microM, respectively. These results suggest that the mutations Ser555Tyr and Ser559Phe are required, but not sufficient, for high affinity inhibition of cGMP kinase by PKI.
Collapse
Affiliation(s)
- P Ruth
- Institut für Pharmakologie und Toxikologie, Technischen Universität München, Germany
| | | | | | | | | |
Collapse
|
26
|
Sahara S, Sato K, Kaise H, Mori K, Sato A, Aoto M, Tokmakov AA, Fukami Y. Biochemical evidence for the interaction of regulatory subunit of cAMP-dependent protein kinase with IDA (Inter-DFG-APE) region of catalytic subunit. FEBS Lett 1996; 384:138-42. [PMID: 8612810 DOI: 10.1016/0014-5793(96)00302-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
To explore the structural basis required for the holoenzyme formation of cAMP-dependent protein kinase, we have prepared rabbit anti-peptide antibodies that can block the holoenzyme formation without affecting the catalytic activity of the enzyme. The antibodies were raised against a specific site in the catalytic (C)-subunit, termed IDA (Inter-DFG-APE) region, which lies between the kinase subdomains VII and VIII. Although the C-subunit immunoprecipitated with anti-IDA antibodies could not form a stable complex with regulatory (R)-subunit, it was still susceptible to inhibition by the R-subunit or by PKI, a specific inhibitor peptide containing a pseudosubstrate site. These results indicate that there exists an IDA region-mediated interaction between the R- and C-subunits, which is distinct from that mediated through the substrate site and substrate binding site. In accordance with this idea, association of synthetic IDA peptides with the R-subunit was directly demonstrated by resonance mirror analysis. The calculated association constants of IDA peptides were high enough to suggest a possible involvement of the IDA region in the initial step of holoenzyme formation.
Collapse
Affiliation(s)
- S Sahara
- Graduate School of Science and Technology, Biosignal Research Center, Kobe University, Japan
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Wood JS, Yan X, Mendelow M, Corbin JD, Francis SH, Lawrence DS. Precision substrate targeting of protein kinases. The cGMP- and cAMP-dependent protein kinases. J Biol Chem 1996; 271:174-9. [PMID: 8550555 DOI: 10.1074/jbc.271.1.174] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The cAMP-dependent (PKA) and cGMP-dependent protein kinases (PKG) share a strong primary sequence homology within their respective active site regions. Not surprisingly, these enzymes also exhibit overlapping substrate specificities, a feature that often interferes with efforts to elucidate their distinct biological roles. In this report, we demonstrate that PKA and PKG exhibit dramatically different behavior with respect to the phosphorylation of alpha-substituted alcohols. Although PKA will phosphorylate only residues that contain an alpha-center configuration analogous to that found in L-serine, PKG utilizes residues that correspond to both L- and D-serine as substrates. The PKG/PKA selectivity of these substrates is the highest ever reported.
Collapse
Affiliation(s)
- J S Wood
- Department of Chemistry, State University of New York, Buffalo 14260, USA
| | | | | | | | | | | |
Collapse
|
28
|
Jung S, Hoffmann R, Rodriguez PH, Mutzel R, Hofer HW. The catalytic subunit of cAMP-dependent protein kinase from Ascaris suum. The cloning and structure of a novel subtype of protein kinase A. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 232:111-7. [PMID: 7556139 DOI: 10.1111/j.1432-1033.1995.tb20788.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A complete cDNA clone encoding the catalytic subunit of cAMP-dependent protein kinase of Ascaris suum was constructed from two overlapping partial clones. The encoded sequence of 337 amino acids is 48% identical with the sequence of mouse C alpha subunit. Approximately the same low similarity was found with the sequence of the C subunit from another nematode, Caenorhabditis elegans. The N-terminal 14 amino acids and the myristoylation site of the mammalian protein are not contained in the enzyme from Ascaris. Two cysteines (Cys33 and Cys319) replace a basic residue in the N-terminal region and an acidic amino acid near the C-terminus which are conserved in all known C subunits from other sources. The substitutions provide the possibility of disulfide bridge formation between the N-terminal and C-terminal parts of the protein. There is strong evidence that a single gene encodes cAMP-dependent protein kinase in Ascaris. Modelling of the sequence into the coordinates of the X-ray structure of the mammalian enzyme suggest a high degree of conservation in the three-dimensional structure. However, structural variations occur at the surface of the protein near the catalytic cleft and are likely to account for the variations in substrate specificity previously observed between the purified protein kinase from Ascaris [Thalhofer, H. P., Daum, G., Harris, B. G. & Hofer, H. W. (1988) J. Biol. Chem. 263, 952-957] and the mammalian enzyme.
Collapse
Affiliation(s)
- S Jung
- Faculty of Biology, University of Konstanz, Germany
| | | | | | | | | |
Collapse
|
29
|
Andjelković M, Jones PF, Grossniklaus U, Cron P, Schier AF, Dick M, Bilbe G, Hemmings BA. Developmental regulation of expression and activity of multiple forms of the Drosophila RAC protein kinase. J Biol Chem 1995; 270:4066-75. [PMID: 7876156 DOI: 10.1074/jbc.270.8.4066] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We have characterized the Drosophila homologue of the proto-oncogenic RAC protein kinase (DRAC-PK). The DRAC-PK gene gives rise to two transcripts with the same coding potential, generated by the use of two different polyadenylation signals. Each transcript encodes two polypeptides because of the presence of a weaker initiator ACG codon, upstream from the major AUG, such that the larger protein contains an N-terminal extension. Like the human isoforms, DRAC-PKs possess a novel signaling region, the pleckstrin homology domain. DRAC-PK proteins have a similar expression pattern, being regulated both maternally and zygotically, and are expressed throughout Drosophila development. Antisera specific for recombinant DRAC-PK and for its C terminus detected two polypeptides of 66 and 85 kDa in Drosophila extracts. The antirecombinant antisera also recognized a polypeptide of 120 kDa from Drosophila, which apparently shared an epitope related to DRAC-PK sequences. The role of p120 appears to be restricted compared with that of DRAC-PK, since it was not detected in larvae or adult flies. There was no spatial restriction of DRAC-PK expression during embryogenesis, suggesting that localized activation might be a regulatory mechanism for its function. DRAC-PK possesses an intrinsic kinase activity that is approximately 8-fold higher in adult flies than in 0-3-h embryos undergoing rapid mitotic cycles.
Collapse
|
30
|
Benner SA. Predicting the conformation of proteins from sequences. Progress and future progress. J Mol Recognit 1995; 8:9-28. [PMID: 7598957 DOI: 10.1002/jmr.300080104] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Recent progress in structure prediction has allowed bona fide predictions, those made and published before an experimental structure is determined, to be remarkably accurate. The most successful methods rely on an analysis of patterns of conservation and variation within homologous protein sequences, extract tertiary structural information before secondary structure is predicted, and avoid 'three state per residue scores' as a tool for evaluating a prediction, focusing instead on efforts to understand why a prediction is successful when it is successful, and why it fails when it fails.
Collapse
Affiliation(s)
- S A Benner
- Laboratory for Organic Chemistry, Zurich, Switzerland
| |
Collapse
|
31
|
Volonté C, Greene LA. Nerve growth factor-activated protein kinase N modulates the cAMP-dependent protein kinase. J Neurosci Res 1995; 40:108-16. [PMID: 7714918 DOI: 10.1002/jnr.490400112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Protein kinase N (PKN) is a serine/threonine protein kinase rapidly activated by nerve growth factor (NGF) and other agents in various cell lines. The possible involvement of PKN in the multiple pathways of the NGF mechanism of action was previously established through the use of purine analogs, some of which are apparently specific inhibitors of this kinase. Since a PKN-like activity is modulated in several cell lines by cAMP analogs and this activation requires the activity of cAMP-dependent protein kinase, the aim of the present work is to investigate possible interactions between PKN and C-PKA. Pre-incubation of the two kinases in the presence of ATP leads to potentiated phosphorylation of histone HF1, Kemptide (a substrate for C-PKA, but not for PKN), and several additional substrates. This augmented phosphorylating activity is insensitive to 6-thioguanine (an inhibitor for PKN, but not for C-PKA) and is suppressed both by the Walsh inhibitor and by the regulatory subunit of PKA. PKN-pretreated C-PKA shows a significant decrease in Km for Kemptide and a substantial increase in Vmax. C-PKA and PKN are widely expressed enzymes and the possibility of PKN-dependent modulation of PKA in intact cells would therefore have biological implications for signal transduction mechanisms.
Collapse
Affiliation(s)
- C Volonté
- Department of Pathology, College of Physicians and Surgeons of Columbia University, New York, New York
| | | |
Collapse
|
32
|
Morré DJ, Navas P, Rodriguez-Aguilera JC, Morré DM, Villalba JM, de Cabo R, Lawrence J. Cyclic AMP-plus ATP-dependent modulation of the NADH oxidase activity of porcine liver plasma membranes. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1224:566-74. [PMID: 7803517 DOI: 10.1016/0167-4889(94)90295-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Plasma membranes of porcine liver, highly purified by aqueous two-phase partition, oxidized NADH in the absence of added external acceptors. The oxidation was resistant to cyanide and responded to nanomolar concentrations of ATP alone or ATP in the presence of cyclic AMP. Both the Km for NADH and the long-term activity of the oxidase were affected. Upon incubation at 37 degrees C with cyclic AMP (0.1-10 nM) and ATP (1-100 nM), the NADH oxidase activity was inhibited. The inhibition was complex and due to an approx. 5-fold increase in the Km for NADH compared to the NADH oxidase of membranes incubated in the absence of cyclic AMP + ATP. The response to cAMP + ATP was rapid and occurred within seconds of ATP addition. The response was inhibited by the selective inhibitor of cyclic AMP-dependent protein kinase, H-89. Neither cyclic AMP alone nor ATP alone at nanomolar concentrations elicited a rapid response. However, 10 nM ATP alone did result in similar alteration of Km and Vmax as did ATP + 0.1 nM cyclic AMP. The response to ATP alone or in preparations depleted of cyclic AMP required higher ATP concentrations than with cAMP present or occurred more slowly with a lag of 1-2 min. The NADH oxidase activity of porcine plasma membranes after cyclic AMP + ATP treatment retained high activity with storage at 4 degrees C, whereas that of unincubated or sham-incubated plasma membranes was reduced with time of storage at 4 degrees C. In some but not all instances, NADH oxidase activity inactivated by incubation with NADH at 37 degrees C or after storage at 4 degrees C could be reactivated by incubation with cyclic AMP plus ATP. As with the alteration in Km, cyclic AMP alone was without effect and ATP alone was much less effective than the combination. The results demonstrate ATP-dependent modulation of the NADH oxidase activity of isolated plasma membranes at physiological concentrations of ATP. This modulation may have functional significance in mediating the hormone and growth factor responsiveness of the plasma membrane NADH oxidase activity.
Collapse
Affiliation(s)
- D J Morré
- Department of Medicinal Chemistry, Purdue University, West Lafayette, IN 47907
| | | | | | | | | | | | | |
Collapse
|
33
|
|
34
|
Lee TR, Niu J, Lawrence DS. Phenol kinase activity of the serine/threonine-specific cAMP-dependent protein kinase: steric and electronic effects. Biochemistry 1994; 33:4245-50. [PMID: 8155641 DOI: 10.1021/bi00180a019] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We have found that the cAMP-dependent protein kinase catalyzes the phosphorylation of a wide variety of peptide-based aromatic alcohols, thereby greatly amplifying the range of compounds recognized as substrates by this enzyme. This newly discovered enzyme-catalyzed reaction is sensitive to both steric and electronic effects. Substituents on the aromatic ring that are positioned para to the hydroxyl moiety lower the observed Km, presumably via a favorable interaction with an adjacent hydrophobic pocket. In contrast, electron-withdrawing substituents have a slight adverse effect on the kinetics of phosphoryl transfer, an observation which is consistent with the notion that the rate of substrate turnover is dependent upon the nucleophilicity of the phosphorylatable hydroxyl moiety. As a corollary, electron-donating groups on the aromatic nucleus promote the rate of phosphoryl transfer to such an extent that the observed Vmax values approach those exhibited by aliphatic alcohols. This suggests that analogously appended electron-donating groups on tyrosine moieties could dramatically improve the modest Vmax values that are typical for tyrosine kinase-catalyzed reactions.
Collapse
Affiliation(s)
- T R Lee
- Department of Chemistry, State University of New York, Buffalo 14214
| | | | | |
Collapse
|
35
|
Cloning of the pka1 gene encoding the catalytic subunit of the cAMP-dependent protein kinase in Schizosaccharomyces pombe. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)36928-4] [Citation(s) in RCA: 113] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
36
|
Alessi DR, Saito Y, Campbell DG, Cohen P, Sithanandam G, Rapp U, Ashworth A, Marshall CJ, Cowley S. Identification of the sites in MAP kinase kinase-1 phosphorylated by p74raf-1. EMBO J 1994; 13:1610-9. [PMID: 8157000 PMCID: PMC394991 DOI: 10.1002/j.1460-2075.1994.tb06424.x] [Citation(s) in RCA: 390] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Many growth factors whose receptors are protein tyrosine kinases stimulate the MAP kinase pathway by activating first the GTP-binding protein Ras and then the protein kinase p74raf-1. p74raf-1 phosphorylates and activates MAP kinase kinase (MAPKK). To understand the mechanism of activation of MAPKK, we have identified Ser217 and Ser221 of MAPKK1 as the sites phosphorylated by p74raf-1. This represents the first characterization of sites phosphorylated by this proto-oncogene product. Ser217 and Ser221 lie in a region of the catalytic domain where the activating phosphorylation sites of several other protein kinases are located. Among MAPKK family members, this region is the most conserved, suggesting that all members of the family are activated by the phosphorylation of these sites. A 'kinase-dead' MAPKK1 mutant was phosphorylated at the same residues as the wild-type enzyme, establishing that both sites are phosphorylated directly by p74raf-1, and not by autophosphorylation. Only the diphosphorylated form of MAPKK1 (phosphorylated at both Ser217 and Ser221) was detected, even when the stoichiometry of phosphorylation by p74raf-1 was low, indicating that phosphorylation of one of these sites is rate limiting, phosphorylation of the second then occurring extremely rapidly. Ser217 and Ser221 were both phosphorylated in vivo within minutes when PC12 cells were stimulated with nerve growth factor. Analysis of MAPKK1 mutants in which either Ser217 or Ser221 were changed to glutamic acid, and the finding that inactivation of maximally activated MAPKK1 required the dephosphorylation of both serines, shows that phosphorylation of either residue is sufficient for maximal activation.
Collapse
Affiliation(s)
- D R Alessi
- Department of Biochemistry, University of Dundee, Scotland
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
The active site substrate specificity of protein kinase C. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)34039-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
38
|
Foss KB, Landmark B, Skålhegg BS, Taskén K, Jellum E, Hansson V, Jahnsen T. Characterization of in-vitro-translated human regulatory and catalytic subunits of cAMP-dependent protein kinases. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 220:217-23. [PMID: 8119290 DOI: 10.1111/j.1432-1033.1994.tb18617.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Full-length human cDNAs for all the different regulatory (R) and catalytic (C) subunits of cAMP-dependent protein kinases (PKA) were transcribed and translated in a cell-free in vitro system. The resulting proteins were characterized with respect to molecular size, isoelectric focusing, immunoreactivity, cAMP binding, and to what extent the RII protein subunits revealed mobility shifts upon phosphorylation by catalytic subunit of PKA. We were able to express cDNAs for all the human R (RI alpha, RI beta, RII alpha and RII beta) and C (C alpha, C beta and C gamma) subunits in a wheat-germ extract. [35S]Methionine-labelled in-vitro-translated products were analyzed by SDS/PAGE and revealed distinct protein bands with apparent molecular masses of 49 (RI alpha), 54-55 (RI beta), 51 (RII alpha) and 53 kDa (RII beta) for the R subunits. In vitro transcription/translation of the cDNAs for the C subunits of PKA gave proteins with molecular masses of approximately 40 kDa for all the different C subunits. Phosphorylation of RII alpha and RII beta by the C subunit of PKA, revealed a distinct mobility shift of the RII alpha subunit on one-dimensional SDS/PAGE (51-54 kDa), but not of RII beta (53 kDa). Further characterization of the R subunits by two-dimensional SDS/PAGE revealed that RI alpha was more acidic than RI beta, with pIs of 6.1-6.0 and 6.4-6.2, respectively. Furthermore, the RII alpha protein was more basic than RII beta, with pIs of approximately 5.4-5.3 and 5.3-5.1, respectively. All the in-vitro-translated R subunits could be photoaffinity labelled by the cAMP-analog 8-azido-[32P]cAMP and were also detected by immunoprecipitation with subunit-specific antibodies.
Collapse
Affiliation(s)
- K B Foss
- Institute of Medical Biochemistry, University of Oslo, Norway
| | | | | | | | | | | | | |
Collapse
|
39
|
|
40
|
Benner SA, Jenny TF, Cohen MA, Gonnet GH. Predicting the conformation of proteins from sequences. Progress and future progress. ADVANCES IN ENZYME REGULATION 1994; 34:269-353. [PMID: 7942279 DOI: 10.1016/0065-2571(94)90021-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A new paradigm for predicting the secondary and tertiary structure of functional proteins from sequence data has emerged from detailed models of how natural selection, conservation, and neutral drift, the three fundamental factors in molecular evolution, leave their mark upon protein sequences. Structural information is extracted from a set of aligned homologous sequences via an analysis of patterns of conservation and variation between proteins with quantitatively defined evolutionary relationships. Tertiary structural information is obtained prior to the assignment of secondary structure, where it plays an important role. Throughout, structural predictions are made with the active involvement of a biochemist whose expertise and insight is critical both for making the prediction and in analyzing its successful and unsuccessful parts. Secondary structure predictions are evaluated based on their ability to sustain an effort to model tertiary structure. Several predictions made using the new paradigm can now be compared with those made under the classical paradigm, including a neural network. The results obtained from the new paradigm are clearly superior to those obtained with the classical paradigm, at least within the protein families that were examined.
Collapse
Affiliation(s)
- S A Benner
- Institute for Organic Chemistry, E.T.H., Zürich, Switzerland
| | | | | | | |
Collapse
|
41
|
Komatsu H, Ikebe M. Affinity labelling of smooth-muscle myosin light-chain kinase with 5'-[p-(fluorosulphonyl)benzoyl]adenosine. Biochem J 1993; 296 ( Pt 1):53-8. [PMID: 8250857 PMCID: PMC1137654 DOI: 10.1042/bj2960053] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
5'-(p-(Fluorosulphonyl)[14C]benzoyl)adenosine (FSBA) was synthesized and used as a probe to study the ATP-binding site of smooth-muscle myosin light-chain kinase (MLCK). FSBA modified both free MLCK and calmodulin/MLCK complex, resulting in inactivation of the kinase activity. Nearly complete protection of the calmodulin/MLCK complex against FSBA modification was obtained by addition of excess ATP whereas MLCK activity alone was lost in a dose-dependent manner even in the presence of excess ATP. These results suggest that FSBA modified ATP-binding sites and ATP-independent sites, and the latter sites are protected by calmodulin binding. The results also suggest that the ATP-binding site is accessible to the nucleotide substrate regardless of calmodulin binding. The FSBA-labelled MLCK was completely proteolysed by alpha-chymotrypsin, and the 14C-labelled peptides were isolated and sequenced. The sequence of the labelled peptide was Ala-Gly-X-Phe, where X is the labelled residue. The sequence was compared with the known MLCK sequence, and the labelled residue was identified as lysine-548, which is located downstream of the GXGXXG motif conserved among ATP-utilizing enzymes.
Collapse
Affiliation(s)
- H Komatsu
- Department of Physiology and Biophysics, Case Western Reserve University, School of Medicine, Cleveland, OH 44106
| | | |
Collapse
|
42
|
Smith JA, Francis SH, Corbin JD. Autophosphorylation: a salient feature of protein kinases. Mol Cell Biochem 1993; 127-128:51-70. [PMID: 7935362 DOI: 10.1007/bf01076757] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Most protein kinases catalyze autophosphorylation, a process which is generally intramolecular and is modulated by regulatory ligands. Either serine/threonine or tyrosine serves as the phosphoacceptor, and several sites on the same kinase subunit are usually autophosphorylated. Autophosphorylation affects the functional properties of most protein kinases. Members of the protein kinase family exhibit diversity in the characteristics and functions of autophosphorylation, but certain common themes are emerging.
Collapse
Affiliation(s)
- J A Smith
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0615
| | | | | |
Collapse
|
43
|
Regulation of dimorphism in Saccharomyces cerevisiae: involvement of the novel protein kinase homolog Elm1p and protein phosphatase 2A. Mol Cell Biol 1993. [PMID: 8395007 DOI: 10.1128/mcb.13.9.5567] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Saccharomyces cerevisiae genes ELM1, ELM2, and ELM3 were identified on the basis of the phenotype of constitutive cell elongation. Mutations in any of these genes cause a dimorphic transition to a pseudohyphal growth state characterized by formation of expanded, branched chains of elongated cells. Furthermore, elm1, elm2, and elm3 mutations cause cells to grow invasively under the surface of agar medium. S. cerevisiae is known to be a dimorphic organism that grows either as a unicellular yeast or as filamentous cells termed pseudohyphae; although the yeast-like form usually prevails, pseudohyphal growth may occur during conditions of nitrogen starvation. The morphologic and physiological properties caused by elm1, elm2, and elm3 mutations closely mimic pseudohyphal growth occurring in conditions of nitrogen starvation. Therefore, we propose that absence of ELM1, ELM2, or ELM3 function causes constitutive execution of the pseudohyphal differentiation pathway that occurs normally in conditions of nitrogen starvation. Supporting this hypothesis, heterozygosity at the ELM2 or ELM3 locus significantly stimulated the ability to form pseudohyphae in response to nitrogen starvation. ELM1 was isolated and shown to code for a novel protein kinase homolog. Gene dosage experiments also showed that pseudohyphal differentiation in response to nitrogen starvation is dependent on the product of CDC55, a putative B regulatory subunit of protein phosphatase 2A, and a synthetic phenotype was observed in elm1 cdc55 double mutants. Thus, protein phosphorylation is likely to regulate differentiation into the pseudohyphal state.
Collapse
|
44
|
Yonemoto W, Garrod S, Bell S, Taylor S. Identification of phosphorylation sites in the recombinant catalytic subunit of cAMP-dependent protein kinase. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(17)46675-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
45
|
Blacketer MJ, Koehler CM, Coats SG, Myers AM, Madaule P. Regulation of dimorphism in Saccharomyces cerevisiae: involvement of the novel protein kinase homolog Elm1p and protein phosphatase 2A. Mol Cell Biol 1993; 13:5567-81. [PMID: 8395007 PMCID: PMC360278 DOI: 10.1128/mcb.13.9.5567-5581.1993] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The Saccharomyces cerevisiae genes ELM1, ELM2, and ELM3 were identified on the basis of the phenotype of constitutive cell elongation. Mutations in any of these genes cause a dimorphic transition to a pseudohyphal growth state characterized by formation of expanded, branched chains of elongated cells. Furthermore, elm1, elm2, and elm3 mutations cause cells to grow invasively under the surface of agar medium. S. cerevisiae is known to be a dimorphic organism that grows either as a unicellular yeast or as filamentous cells termed pseudohyphae; although the yeast-like form usually prevails, pseudohyphal growth may occur during conditions of nitrogen starvation. The morphologic and physiological properties caused by elm1, elm2, and elm3 mutations closely mimic pseudohyphal growth occurring in conditions of nitrogen starvation. Therefore, we propose that absence of ELM1, ELM2, or ELM3 function causes constitutive execution of the pseudohyphal differentiation pathway that occurs normally in conditions of nitrogen starvation. Supporting this hypothesis, heterozygosity at the ELM2 or ELM3 locus significantly stimulated the ability to form pseudohyphae in response to nitrogen starvation. ELM1 was isolated and shown to code for a novel protein kinase homolog. Gene dosage experiments also showed that pseudohyphal differentiation in response to nitrogen starvation is dependent on the product of CDC55, a putative B regulatory subunit of protein phosphatase 2A, and a synthetic phenotype was observed in elm1 cdc55 double mutants. Thus, protein phosphorylation is likely to regulate differentiation into the pseudohyphal state.
Collapse
Affiliation(s)
- M J Blacketer
- Department of Biochemistry and Biophysics, Iowa State University, Ames 50011
| | | | | | | | | |
Collapse
|
46
|
Salerno A, Lawrence D. Covalent modification with concomitant inactivation of the cAMP-dependent protein kinase by affinity labels containing only L-amino acids. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)38616-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
47
|
Autoactivation of catalytic (C alpha) subunit of cyclic AMP-dependent protein kinase by phosphorylation of threonine 197. Mol Cell Biol 1993. [PMID: 8455615 DOI: 10.1128/mcb.13.4.2332] [Citation(s) in RCA: 88] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We recently found, using cultured mouse cell systems, that newly synthesized catalytic (C) subunits of cyclic AMP-dependent protein kinase undergo a posttranslational modification that reduces their electrophoretic mobilities in sodium dodecyl sulfate (SDS)-polyacrylamide gels and activates them for binding to a Sepharose-conjugated inhibitor peptide. Using an Escherichia coli expression system, we now show that recombinant murine C alpha subunit undergoes a similar modification and that the modification results in a large increase in protein kinase activity. Threonine phosphorylation appears to be responsible for both the enzymatic activation and the electrophoretic mobility shift. The phosphothreonine-deficient form of C subunit had reduced affinities for the ATP analogs p-fluorosulfonyl-[14C]benzoyl 5'-adenosine and adenosine 5'-O-(3-thiotriphosphate) as well as for the Sepharose-conjugated inhibitor peptide; it also had markedly elevated Kms for both ATP and peptide substrates. Autophosphorylation of C-subunit preparations enriched for this phosphothreonine-deficient form reproduced the changes in enzyme activity and SDS-gel mobility that occur in intact cells. A mutant form of the recombinant C subunit with Ala substituted for Thr-197 (the only C-subunit threonine residue known to be phosphorylated in mammalian cells) was similar in SDS-polyacrylamide gel electrophoresis mobility and activity to the phosphothreonine-deficient form of wild-type C subunit. In contrast to the wild-type subunit, however, the Ala-197 mutant form could not be shifted or activated by incubation with the phosphothreonine-containing wild-type form. We conclude that posttranslational autophosphorylation of Thr-197 is a critical step in intracellular expression of active C subunit.
Collapse
|
48
|
Steinberg RA, Cauthron RD, Symcox MM, Shuntoh H. Autoactivation of catalytic (C alpha) subunit of cyclic AMP-dependent protein kinase by phosphorylation of threonine 197. Mol Cell Biol 1993; 13:2332-41. [PMID: 8455615 PMCID: PMC359554 DOI: 10.1128/mcb.13.4.2332-2341.1993] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
We recently found, using cultured mouse cell systems, that newly synthesized catalytic (C) subunits of cyclic AMP-dependent protein kinase undergo a posttranslational modification that reduces their electrophoretic mobilities in sodium dodecyl sulfate (SDS)-polyacrylamide gels and activates them for binding to a Sepharose-conjugated inhibitor peptide. Using an Escherichia coli expression system, we now show that recombinant murine C alpha subunit undergoes a similar modification and that the modification results in a large increase in protein kinase activity. Threonine phosphorylation appears to be responsible for both the enzymatic activation and the electrophoretic mobility shift. The phosphothreonine-deficient form of C subunit had reduced affinities for the ATP analogs p-fluorosulfonyl-[14C]benzoyl 5'-adenosine and adenosine 5'-O-(3-thiotriphosphate) as well as for the Sepharose-conjugated inhibitor peptide; it also had markedly elevated Kms for both ATP and peptide substrates. Autophosphorylation of C-subunit preparations enriched for this phosphothreonine-deficient form reproduced the changes in enzyme activity and SDS-gel mobility that occur in intact cells. A mutant form of the recombinant C subunit with Ala substituted for Thr-197 (the only C-subunit threonine residue known to be phosphorylated in mammalian cells) was similar in SDS-polyacrylamide gel electrophoresis mobility and activity to the phosphothreonine-deficient form of wild-type C subunit. In contrast to the wild-type subunit, however, the Ala-197 mutant form could not be shifted or activated by incubation with the phosphothreonine-containing wild-type form. We conclude that posttranslational autophosphorylation of Thr-197 is a critical step in intracellular expression of active C subunit.
Collapse
Affiliation(s)
- R A Steinberg
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City 73190
| | | | | | | |
Collapse
|
49
|
Gene structure and expression of an unusual protein kinase from Plasmodium falciparum homologous at its carboxyl terminus with the EF hand calcium-binding proteins. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53616-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
50
|
McClure GD, Qamar R, Cook PF. A method for counting active sites of cyclic AMP-dependent protein kinase. JOURNAL OF ENZYME INHIBITION 1993; 7:151-7. [PMID: 7509870 DOI: 10.3109/14756369309040757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A method has been developed for counting active sites of cyclic-AMP-dependent protein kinase. Known concentrations of a synthetic peptide similar to a fragment of the endogenous inhibitor of the kinase were included in otherwise routine assay mixes containing several different volumes of enzyme stock solution. The concentration of active sites of the catalytic subunit of the cyclic AMP-dependent protein kinase in the stock solution was then determined by fitting observed velocities to an equation that accounts for the presence of a tight-binding inhibitor. The method yielded estimates of catalytic subunit concentration comparable with those derived from more traditional measures of catalytic subunit concentration. Both purified and heterogeneous samples were assayed, since active-sites counting assumes only a mutually specific, high-affinity interaction between enzyme and inhibitor and does not require that samples be pure. In principle, the method can be adapted to other protein kinases for which a specific, tight-binding, reversible inhibitor is available.
Collapse
Affiliation(s)
- G D McClure
- Department of Biochemistry and Molecular Biology, Texas College of Osteopathic Medicine, Fort Worth 76107
| | | | | |
Collapse
|